Algorithm Agility for RPKI

Roque Gagliano
Stephen Kent

Sean Turner

Context

 SEC AD requested the SIDR WG to document a
mechanism for algorithm migration in RPKI.

* We spent sometime reviewing key roll-over.

* The algorithm transition document will include:

— A formal procedure to implement algorithm transition
by updating rpki-algs document (and the CP?)

— A set of steps/milestones to be achieved during the
transition period.

— Required behavior by CAs and RPs during migration

— We will not have emergency mechanism for algorithm
transition.

Algorithm migration (normal process):

e Months? Years? a

T

IETF updates

new suite

old suite

e ———

1

1

1

1

i

|

1] 1]
Sidr-algs and | i i : i
Sets dates for i i i i i i IETF f)bsoletes
milestones | '\ A Q@ | : | g ~ i oldSidr-algs

i i /H\E\ /} document

‘) ' ‘) .)

| Materials MIGHT be | Materials MUST be | Materials MIGHT be

| issued unidernew | issued under both | issued under old

' suites. - ' suites. ' suites. ’

CAReady (A Set CA Go RPReady Twilight EOL

Question 1: Transition Path

- Top-down only: we implement a mechanism
where a child CA can transition to a new

algorithm only if its parent CA has already
transitioned.

- Laissez faire: any CA can begin using the new
algorithm suite at any point in the PKI hierarchy
(if the parent can execute Proof of Possession).

Do we want to support only top-down algorithm
transitions?

Answer 1

We recommend pursuing only the top-down option.
Reasoning:
- It complies with the requirements from SEC-AD.

- It may be simpler as it may avoid the need for cross-
algorithm certificates (e.g., new-in-old)

- If cross-algorithm certificates are needed, we still
need support for PoP from parent CA (“CA Ready”).

- It seems likely that the smaller number of higher tier
entities will be ready for algorithm migration sooner
than lower tiers (e.g., ISPs)

Question 2

Do we want to support multiple signatures in
the CMS objects (ROAs & manifests)?
(See Section 3 draft-ietf-sidr-rpki-algs)
Support for multiple signatures may reduce:
- duplication of signed objects in repositories
- complexity of CA software

- complexity of repository operation

Answer 2

 We don’t recommend multi-sighature objects

— Certificates and CRLs MUST contain only a single
signature, so only CMS objects are in play here

— Spec would have to change

— CAs may elect to publish separate, single signature
objects anyway, so RPs have to accommodate

— A multi-signature manifest is ambiguous, unless
we modify the format to add an algorithm ID

ALG. ROLL-OVER (without KEY ROLL OVER) Repository Structure with single signature
ROAs and Manifests.

CAYY directory (ISP with CA Z directory (End User, no

CA X directory (RIR with no ROAs)

ROAs and children) child)
Alg. Aand B. Alg. A and B Alg. A
CRL Yg cur
CAZ, ., cur, v\
CAY) o CtirH-CA Yg , CUrg AIA
——_AIA |
\ =~ FOdp_cur FOQdp_cyur
AlA) rodg
manifest, ... || manifest, .,
manifest, ., manifest, .,
manifest,_ ., manifesty .,
Dir X

Dir Z

_~

SIA: same PP for all
CA Entity Z certs.

SIA: same PP for all Dir’Y

CA Entity Y certs.

ALG. ROLL-OVER (without KEY ROLL OVER) Repository Structure with multiple
signature ROAs and Manifests.

. _ CAY directory (ISP with CA Z directory (End User, no
CA X directory (RIR with no ROAs) ROAs and children) child)
Alg. Aand B. Alg. A and B Alg. A
CRL Y cur
CAZ, ., Cur,
AlA 2
CAY pcur CUFRTTHCAY g, CUTE -0 <
\\

— roa
\A|A 1 rOAp _cur B-cur A-cur
|A: manifest

manifest, ., s.cur manifest, .,

Dir X
Dir Y \/7 Dir Z

SIA: same PP for all SIA: same PP for all
CA Entity Y certs. CA Entity Z certs.

/ /

man I1:eStA-cur B-cur

Question 3: Validation during
transitions

* There are some interesting scenarios:

— A prefix is validated using one algorithm suite (and stored
in local cache) and the RP later receives a ROA signed using
another algorithm set.

— Two ROAs (identical content), each signed using different
algorithm suites; one validates, the other does not. What
does an RP do?

Comment: During transition both algorithm sets should be
treated as equals.

Any thought on these issues or other validation issues during
algorithm transition?

Summary

* Do we want to support only top-down
algorithm transitions?

* Do we want to support multiple signatures in
CMS signed objects?

* Any validation issue that should be addressed
in transition document?

Backup

ALG. ROLL-OVER and KEY ROLL OVER Repository Structure with single signature ROAs
and Manifests.

. _ CAY directory (ISP with CA Z directory (End User, no

CA X directory (RIR with no ROAs) ROAs and children) child)

Alg. A and B. Key Roll-over Alg. A and B. Key Roll-over Alg. A . No key Roll-over
CRLX,con || CRL Xgcum CRLY, s CRL Zncur
CRL X, o CRL Xg it CRL Y nxr

CRL Yg cur FOap cyr
CRL Yg. roag.
CAY, ., cur, || CAYg, ., Curg BNXT Bcur roa, .,
CAY, eCury || CAYg . CUrg
CAZ, ., Cur,
manifest, ., || manifest, . manifest, _,
_ . manifest, ., || manifest, .
manifesty . || manifestg . Dir 7
. : ir
manifesty . || manifestg .
Dir X

DirY

ALG. ROLL-OVER and KEY ROLL OVER Repository Structure with multiple signature
ROAs and Manifests.

. _ CAY directory (ISP with CA Z directory (End User, no
CA X directory (RIR with no ROAs) ROAs and children) child)
Alg. Aand B. Key Roll-over Alg. A and B. Key Roll-over Alg. A . No key Roll-over
CRLY
CRL XA nxt CRL Xg_nxt A-NXT
CAY, cury || CAYg, Curg
CRL Y nxr
CAY, cury || CAYg Curg A7 roan
A-cur CUI’A
r.OaA-cur A-nxt B-cur B-nxt
' i manif
man IfeStA‘CU" B-cur A-nxt B-nxt man IfeStA—cur A-nxt B-cur B-nxt anitesty ey,

Dir X DirY Dir Z

