XMPP DNA

Richard Barnes
Stephen Farrell
Problem

• Example.com outsources XMPP services to example.net
 – SRV _xmpp._tcp.example.com → example.net

• Want example.net to be able to authenticate as himself, not example.com

• Need to secure delegation: How do I know that example.com really delegated to example.net?
Solution approaches

• Attribute cert:
 – CMS encoding, CMS signature

• XML Assertion:
 – XML encoding, HTTPS signature

• DNS Assertion:
 – SRV encoding, DNSSEC signature
Observation: DNSSEC fixes things

• If the SRV is signed in a way that the client can verify it, then there’s no problem
• Client needs an appropriate trust anchor
 – Root, DLV, ITAR, etc.
• Problem arises when the client doesn’t have a TA that can be used to validate the signature
Bridging the gap

• If the problem is a missing TA, supply it at the application layer
• Need to bind a name to a key
 – ... so supply a certificate under a well-known CA

<challenge>
 <proof type="urn:ietf:params:dnscor:proof:dnssec-ta">
</challenge>
<proof>http://example.net/example.com.cert</proof>
Overall Process

1. Want to send a message to example.com
2. Look up SRV for target domain, get example.net
3. If DNSSEC-secured, match against example.net
4. If not, challenge server to provide a TA / cert
5. Validate SRV under that TA
6. If you don’t get a secure delegation, FAIL
7. If the genuine delegate isn’t example.net, FAIL
8. Otherwise, SUCCESS
Pros & Cons

- **Pro:** Forward-compatible with DNSSEC
- **Pro:** Doesn’t require attribute certs
- **Pro:** Only requires outsourcing provider to have a cert for the outsourced domain (not a private key)
- **Con:** Requires application control of DNSSEC TAs
 - **But:** `ub_ctx_add_ta(struct ub_ctx* ctx, char* ta);`
- **Con:** Requires binding between certificate and DNSSEC key pairs
Open issues

- Feasibility of managing DNSSEC TAs
- Feedback from DNSSEC community
- New approach for draft-ietf-xmpp-dna?