Speed-ups of Elliptic Curve-Based Schemes

René Struijk
independent
e-mail: rstruijk.ext@gmail.com

Results based on work conducted at Certicom Research
Outline

• ECDSA signature scheme
• Fast ECDSA signature scheme
• Speed-ups:
 – ECDSA fast verification
 – ECDSA certificate verification and ECC-based key agreement (ECDH, ECMQV)
 – Batch ECDSA verification
• How to get from ECDSA to Fast ECDSA
• How an IETF standard could help
• IPR aspects

René Struik, e-mail: rstruik.ext@gmail.com
ECDSA signature scheme

<table>
<thead>
<tr>
<th>System-wide parameters</th>
<th>Initial set-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elliptic curve of prime order (n) with generator (G). Hash function (h).</td>
<td>Signer A selects private key (d \in [1, n-1]) and publishes its public key (Q = dG).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature generation</th>
<th>Signature verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT: Message (m), private key (d).</td>
<td>INPUT: Message (m), signature ((r, s)); Public signing key (Q) of Alice.</td>
</tr>
<tr>
<td>OUTPUT: Signature ((r, s)).</td>
<td>OUTPUT: Accept or reject signature.</td>
</tr>
</tbody>
</table>

ACTIONS:
1. Compute \(e := h(m) \).
2. Select random \(k \in [1, n-1] \).
3. Compute \(R := kG \) and map \(R \) to \(r \).
4. Compute \(s := k^{-1}(e + d \cdot r) \) mod \(n \).
5. If \(r \notin [1, n-1] \) or \(s \notin [1, n-1] \), go to #2.
6. Return \((r, s)\).

Non-repudiation: Verifier knows the true identity of the signing party, since the public signing key \(Q \) is bound to signing party Alice.

René Struik, e-mail: rstruik.ext@gmail.com
Fast ECDSA signature scheme

<table>
<thead>
<tr>
<th>System-wide parameters</th>
<th>Initial set-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elliptic curve of prime order (n) with generator (G). Hash function (h).</td>
<td>Signer A selects private key (d \in [1,n-1]) and publishes its public key (Q = dG).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature generation</th>
<th>Signature verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT: Message (m), private key (d).</td>
<td>INPUT: Message (m), signature ((R, s)); Public signing key (Q) of Alice.</td>
</tr>
<tr>
<td>OUTPUT: Signature ((R, s)).</td>
<td>OUTPUT: Accept or reject signature.</td>
</tr>
</tbody>
</table>

ACTIONS:
1. Compute \(e := h(m) \).
2. Select random \(k \in [1,n-1] \).
3. Compute \(R := kG \) and map \(R \) to \(r \).
4. Compute \(s := k^{-1}(e + d \cdot r) \mod n \).
5. If \(r \notin [1,n-1] \) or \(s \notin [1,n-1] \), go to #2.
6. Return \((R, s)\).

ACTIONS:
1. If \(r \notin [1,n-1] \), return ‘reject’.
2. If \(s \notin [1,n-1] \), return ‘reject’.
3. Map \(R \) to \(r \).
4. Compute \(e := h(m) \).
5. Check that \(R = s^{-1}(e \cdot G + r \cdot Q) \).
 If verification succeeds, return ‘accept’; otherwise return ‘reject’.

Non-repudiation: Verifier knows the true identity of the signing party, since the public signing key \(Q \) is bound to signing party Alice.

René Struik, e-mail: rstruik.ext@gmail.com
Fast ECDSA and speed-ups

Speed-ups for prime curves and binary non-Koblitz curves:
– NIST prime curves, ‘Suite B’ curves, Brainpool curves, GOST (RFC 5832)
– NIST random binary curves

Fast verification of ECDSA signatures ([2]):
40% speed-up compared to ordinary approach

ECDSA certificate verification + Static ECDH/ECMQV ([7]):
Speed-up incremental cost ECDSA verify compared to separate approach:
2.4x speed-up (compared to ordinary ECDSA verify)
1.7x (compared to Fast ECDSA verify)
Simple side channel resistance virtually for free

Batch verification of ECDSA signatures ([3]):
Dependent on number of signatures involved

René Struik, e-mail: rstruik.ext@gmail.com
Part I –
Accelerated Verification of ECDSA Signatures

René Struik
independent
e-mail: rstruik.ext@gmail.com

Joint work with A. Antipa, D.R. Brown, R. Gallant, R. Lambert, S.A. Vanstone
Fast ECDSA signature scheme

Computational aspects

Ordinary signature verification

ACTIONS:

3. Compute $R' := (e s^{-1}) G + (r s^{-1}) Q$.

4. Check that R' maps to r.

Fast signature verification

ACTIONS:

2. Map R to r.

4. Check that $R = (e s^{-1}) G + (r s^{-1}) Q$.

Ordinary signature verification

Compute expression $R' := (e s^{-1}) G + (r s^{-1}) Q$.

Cost: full-size linear combination of known point G and unknown point Q.

Fast signature verification

Evaluate expression $\Delta := s^{-1} (e G + r Q) - R$ and check that $\Delta = O$.

by verifying instead

$\mu \Delta := (\mu e s^{-1}) G + (\mu r s^{-1}) Q - \mu R = O$ for suitable $\mu \in [1, n-1]$.

Cost: half-size combination of known points G, G' and unknown points Q, R.

René Struik, e-mail: rstruik.ext@gmail.com
Example

Verification cost ECDSA scheme vs. Fast ECDSA scheme
• Curve: NIST prime curve P-384 with 192-bit security (Suite B)
• Integer representation: NAF, joint sparse form (JSF)
• Coordinate system: Jacobian coordinates

<table>
<thead>
<tr>
<th>P-384 curve</th>
<th>ECDSA Verify</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECC operations</td>
<td>Ordinary</td>
</tr>
<tr>
<td>– Add</td>
<td>194</td>
</tr>
<tr>
<td>– Double</td>
<td>384</td>
</tr>
<tr>
<td>– Total1</td>
<td>459</td>
</tr>
</tbody>
</table>

1Normalized (double/add ratio: 0.69)

| RIM Blackberry2 | 221 ms | 158 ms |

2Platform: ARM7TDMI (50 MHz)

Speed-up cost Fast ECDSA verify
compared to ordinary approach: 1.4x

René Struik, e-mail: rstruik.ext@gmail.com
Cost of signature verification

Verification cost of ECDSA signature vs. RSA signatures
• RSA: public exponent $e = 2^{16} + 1$
• ECDSA: NIST prime curves
• Platform: HP iPAQ 3950, Intel PXA250 processor (400 MHz)

<table>
<thead>
<tr>
<th>Security level (bits)</th>
<th>Verification cost (ms)</th>
<th>Ratio fast ECDSA verify vs. RSA verify</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RSA² ordinary² fast³</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>1.4 4.0 2.9</td>
<td>0.5x faster</td>
</tr>
<tr>
<td>112</td>
<td>5.2 7.7 5.5</td>
<td>0.9x faster</td>
</tr>
<tr>
<td>128</td>
<td>11.0 11.8 8.4</td>
<td>1.3x faster</td>
</tr>
<tr>
<td>192</td>
<td>65.8 32.9 23.5</td>
<td>2.8x faster</td>
</tr>
<tr>
<td>256</td>
<td>285.0 73.2 52.3</td>
<td>5.4x faster</td>
</tr>
</tbody>
</table>

¹Excluding (fixed) overhead of identification data
²Certicom Security Builder
³Estimate

Conclusion
Efficiency advantage of RSA signatures over ECDSA signatures is vanishing

René Struik, e-mail: rstruik.ext@gmail.com
Part II –
Combined Verification
and Key Computation

René Struik
independent
e-mail: rstruik.ext@gmail.com
Key agreement schemes

Authenticated Diffie-Hellman (static ECDH)

ACTIONS:
1. Verify $\text{Cert}_{CA}(Bob, B)$.

ACTIONS:
1. Verify $\text{Cert}_{CA}(Alice, A)$.
2. Compute $K := bA$.

Properties
- **Key agreement:** Both parties arrive at same key K, since $K = abG = aB = bA$.
- **Key authentication:** Each party knows the true identity of the key sharing party, since keys A and B are bound to parties Alice and Bob.

René Struik, e-mail: rstruik.ext@gmail.com
Computational aspects (1)

Step 2: ECDH key computation (key establishment)

Compute expression $K := aB,$

where a is Alice’s private key; B is Bob’s public key (derived from his certificate).

Step 1: ECDSA certificate verification (key authentication)

Evaluate expression $s^{-1} (eG + rQ) - R = O,$

where e is hash value of certificate info (including Bob, B); Q is public key of certificate authority; (r, s) is ECDSA signature over certificate info.

Question: Can one combine these steps?
Answer: YES!

René Struik, e-mail: rstruik.ext@gmail.com
Example (1)

Static ECDH with ECDSA certificates
- Curve: NIST prime curve P-384 with 192-bit security (Suite B)
- Integer representation: NAF, joint sparse form (JSF)
- Coordinate system: Jacobian coordinates

<table>
<thead>
<tr>
<th>P-384 curve</th>
<th>ECDH key</th>
<th>ECDSA (incremental cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECC operations</td>
<td>Separately</td>
<td>Combined with ECDH</td>
</tr>
<tr>
<td>Add</td>
<td>128</td>
<td>194</td>
</tr>
<tr>
<td>Double</td>
<td>384</td>
<td>384</td>
</tr>
<tr>
<td>Total¹</td>
<td>393</td>
<td>459</td>
</tr>
</tbody>
</table>

¹Normalized (double/add ratio: 0.69)

Speed-up incremental cost ECDSA verify
compared to separate approach: 2.4x (ordinary ECDSA verify)
1.7x (Fast ECDSA verify)

René Struik, e-mail: rstruiext@gmail.com
Cost of certificate verification

Incremental verification cost of ECDSA certificates vs. RSA certificates
• RSA: public exponent $e = 2^{16}+1$
• ECDSA, ECDH: NIST prime curves
• Platform: HP iPAQ 3950, Intel PXA250 processor (400 MHz)

<table>
<thead>
<tr>
<th>Security level (bits)</th>
<th>Certificate size¹ (bytes)</th>
<th>Ratio ECC/RSA certificates</th>
<th>Verify – incremental cost (ms)</th>
<th>Ratio ECDSA verify vs. RSA verify</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECDSA</td>
<td>RSA</td>
<td></td>
<td>RSA²</td>
</tr>
<tr>
<td>80</td>
<td>72</td>
<td>256</td>
<td>4x smaller</td>
<td>1.4</td>
</tr>
<tr>
<td>112</td>
<td>84</td>
<td>512</td>
<td>6x smaller</td>
<td>5.2</td>
</tr>
<tr>
<td>128</td>
<td>96</td>
<td>768</td>
<td>8x smaller</td>
<td>11.0</td>
</tr>
<tr>
<td>192</td>
<td>144</td>
<td>1920</td>
<td>13x smaller</td>
<td>65.8</td>
</tr>
<tr>
<td>256</td>
<td>198</td>
<td>3840</td>
<td>19x smaller</td>
<td>285.0</td>
</tr>
</tbody>
</table>

¹Excluding (fixed) overhead of identification data ²Certicom Security Builder ³Estimate

Conclusion
Efficiency advantage of RSA certificates with DH-based schemes is no more

René Struik, e-mail: rstruik.ext@gmail.com
ECDSA vs. Fast ECDSA

Security of Fast ECDSA
Both schemes are equally secure: ECDSA has signature \((r, s)\) if and only if Fast ECDSA has signature \((R, s)\) where \(R\) maps to \(r\).

ECDSA signature verification
- Convert ECDSA signature \((r, s)\) to Fast ECDSA signature \((R, s)\)
- Verify Fast ECDSA signature \((R, s)\)

Note:
- Conversion generally yields pair \((R, -R)\) of candidate points that map to \(r\).
- Verification involves trying out all those candidate points not discarded based on some side constraints (the so-called admissible points).

How to ensure only one admissible point:
- Generate ECDSA signature with \(k\) such that y-coordinate of \(R:=kG\) can be prescribed. (If necessary, change the sign of \(k\).)
- Use the fact that \((r, s)\) is a valid ECDSA signature if and only if \((r, -s)\) is.

Conversion of ECDSA to Fast Verify friendly format: via simple post-processing
“Friendly ECDSA” 😊

René Struik, e-mail: rstruik.ext@gmail.com
Friendly ECDSA scheme

System-wide parameters
Elliptic curve of prime order \(n \) with generator \(G \). Hash function \(h \).

Signature generation

INPUT: Message \(m \), private key \(d \).

OUTPUT: Signature \((r, s)\).

ACTIONS:
1. Compute \(e := h(m) \).
2. Select random \(k \in [1, n-1] \).
3. Compute \(R := kG \) and map \(R \) to \(r \).
4. Compute \(s := k^{-1}(e + d \cdot r) \mod n \).
5. If \(r \notin [1, n-1] \) or \(s \notin [1, n-1] \), go to #2.
6. Return \((r, s)\) if \(y\)-coordinate of \(R \) even; return \((r, -s)\) otherwise.

Initial set-up
Signer A selects private key \(d \in [1, n-1] \) and publishes its public key \(Q = dG \).

Signature verification

INPUT: Message \(m \), signature \((r, s)\); Public signing key \(Q \) of Alice.

OUTPUT: Accept or reject signature.

ACTIONS:
1. If \(r \notin [1, n-1] \), return ‘reject’.
2. Map \(r \) to \(R \) (only one of \(R \) or \(-R \) valid, since \(y\)-coordinate of \(R \) or \(-R \) odd).
3. If \(s \notin [1, n-1] \), return ‘reject’.
4. Compute \(e := h(m) \).
5. Check that \(R = s^{-1}(e \cdot G + r \cdot Q) \).
 If verification succeeds, return ‘accept’; otherwise return ‘reject’.

Anyone can do this post-processing

Anyone can do this pre-processing

René Struik, e-mail: rstruik.ext@gmail.com
How to get to Friendly ECDSA

Existing ECDSA signatures
– Anyone can post-process legacy ECDSA certificate and put into friendly format
– This could be device that participates into key agreement (ECDH + signed exponents)

New ECDSA signatures
– Generate in friendly format
– If verifier knows, he can always get speed-ups
 explicit method: use, e.g., new OID with PKIX, etc.
 implicit method: facilitate in IETF drafts currently in pipeline (no need for new OIDs)
– If verifier does not know, he can guess (best: +40%, worst: -12%, avg.: +8%)

Note:
– Devices that do not implement speed-ups will not notice, since compatible format
– Possible to move towards implementing verification speed-ups over time (one can change one’s mind)

René Struik, e-mail: rstruik.ext@gmail.com
IPR – where is it?

Potential IPR strings attached to following techniques:

− Accelerated verification of ECDSA signatures
− Combined ECDSA signature verification and ECC-based key agreement (e.g., ECDH with ECDSA signed exponents)

Ref: https://datatracker.ietf.org/ipr/1363/

Hence, making techniques *optional* to use for those who choose to do so

Ideal scenario:
Everyone facilitates others to fully benefit from speed-ups should they choose to do so.
Further reading

7. R. Struik, ‘Batch Computations Revisited: Combining Key Computations and Batch Verifications,’ to be presented at SAC 2010, Waterloo, ON, Canada, August 12-13, 2010.

René Struik, e-mail: rstruij.ext@gmail.com
Back-up slides with more technical detail

René Struijk
e-mail: rstruij.ext@gmail.com

Results based on work conducted at Certicom Research
Part I –
Accelerated Verification of ECDSA Signatures

René Struik
e-mail: rstruik.ext@gmail.com

Joint work with A. Antipa, D.R. Brown, R. Gallant, R. Lambert, S.A. Vanstone
Outline

• ECDSA signature scheme
• Fast ECDSA signature scheme
• Computational aspects
 – Simultaneous multiplication
 – Extended Euclidean Algorithm
• Examples
 – Fast ECDSA verification
 – ECDSA verification
 – Comparison with RSA signatures
• Conclusions
ECDSA signature scheme

System-wide parameters

- Elliptic curve of prime order \(n\) with generator \(G\). Hash function \(h\).

Signature generation

INPUT: Message \(m\), private key \(d\).
OUTPUT: Signature \((r, s)\).

ACTIONS:
1. Compute \(e := h(m)\).
2. Select random \(k \in [1, n-1]\).
3. Compute \(R := kG\) and map \(R\) to \(r\).
4. Compute \(s := k^{-1}(e + dr) \mod n\).
5. If \(r, s \in [1, n-1]\), return \((r, s)\); otherwise, go to Step 2.

Initial set-up

- Signer A selects private key \(d \in [1, n-1]\) and publishes its public key \(Q = dG\).

Signature verification

INPUT: Message \(m\), signature \((r, s)\); Public signing key \(Q\) of Alice.
OUTPUT: Accept or reject signature.

ACTIONS:
1. Compute \(e := h(m)\).
2. Check that \(r, s \in [1, n-1]\). If verification fails, return ‘reject’.
3. Compute \(R' := s^{-1}(e G + r Q)\).
4. Check that \(R'\) maps to \(r\).
 - If verification succeeds, return ‘accept’; otherwise return ‘reject’.

Non-repudiation: Verifier knows the true identity of the signing party, since the public signing key \(Q\) is bound to signing party Alice.

René Struik, e-mail: rstruik.ext@gmail.com
Fast ECDSA signature scheme

<table>
<thead>
<tr>
<th>System-wide parameters</th>
<th>Initial set-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elliptic curve of prime order n with generator G. Hash function h.</td>
<td>Signer A selects private key $d \in [1,n-1]$ and publishes its public key $Q = dG$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signature generation</th>
<th>Signature verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT: Message m, private key d. OUTPUT: Signature (R, s).</td>
<td>INPUT: Message m, signature (R, s); Public signing key Q of Alice. OUTPUT: Accept or reject signature.</td>
</tr>
</tbody>
</table>

ACTIONS:
1. Compute $e := h(m)$.
2. Select random $k \in [1,n-1]$.
3. Compute $R := kG$ and map R to r.
4. Compute $s := k^{-1}(e + dr) \mod n$.
5. If $r, s \in [1,n-1]$, return (R, s); otherwise, go to Step 2.

ACTIONS:
1. Compute $e := h(m)$.
2. Map R to r.
3. Check that $r, s \in [1,n-1]$. If verification fails, return ‘reject’.
4. Check that $R = s^{-1}(eG + rQ)$. If verification succeeds, return ‘accept’; otherwise return ‘reject’.

Non-repudiation: Verifier knows the true identity of the signing party, since the public signing key Q is bound to signing party Alice.

René Struik, e-mail: rstruik.ext@gmail.com
Fast ECDSA signature scheme

Computational aspects

<table>
<thead>
<tr>
<th>Ordinary signature verification</th>
<th>Fast signature verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIONS:</td>
<td>ACTIONS:</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3. Compute $R' := (e \cdot s^{-1}) \cdot G + (r \cdot s^{-1}) \cdot Q$.</td>
<td>2. Map R to r.</td>
</tr>
<tr>
<td>4. Check that R' maps to r.</td>
<td>4. Check that $R = (e \cdot s^{-1}) \cdot G + (r \cdot s^{-1}) \cdot Q$.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Ordinary signature verification

Compute expression $R' := (e \cdot s^{-1}) \cdot G + (r \cdot s^{-1}) \cdot Q$.

Cost: *full-size* linear combination of *known* point G and *unknown* point Q.

Fast signature verification

Evaluate expression $\Delta := s^{-1} \cdot (e \cdot G + r \cdot Q) - R$ and check that $\Delta = O$.

Cost: *full-size* linear combination of *known* point G and *unknown* point Q.

Seemingly no computational advantages over traditional approach … ☹️

René Struik, e-mail: rstruik.ext@gmail.com
Computational aspects (1)

One can do better, though! ☺

Fast signature verification
Evaluate expression $\Delta := (e s^{-1}) G + (r s^{-1}) Q - R$ and check that $\Delta = O$.

Equivalent test
Check that $\mu \Delta := (\mu e s^{-1}) G + (\mu r s^{-1}) Q - \mu R = O$ for any $\mu \in [1, n-1]$.

or:
Check that $\mu \Delta := (\mu e s^{-1}) G + \lambda Q - \mu R = O$, where $r / s \equiv \lambda / \mu \pmod{n}$.

Optimum choice
Write $r / s \equiv \lambda / \mu \pmod{n}$, where λ and μ have size half the bit-length of n.

Note: This can be done efficiently using the Extended Euclidean Algorithm.

Why speed-up?
Speed-up due to getting rid of half of so-called point doubles.

René Struik, e-mail: rstruik.ext@gmail.com
Fast signature verification
Check that \(\mu \Delta := (\mu e s^{-1}) G + \lambda Q - \mu R = O \), where \(r / s \equiv \lambda / \mu \pmod{n} \)
and where \(\lambda \) and \(\mu \) have size half the bit-length of \(n \).

Details:
Pre-compute \(G_1 := t G \), where \(t \approx \sqrt{n} \). Let \(G_0 := G \).
Write \(r / s \equiv \lambda / \mu \pmod{n} \), where \(\lambda \) and \(\mu \) have size half the bit-length of \(n \).
Write \(\mu e s^{-1} \equiv \alpha_0 + \alpha_1 t \pmod{n} \), where \(\alpha_0, \alpha_1 \) have size half the bit-length of \(n \).
Evaluate \(\mu \Delta := (\mu e s^{-1}) G + \lambda Q - \mu R \)
\[= \alpha_0 G_0 + \alpha_1 G_1 + \lambda Q - \mu R \]

Cost: half-size combination of known points \(G_0, G_1 \) and unknown points \(Q, R \).

Ordinary signature verification
Compute expression \(R' := (e s^{-1}) G + (r s^{-1}) Q \).

Cost: full-size linear combination of known point \(G \) and unknown point \(Q \).

René Struik, e-mail: rstruik.ext@gmail.com
Computational aspects (3)

Optimum choice
Write $r / s \equiv \lambda / \mu \pmod{n}$, where λ and μ have size half the bit-length of n.

This can be done efficiently using the Extended Euclidean Algorithm.

Extended Euclidean Algorithm (EEA)

INPUT: Positive integers a and n with $a \leq n$.
OUTPUT: $d = \gcd(a, n)$ and integers x, y
satisfying $a \cdot x + n \cdot y = d$.

ACTIONS:
1. $(u, v) \leftarrow (a, n); X \leftarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$;
2. while $u \neq 0$ do
 { q \leftarrow v \div u; (u, v) \leftarrow (v \mod u, u); X \leftarrow \begin{pmatrix} -q & 1 \\ 1 & 0 \end{pmatrix}X
 }
3. $(d, x, y) \leftarrow (v, x_{21}, x_{22})$.

Invariant:
\[a \cdot x_{11} + n \cdot x_{12} = u \]
\[a \cdot x_{21} + n \cdot x_{22} = v \]

Let $a := r \cdot s^{-1} \pmod{n}$.
Use Ext. Euclidean Algorithm to compute $\gcd(a, n)$.
(which is 1, since n is prime.)
Abort algorithm once $u < \sqrt{n}$.
(Most likely, $|x_{11}|$ is also close to \sqrt{n}.)
Set $\lambda := u$ and $\mu := x_{11}$.

René Struik, e-mail: rstruik.ext@gmail.com
Example

Verification cost ECDSA scheme vs. Fast ECDSA scheme

• Curve: NIST prime curve P-384 with 192-bit security (Suite B)
• Integer representation: NAF, joint sparse form (JSF)
• Coordinate system: Jacobian coordinates

<table>
<thead>
<tr>
<th>P-384 curve</th>
<th>ECDSA Verify</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECC operations</td>
<td>Ordinary</td>
</tr>
<tr>
<td>– Add</td>
<td>194</td>
</tr>
<tr>
<td>– Double</td>
<td>384</td>
</tr>
<tr>
<td>– Total(^1)</td>
<td>459</td>
</tr>
</tbody>
</table>

\(^1\)Normalized (double/add ratio: 0.69)

| RIM Blackberry\(^2\) | 221 ms | 158 ms |

\(^2\)Platform: ARM7TDMI (50 MHz)

Speed-up cost Fast ECDSA verify compared to ordinary approach: 1.4x

René Struik, e-mail: rstrui.ekt@gmail.com
Security of Fast ECDSA
Both schemes are equally secure: ECDSA has signature \((r, s)\) if and only if Fast ECDSA has signature \((R, s)\) where \(R\) maps to \(r\).

ECDSA signature verification
- Convert ECDSA signature \((r, s)\) to Fast ECDSA signature \((R, s)\)
- Verify Fast ECDSA signature \((R, s)\)

Note:
- Conversion generally yields pair \((R, -R)\) of candidate points that map to \(r\).
- Verification involves trying out all those candidate points not discarded based on some side constraints (the so-called admissible points).

How to ensure only one admissible point:
- Generate ECDSA signature with \(k\) such that y-coordinate of \(R:=kG\) can be prescribed. (If necessary, change the sign of \(k\).)
- Use the fact that \((r, s)\) is a valid ECDSA signature if and only if \((r, -s)\) is.

René Struik, e-mail: rstruik.ext@gmail.com
Cost of signature verification

Verification cost of ECDSA signature vs. RSA signatures
• RSA: public exponent $e = 2^{16}+1$
• ECDSA: NIST prime curves
• Platform: HP iPAQ 3950, Intel PXA250 processor (400 MHz)

<table>
<thead>
<tr>
<th>Security level (bits)</th>
<th>Verification cost (ms)</th>
<th>Ratio fast ECDSA verify vs. RSA verify</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RSA2</td>
<td>ECDSA2</td>
</tr>
<tr>
<td>80</td>
<td>1.4</td>
<td>4.0</td>
</tr>
<tr>
<td>112</td>
<td>5.2</td>
<td>7.7</td>
</tr>
<tr>
<td>128</td>
<td>11.0</td>
<td>11.8</td>
</tr>
<tr>
<td>192</td>
<td>65.8</td>
<td>32.9</td>
</tr>
<tr>
<td>256</td>
<td>285.0</td>
<td>73.2</td>
</tr>
</tbody>
</table>

1Excluding (fixed) overhead of identification data
2Certicom Security Builder
3Estimate

Conclusion
Efficiency advantage of RSA signatures over ECDSA signatures is vanishing

René Struik, e-mail: rstruik.ext@gmail.com
Conclusions

Fast ECDSA signature scheme attractive:

• **Security:** Same security as original ECDSA signature scheme
• **Efficiency:** Considerable speed-up possible for non-Koblitz curves
 – NIST prime curves, ‘Suite B’ curves, Brainpool curves: 40% speed-up
 – NIST random binary curves: 40% speed-up

Efficiency results applicable to ordinary ECDSA signature scheme:

• ECDSA and Fast ECDSA have same cost if only 1 admissible point
 – Append 1 bit of side info to ECDSA signature to distinguish \((R, -R)\)
 – Agree on particular way of generating ECDSA signatures such that only one of points \(R\) and \(-R\) is admissible
• ECDSA can still use Fast ECDSA if more than 1 admissible point
 – Roughly 8% average speed-up for curves mentioned above

Efficiency advantage of RSA signatures over ECDSA signatures is vanishing

René Struik, e-mail: rstruikeext@gmail.com
Part II –
Combined Verification and Key Computation

René Struik
e-mail: rstruik.ext@gmail.com
Outline

• Public key cryptography
 – Key agreement schemes
 – Signature schemes
• Computational aspects
 – Key computation
 – Certificate verification
 – Combined key computation and certificate verification
• Examples
 – Static Diffie-Hellman with ECDSA certificates
 – ECMQV with ECDSA certificates
 – Comparison with RSA certificates
• Conclusions
Public key cryptography

Communication model
Communicating parties a priori share authentic information

René Struik, e-mail: rstruik.ext@gmail.com
Anonymous Diffie-Hellman (ephemeral ECDH)

ACTIONS:
1. Select $a \in_R [1, n-1]$.

Bob

Random $A = aG$

Alice

Random $B = bG$

ACTIONS:
1. Select $b \in_R [1, n-1]$.
2. Compute $B := bG$.

Properties

- **Key agreement**: Both parties arrive at same key K, since $K = abG = aB = bA$.
- **No key authentication**: Neither party knows the true identity of the key sharing party, since keys A and B are *not* bound to parties Alice and Bob.

René Struik, e-mail: rstruij.ext@gmail.com
Key agreement schemes

Authenticated Diffie-Hellman (static ECDH)

ACTIONS:
1. Verify $\text{Cert}_{CA}(Bob, B)$.

ACTIONS:
1. Verify $\text{Cert}_{CA}(Alice, A)$.
2. Compute $K := bA$.

Properties
- **Key agreement:** Both parties arrive at the same key K, since $K = abG = aB = bA$.
- **Key authentication:** Each party knows the true identity of the key sharing party, since keys A and B are bound to parties Alice and Bob.

René Struik, e-mail: rstruik.ext@gmail.com
Key agreement schemes

General protocol format

Step 1: Key contributions
Each party randomly generates a short-term (ephemeral) public key pair and communicates the ephemeral public key to the other party (but not the private key).

Step 2: Key establishment
Each party computes the shared key based on static and ephemeral public keys received from the other party and static and ephemeral private keys it generated itself.

Step 3: Key authentication
Each party verifies the authenticity of the static key of the other party.

Step 4: Key confirmation
Each party evidences possession of the shared key to the other party. This also confirms its true identity to the other party.

René Struik, e-mail: rstruik.ext@gmail.com
Key agreement schemes

Computational aspects

Step 1: Key contributions
Each party randomly generates a short-term (ephemeral) public key pair and communicates the ephemeral public key to the other party (but not the private key).

Step 2: Key establishment
Each party computes the shared key based on static and ephemeral public keys received from the other party and static and ephemeral private keys it generated itself.

Step 3: Key authentication
Each party verifies the authenticity of the static key of the other party.

Step 4: Key confirmation
Each party evidences possession of the shared key to the other party. This also confirms its true identity to the other party.

René Struik, e-mail: rstruik.ext@gmail.com
ECDSA signature scheme

<table>
<thead>
<tr>
<th>ECDSA signature verification</th>
<th>System-wide parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT: Message m, signature (r, s);</td>
<td>Elliptic curve with generator G.</td>
</tr>
<tr>
<td>Public signing key Q of Alice.</td>
<td>Hash function h.</td>
</tr>
<tr>
<td>OUTPUT: Accept or reject signature.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ordinary signature verification</th>
<th>Fast signature verification</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIONS:</td>
<td>ACTIONS:</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>1. Compute $e := h(m)$.</td>
<td>1. Compute $e := h(m)$.</td>
</tr>
<tr>
<td>2. Compute $R' := (e s^{-1}) G + (r s^{-1}) Q$.</td>
<td>2. Reconstruct R from r.</td>
</tr>
<tr>
<td>3. Check that R' maps to r.</td>
<td>3. Check that $R = (e s^{-1}) G + (r s^{-1}) Q$.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

ECDSA verification: Check equation $s^{-1} (e G + r Q) - R = O$.

Non-repudiation: Verifier knows the true identity of the signing party, since the public signing key Q is bound to signing party Alice.

René Struik, e-mail: rstruik.ext@gmail.com
Computational aspects (1)

Step 2: ECDH key computation (key establishment)

Compute expression \[K := aB, \]

where \(a \) is Alice’s private key;
\(B \) is Bob’s public key (derived from his certificate).

Step 3: ECDSA certificate verification (key authentication)

Evaluate expression \[s^{-1} (e \cdot G + r \cdot Q) - R = O, \]

where \(e \) is hash value of certificate info (including Bob, B);
\(Q \) is public key of certificate authority;
\((r, s) \) is ECDSA signature over certificate info.

Question: Can one combine these steps?
Answer: YES!

René Struik, e-mail: rstruik.ext@gmail.com

41
Computational aspects (2)

Step 2: ECDH key computation (key establishment)
Compute expression \(K := aB \).

Step 3: ECDSA certificate verification (key authentication)
Evaluate expression \(\Delta := s^{-1}(eG + rQ) - R \) and check that \(\Delta = O \).

Step 2 and Step 3 combined: Combined verification and key computation
Compute expression \(K' := aB + \lambda(s^{-1}(eG + rQ) - R) \) instead.

More generally, compute \(K' := K + \lambda \Delta \) instead.

René Struik, e-mail: rstruik.ext@gmail.com
Computational aspects (3)

Step 2 and Step 3 combined: Combined verification and key computation

Compute expression \(K' := aB + \lambda (s^{-1}(e \cdot G + r \cdot Q) - R) \) instead.

More generally, compute \(K' := K + \lambda \Delta \) instead.

Why does this work?

Alice can only compute \(K' \) correctly if certificate is ‘correct’ (i.e., \(\Delta = O \)); otherwise, \(K' \) is random (since then \(\Delta \neq O \)).

Property

Implicit key authentication: Each party knows the true identity of the key sharing party, if any, since keys \(A \) and \(B \) are bound to parties Alice and Bob and either party can only compute a shared key if that binding is ‘correct’.

René Struik, e-mail: rstruik.ext@gmail.com
Computational aspects (4)

Step 2: ECDH key computation (key establishment)
Compute expression \(K := aB \).
Cost: full-size multiple of unknown point \(B \).

Step 3: ECDSA certificate verification (key authentication)
Check expression \(s^{-1} (eG + rQ) = R \).
Cost: linear combination of known point \(G \) and unknown point \(Q \).

Step 2 and Step 3 combined: Combined verification and key computation
Compute expression \(K' := aB - \lambda R + (\lambda es^{-1})G + (\lambda rs^{-1})Q \).
Cost: linear combination of known point \(G \) and unknown points \(B, Q, \) and \(R \).

Why speed-up?
Speed-up due to getting rid of half of so-called point doubles.

René Struik, e-mail: rstruik.ext@gmail.com
Example (1)

Static ECDH with ECDSA certificates
• Curve: NIST prime curve P-384 with 192-bit security (Suite B)
• Integer representation: NAF, joint sparse form (JSF)
• Coordinate system: Jacobian coordinates

<table>
<thead>
<tr>
<th>P-384 curve</th>
<th>ECDH key</th>
<th>ECDSA (incremental cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECC operations</td>
<td></td>
<td>Separately</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ordinary</td>
</tr>
<tr>
<td>Add</td>
<td>128</td>
<td>194</td>
</tr>
<tr>
<td>Double</td>
<td>384</td>
<td>384</td>
</tr>
<tr>
<td>Total¹</td>
<td>393</td>
<td>459</td>
</tr>
</tbody>
</table>

¹Normalized (double/add ratio: 0.69)

Speed-up incremental cost ECDSA verify
compared to separate approach: 2.4x (ordinary ECDSA verify)
1.7x (Fast ECDSA verify)
Example (2)

ECMQV with ECDSA certificates
• Curve: NIST prime curve P-384 with 192-bit security (Suite B)
• Integer representation: NAF, joint sparse form (JSF)
• Coordinate system: Jacobian coordinates

<table>
<thead>
<tr>
<th>P-384 curve</th>
<th>ECMQV key</th>
<th>ECDSA (incremental cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECC operations</td>
<td></td>
<td>Separately</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ordinary</td>
</tr>
<tr>
<td>– Add</td>
<td>194</td>
<td>194</td>
</tr>
<tr>
<td>– Double</td>
<td>384</td>
<td>384</td>
</tr>
<tr>
<td>– Total¹</td>
<td>459</td>
<td>459</td>
</tr>
</tbody>
</table>

¹Normalized (double/add ratio: 0.69)

Speed-up incremental cost ECDSA verify
compared to separate approach: 2.3x (ordinary ECDSA verify)
1.7x (Fast ECDSA verify)

René Struik, e-mail: rstruik.ext@gmail.com
Example (3)

Static ECDH and ECMQV with ECDSA certificates

<table>
<thead>
<tr>
<th>P-384 curve</th>
<th>Key computation</th>
<th>Key computation + ECDSA (total cost)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ECC</td>
<td></td>
<td>ECDSA separately</td>
</tr>
<tr>
<td>operations1</td>
<td></td>
<td>Ordinary</td>
</tr>
<tr>
<td>ECDH</td>
<td>393</td>
<td>852</td>
</tr>
<tr>
<td>ECMQV</td>
<td>459</td>
<td>918</td>
</tr>
</tbody>
</table>

1Normalized (double/add ratio: 0.69)

Speed-up total cost ECDH + ECDSA
compared to separate approach: +45% (ordinary ECDSA verify)
+23% (Fast ECDSA verify)

Speed-up total cost ECMQV + ECDSA
compared to separate approach: +40% (ordinary ECDSA verify)
+20% (Fast ECDSA verify)

René Struik, e-mail: rstrui.k.ext@gmail.com
Cost of certificate verification

Incremental verification cost of ECDSA certificates vs. RSA certificates

- RSA: public exponent $e = 2^{16} + 1$
- ECDSA, ECDH: NIST prime curves
- Platform: HP iPAQ 3950, Intel PXA250 processor (400 MHz)

<table>
<thead>
<tr>
<th>Security level (bits)</th>
<th>Certificate size¹ (bytes)</th>
<th>Ratio ECC/RSA certificates</th>
<th>Verify – incremental cost (ms)</th>
<th>Ratio ECDSA verify vs. RSA verify</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECDSA</td>
<td>RSA</td>
<td></td>
<td>RSA²</td>
</tr>
<tr>
<td>80</td>
<td>72</td>
<td>256</td>
<td>4x smaller</td>
<td>1.4</td>
</tr>
<tr>
<td>112</td>
<td>84</td>
<td>512</td>
<td>6x smaller</td>
<td>5.2</td>
</tr>
<tr>
<td>128</td>
<td>96</td>
<td>768</td>
<td>8x smaller</td>
<td>11.0</td>
</tr>
<tr>
<td>192</td>
<td>144</td>
<td>1920</td>
<td>13x smaller</td>
<td>65.8</td>
</tr>
<tr>
<td>256</td>
<td>198</td>
<td>3840</td>
<td>19x smaller</td>
<td>285.0</td>
</tr>
</tbody>
</table>

¹Excluding (fixed) overhead of identification data ²Certicom Security Builder ³Estimate

Conclusion
Efficiency advantage of RSA certificates with DH-based schemes is no more

René Struik, e-mail: rstruik.ext@gmail.com
Conclusions

Combined computation of ECDH-key and ECDSA verification attractive:

- **Security**: Same security as underlying DH-based key agreement scheme or ECDSA signature scheme
- **Efficiency**: Considerable speed-up for all NIST prime curves
 - ECDH + ECDSA: up to 45% speed-up total online cost
 - ECMQV + ECDSA: up to 40% speed-up total online cost
 - ECDSA: up to 2.4x speed-up incremental ECDSA cost
- **Implementation security**: Simple side channel resistance virtually for free

Incremental cost of signature verification is the right metric:

- Efficiency advantage of RSA certificates with ECDH scheme is no more
 - Break-even point already at roughly 80-bit security level