SAVI Analysis for PANA with SLACC

Yilan Ding

IETF 78

draft-ding-savi-pana-with-slacc-00
outline

- IPv6 Broadband Access Network
- Problems
- SAVI for PANA with SLACC
IPv6 Broadband Access Network

- In IPv6 network, HGW get a delegated prefix (says, /56) and then advertises it to UEs in home network.
- Subscriber generates GUA via stateless address configuration
 - UE gets its own LLA/ULA address and then uses it as source IP address for the following PANA authentication for subscriber verification.
 - Once the authentication succeeds, UE sends RS to HGW and HGW replies with RA with a /64 prefix option for SLACC configuration.
 - UE uses the prefix to generate its GUA address, and uses it for the following data transportation.
 - UE1 and UE2 maybe get different /64 prefix by this same way.
IPv6 Broadband Access Network

Figure 1: IPv6 Broadband Access Network
Problems

- IP edge only knows /56 it delegated to HGW, there is no native way for IP edge to know which address/prefix UE1 and UE2 used within the range of the delegated /56 prefix. How to validate the address of UE?
- IP session terminates on IP edge, IP edge should have the detailed information stored for each session, e.g. prefix, address, layer 2 information, etc.
- If IP edge wants to treat the connections which terminate on UE1 and UE2 as different sessions, it needs to know the specific information of each to set up correct binding relationship.
- Solution is need to solve this problem.
SAVI for PANA with SLACC

- PAR with EAP success payload is sent to UE. ‘I’ bit was set to indicate that UE is required to get a GUA and use that GUA for the following message exchange.

- In SLACC procedure, UE get advertised prefix from HGW by RS/RA exchange, and use it to generate the GUA address for data communication.
SAVI for PANA with SLACC

-- UE1 --
| UE2 |

+-----+ +-----+ +-----+
| HGW | | AN | | IP Edge |
+-----+ +-----+ +-----+

8. Generate GUA
2002:db8:200:122::fe99:3234

9. PAN(src=GUA) w/ ‘C’ bit set

10. Bind GUA, prefix with session

• UE sends with ‘C’ bit set to IP edge. GUA address generated is used as the source IP address.

• IP edge retrieves the GUA and prefix information and binds them with the session initiated by UE.

• Embedded mechanism of PANA, a light-weighted solution

Figure 2: Message flow of IP/prefix reconfiguration in home network -1
SAVI for PANA with SLACC

- Another approach: the address UE use in data communication may be allocated after authentication process finished
Discussions
Thank You