Abstract

This draft defines a canonical address format encoding used in LISP control messages and in the encoding of lookup keys for the LISP Mapping Database System.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 10, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Contents

1. Introduction ... 3
2. Definition of Terms ... 4
3. LISP Canonical Address Format Encodings 5
4. LISP Canonical Address Applications 7
 4.1. Segmentation using LISP 7
 4.2. Carrying AS Numbers in the Mapping Database 8
 4.3. Convey Application Specific Data 9
 4.4. Assigning Geo Coordinates to Locator Addresses 10
 4.5. Generic Database Mapping Lookups 11
 4.6. NAT Traversal Scenarios 13
 4.7. PETR Admission Control Functionality 14
 4.8. Multicast Group Membership Information 16
 4.9. Traffic Engineering using Re-encapsulating Tunnels 17
 4.10. Storing Security Data in the Mapping Database 19
 4.11. Source/Destination 2-Tuple Lookups 20
 4.12. Applications for AFI List Type 21
 4.12.1. Binding IPv4 and IPv6 Addresses 21
 4.12.2. Layer-2 VPNs 22
 4.12.3. ASCII Names in the Mapping Database 22
 4.12.4. Using Recursive LISP Canonical Address Encodings 23
 4.12.5. Compatibility Mode Use Case 24
5. Security Considerations .. 25
6. IANA Considerations .. 26
7. References .. 27
 7.1. Normative References 27
 7.2. Informative References 27
Appendix A. Acknowledgments 28
Authors’ Addresses .. 29
1. Introduction

The LISP architecture and protocols [LISP] introduces two new numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators (RLOCs) which are intended to replace most use of IP addresses on the Internet. To provide flexibility for current and future applications, these values can be encoded in LISP control messages using a general syntax that includes Address Family Identifier (AFI), length, and value fields.

Currently defined AFIs include IPv4 and IPv6 addresses, which are formatted according to code-points assigned in [AFI] as follows:

IPv4 Encoded Address:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            AFI = 1            |       IPv4 Address ...        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     ...  IPv4 Address         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

IPv6 Encoded Address:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            AFI = 2            |       IPv6 Address ...        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     ...  IPv6 Address         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

This document describes the currently-defined AFIs the LISP protocol uses along with their encodings and introduces the LISP Canonical Address Format (LCAF) that can be used to define the LISP-specific encodings for arbitrary AFI values.
2. Definition of Terms

Address Family Identifier (AFI): a term used to describe an address encoding in a packet. An address family currently defined for IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The reserved AFI value of 0 is used in this specification to indicate an unspecified encoded address where the length of the address is 0 bytes following the 16-bit AFI value of 0.

Unspecified Address Format:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            AFI = 0            |    <nothing follows AFI=0>    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value used in the source and destination address fields of the first (most inner) LISP header of a packet. The host obtains a destination EID the same way it obtains a destination address today, for example through a DNS lookup or SIP exchange. The source EID is obtained via existing mechanisms used to set a host's "local" IP address. An EID is allocated to a host from an EID-prefix block associated with the site where the host is located. An EID can be used by a host to refer to other hosts.

Routing Locator (RLOC): the IPv4 or IPv6 address of an egress tunnel router (ETR). It is the output of an EID-to-RLOC mapping lookup. An EID maps to one or more RLOCs. Typically, RLOCs are numbered from topologically aggregatable blocks that are assigned to a site at each point to which it attaches to the global Internet; where the topology is defined by the connectivity of provider networks, RLOCs can be thought of as PA addresses. Multiple RLOCs can be assigned to the same ETR device or to multiple ETR devices at a site.
3. LISP Canonical Address Format Encodings

IANA has assigned AFI value 16387 (0x4003) to the LISP architecture and protocols. This specification defines the encoding format of the LISP Canonical Address (LCA).

The first 4 bytes of an LISP Canonical Address are followed by a variable length of fields:

```
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1     |     Flags      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    Type       |     Rsvd2     |            Length             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Rsvd1: this 8-bit field is reserved for future use and MUST be transmitted as 0 and ignored on receipt.

Flags: this 8-bit field is for future definition and use. For now, set to zero on transmission and ignored on receipt.

Type: this 8-bit field is specific to the LISP Canonical Address formatted encodings, values are:

Type 0: Null Body Type
Type 1: AFI List Type
Type 2: Instance ID Type
Type 3: AS Number Type
Type 4: Application Data Type
Type 5: Geo Coordinates Type
Type 6: Opaque Key Type
Type 7: NAT-Traversal Type
Type 8: Nonce Locator Type
Type 9: Multicast Info Type
Type 10: Explicit Locator Path Type

Type 11: Security Key Type

Type 12: Source/Dest Key Type

Rsvd2: this 8-bit field is reserved for future use and MUST be transmitted as 0 and ignored on receipt.

Length: this 16-bit field is in units of bytes and covers all of the LISP Canonical Address payload, starting and including the byte after the Length field. So any LCAF encoded address will have a minimum length of 8 bytes when the Length field is 0. The 8 bytes include the AFI, Flags, Type, Reserved, and Length fields. When the AFI is not next to encoded address in a control message, then the encoded address will have a minimum length of 6 bytes when the Length field is 0. The 6 bytes include the Flags, Type, Reserved, and Length fields.
4. LISP Canonical Address Applications

4.1. Segmentation using LISP

When multiple organizations inside of a LISP site are using private addresses [RFC1918] as EID-prefixes, their address spaces must remain segregated due to possible address duplication. An Instance ID in the address encoding can aid in making the entire AFI based address unique.

Another use for the Instance ID LISP Canonical Address Format is when creating multiple segmented VPNs inside of a LISP site where keeping EID-prefix based subnets is desirable.

Instance ID LISP Canonical Address Format:

```
 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |    Flags      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 2    | IID mask-len  |             4 + n             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         Instance ID                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              AFI = x          |         Address  ...          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

IID mask-len: if the AFI is set to 0, then this format is not encoding an extended EID-prefix but rather an instance-ID range where the ‘IID mask-len’ indicates the number of high-order bits used in the Instance ID field for the range.

Length value n: length in bytes of the AFI address that follows the Instance ID field including the AFI field itself.

Instance ID: the low-order 24-bits that can go into a LISP data header when the I-bit is set. See [LISP] for details.

AFI = x: x can be any AFI value from [AFI].

This LISP Canonical Address Type can be used to encode either EID or RLOC addresses.
4.2. Carrying AS Numbers in the Mapping Database

When an AS number is stored in the LISP Mapping Database System for either policy or documentation reasons, it can be encoded in a LISP Canonical Address.

AS Number LISP Canonical Address Format:

```
0                   1                   2                   3
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |    Flags      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 3    |     Rsvd2     |             4 + n             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                           AS Number                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              AFI = x          |         Address  ...          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Length value n: length in bytes of the AFI address that follows the AS Number field including the AFI field itself.

AS Number: the 32-bit AS number of the autonomous system that has been assigned either the EID or RLOC that follows.

AFI = x: x can be any AFI value from [AFI].

The AS Number Canonical Address Type can be used to encode either EID or RLOC addresses. The former is used to describe the LISP-ALT AS number the EID-prefix for the site is being carried for. The latter is used to describe the AS that is carrying RLOC based prefixes in the underlying routing system.
4.3. Convey Application Specific Data

When a locator-set needs to be conveyed based on the type of application or the Per-Hop Behavior (PHB) of a packet, the Application Data Type can be used.

Application Data LISP Canonical Address Format:

<table>
<thead>
<tr>
<th>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1</td>
</tr>
<tr>
<td>+---</td>
</tr>
<tr>
<td>AFI = 16387</td>
</tr>
<tr>
<td>+---</td>
</tr>
<tr>
<td>Type = 4</td>
</tr>
<tr>
<td>+---</td>
</tr>
<tr>
<td>IP TOS, IPv6 TC, or Flow Label</td>
</tr>
<tr>
<td>+---</td>
</tr>
<tr>
<td>Local Port</td>
</tr>
<tr>
<td>+---</td>
</tr>
</tbody>
</table>
| AFI = x | Address ...
| +---|

Length value n: length in bytes of the AFI address that follows the 8-byte Application Data fields including the AFI field itself.

IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow Label used in an IPv6 header.

Local Port/Remote Port: these fields are from the TCP, UDP, or SCTP transport header.

AFI = x: x can be any AFI value from [AFI].

The Application Data Canonical Address Type is used for an EID encoding when an ITR wants a locator-set for a specific application. When used for an RLOC encoding, the ETR is supplying a locator-set for each specific application is has been configured to advertise.
4.4. Assigning Geo Coordinates to Locator Addresses

If an ETR desires to send a Map-Reply describing the Geo Coordinates for each locator in its locator-set, it can use the Geo Coordinate Type to convey physical location information.

Geo Coordinate LISP Canonical Address Format:

```
+-----------------+-----------------+-----------------+
| AFI = 16387     | Rsvd1           | Flags           |
| +-----------------+-----------------+-----------------+
| Type = 5         | Rsvd2           | 12 + n          |
| +-----------------+-----------------+-----------------+
| N                | Latitude Degrees | Minutes         |
| Altitude         | Longitude Degrees| Minutes         |
| +-----------------+-----------------+-----------------+
| AFI = x          | Address ...     |
```

Length value n: length in bytes of the AFI address that follows the 8-byte Longitude and Latitude fields including the AFI field itself.

N: When set to 1 means North, otherwise South.

Latitude Degrees: Valid values range from 0 to 90. degrees above or below the equator (northern or southern hemisphere, respectively).

Latitude Minutes: Valid values range from 0 to 59.

Latitude Seconds: Valid values range from 0 to 59.

E: When set to 1 means East, otherwise West.

Longitude Degrees: Value values are from 0 to 90 degrees right or left of the Prime Meridian.

Longitude Minutes: Valid values range from 0 to 59.

Longitude Seconds: Valid values range from 0 to 59.
Altitude: Height relative to sea level in meters. This is a signed integer meaning that the altitude could be below sea level. A value of \texttt{0x7fffffff} indicates no Altitude value is encoded.

\[\text{AFI} = x: \quad x \text{ can be any AFI value from [AFI].} \]

The Geo Coordinates Canonical Address Type can be used to encode either EID or RLOC addresses. When used for EID encodings, you can determine the physical location of an EID along with the topological location by observing the locator-set.

4.5. Generic Database Mapping Lookups

When the LISP Mapping Database system holds information accessed by a generic formatted key (where the key is not the usual IPv4 or IPv6 address), an opaque key may be desirable.
Opaque Key LISP Canonical Address Format:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |    Flags      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 6    |     Rsvd2     |               n               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Field Num |      Key Wildcard Fields      |   Key . . .   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                       . . . Key                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Length value n: length in bytes of the type’s payload. The value n is the number of bytes that follow this Length field.

Key Field Num: the number of fields (minus 1) the key can be broken up into. The width of the fields are fixed length. So for a key size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 bytes in length. Valid values for this field range from 0 to 15 supporting a maximum of 16 field separations.

Key Wildcard Fields: describes which fields in the key are not used as part of the key lookup. This wildcard encoding is a bitfield. Each bit is a don’t-care bit for a corresponding field in the key. Bit 0 (the low-order bit) in this bitfield corresponds the first field, right-justified in the key, bit 1 the second field, and so on. When a bit is set in the bitfield it is a don’t-care bit and should not be considered as part of the database lookup. When the entire 16-bits is set to 0, then all bits of the key are used for the database lookup.

Key: the variable length key used to do a LISP Database Mapping lookup. The length of the key is the value n (shown above) minus 3.
4.6. NAT Traversal Scenarios

When a LISP system is conveying global address and mapped port information when traversing through a NAT device, the NAT-Traversal LCAF Type is used. See [LISP-NATT] for details.

NAT-Traversal Canonical Address Format:

```
| 0 | 1 | 2 | 3 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |    Flags      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 7    |     Rsvd2     |             4 + n             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|       MS UDP Port Number      |      ETR UDP Port Number      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              AFI = x          |  Global ETR RLOC Address  ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              AFI = x          |      MS RLOC Address  ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              AFI = x          |  Private ETR RLOC Address  ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              AFI = x          |      RTR RLOC Address 1 ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              AFI = x          |      RTR RLOC Address k ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Length value n: length in bytes of the AFI addresses that follows the UDP Port Number field including the AFI fields themselves.

MS UDP Port Number: this is the UDP port number of the Map-Server and is set to 4342.

ETR UDP Port Number: this is the port number returned to a LISP system which was copied from the source port from a packet that has flowed through a NAT device.

AFI = x: x can be any AFI value from [AFI].

Global ETR RLOC Address: this is an address known to be globally unique built by NAT-traversal functionality in a LISP router.

MS RLOC Address: this is the address of the Map-Server used in the destination RLOC of a packet that has flowed through a NAT device.
Private ETR RLOC Address: this is an address known to be a private address inserted in this LCAF format by a LISP router that resides on the private side of a NAT device.

RTR RLOC Address: this is an encapsulation address used by an ITR or PITR which resides behind a NAT device. This address is known to have state in a NAT device so packets can flow from it to the LISP ETR behind the NAT. There can be one or more NTR addresses supplied in these set of fields. The number of NTRs encoded is determined by the LCAF length field. When there are no NTRs supplied, the NTR fields can be omitted and reflected by the LCAF length field or an AFI of 0 can be used to indicate zero NTRs encoded.

4.7. PETR Admission Control Functionality

When a public PETR device wants to verify who is encapsulating to it, it can check for a specific nonce value in the LISP encapsulated packet. To convey the nonce to admitted ITRs or PITRs, this LCAF format is used in a Map-Register or Map-Reply locator-record.
Nonce Locator Canonical Address Format:

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|           AFI = 16387         |    Rsvd1      |    Flags      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|   Type = 8    |     Rsvd2     |             4 + n             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|   Reserved    |                  Nonce                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
|              AFI = x          |         Address  ...          |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
```

Length value n: length in bytes of the AFI address that follows the Nonce field including the AFI field itself.

Reserved: must be set to zero and ignore on receipt.

Nonce: this is a nonce value returned by an ETR in a Map-Reply locator-record to be used by an ITR or PITR when encapsulating to the locator address encoded in the AFI field of this LCAF type.

AFI = x: x can be any AFI value from [AFI].
4.8. Multicast Group Membership Information

Multicast group information can be published in the mapping database so a lookup on an EID based group address can return a replication list of group addresses or a unicast addresses for single replication or multiple head-end replications. This LCAF encoding can be used to send broadcast packets to all members of a subnet when each EIDs are away from their home subnet location.

Multicast Info Canonical Address Format:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |     Flags     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 9    |  Rsvd2  |R|L|J|             4 + n             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            Reserved           | Source MaskLen| Group MaskLen |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              AFI = x          |   Source/Subnet Address  ...  |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              AFI = x          |       Group Address  ...      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Length value n: length in bytes of fields that follow.

Reserved: must be set to zero and ignore on receipt.

R-bit: this is the RP-bit that represents PIM (S,G,RP-bit) multicast state. This bit can be set for Joins (when the J-bit is set) or for Leaves (when the L-bit is set). See [LISP-MRSIG] for more usage details.

L-bit: this is the Leave-Request bit and is used when this LCAF type is present in the destination EID-prefix field of a Map-Request. See [LISP-MRSIG] for details.

J-bit: this is the Join-Request bit and is used when this LCAF type is present in the destination EID-prefix field of a Map-Request. See [LISP-MRSIG] for details. The J-bit MUST not be set when the L-bit is also set in the same LCAF block. A receiver should not take any specific Join or Leave action when both bits are set.

Source MaskLen: the mask length of the source prefix that follows.
Group MaskLen: the mask length of the group prefix that follows.

AFI = x: x can be any AFI value from [AFI]. When a specific AFI has its own encoding of a multicast address, this field must be either a group address or a broadcast address.

4.9. Traffic Engineering using Re-encapsulating Tunnels

For a given EID lookup into the mapping database, this LCAF format can be returned to provide a list of locators in an explicit re-encapsulation path. See [LISP-TE] for details.
Explicit Locator Path (ELP) Canonical Address Format:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |    Flags      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 10   |     Rsvd2     |               n               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              AFI = x          |           Rsvd3         |L|P|S|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         Reencap Hop 1  ...                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              AFI = x          |           Rsvd3         |L|P|S|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         Reencap Hop k  ...                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Length value n: length in bytes of fields that follow.

AFI = x: x can be any AFI value from [AFI]. When a specific AFI has its own encoding of a multicast address, this field must be either a group address or a broadcast address.

Lookup bit (L): this is the Lookup bit used to indicate to the user of the ELP to not use this address for encapsulation but to look it up in the mapping database system to obtain an encapsulating RLOC address.

RLOC-Probe bit (P): this is the RLOC-probe bit which means the Reencap Hop allows RLOC-probe messages to be sent to it. When the R-bit is set to 0, RLOC-probes must not be sent. When a Reencap Hop is an anycast address then multiple physical Reencap Hops are using the same RLOC address. In this case, RLOC-probes are not needed because when the closest RLOC address is not reachable another RLOC address can reachable.

Strict bit (S): this the strict bit which means the associated Reencap Hop is required to be used. If this bit is 0, the reencapsulator can skip this Reencap Hop and go to the next one in the list.
4.10. Storing Security Data in the Mapping Database

When a locator in a locator-set has a security key associated with it, this LCAF format will be used to encode key material. See [LISP-DDT] for details.

Security Key Canonical Address Format:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |    Flags      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 11   |      Rsvd2    |             6 + n             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Key Count   |      Rsvd3    | Key Algorithm |   Rsvd4     |R|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           Key Length          |       Key Material ...        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        ... Key Material                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|              AFI = x          |       Locator Address ...     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Length value n: length in bytes of fields that start with the Key Material field.

Key Count: the Key Count field declares the number of Key sections included in this LCAF.

Key Algorithm: the Algorithm field identifies the key’s cryptographic algorithm and specifies the format of the Public Key field.

R bit: this is the revoke bit and, if set, it specifies that this Key is being Revoked.

Key Length: this field determines the length in bytes of the Key Material field.

Key Material: the Key Material field stores the key material. The format of the key material stored depends on the Key Algorithm field.

AFI = x: x can be any AFI value from [AFI]. This is the locator address that owns the encoded security key.
4.11. Source/Destination 2-Tuple Lookups

When both a source and destination address of a flow needs consideration for different locator-sets, this 2-tuple key is used in EID fields in LISP control messages. When the Source/Dest key is registered to the mapping database, it can be encoded as a source-prefix and destination-prefix. When the Source/Dest is used as a key for a mapping database lookup the source and destination come from a data packet.

Source/Dest Key Canonical Address Format:

0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| AFI = 16387 | Rsvd1 | Flags |
+-+
| Type = 12 | Rsvd2 | 4 + n |
+-+
| Reserved | Source-ML | Dest-ML |
+-+
| AFI = x | Source-Prefix ... |
+-+
| AFI = x | Destination-Prefix ... |
+-+

Length value n: length in bytes of fields that follow.

Reserved: must be set to zero and ignore on receipt.

Source-ML: the mask length of the source prefix that follows.

Dest-ML: the mask length of the destination prefix that follows.

AFI = x: x can be any AFI value from [AFI]. When a specific AFI has its own encoding of a multicast address, this field must be either a group address or a broadcast address.

Refer to [LISP-TE] for usage details.
4.12. Applications for AFI List Type

4.12.1. Binding IPv4 and IPv6 Addresses

When header translation between IPv4 and IPv6 is desirable a LISP Canonical Address can use the AFI List Type to carry multiple AFIs in one LCA AFI.

Bounded Address LISP Canonical Address Format:

```
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |     Flags     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 1    |     Rsvd2     | 2 + 4 + 2 + 16 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            AFI = 1            |       IPv4 Address ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...  IPv4 Address            | AFI = 2       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...  IPv4 Address            | AFI = 2       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...  IPv4 Address            | AFI = 2       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ...  IPv4 Address            | AFI = 2       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          IPv6 Address ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     ...  IPv6 Address ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          IPv6 Address ...
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI encoded addresses are used.
```

This type of address format can be included in a Map-Request when the address is being used as an EID, but the Mapping Database System lookup destination can use only the IPv4 address. This is so a Mapping Database Service Transport System, such as LISP-ALT [ALT], can use the Map-Request destination address to route the control message to the desired LISP site.
4.12.2. Layer-2 VPNs

When MAC addresses are stored in the LISP Mapping Database System, the AFI List Type can be used to carry AFI 6.

MAC Address LISP Canonical Address Format:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |     Flags     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 1    |     Rsvd2     |             2 + 6             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|             AFI = 6           |    Layer-2 MAC Address  ...   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    ... Layer-2 MAC Address                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Length: length in bytes is fixed at 8 when MAC address AFI encoded addresses are used.

This address format can be used to connect layer-2 domains together using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. In this use-case, a MAC address is being used as an EID, and the locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or even another MAC address being used as an RLOC.

4.12.3. ASCII Names in the Mapping Database

If DNS names or URIs are stored in the LISP Mapping Database System, the AFI List Type can be used to carry an ASCII string where it is delimited by length ‘n’ of the LCAF Length encoding.

ASCII LISP Canonical Address Format:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |     Flags     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 1    |     Rsvd2     |             2 + n             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|             AFI = 17          |      DNS Name or URI  ...     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    ... DNS Name or URI                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```
4.12.4. Using Recursive LISP Canonical Address Encodings

When any combination of above is desirable, the AFI List Type value can be used to carry within the LCA AFI another LCA AFI.

Recursive LISP Canonical Address Format:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |    Flags      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 1    |     Rsvd2     |         4 + 8 + 2 + 4         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |    Flags      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 4    |     Rsvd2     |              12               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   IP TOS, IPv6 QQS or Flow Label              |    Protocol   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           Local Port          |         Remote Port           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|            AFI = 1            |       IPv4 Address ...        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|     ...  IPv4 Address         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is included.

This format could be used by a Mapping Database Transport System, such as LISP-ALT [ALT], where the AFI=1 IPv4 address is used as an EID and placed in the Map-Request destination address by the sending LISP system. The ALT system can deliver the Map-Request to the LISP destination site independent of the Application Data Type AFI payload values. When this AFI is processed by the destination LISP site, it can return different locator-sets based on the type of application or level of service that is being requested.
4.12.5. Compatibility Mode Use Case

A LISP system should use the AFI List Type format when sending to LISP systems that do not support a particular LCAF Type used to encode locators. This allows the receiving system to be able to parse a locator address for encapsulation purposes. The list of AFIs in an AFI List LCAF Type has no semantic ordering and a receiver should parse each AFI element no matter what the ordering.

Compatibility Mode Address Format:

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |    Flags      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 1    |     Rsvd2     |            22 + 6             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           AFI = 16387         |    Rsvd1      |    Flags      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type = 5    |     Rsvd2     |            12 + 2             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|N|     Latitude Degrees        |    Minutes    |    Seconds    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|E|     Longitude Degrees       |    Minutes    |    Seconds    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                            Altitude                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          AFI = 0          |           AFI = 1             |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          IPv4 Address                         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

If a system does not recognize the Geo Coordinate LCAF Type that is accompanying a locator address, an encoder can include the Geo Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in the list is encoded with a valid AFI value to identify the locator address.

A LISP system is required to support the AFI List LCAF Type to use this procedure. It would skip over 10 bytes of the Geo Coordinate LCAF Type to get to the locator address encoding (an IPv4 locator address). A LISP system that does support the Geo Coordinate LCAF Type can support parsing the locator address within the Geo Coordinate LCAF encoding or in the locator encoding that follows in the AFI List LCAF.
5. Security Considerations

There are no security considerations for this specification. The security considerations are documented for the protocols that use LISP Canonical Addressing. Refer to the those relevant specifications.
6. IANA Considerations

The Address Family AFI definitions from [AFI] only allocate code-points for the AFI value itself. The length of the address or entity that follows is not defined and is implied based on conventional experience. Where the LISP protocol uses LISP Canonical Addresses specifically, the address length definitions will be in this specification and take precedent over any other specification.

An IANA Registry for LCAF Type values will be created. The values that are considered for use by the main LISP specification [LISP] will be in the IANA Registry. Other Type values used for experimentation will be defined and described in this document.
7. References

7.1. Normative References

7.2. Informative References

Appendix A. Acknowledgments

The authors would like to thank Vince Fuller, Gregg Schudel, Jesper Skriver, Luigi Iannone, and Isidor Kouvelas for their technical and editorial commentary.

The authors would like to thank Victor Moreno for discussions that lead to the definition of the Multicast Info LCAF type.

The authors would like to thank Parantap Lahiri and Michael Kowal for discussions that lead to the definition of the Explicit Locator Path (ELP) LCAF type.

The authors would like to thank Fabio Maino and Vina Ermagan for discussions that lead to the definition of the Security Key LCAF type.

Thanks also goes to Terry Manderson for assistance obtaining a LISP AFI value from IANA.
Authors’ Addresses

Dino Farinacci
cisco Systems
Tasman Drive
San Jose, CA 95134
USA
Email: dino@cisco.com

Dave Meyer
cisco Systems
170 Tasman Drive
San Jose, CA
USA
Email: dmm@cisco.com

Job Snijders
InTouch N.V.
Middenweg 76
1097 BS Amsterdam
The Netherlands
Email: job@instituut.net
Abstract

This draft describes a network layer based protocol that enables separation of IP addresses into two new numbering spaces: Endpoint Identifiers (EIDs) and Routing Locators (RLOCs). No changes are required to either host protocol stacks or to the "core" of the Internet infrastructure. LISP can be incrementally deployed, without a "flag day", and offers traffic engineering, multi-homing, and mobility benefits to early adopters, even when there are relatively few LISP-capable sites.

Design and development of LISP was largely motivated by the problem statement produced by the October 2006 IAB Routing and Addressing Workshop.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on May 17, 2013.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.
Table of Contents

1. Requirements Notation ... 5
2. Introduction .. 6
3. Definition of Terms .. 8
4. Basic Overview ... 14
 4.1. Packet Flow Sequence .. 16
5. LISP Encapsulation Details 18
 5.1. LISP IPv4-in-IPv4 Header Format 19
 5.2. LISP IPv6-in-IPv6 Header Format 19
 5.3. Tunnel Header Field Descriptions 21
 5.4. Dealing with Large Encapsulated Packets 25
 5.4.1. A Stateless Solution to MTU Handling 25
 5.4.2. A Stateful Solution to MTU Handling 26
 5.5. Using Virtualization and Segmentation with LISP 26
6. EID-to-RLOC Mapping .. 28
 6.1. LISP IPv4 and IPv6 Control Plane Packet Formats 28
 6.1.1. LISP Packet Type Allocations 30
 6.1.2. Map-Request Message Format 30
 6.1.3. EID-to-RLOC UDP Map-Request Message 33
 6.1.4. Map-Reply Message Format 34
 6.1.5. EID-to-RLOC UDP Map-Reply Message 38
 6.1.6. Map-Register Message Format 40
 6.1.7. Map-Notify Message Format 42
 6.1.8. Encapsulated Control Message Format 43
 6.2. Routing Locator Selection 45
 6.3. Routing Locator Reachability 47
 6.3.1. Echo Nonce Algorithm 49
 6.3.2. RLOC Probing Algorithm 50
 6.4. EID Reachability within a LISP Site 51
 6.5. Routing Locator Hashing 52
 6.6. Changing the Contents of EID-to-RLOC Mappings 53
 6.6.1. Clock Sweep ... 54
 6.6.2. Solicit-Map-Request (SMR) 54
 6.6.3. Database Map Versioning 56
7. Router Performance Considerations 57
8. Deployment Scenarios ... 58
8.1. First-hop/Last-hop Tunnel Routers 59
8.2. Border/Edge Tunnel Routers 59
8.3. ISP Provider-Edge (PE) Tunnel Routers 60
8.4. LISP Functionality with Conventional NATs 60
8.5. Packets Egressing a LISP Site 61
9. Traceroute Considerations .. 62
 9.1. IPv6 Traceroute .. 63
 9.2. IPv4 Traceroute .. 63
 9.3. Traceroute using Mixed Locators 63
10. Mobility Considerations ... 65
 10.1. Site Mobility ... 65
 10.2. Slow Endpoint Mobility ... 65
 10.3. Fast Endpoint Mobility .. 65
 10.4. Fast Network Mobility .. 67
 10.5. LISP Mobile Node Mobility 67
11. Multicast Considerations .. 69
12. Security Considerations ... 70
13. Network Management Considerations 72
14. IANA Considerations ... 73
 14.1. LISP ACT and Flag Fields 73
 14.2. LISP Address Type Codes 73
 14.3. LISP UDP Port Numbers ... 74
 14.4. LISP Key ID Numbers ... 74
15. Known Open Issues and Areas of Future Work 75
16. References .. 77
 16.1. Normative References .. 77
 16.2. Informative References .. 78
Appendix A. Acknowledgments ... 82
Appendix B. Document Change Log ... 83
 B.1. Changes to draft-ietf-lisp-24.txt 83
 B.2. Changes to draft-ietf-lisp-23.txt 83
 B.3. Changes to draft-ietf-lisp-22.txt 83
 B.5. Changes to draft-ietf-lisp-20.txt 83
 B.7. Changes to draft-ietf-lisp-18.txt 83
 B.8. Changes to draft-ietf-lisp-17.txt 84
 B.9. Changes to draft-ietf-lisp-16.txt 84
 B.10. Changes to draft-ietf-lisp-15.txt 84
 B.11. Changes to draft-ietf-lisp-14.txt 84
 B.13. Changes to draft-ietf-lisp-12.txt 85
 B.14. Changes to draft-ietf-lisp-11.txt 87
 B.15. Changes to draft-ietf-lisp-10.txt 88
 B.16. Changes to draft-ietf-lisp-09.txt 88
 B.17. Changes to draft-ietf-lisp-08.txt 88
 B.18. Changes to draft-ietf-lisp-07.txt 90
 B.19. Changes to draft-ietf-lisp-06.txt 92
1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
2. Introduction

This document describes the Locator/Identifier Separation Protocol (LISP), which provides a set of functions for routers to exchange information used to map from non globally routeable Endpoint Identifiers (EIDs) to routeable Routing Locators (RLOCs). It also defines a mechanism for these LISP routers to encapsulate IP packets addressed with EIDs for transmission across the Internet that uses RLOCs for routing and forwarding.

Creation of LISP was initially motivated by discussions during the IAB-sponsored Routing and Addressing Workshop held in Amsterdam in October, 2006 (see [RFC4984]). A key conclusion of the workshop was that the Internet routing and addressing system was not scaling well in the face of the explosive growth of new sites; one reason for this poor scaling is the increasing number of multi-homed and other sites that cannot be addressed as part of topologically- or provider-based aggregated prefixes. Additional work that more completely described the problem statement may be found in [RADIR].

A basic observation, made many years ago in early networking research such as that documented in [CHIAPPA] and [RFC4984], is that using a single address field for both identifying a device and for determining where it is topologically located in the network requires optimization along two conflicting axes: for routing to be efficient, the address must be assigned topologically; for collections of devices to be easily and effectively managed, without the need for renumbering in response to topological change (such as that caused by adding or removing attachment points to the network or by mobility events), the address must explicitly not be tied to the topology.

The approach that LISP takes to solving the routing scalability problem is to replace IP addresses with two new types of numbers: Routing Locators (RLOCs), which are topologically assigned to network attachment points (and are therefore amenable to aggregation) and used for routing and forwarding of packets through the network; and Endpoint Identifiers (EIDs), which are assigned independently from the network topology, are used for numbering devices, and are aggregated along administrative boundaries. LISP then defines functions for mapping between the two numbering spaces and for encapsulating traffic originated by devices using non-routeable EIDs for transport across a network infrastructure that routes and forwards using RLOCs. Both RLOCs and EIDs are syntactically identical to IP addresses; it is the semantics of how they are used that differs.

This document describes the protocol that implements these functions. The database which stores the mappings between EIDs and RLOCs is
explicitly a separate "module" to facilitate experimentation with a variety of approaches. One database design that is being developed for experimentation as part of the LISP working group work is [ALT]. Others that have been described include [CONS], [EMACS], [NERD]. Finally, [LISP-MS], documents a general-purpose service interface for accessing a mapping database; this interface is intended to make the mapping database modular so that different approaches can be tried without the need to modify installed LISP capable devices in LISP sites.

This experimental specification has areas that require additional experience and measurement. It is NOT RECOMMENDED for deployment beyond experimental situations. Results of experimentation may lead to modifications and enhancements of protocol mechanisms defined in this document. See Section 15 for specific, known issues that are in need of further work during development, implementation, and experimentation.

An examination of the implications of LISP on Internet traffic, applications, routers, and security is for future study. This analysis will explain what role LISP can play in scalable routing and will also look at scalability and levels of state required for encapsulation, decapsulation, liveness, and so on.
3. Definition of Terms

Provider Independent (PI) Addresses: PI addresses are an address block assigned from a pool where blocks are not associated with any particular location in the network (e.g. from a particular service provider), and is therefore not topologically aggregatable in the routing system.

Provider Assigned (PA) Addresses: PA addresses are an address block assigned to a site by each service provider to which a site connects. Typically, each block is sub-block of a service provider Classless Inter-Domain Routing (CIDR) [RFC4632] block and is aggregated into the larger block before being advertised into the global Internet. Traditionally, IP multihoming has been implemented by each multi-homed site acquiring its own, globally-visible prefix. LISP uses only topologically-assigned and aggregatable address blocks for RLOCs, eliminating this demonstrably non-scalable practice.

Routing Locator (RLOC): A RLOC is an IPv4 [RFC0791] or IPv6 [RFC2460] address of an egress tunnel router (ETR). A RLOC is the output of an EID-to-RLOC mapping lookup. An EID maps to one or more RLOCs. Typically, RLOCs are numbered from topologically-aggregatable blocks that are assigned to a site at each point to which it attaches to the global Internet; where the topology is defined by the connectivity of provider networks, RLOCs can be thought of as PA addresses. Multiple RLOCs can be assigned to the same ETR device or to multiple ETR devices at a site.

Endpoint ID (EID): An EID is a 32-bit (for IPv4) or 128-bit (for IPv6) value used in the source and destination address fields of the first (most inner) LISP header of a packet. The host obtains a destination EID the same way it obtains a destination address today, for example through a Domain Name System (DNS) [RFC1034] lookup or Session Invitation Protocol (SIP) [RFC3261] exchange. The source EID is obtained via existing mechanisms used to set a host’s "local" IP address. An EID used on the public Internet must have the same properties as any other IP address used in that manner; this means, among other things, that it must be globally unique. An EID is allocated to a host from an EID-prefix block associated with the site where the host is located. An EID can be used by a host to refer to other hosts. EIDs MUST NOT be used as LISP RLOCs. Note that EID blocks MAY be assigned in a hierarchical manner, independent of the network topology, to facilitate scaling of the mapping database. In addition, an EID block assigned to a site may have site-local structure (subnetting) for routing within the site; this structure is not visible to the global routing system. In theory, the bit string
that represents an EID for one device can represent an RLOC for a
different device. As the architecture is realized, if a given bit
string is both an RLOC and an EID, it must refer to the same
entity in both cases. When used in discussions with other
Locator/ID separation proposals, a LISP EID will be called a
"LEID". Throughout this document, any references to "EID" refers
to an LEID.

EID-prefix: An EID-prefix is a power-of-two block of EIDs which are
allocated to a site by an address allocation authority. EID-
prefixes are associated with a set of RLOC addresses which make up
a "database mapping". EID-prefix allocations can be broken up
into smaller blocks when an RLOC set is to be associated with the
larger EID-prefix block. A globally routed address block (whether
PI or PA) is not inherently an EID-prefix. A globally routed
address block MAY be used by its assignee as an EID block. The
converse is not supported. That is, a site which receives an
explicitly allocated EID-prefix may not use that EID-prefix as a
globally routed prefix. This would require coordination and
cooperation with the entities managing the mapping infrastructure.
Once this has been done, that block could be removed from the
globally routed IP system, if other suitable transition and access
mechanisms are in place. Discussion of such transition and access
mechanisms can be found in [INTERWORK] and [LISP-DEPLOY].

End-system: An end-system is an IPv4 or IPv6 device that originates
packets with a single IPv4 or IPv6 header. The end-system
supplies an EID value for the destination address field of the IP
header when communicating globally (i.e. outside of its routing
domain). An end-system can be a host computer, a switch or router
device, or any network appliance.

Ingress Tunnel Router (ITR): An ITR is a router that resides in a
LISP site. Packets sent by sources inside of the LISP site to
destinations outside of the site are candidates for encapsulation
by the ITR. The ITR treats the IP destination address as an EID
and performs an EID-to-RLOC mapping lookup. The router then
prepends an "outer" IP header with one of its globally-routable
RLOCs in the source address field and the result of the mapping
lookup in the destination address field. Note that this
destination RLOC MAY be an intermediate, proxy device that has
better knowledge of the EID-to-RLOC mapping closer to the
destination EID. In general, an ITR receives IP packets from site
end-systems on one side and sends LISP-encapsulated IP packets
toward the Internet on the other side.
Specifically, when a service provider prepends a LISP header for Traffic Engineering purposes, the router that does this is also regarded as an ITR. The outer RLOC the ISP ITR uses can be based on the outer destination address (the originating ITR's supplied RLOC) or the inner destination address (the originating host's supplied EID).

TE-ITR: A TE-ITR is an ITR that is deployed in a service provider network that prepends an additional LISP header for Traffic Engineering purposes.

Egress Tunnel Router (ETR): An ETR is a router that accepts an IP packet where the destination address in the "outer" IP header is one of its own RLOCs. The router strips the "outer" header and forwards the packet based on the next IP header found. In general, an ETR receives LISP-encapsulated IP packets from the Internet on one side and sends decapsulated IP packets to site end-systems on the other side. ETR functionality does not have to be limited to a router device. A server host can be the endpoint of a LISP tunnel as well.

TE-ETR: A TE-ETR is an ETR that is deployed in a service provider network that strips an outer LISP header for Traffic Engineering purposes.

xTR: A xTR is a reference to an ITR or ETR when direction of data flow is not part of the context description. xTR refers to the router that is the tunnel endpoint. Used synonymously with the term "Tunnel Router". For example, "An xTR can be located at the Customer Edge (CE) router", meaning both ITR and ETR functionality is at the CE router.

LISP Router: A LISP router is a router that performs the functions of any or all of ITR, ETR, PITR, or PETR.

EID-to-RLOC Cache: The EID-to-RLOC cache is a short-lived, on-demand table in an ITR that stores, tracks, and is responsible for timing-out and otherwise validating EID-to-RLOC mappings. This cache is distinct from the full "database" of EID-to-RLOC mappings, it is dynamic, local to the ITR(s), and relatively small while the database is distributed, relatively static, and much more global in scope.

EID-to-RLOC Database: The EID-to-RLOC database is a global distributed database that contains all known EID-prefix to RLOC mappings. Each potential ETR typically contains a small piece of the database: the EID-to-RLOC mappings for the EID prefixes "behind" the router. These map to one of the router's own,
globally-visible, IP addresses. The same database mapping entries
MUST be configured on all ETRs for a given site. In a steady
state the EID-prefixes for the site and the locator-set for each
EID-prefix MUST be the same on all ETRs. Procedures to enforce
and/or verify this are outside the scope of this document. Note
that there MAY be transient conditions when the EID-prefix for the
site and locator-set for each EID-prefix may not be the same on
all ETRs. This has no negative implications since a partial set
of locators can be used.

Recursive Tunneling: Recursive tunneling occurs when a packet has
more than one LISP IP header. Additional layers of tunneling MAY
be employed to implement traffic engineering or other re-routing
as needed. When this is done, an additional "outer" LISP header
is added and the original RLOCs are preserved in the "inner"
header. Any references to tunnels in this specification refers to
dynamic encapsulating tunnels and they are never statically
configured.

Reencapsulating Tunnels: Reencapsulating tunneling occurs when an
ETR removes a LISP header, then acts as an ITR to prepend another
LISP header. Doing this allows a packet to be re-routed by the
re-encapsulating router without adding the overhead of additional
tunnel headers. Any references to tunnels in this specification
refers to dynamic encapsulating tunnels and they are never
statically configured. When using multiple mapping database
systems, care must be taken to not create reencapsulation loops
through misconfiguration.

LISP Header: a term used in this document to refer to the outer
IPv4 or IPv6 header, a UDP header, and a LISP-specific 8-octet
header that follows the UDP header, an ITR prepends or an ETR
strips.

Address Family Identifier (AFI): a term used to describe an address
encoding in a packet. An address family currently pertains to an
IPv4 or IPv6 address. See [AFI]/[AFI-REGISTRY] and [RFC3232] for
details. An AFI value of 0 used in this specification indicates
an unspecified encoded address where the length of the address is
0 octets following the 16-bit AFI value of 0.

Negative Mapping Entry: A negative mapping entry, also known as a
negative cache entry, is an EID-to-RLOC entry where an EID-prefix
is advertised or stored with no RLOCs. That is, the locator-set
for the EID-to-RLOC entry is empty or has an encoded locator count
of 0. This type of entry could be used to describe a prefix from
a non-LISP site, which is explicitly not in the mapping database.
There are a set of well defined actions that are encoded in a
Negative Map-Reply (Section 6.1.5).

Data Probe: A data-probe is a LISP-encapsulated data packet where the inner header destination address equals the outer header destination address used to trigger a Map-Reply by a decapsulating ETR. In addition, the original packet is decapsulated and delivered to the destination host if the destination EID is in the EID-prefix range configured on the ETR. Otherwise, the packet is discarded. A Data Probe is used in some of the mapping database designs to "probe" or request a Map-Reply from an ETR; in other cases, Map-Requests are used. See each mapping database design for details. When using Data Probes, by sending Map-Requests on the underlying routing system, EID-prefixes must be advertised. However, this is discouraged if the core is to scale by having less EID-prefixes stored in the core router’s routing tables.

Proxy ITR (PITR): A PITR is defined and described in [INTERWORK], a PITR acts like an ITR but does so on behalf of non-LISP sites which send packets to destinations at LISP sites.

Proxy ETR (PETR): A PETR is defined and described in [INTERWORK], a PETR acts like an ETR but does so on behalf of LISP sites which send packets to destinations at non-LISP sites.

Route-returnability: is an assumption that the underlying routing system will deliver packets to the destination. When combined with a nonce that is provided by a sender and returned by a receiver, this limits off-path data insertion. A route-returnability check is verified when a message is sent with a nonce, another message is returned with the same nonce, and the destination of the original message appears as the source of the returned message.

LISP site: is a set of routers in an edge network that are under a single technical administration. LISP routers which reside in the edge network are the demarcation points to separate the edge network from the core network.

Client-side: a term used in this document to indicate a connection initiation attempt by an EID. The ITR(s) at the LISP site are the first to get involved in obtaining database map cache entries by sending Map-Request messages.

Server-side: a term used in this document to indicate a connection initiation attempt is being accepted for a destination EID. The ETR(s) at the destination LISP site are the first to send Map-Replies to the source site initiating the connection. The ETR(s) at this destination site can obtain mappings by gleaning
information from Map-Requests, Data-Probes, or encapsulated packets.

Locator Status Bits (LSBs): Locator status bits are present in the LISP header. They are used by ITRs to inform ETRs about the up/down status of all ETRs at the local site. These bits are used as a hint to convey up/down router status and not path reachability status. The LSBs can be verified by use of one of the Locator Reachability Algorithms described in Section 6.3.

Anycast Address: a term used in this document to refer to the same IPv4 or IPv6 address configured and used on multiple systems at the same time. An EID or RLOC can be an anycast address in each of their own address spaces.
4. Basic Overview

One key concept of LISP is that end-systems (hosts) operate the same way they do today. The IP addresses that hosts use for tracking sockets, connections, and for sending and receiving packets do not change. In LISP terminology, these IP addresses are called Endpoint Identifiers (EIDs).

Routers continue to forward packets based on IP destination addresses. When a packet is LISP encapsulated, these addresses are referred to as Routing Locators (RLOCs). Most routers along a path between two hosts will not change; they continue to perform routing/forwarding lookups on the destination addresses. For routers between the source host and the ITR as well as routers from the ETR to the destination host, the destination address is an EID. For the routers between the ITR and the ETR, the destination address is an RLOC.

Another key LISP concept is the "Tunnel Router". A tunnel router prepends LISP headers on host-originated packets and strips them prior to final delivery to their destination. The IP addresses in this "outer header" are RLOCs. During end-to-end packet exchange between two Internet hosts, an ITR prepends a new LISP header to each packet and an egress tunnel router strips the new header. The ITR performs EID-to-RLOC lookups to determine the routing path to the ETR, which has the RLOC as one of its IP addresses.

Some basic rules governing LISP are:

- End-systems (hosts) only send to addresses which are EIDs. They don’t know addresses are EIDs versus RLOCs but assume packets get to their intended destinations. In a system where LISP is deployed, LISP routers intercept EID addressed packets and assist in delivering them across the network core where EIDs cannot be routed. The procedure a host uses to send IP packets does not change.

- EIDs are always IP addresses assigned to hosts.

- LISP routers mostly deal with Routing Locator addresses. See details later in Section 4.1 to clarify what is meant by "mostly".

- RLOCs are always IP addresses assigned to routers; preferably, topologically-oriented addresses from provider CIDR (Classless Inter-Domain Routing) blocks.

- When a router originates packets it may use as a source address either an EID or RLOC. When acting as a host (e.g. when terminating a transport session such as SSH, TELNET, or SNMP), it
may use an EID that is explicitly assigned for that purpose. An
EID that identifies the router as a host MUST NOT be used as an
RLOC; an EID is only routable within the scope of a site. A
typical BGP configuration might demonstrate this "hybrid" EID/RLOC
usage where a router could use its "host-like" EID to terminate
iBGP sessions to other routers in a site while at the same time
using RLOCs to terminate eBGP sessions to routers outside the
site.

- Packets with EIDs in them are not expected to be delivered end-to-
end in the absence of an EID-to-RLOC mapping operation. They are
expected to be used locally for intra-site communication or to be
encapsulated for inter-site communication.

- EID prefixes are likely to be hierarchically assigned in a manner
which is optimized for administrative convenience and to
facilitate scaling of the EID-to-RLOC mapping database. The
hierarchy is based on a address allocation hierarchy which is
independent of the network topology.

- EIDs may also be structured (subnetted) in a manner suitable for
local routing within an autonomous system.

An additional LISP header MAY be prepended to packets by a TE-ITR
when re-routing of the path for a packet is desired. A potential
use-case for this would be an ISP router that needs to perform
traffic engineering for packets flowing through its network. In such
a situation, termed Recursive Tunneling, an ISP transit acts as an
additional ingress tunnel router and the RLOC it uses for the new
prepended header would be either a TE-ETR within the ISP (along
intra-ISP traffic engineered path) or a TE-ETR within another ISP (an
inter-ISP traffic engineered path, where an agreement to build such a
path exists).

In order to avoid excessive packet overhead as well as possible
encapsulation loops, this document mandates that a maximum of two
LISP headers can be prepended to a packet. For initial LISP
deployments, it is assumed two headers is sufficient, where the first
prepended header is used at a site for Location/Identity separation
and second prepended header is used inside a service provider for
Traffic Engineering purposes.

Tunnel Routers can be placed fairly flexibly in a multi-AS topology.
For example, the ITR for a particular end-to-end packet exchange
might be the first-hop or default router within a site for the source
host. Similarly, the egress tunnel router might be the last-hop
router directly-connected to the destination host. Another example,
perhaps for a VPN service out-sourced to an ISP by a site, the ITR
could be the site’s border router at the service provider attachment point. Mixing and matching of site-operated, ISP-operated, and other tunnel routers is allowed for maximum flexibility. See Section 8 for more details.

4.1. Packet Flow Sequence

This section provides an example of the unicast packet flow with the following conditions:

- Source host "host1.abc.example.com" is sending a packet to "host2.xyz.example.com", exactly what host1 would do if the site was not using LISP.

- Each site is multi-homed, so each tunnel router has an address (RLOC) assigned from the service provider address block for each provider to which that particular tunnel router is attached.

- The ITR(s) and ETR(s) are directly connected to the source and destination, respectively, but the source and destination can be located anywhere in LISP site.

- Map-Requests can be sent on the underlying routing system topology, to a mapping database system, or directly over an alternative topology [ALT]. A Map-Request is sent for an external destination when the destination is not found in the forwarding table or matches a default route.

- Map-Replies are sent on the underlying routing system topology.

Client host1.abc.example.com wants to communicate with server host2.xyz.example.com:

1. host1.abc.example.com wants to open a TCP connection to host2.xyz.example.com. It does a DNS lookup on host2.xyz.example.com. An A/AAAA record is returned. This address is the destination EID. The locally-assigned address of host1.abc.example.com is used as the source EID. An IPv4 or IPv6 packet is built and forwarded through the LISP site as a normal IP packet until it reaches a LISP ITR.

2. The LISP ITR must be able to map the destination EID to an RLOC of one of the ETRs at the destination site. The specific method used to do this is not described in this example. See [ALT] or [CONS] for possible solutions.

3. The ITR will send a LISP Map-Request. Map-Requests SHOULD be rate-limited.
4. When an alternate mapping system is not in use, the Map-Request packet is routed through the underlying routing system. Otherwise, the Map-Request packet is routed on an alternate logical topology, for example the [ALT] database mapping system. In either case, when the Map-Request arrives at one of the ETRs at the destination site, it will process the packet as a control message.

5. The ETR looks at the destination EID of the Map-Request and matches it against the prefixes in the ETR’s configured EID-to-RLOC mapping database. This is the list of EID-prefixes the ETR is supporting for the site it resides in. If there is no match, the Map-Request is dropped. Otherwise, a LISP Map-Reply is returned to the ITR.

6. The ITR receives the Map-Reply message, parses the message (to check for format validity) and stores the mapping information from the packet. This information is stored in the ITR’s EID-to-RLOC mapping cache. Note that the map cache is an on-demand cache. An ITR will manage its map cache in such a way that optimizes for its resource constraints.

7. Subsequent packets from host1.abc.example.com to host2.xyz.example.com will have a LISP header prepended by the ITR using the appropriate RLOC as the LISP header destination address learned from the ETR. Note the packet MAY be sent to a different ETR than the one which returned the Map-Reply due to the source site’s hashing policy or the destination site’s locator-set policy.

8. The ETR receives these packets directly (since the destination address is one of its assigned IP addresses), checks the validity of the addresses, strips the LISP header, and forwards packets to the attached destination host.

In order to defer the need for a mapping lookup in the reverse direction, an ETR MAY create a cache entry that maps the source EID (inner header source IP address) to the source RLOC (outer header source IP address) in a received LISP packet. Such a cache entry is termed a "gleaned" mapping and only contains a single RLOC for the EID in question. More complete information about additional RLOCs SHOULD be verified by sending a LISP Map-Request for that EID. Both ITR and the ETR may also influence the decision the other makes in selecting an RLOC. See Section 6 for more details.
5. LISP Encapsulation Details

Since additional tunnel headers are prepended, the packet becomes larger and can exceed the MTU of any link traversed from the ITR to the ETR. It is RECOMMENDED in IPv4 that packets do not get fragmented as they are encapsulated by the ITR. Instead, the packet is dropped and an ICMP Too Big message is returned to the source.

This specification RECOMMENDS that implementations provide support for one of the proposed fragmentation and reassembly schemes. Two existing schemes are detailed in Section 5.4.

Since IPv4 or IPv6 addresses can be either EIDs or RLOCs, the LISP architecture supports IPv4 EIDs with IPv6 RLOCs (where the inner header is in IPv4 packet format and the other header is in IPv6 packet format) or IPv6 EIDs with IPv4 RLOCs (where the inner header is in IPv6 packet format and the other header is in IPv4 packet format). The next sub-sections illustrate packet formats for the homogeneous case (IPv4-in-IPv4 and IPv6-in-IPv6) but all 4 combinations MUST be supported.
5.1. LISP IPv4-in-IPv4 Header Format

5.2. LISP IPv6-in-IPv6 Header Format
<table>
<thead>
<tr>
<th>Payload Length</th>
<th>Next Header=17</th>
<th>Hop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Routing Locator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination Routing Locator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Port = xxxx</td>
<td>Dest Port = 4341</td>
<td></td>
</tr>
<tr>
<td>UDP Length</td>
<td>UDP Checksum</td>
<td></td>
</tr>
<tr>
<td>Nonce/Map-Version</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instance ID/Locator Status Bits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Label</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source EID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination EID</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3. Tunnel Header Field Descriptions

Inner Header (IH): The inner header is the header on the datagram received from the originating host. The source and destination IP addresses are EIDs, [RFC0791], [RFC2460].

Outer Header: (OH) The outer header is a new header prepended by an ITR. The address fields contain RLOCs obtained from the ingress router's EID-to-RLOC cache. The IP protocol number is "UDP (17)" from [RFC0768]. The setting of the DF bit Flags field is according to rules in Section 5.4.1 and Section 5.4.2.

UDP Header: The UDP header contains an ITR selected source port when encapsulating a packet. See Section 6.5 for details on the hash algorithm used to select a source port based on the 5-tuple of the inner header. The destination port MUST be set to the well-known IANA assigned port value 4341.

UDP Checksum: The UDP checksum field SHOULD be transmitted as zero by an ITR for either IPv4 [RFC0768] or IPv6 encapsulation [UDP-TUNNELS] [UDP-ZERO]. When a packet with a zero UDP checksum is received by an ETR, the ETR MUST accept the packet for decapsulation. When an ITR transmits a non-zero value for the UDP checksum, it MUST send a correctly computed value in this field. When an ETR receives a packet with a non-zero UDP checksum, it MAY choose to verify the checksum value. If it chooses to perform such verification, and the verification fails, the packet MUST be silently dropped. If the ETR chooses not to perform the verification, or performs the verification successfully, the packet MUST be accepted for decapsulation. The handling of UDP checksums for all tunneling protocols, including LISP, is under active discussion within the IETF. When that discussion concludes, any necessary changes will be made to align LISP with the outcome of the broader discussion.

UDP Length: The UDP length field is set for an IPv4 encapsulated packet to be the sum of the inner header IPv4 Total Length plus the UDP and LISP header lengths. For an IPv6 encapsulated packet, the UDP length field is the sum of the inner header IPv6 Payload Length, the size of the IPv6 header (40 octets), and the size of the UDP and LISP headers.

N: The N bit is the nonce-present bit. When this bit is set to 1, the low-order 24-bits of the first 32-bits of the LISP header contains a Nonce. See Section 6.3.1 for details. Both N and V bits MUST NOT be set in the same packet. If they are, a decapsulating ETR MUST treat the "Nonce/Map-Version" field as having a Nonce value present.
L: The L bit is the Locator Status Bits field enabled bit. When this bit is set to 1, the Locator Status Bits in the second 32-bits of the LISP header are in use.

\[
\begin{array}{c}
\text{x 1 x x 0 x x x}
\end{array}
\]

\[
\begin{array}{c}
\text{+-+}
\end{array}
\]

\[
\begin{array}{c}
|N|L|E|V|I|flags|\text{Nonce/Map-Version}|
\end{array}
\]

\[
\begin{array}{c}
+-+
\end{array}
\]

\[
\begin{array}{c}
|\text{Locator Status Bits}|
\end{array}
\]

\[
\begin{array}{c}
+-+
\end{array}
\]

E: The E bit is the echo-nonce-request bit. This bit MUST be ignored and has no meaning when the N bit is set to 0. When the N bit is set to 1 and this bit is set to 1, means an ITR is requesting for the nonce value in the Nonce field to be echoed back in LISP encapsulated packets when the ITR is also an ETR. See Section 6.3.1 for details.

V: The V bit is the Map-Version present bit. When this bit is set to 1, the N bit MUST be 0. Refer to Section 6.6.3 for more details. This bit indicates that the LISP header is encoded in this case as:

\[
\begin{array}{c}
\text{0 x 0 1 x x x x}
\end{array}
\]

\[
\begin{array}{c}
\text{+-+}
\end{array}
\]

\[
\begin{array}{c}
|N|L|E|V|I|flags|\text{Source Map-Version} | \text{Dest Map-Version} |-
\end{array}
\]

\[
\begin{array}{c}
+-+
\end{array}
\]

\[
\begin{array}{c}
|\text{Instance ID/Locator Status Bits}|
\end{array}
\]

\[
\begin{array}{c}
+-+
\end{array}
\]

I: The I bit is the Instance ID bit. See Section 5.5 for more details. When this bit is set to 1, the Locator Status Bits field is reduced to 8-bits and the high-order 24-bits are used as an Instance ID. If the L-bit is set to 0, then the low-order 8 bits are transmitted as zero and ignored on receipt. The format of the LISP header would look like in this case:
flags: The flags field is a 3-bit field is reserved for future flag use. It MUST be set to 0 on transmit and MUST be ignored on receipt.

LISP Nonce: The LISP nonce field is a 24-bit value that is randomly generated by an ITR when the N-bit is set to 1. Nonce generation algorithms are an implementation matter but are required to generate different nonces when sending to different destinations. However, the same nonce can be used for a period of time to the same destination. The nonce is also used when the E-bit is set to request the nonce value to be echoed by the other side when packets are returned. When the E-bit is clear but the N-bit is set, a remote ITR is either echoing a previously requested echo- nonce or providing a random nonce. See Section 6.3.1 for more details.

LISP Locator Status Bits (LSBs): When the L-bit is also set, the locator status bits field in the LISP header is set by an ITR to indicate to an ETR the up/down status of the Locators in the source site. Each RLOC in a Map-Reply is assigned an ordinal value from 0 to n-1 (when there are n RLOCs in a mapping entry). The Locator Status Bits are numbered from 0 to n-1 from the least significant bit of field. The field is 32-bits when the I-bit is set to 0 and is 8 bits when the I-bit is set to 1. When a Locator Status Bit is set to 1, the ITR is indicating to the ETR the RLOC associated with the bit ordinal has up status. See Section 6.3 for details on how an ITR can determine the status of the ETRs at the same site. When a site has multiple EID-prefixes which result in multiple mappings (where each could have a different locator-set), the Locator Status Bits setting in an encapsulated packet MUST reflect the mapping for the EID-prefix that the inner-header source EID address matches. If the LSB for an anycast locator is set to 1, then there is at least one RLOC with that address the ETR is considered 'up'.

When doing ITR/PITR encapsulation:

- The outer header Time to Live field (or Hop Limit field, in case of IPv6) SHOULD be copied from the inner header Time to Live field.
o The outer header Type of Service field (or the Traffic Class field, in the case of IPv6) SHOULD be copied from the inner header Type of Service field (with one exception, see below).

When doing ETR/PETR decapsulation:

o The inner header Time to Live field (or Hop Limit field, in case of IPv6) SHOULD be copied from the outer header Time to Live field, when the Time to Live field of the outer header is less than the Time to Live of the inner header. Failing to perform this check can cause the Time to Live of the inner header to increment across encapsulation/decapsulation cycle. This check is also performed when doing initial encapsulation when a packet comes to an ITR or PITR destined for a LISP site.

o The inner header Type of Service field (or the Traffic Class field, in the case of IPv6) SHOULD be copied from the outer header Type of Service field (with one exception, see below).

Note if an ETR/PETR is also an ITR/PITR and choose to reencapsulate after decapsulating, the net effect of this is that the new outer header will carry the same Time to Live as the old outer header minus 1.

Copying the TTL serves two purposes: first, it preserves the distance the host intended the packet to travel; second, and more importantly, it provides for suppression of looping packets in the event there is a loop of concatenated tunnels due to misconfiguration. See Section 9.3 for TTL exception handling for traceroute packets.

The ECN field occupies bits 6 and 7 of both the IPv4 Type of Service field and the IPv6 Traffic Class field [RFC3168]. The ECN field requires special treatment in order to avoid discarding indications of congestion [RFC3168]. ITR encapsulation MUST copy the 2-bit ECN field from the inner header to the outer header. Re-encapsulation MUST copy the 2-bit ECN field from the stripped outer header to the new outer header. If the ECN field contains a congestion indication codepoint (the value is '11', the Congestion Experienced (CE) codepoint), then ETR decapsulation MUST copy the 2-bit ECN field from the stripped outer header to the surviving inner header that is used to forward the packet beyond the ETR. These requirements preserve Congestion Experienced (CE) indications when a packet that uses ECN traverses a LISP tunnel and becomes marked with a CE indication due to congestion between the tunnel endpoints.
5.4. Dealing with Large Encapsulated Packets

This section proposes two mechanisms to deal with packets that exceed the path MTU between the ITR and ETR.

It is left to the implementor to decide if the stateless or stateful mechanism should be implemented. Both or neither can be used since it is a local decision in the ITR regarding how to deal with MTU issues, and sites can interoperate with differing mechanisms.

Both stateless and stateful mechanisms also apply to Reencapsulating and Recursive Tunneling. So any actions below referring to an ITR also apply to an TE-ITR.

5.4.1. A Stateless Solution to MTU Handling

An ITR stateless solution to handle MTU issues is described as follows:

1. Define H to be the size, in octets, of the outer header an ITR prepends to a packet. This includes the UDP and LISP header lengths.

2. Define L to be the size, in octets, of the maximum sized packet an ITR can send to an ETR without the need for the ITR or any intermediate routers to fragment the packet.

3. Define an architectural constant S for the maximum size of a packet, in octets, an ITR must receive so the effective MTU can be met. That is, \(S = L - H \).

When an ITR receives a packet from a site-facing interface and adds H octets worth of encapsulation to yield a packet size greater than L octets, it resolves the MTU issue by first splitting the original packet into 2 equal-sized fragments. A LISP header is then prepended to each fragment. The size of the encapsulated fragments is then \((S/2 + H) \), which is less than the ITR’s estimate of the path MTU between the ITR and its correspondent ETR.

When an ETR receives encapsulated fragments, it treats them as two individually encapsulated packets. It strips the LISP headers then forwards each fragment to the destination host of the destination site. The two fragments are reassembled at the destination host into the single IP datagram that was originated by the source host. Note that reassembly can happen at the ETR if the encapsulated packet was fragmented at or after the ITR.

This behavior is performed by the ITR when the source host originates
a packet with the DF field of the IP header is set to 0. When the DF field of the IP header is set to 1, or the packet is an IPv6 packet originated by the source host, the ITR will drop the packet when the size is greater than L, and sends an ICMP Too Big message to the source with a value of S, where S is (L - H).

When the outer header encapsulation uses an IPv4 header, an implementation SHOULD set the DF bit to 1 so ETR fragment reassembly can be avoided. An implementation MAY set the DF bit in such headers to 0 if it has good reason to believe there are unresolvable path MTU issues between the sending ITR and the receiving ETR.

This specification RECOMMENDS that L be defined as 1500.

5.4.2. A Stateful Solution to MTU Handling

An ITR stateful solution to handle MTU issues is described as follows and was first introduced in [OPENLISP]:

1. The ITR will keep state of the effective MTU for each locator per mapping cache entry. The effective MTU is what the core network can deliver along the path between ITR and ETR.

2. When an IPv6 encapsulated packet or an IPv4 encapsulated packet with DF bit set to 1, exceeds what the core network can deliver, one of the intermediate routers on the path will send an ICMP Too Big message to the ITR. The ITR will parse the ICMP message to determine which locator is affected by the effective MTU change and then record the new effective MTU value in the mapping cache entry.

3. When a packet is received by the ITR from a source inside of the site and the size of the packet is greater than the effective MTU stored with the mapping cache entry associated with the destination EID the packet is for, the ITR will send an ICMP Too Big message back to the source. The packet size advertised by the ITR in the ICMP Too Big message is the effective MTU minus the LISP encapsulation length.

Even though this mechanism is stateful, it has advantages over the stateless IP fragmentation mechanism, by not involving the destination host with reassembly of ITR fragmented packets.

5.5. Using Virtualization and Segmentation with LISP

When multiple organizations inside of a LISP site are using private addresses [RFC1918] as EID-prefixes, their address spaces MUST remain segregated due to possible address duplication. An Instance ID in
the address encoding can aid in making the entire AFI based address unique. See IANA Considerations Section 14.2 for details for possible address encodings.

An Instance ID can be carried in a LISP encapsulated packet. An ITR that prepends a LISP header, will copy a 24-bit value, used by the LISP router to uniquely identify the address space. The value is copied to the Instance ID field of the LISP header and the I-bit is set to 1.

When an ETR decapsulates a packet, the Instance ID from the LISP header is used as a table identifier to locate the forwarding table to use for the inner destination EID lookup.

For example, a 802.1Q VLAN tag or VPN identifier could be used as a 24-bit Instance ID.
6. EID-to-RLOC Mapping

6.1. LISP IPv4 and IPv6 Control Plane Packet Formats

The following UDP packet formats are used by the LISP control-plane.
The LISP UDP-based messages are the Map-Request and Map-Reply messages. When a UDP Map-Request is sent, the UDP source port is chosen by the sender and the destination UDP port number is set to 4342. When a UDP Map-Reply is sent, the source UDP port number is set to 4342 and the destination UDP port number is copied from the source port of either the Map-Request or the invoking data packet. Implementations MUST be prepared to accept packets when either the source port or destination UDP port is set to 4342 due to NATs changing port number values.

The UDP Length field will reflect the length of the UDP header and the LISP Message payload.

The UDP Checksum is computed and set to non-zero for Map-Request, Map-Reply, Map-Register and ECM control messages. It MUST be checked on receipt and if the checksum fails, the packet MUST be dropped.

The format of control messages includes the UDP header so the checksum and length fields can be used to protect and delimit message boundaries.
6.1.1. LISP Packet Type Allocations

This section will be the authoritative source for allocating LISP Type values and for defining LISP control message formats. Current allocations are:

Reserved: 0 b'0000'
LISP Map-Request: 1 b'0001'
LISP Map-Reply: 2 b'0010'
LISP Map-Register: 3 b'0011'
LISP Map-Notify: 4 b'0100'
LISP Encapsulated Control Message: 8 b'1000'

6.1.2. Map-Request Message Format

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Type=1 |A|M|P|S|p|s|   Reserved    | IRC    | Record Count |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Nonce . . .
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |   . . . Nonce
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Source-EID-AFI | Source EID Address ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | ITR-RLOC-AFI 1 | ITR-RLOC Address 1 ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                   ...                           |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | ITR-RLOC-AFI n | ITR-RLOC Address n ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/  | Reserved | EID mask-len | EID-prefix-AFI |
Rec+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
\|                    EID-prefix ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Map-Reply Record ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Packet field descriptions:
Type: 1 (Map-Request)

A: This is an authoritative bit, which is set to 0 for UDP-based Map-
Requests sent by an ITR. Set to 1 when an ITR wants the
destination site to return the Map-Reply rather than the mapping
database system.

M: This is the map-data-present bit, when set, it indicates a Map-
Reply Record segment is included in the Map-Request.

P: This is the probe-bit which indicates that a Map-Request SHOULD be
treated as a locator reachability probe. The receiver SHOULD
respond with a Map-Reply with the probe-bit set, indicating the
Map-Reply is a locator reachability probe reply, with the nonce
copied from the Map-Request. See Section 6.3.2 for more details.

S: This is the Solicit-Map-Request (SMR) bit. See Section 6.6.2 for
details.

p: This is the PITR bit. This bit is set to 1 when a PITR sends a
Map-Request.

s: This is the SMR-invoked bit. This bit is set to 1 when an xTR is
sending a Map-Request in response to a received SMR-based Map-
Request.

Reserved: It MUST be set to 0 on transmit and MUST be ignored on
receipt.

IRC: This 5-bit field is the ITR-RLOC Count which encodes the
additional number of (ITR-RLOC-AFI, ITR-RLOC Address) fields
present in this message. At least one (ITR-RLOC-AFI, ITR-RLOC-
Address) pair MUST be encoded. Multiple ITR-RLOC Address fields
are used so a Map-Replier can select which destination address to
use for a Map-Reply. The IRC value ranges from 0 to 31. For a
value of 0, there is 1 ITR-RLOC address encoded, and for a value
of 1, there are 2 ITR-RLOC addresses encoded and so on up to 31
which encodes a total of 32 ITR-RLOC addresses.

Record Count: The number of records in this Map-Request message. A
record is comprised of the portion of the packet that is labeled
‘Rec’ above and occurs the number of times equal to Record Count.
For this version of the protocol, a receiver MUST accept and
process Map-Requests that contain one or more records, but a
sender MUST only send Map-Requests containing one record. Support
for requesting multiple EIDs in a single Map-Request message will
be specified in a future version of the protocol.
Nonce: An 8-octet random value created by the sender of the Map-Request. This nonce will be returned in the Map-Reply. The security of the LISP mapping protocol depends critically on the strength of the nonce in the Map-Request message. The nonce SHOULD be generated by a properly seeded pseudo-random (or strong random) source. See [RFC4086] for advice on generating security-sensitive random data.

Source-EID-AFI: Address family of the "Source EID Address" field.

Source EID Address: This is the EID of the source host which originated the packet which caused the Map-Request. When Map-Requests are used for refreshing a map-cache entry or for RLOC-probing, an AFI value 0 is used and this field is of zero length.

ITR-RLOC-AFI: Address family of the "ITR-RLOC Address" field that follows this field.

ITR-RLOC Address: Used to give the ETR the option of selecting the destination address from any address family for the Map-Reply message. This address MUST be a routable RLOC address of the sender of the Map-Request message.

EID mask-len: Mask length for EID prefix.

EID-prefix-AFI: Address family of EID-prefix according to [AFI]

EID-prefix: 4 octets if an IPv4 address-family, 16 octets if an IPv6 address-family. When a Map-Request is sent by an ITR because a data packet is received for a destination where there is no mapping entry, the EID-prefix is set to the destination IP address of the data packet. And the 'EID mask-len' is set to 32 or 128 for IPv4 or IPv6, respectively. When an xTR wants to query a site about the status of a mapping it already has cached, the EID-prefix used in the Map-Request has the same mask-length as the EID-prefix returned from the site when it sent a Map-Reply message.

Map-Reply Record: When the M bit is set, this field is the size of a single "Record" in the Map-Reply format. This Map-Reply record contains the EID-to-RLOC mapping entry associated with the Source EID. This allows the ETR which will receive this Map-Request to cache the data if it chooses to do so.
6.1.3. EID-to-RLOC UDP Map-Request Message

A Map-Request is sent from an ITR when it needs a mapping for an EID, wants to test an RLOC for reachability, or wants to refresh a mapping before TTL expiration. For the initial case, the destination IP address used for the Map-Request is the data packet’s destination address (i.e., the destination-EID) which had a mapping cache lookup failure. For the latter two cases, the destination IP address used for the Map-Request is one of the RLOC addresses from the locator-set of the map cache entry. The source address is either an IPv4 or IPv6 RLOC address depending if the Map-Request is using an IPv4 versus IPv6 header, respectively. In all cases, the UDP source port number for the Map-Request message is an ITR/PITR selected 16-bit value and the UDP destination port number is set to the well-known destination port number 4342. A successful Map-Reply, which is one that has a nonce that matches an outstanding Map-Request nonce, will update the cached set of RLOCs associated with the EID prefix range.

One or more Map-Request (ITR-RLOC-AFI, ITR-RLOC-Address) fields MUST be filled in by the ITR. The number of fields (minus 1) encoded MUST be placed in the IRC field. The ITR MAY include all locally configured locators in this list or just provide one locator address from each address family it supports. If the ITR erroneously provides no ITR-RLOC addresses, the Map-Replier MUST drop the Map-Request.

Map-Requests can also be LISP encapsulated using UDP destination port 4342 with a LISP type value set to "Encapsulated Control Message", when sent from an ITR to a Map-Resolver. Likewise, Map-Requests are LISP encapsulated the same way from a Map-Server to an ETR. Details on encapsulated Map-Requests and Map-Resolvers can be found in [LISP-MS].

Map-Requests MUST be rate-limited. It is RECOMMENDED that a Map-Request for the same EID-prefix be sent no more than once per second.

An ITR that is configured with mapping database information (i.e., it is also an ETR) MAY optionally include those mappings in a Map-Request. When an ETR configured to accept and verify such "piggybacked" mapping data receives such a Map-Request and it does not have this mapping in the map-cache, it MAY originate a "verifying Map-Request", addressed to the map-requesting ITR and the ETR MAY add a map-cache entry. If the ETR has a map-cache entry that matches the "piggybacked" EID and the RLOC is in the locator-set for the entry, then it may send the "verifying Map-Request" directly to the originating Map-Request source. If the RLOC is not in the locator-set, then the ETR MUST send the "verifying Map-Request" to the "piggybacked" EID. Doing this forces the "verifying Map-Request" to
go through the mapping database system to reach the authoritative
source of information about that EID, guarding against RLOC-spoofing
in the "piggybacked" mapping data.

6.1.4. Map-Reply Message Format

Packet field descriptions:

Type: 2 (Map-Reply)

P: This is the probe-bit which indicates that the Map-Reply is in
response to a locator reachability probe Map-Request. The nonce
field MUST contain a copy of the nonce value from the original
Map-Request. See Section 6.3.2 for more details.

E: Indicates that the ETR which sends this Map-Reply message is
advertising that the site is enabled for the Echo-Nonce locator
reachability algorithm. See Section 6.3.1 for more details.
S: This is the Security bit. When set to 1 the following
authentication information will be appended to the end of the Map-
Reply. The detailed format of the Authentication Data Content is
for further study.

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|    AD Type    |       Authentication Data Content . . .       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

Reserved: It MUST be set to 0 on transmit and MUST be ignored on
receipt.

Record Count: The number of records in this reply message. A record
is comprised of that portion of the packet labeled ‘Record’ above
and occurs the number of times equal to Record count.

Nonce: A 24-bit value set in a Data-Probe packet or a 64-bit value
from the Map-Request is echoed in this Nonce field of the Map-
Reply. When a 24-bit value is supplied, it resides in the low-
order 64 bits of the nonce field.

Record TTL: The time in minutes the recipient of the Map-Reply will
store the mapping. If the TTL is 0, the entry SHOULD be removed
from the cache immediately. If the value is 0xffffffff, the
recipient can decide locally how long to store the mapping.

Locator Count: The number of Locator entries. A locator entry
comprises what is labeled above as ‘Loc’. The locator count can
be 0 indicating there are no locators for the EID-prefix.

EID mask-len: Mask length for EID prefix.

ACT: This 3-bit field describes negative Map-Reply actions. In any
other message type, these bits are set to 0 and ignored on
receipt. These bits are used only when the ‘Locator Count’ field
is set to 0. The action bits are encoded only in Map-Reply
messages. The actions defined are used by an ITR or PITR when a
destination EID matches a negative mapping cache entry.
Unassigned values should cause a map-cache entry to be created
and, when packets match this negative cache entry, they will be
dropped. The current assigned values are:
(0) No-Action: The map-cache is kept alive and no packet encapsulation occurs.

(1) Natively-Forward: The packet is not encapsulated or dropped but natively forwarded.

(2) Send-Map-Request: The packet invokes sending a Map-Request.

(3) Drop: A packet that matches this map-cache entry is dropped. An ICMP Unreachable message SHOULD be sent.

A: The Authoritative bit, when sent is always set to 1 by an ETR. When a Map-Server is proxy Map-Replying [LISP-MS] for a LISP site, the Authoritative bit is set to 0. This indicates to requesting ITRs that the Map-Reply was not originated by a LISP node managed at the site that owns the EID-prefix.

Map-Version Number: When this 12-bit value is non-zero the Map-Reply sender is informing the ITR what the version number is for the EID-record contained in the Map-Reply. The ETR can allocate this number internally but MUST coordinate this value with other ETRs for the site. When this value is 0, there is no versioning information conveyed. The Map-Version Number can be included in Map-Request and Map-Register messages. See Section 6.6.3 for more details.

EID-prefix-AFI: Address family of EID-prefix according to [AFI].

EID-prefix: 4 octets if an IPv4 address-family, 16 octets if an IPv6 address-family.

Priority: each RLOC is assigned a unicast priority. Lower values are more preferable. When multiple RLOCs have the same priority, they MAY be used in a load-split fashion. A value of 255 means the RLOC MUST NOT be used for unicast forwarding.

Weight: when priorities are the same for multiple RLOCs, the weight indicates how to balance unicast traffic between them. Weight is encoded as a relative weight of total unicast packets that match the mapping entry. For example if there are 4 locators in a locator set, where the weights assigned are 30, 20, 20, and 10, the first locator will get 37.5% of the traffic, the 2nd and 3rd locators will get 25% of traffic and the 4th locator will get 12.5% of the traffic. If all weights for a locator-set are equal, receiver of the Map-Reply will decide how to load-split traffic. See Section 6.5 for a suggested hash algorithm to distribute load
across locators with same priority and equal weight values.

M Priority: each RLOC is assigned a multicast priority used by an ETR in a receiver multicast site to select an ITR in a source multicast site for building multicast distribution trees. A value of 255 means the RLOC MUST NOT be used for joining a multicast distribution tree. For more details, see [MLISP].

M Weight: when priorities are the same for multiple RLOCs, the weight indicates how to balance building multicast distribution trees across multiple ITRs. The weight is encoded as a relative weight (similar to the unicast Weights) of total number of trees built to the source site identified by the EID-prefix. If all weights for a locator-set are equal, the receiver of the Map-Reply will decide how to distribute multicast state across ITRs. For more details, see [MLISP].

Unused Flags: set to 0 when sending and ignored on receipt.

L: when this bit is set, the locator is flagged as a local locator to the ETR that is sending the Map-Reply. When a Map-Server is doing proxy Map-Replying [LISP-MS] for a LISP site, the L bit is set to 0 for all locators in this locator-set.

p: when this bit is set, an ETR informs the RLOC-probing ITR that the locator address, for which this bit is set, is the one being RLOC-probed and MAY be different from the source address of the Map-Reply. An ITR that RLOC-probes a particular locator, MUST use this locator for retrieving the data structure used to store the fact that the locator is reachable. The "p" bit is set for a single locator in the same locator set. If an implementation sets more than one "p" bit erroneously, the receiver of the Map-Reply MUST select the first locator. The "p" bit MUST NOT be set for locator-set records sent in Map-Request and Map-Register messages.

R: set when the sender of a Map-Reply has a route to the locator in the locator data record. This receiver may find this useful to know if the locator is up but not necessarily reachable from the receiver's point of view. See also Section 6.4 for another way the R-bit may be used.

Locator: an IPv4 or IPv6 address (as encoded by the 'Loc-AFI' field) assigned to an ETR. Note that the destination RLOC address MAY be an anycast address. A source RLOC can be an anycast address as well. The source or destination RLOC MUST NOT be the broadcast address (255.255.255.255 or any subnet broadcast address known to the router), and MUST NOT be a link-local multicast address. The source RLOC MUST NOT be a multicast address. The destination RLOC
SHOULD be a multicast address if it is being mapped from a multicast destination EID.

6.1.5. EID-to-RLOC UDP Map-Reply Message

A Map-Reply returns an EID-prefix with a prefix length that is less than or equal to the EID being requested. The EID being requested is either from the destination field of an IP header of a Data-Probe or the EID record of a Map-Request. The RLOCs in the Map-Reply are globally-routable IP addresses of all ETRs for the LISP site. Each RLOC conveys status reachability but does not convey path reachability from a requesters perspective. Separate testing of path reachability is required, See Section 6.3 for details.

Note that a Map-Reply may contain different EID-prefix granularity (prefix + length) than the Map-Request which triggers it. This might occur if a Map-Request were for a prefix that had been returned by an earlier Map-Reply. In such a case, the requester updates its cache with the new prefix information and granularity. For example, a requester with two cached EID-prefixes that are covered by a Map-Reply containing one, less-specific prefix, replaces the entry with the less-specific EID-prefix. Note that the reverse, replacement of one less-specific prefix with multiple more-specific prefixes, can also occur but not by removing the less-specific prefix rather by adding the more-specific prefixes which during a lookup will override the less-specific prefix.

When an ETR is configured with overlapping EID-prefixes, a Map-Request with an EID that longest matches any EID-prefix MUST be returned in a single Map-Reply message. For instance, if an ETR had database mapping entries for EID-prefixes:

- 10.0.0.0/8
- 10.1.0.0/16
- 10.1.1.0/24
- 10.1.2.0/24

A Map-Request for EID 10.1.1.1 would cause a Map-Reply with a record count of 1 to be returned with a mapping record EID-prefix of 10.1.1.0/24.

A Map-Request for EID 10.1.5.5, would cause a Map-Reply with a record count of 3 to be returned with mapping records for EID-prefixes 10.1.0.0/16, 10.1.1.0/24, and 10.1.2.0/24.

Note that not all overlapping EID-prefixes need to be returned, only the more specifics (note in the second example above 10.0.0.0/8 was not returned for requesting EID 10.1.5.5) entries for the matching
EID-prefix of the requesting EID. When more than one EID-prefix is returned, all SHOULD use the same Time-to-Live value so they can all time out at the same time. When a more specific EID-prefix is received later, its Time-to-Live value in the Map-Reply record can be stored even when other less specifics exist. When a less specific EID-prefix is received later, its map-cache expiration time SHOULD be set to the minimum expiration time of any more specific EID-prefix in the map-cache. This is done so the integrity of the EID-prefix set is wholly maintained so no more-specific entries are removed from the map-cache while keeping less-specific entries.

Map- Replies SHOULD be sent for an EID-prefix no more often than once per second to the same requesting router. For scalability, it is expected that aggregation of EID addresses into EID-prefixes will allow one Map-Reply to satisfy a mapping for the EID addresses in the prefix range thereby reducing the number of Map-Request messages.

Map-Reply records can have an empty locator-set. A negative Map-Reply is a Map-Reply with an empty locator-set. Negative Map-Replies convey special actions by the sender to the ITR or PITR which have solicited the Map-Reply. There are two primary applications for Negative Map-Replies. The first is for a Map-Resolver to instruct an ITR or PITR when a destination is for a LISP site versus a non-LISP site. And the other is to source quench Map-Requests which are sent for non-allocated EIDs.

For each Map-Reply record, the list of locators in a locator-set MUST appear in the same order for each ETR that originates a Map-Reply message. The locator-set MUST be sorted in order of ascending IP address where an IPv4 locator address is considered numerically ‘less than’ an IPv6 locator address.

When sending a Map-Reply message, the destination address is copied from the one of the ITR-RLOC fields from the Map-Request. The ETR can choose a locator address from one of the address families it supports. For Data-Probes, the destination address of the Map-Reply is copied from the source address of the Data-Probe message which is invoking the reply. The source address of the Map-Reply is one of the local IP addresses chosen to allow uRPF checks to succeed in the upstream service provider. The destination port of a Map-Reply message is copied from the source port of the Map-Request or Data-Probe and the source port of the Map-Reply message is set to the well-known UDP port 4342.

6.1.5.1. Traffic Redirection with Coarse EID-Prefixes

When an ETR is misconfigured or compromised, it could return coarse EID-prefixes in Map-Reply messages it sends. The EID-prefix could
cover EID-prefixes which are allocated to other sites redirecting their traffic to the locators of the compromised site.

To solve this problem, there are two basic solutions that could be used. The first is to have Map-Servers proxy-map-reply on behalf of ETRs so their registered EID-prefixes are the ones returned in Map-Replies. Since the interaction between an ETR and Map-Server is secured with shared-keys, it is easier for an ETR to detect misbehavior. The second solution is to have ITRs and PITRs cache EID-prefixes with mask-lengths that are greater than or equal to a configured prefix length. This limits the damage to a specific width of any EID-prefix advertised, but needs to be coordinated with the allocation of site prefixes. These solutions can be used independently or at the same time.

At the time of this writing, other approaches are being considered and researched.

6.1.6. Map-Register Message Format

The usage details of the Map-Register message can be found in specification [LISP-MS]. This section solely defines the message format.

The message is sent in UDP with a destination UDP port of 4342 and a randomly selected UDP source port number.

The Map-Register message format is:
Packet field descriptions:

Type: 3 (Map-Register)

P: This is the proxy-map-reply bit, when set to 1 an ETR sends a Map-Register message requesting for the Map-Server to proxy Map-Reply. The Map-Server will send non-authoritative Map- Replies on behalf of the ETR. Details on this usage can be found in [LISP-MS].

Reserved: It MUST be set to 0 on transmit and MUST be ignored on receipt.

M: This is the want-map-notify bit, when set to 1 an ETR is requesting for a Map-Notify message to be returned in response to sending a Map-Register message. The Map-Notify message sent by a Map-Server is used to an acknowledge receipt of a Map-Register message.
Record Count: The number of records in this Map-Register message. A record is comprised of that portion of the packet labeled 'Record' above and occurs the number of times equal to Record count.

Nonce: This 8-octet Nonce field is set to 0 in Map-Register messages. Since the Map-Register message is authenticated, the nonce field is not currently used for any security function but may be in the future as part of an anti-replay solution.

Key ID: A configured ID to find the configured Message Authentication Code (MAC) algorithm and key value used for the authentication function. See Section 14.4 for codepoint assignments.

Authentication Data Length: The length in octets of the Authentication Data field that follows this field. The length of the Authentication Data field is dependent on the Message Authentication Code (MAC) algorithm used. The length field allows a device that doesn’t know the MAC algorithm to correctly parse the packet.

Authentication Data: The message digest used from the output of the Message Authentication Code (MAC) algorithm. The entire Map-Register payload is authenticated with this field preset to 0. After the MAC is computed, it is placed in this field. Implementations of this specification MUST include support for HMAC-SHA-1-96 [RFC2404] and support for HMAC-SHA-256-128 [RFC6234] is RECOMMENDED.

The definition of the rest of the Map-Register can be found in the Map-Reply section.

6.1.7. Map-Notify Message Format

The usage details of the Map-Notify message can be found in specification [LISP-MS]. This section solely defines the message format.

The message is sent inside a UDP packet with source and destination UDP ports equal to 4342.

The Map-Notify message format is:
Packet field descriptions:

Type: 4 (Map-Notify)

The Map-Notify message has the same contents as a Map-Register message. See Map-Register section for field descriptions.

6.1.8. Encapsulated Control Message Format

An Encapsulated Control Message (ECM) is used to encapsulate control packets sent between xTRs and the mapping database system described in [LISP-MS].
Packet header descriptions:

OH: The outer IPv4 or IPv6 header which uses RLOC addresses in the source and destination header address fields.

UDP: The outer UDP header with destination port 4342. The source port is randomly allocated. The checksum field MUST be non-zero.

LH: Type 8 is defined to be a "LISP Encapsulated Control Message" and what follows is either an IPv4 or IPv6 header as encoded by the first 4 bits after the reserved field.

S: This is the Security bit. When set to 1 the field following the Reserved field will have the following format. The detailed format of the Authentication Data Content is for further study.
IH: The inner IPv4 or IPv6 header which can use either RLOC or EID addresses in the header address fields. When a Map-Request is encapsulated in this packet format the destination address in this header is an EID.

UDP: The inner UDP header where the port assignments depends on the control packet being encapsulated. When the control packet is a Map-Request or Map-Register, the source port is ITR/PITR selected and the destination port is 4342. When the control packet is a Map-Reply, the source port is 4342 and the destination port is assigned from the source port of the invoking Map-Request. Port number 4341 MUST NOT be assigned to either port. The checksum field MUST be non-zero.

LCM: The format is one of the control message formats described in this section. At this time, only Map-Request messages are allowed to be encapsulated. And in the future, PIM Join-Prune messages [MLISP] might be allowed. Encapsulating other types of LISP control messages are for further study. When Map-Requests are sent for RLOC-probing purposes (i.e the probe-bit is set), they MUST NOT be sent inside Encapsulated Control Messages.

6.2. Routing Locator Selection

Both client-side and server-side may need control over the selection of RLOCs for conversations between them. This control is achieved by manipulating the Priority and Weight fields in EID-to-RLOC Map-Reply messages. Alternatively, RLOC information MAY be gleaned from received tunneled packets or EID-to-RLOC Map-Request messages.

The following enumerates different scenarios for choosing RLOCs and the controls that are available:

- Server-side returns one RLOC. Client-side can only use one RLOC. Server-side has complete control of the selection.

- Server-side returns a list of RLOC where a subset of the list has the same best priority. Client can only use the subset list according to the weighting assigned by the server-side. In this case, the server-side controls both the subset list and load-splitting across its members. The client-side can use RLOCs outside of the subset list if it determines that the subset list
is unreachable (unless RLOCs are set to a Priority of 255). Some sharing of control exists: the server-side determines the destination RLOC list and load distribution while the client-side has the option of using alternatives to this list if RLOCs in the list are unreachable.

- Server-side sets weight of 0 for the RLOC subset list. In this case, the client-side can choose how the traffic load is spread across the subset list. Control is shared by the server-side determining the list and the client determining load distribution. Again, the client can use alternative RLOCs if the server-provided list of RLOCs are unreachable.

- Either side (more likely on the server-side ETR) decides not to send a Map-Request. For example, if the server-side ETR does not send Map-Requests, it gleans RLOCs from the client-side ITR, giving the client-side ITR responsibility for bidirectional RLOC reachability and preferability. Server-side ETR gleaning of the client-side ITR RLOC is done by caching the inner header source EID and the outer header source RLOC of received packets. The client-side ITR controls how traffic is returned and can alternate using an outer header source RLOC, which then can be added to the list the server-side ETR uses to return traffic. Since no Priority or Weights are provided using this method, the server-side ETR MUST assume each client-side ITR RLOC uses the same best Priority with a Weight of zero. In addition, since EID-prefix encoding cannot be conveyed in data packets, the EID-to-RLOC cache on tunnel routers can grow to be very large.

- A "gleaned" map-cache entry, one learned from the source RLOC of a received encapsulated packet, is only stored and used for a few seconds, pending verification. Verification is performed by sending a Map-Request to the source EID (the inner header IP source address) of the received encapsulated packet. A reply to this "verifying Map-Request" is used to fully populate the map-cache entry for the "gleaned" EID and is stored and used for the time indicated from the TTL field of a received Map-Reply. When a verified map-cache entry is stored, data gleaning no longer occurs for subsequent packets which have a source EID that matches the EID-prefix of the verified entry.

RLOCs that appear in EID-to-RLOC Map-Reply messages are assumed to be reachable when the R-bit for the locator record is set to 1. When the R-bit is set to 0, an ITR or PITR MUST NOT encapsulate to the RLOC. Neither the information contained in a Map-Reply or that stored in the mapping database system provides reachability information for RLOCs. Note that reachability is not part of the mapping system and is determined using one or more of the Routing
Locator Reachability Algorithms described in the next section.

6.3. Routing Locator Reachability

Several mechanisms for determining RLOC reachability are currently defined:

1. An ETR may examine the Locator Status Bits in the LISP header of an encapsulated data packet received from an ITR. If the ETR is also acting as an ITR and has traffic to return to the original ITR site, it can use this status information to help select an RLOC.

2. An ITR may receive an ICMP Network or ICMP Host Unreachable message for an RLOC it is using. This indicates that the RLOC is likely down. Note, trusting ICMP messages may not be desirable but neither is ignoring them completely. Implementations are encouraged to follow current best practices in treating these conditions.

3. An ITR which participates in the global routing system can determine that an RLOC is down if no BGP RIB route exists that matches the RLOC IP address.

4. An ITR may receive an ICMP Port Unreachable message from a destination host. This occurs if an ITR attempts to use interworking [INTERWORK] and LISP-encapsulated data is sent to a non-LISP-capable site.

5. An ITR may receive a Map-Reply from an ETR in response to a previously sent Map-Request. The RLOC source of the Map-Reply is likely up since the ETR was able to send the Map-Reply to the ITR.

6. When an ETR receives an encapsulated packet from an ITR, the source RLOC from the outer header of the packet is likely up.

7. An ITR/ETR pair can use the Locator Reachability Algorithms described in this section, namely Echo-Noncing or RLOC-Probing.

When determining Locator up/down reachability by examining the Locator Status Bits from the LISP encapsulated data packet, an ETR will receive up to date status from an encapsulating ITR about reachability for all ETRs at the site. CE-based ITRs at the source site can determine reachability relative to each other using the site IGP as follows:
o Under normal circumstances, each ITR will advertise a default route into the site IGP.

o If an ITR fails or if the upstream link to its PE fails, its default route will either time-out or be withdrawn.

Each ITR can thus observe the presence or lack of a default route originated by the others to determine the Locator Status Bits it sets for them.

RLOCs listed in a Map-Reply are numbered with ordinals 0 to n-1. The Locator Status Bits in a LISP encapsulated packet are numbered from 0 to n-1 starting with the least significant bit. For example, if an RLOC listed in the 3rd position of the Map-Reply goes down (ordinal value 2), then all ITRs at the site will clear the 3rd least significant bit (xxxx x0xx) of the Locator Status Bits field for the packets they encapsulate.

When an ETR decapsulates a packet, it will check for any change in the Locator Status Bits field. When a bit goes from 1 to 0, the ETR if acting also as an ITR, will refrain from encapsulating packets to an RLOC that is indicated as down. It will only resume using that RLOC if the corresponding Locator Status Bit returns to a value of 1. Locator Status Bits are associated with a locator-set per EID-prefix. Therefore, when a locator becomes unreachable, the Locator Status Bit that corresponds to that locator’s position in the list returned by the last Map-Reply will be set to zero for that particular EID-prefix.

When ITRs at the site are not deployed in CE routers, the IGP can still be used to determine the reachability of Locators provided they are injected into the IGP. This is typically done when a /32 address is configured on a loopback interface.

When ITRs receive ICMP Network or Host Unreachable messages as a method to determine unreachability, they will refrain from using Locators which are described in Locator lists of Map-Replies. However, using this approach is unreliable because many network operators turn off generation of ICMP Unreachable messages.

If an ITR does receive an ICMP Network or Host Unreachable message, it MAY originate its own ICMP Unreachable message destined for the host that originated the data packet the ITR encapsulated.

Also, BGP-enabled ITRs can unilaterally examine the RIB to see if a locator address from a locator-set in a mapping entry matches a prefix. If it does not find one and BGP is running in the Default Free Zone (DFZ), it can decide to not use the locator even though the
Locator Status Bits indicate the locator is up. In this case, the path from the ITR to the ETR that is assigned the locator is not available. More details are in [LOC-ID-ARCH].

Optionally, an ITR can send a Map-Request to a Locator and if a Map-Reply is returned, reachability of the Locator has been determined. Obviously, sending such probes increases the number of control messages originated by tunnel routers for active flows, so Locators are assumed to be reachable when they are advertised.

This assumption does create a dependency: Locator unreachability is detected by the receipt of ICMP Host Unreachable messages. When an Locator has been determined to be unreachable, it is not used for active traffic; this is the same as if it were listed in a Map-Reply with priority 255.

The ITR can test the reachability of the unreachable Locator by sending periodic Requests. Both Requests and Replies MUST be rate-limited. Locator reachability testing is never done with data packets since that increases the risk of packet loss for end-to-end sessions.

When an ETR decapsulates a packet, it knows that it is reachable from the encapsulating ITR because that is how the packet arrived. In most cases, the ETR can also reach the ITR but cannot assume this to be true due to the possibility of path asymmetry. In the presence of unidirectional traffic flow from an ITR to an ETR, the ITR SHOULD NOT use the lack of return traffic as an indication that the ETR is unreachable. Instead, it MUST use an alternate mechanisms to determine reachability.

6.3.1. Echo Nonce Algorithm

When data flows bidirectionally between locators from different sites, a data-plane mechanism called "nonce echoing" can be used to determine reachability between an ITR and ETR. When an ITR wants to solicit a nonce echo, it sets the N and E bits and places a 24-bit nonce [RFC4086] in the LISP header of the next encapsulated data packet.

When this packet is received by the ETR, the encapsulated packet is forwarded as normal. When the ETR next sends a data packet to the ITR, it includes the nonce received earlier with the N bit set and E bit cleared. The ITR sees this "echoed nonce" and knows the path to and from the ETR is up.

The ITR will set the E-bit and N-bit for every packet it sends while in echo-nonce-request state. The time the ITR waits to process the
If the ITR is receiving packets from the ETR but does not see the nonce echoed while being in echo-nonce-request state, then the path to the ETR is unreachable. This decision may be overridden by other locator reachability algorithms. Once the ITR determines the path to the ETR is down it can switch to another locator for that EID-prefix.

Note that "ITR" and "ETR" are relative terms here. Both devices MUST be implementing both ITR and ETR functionality for the echo nonce mechanism to operate.

The ITR and ETR may both go into echo-nonce-request state at the same time. The number of packets sent or the time during which echo nonce requests are sent is an implementation specific setting. However, when an ITR is in echo-nonce-request state, it can echo the ETR’s nonce in the next set of packets that it encapsulates and then subsequently, continue sending echo-nonce-request packets.

This mechanism does not completely solve the forward path reachability problem as traffic may be unidirectional. That is, the ETR receiving traffic at a site may not be the same device as an ITR which transmits traffic from that site or the site to site traffic is unidirectional so there is no ITR returning traffic.

The echo-nonce algorithm is bilateral. That is, if one side sets the E-bit and the other side is not enabled for echo-noncing, then the echoing of the nonce does not occur and the requesting side may regard the locator unreachable erroneously. An ITR SHOULD only set the E-bit in a encapsulated data packet when it knows the ETR is enabled for echo-noncing. This is conveyed by the E-bit in the Map-Reply message.

Note that other locator reachability mechanisms are being researched and can be used to compliment or even override the Echo Nonce Algorithm. See next section for an example of control-plane probing.

6.3.2. RLOC Probing Algorithm

RLOC Probing is a method that an ITR or PITR can use to determine the reachability status of one or more locators that it has cached in a map-cache entry. The probe-bit of the Map-Request and Map-Reply messages are used for RLOC Probing.

RLOC probing is done in the control-plane on a timer basis where an ITR or PITR will originate a Map-Request destined to a locator address from one of its own locator addresses. A Map-Request used as
an RLOC-probe is NOT encapsulated and NOT sent to a Map-Server or on the ALT like one would when soliciting mapping data. The EID record encoded in the Map-Request is the EID-prefix of the map-cache entry cached by the ITR or PITR. The ITR may include a mapping data record for its own database mapping information which contains the local EID-prefixes and RLOCs for its site. RLOC-probes are sent periodically using a jittered timer interval.

When an ETR receives a Map-Request message with the probe-bit set, it returns a Map-Reply with the probe-bit set. The source address of the Map-Reply is set according to the procedure described in Section 6.1.5. The Map-Reply SHOULD contain mapping data for the EID-prefix contained in the Map-Request. This provides the opportunity for the ITR or PITR, which sent the RLOC-probe to get mapping updates if there were changes to the ETR’s database mapping entries.

There are advantages and disadvantages of RLOC Probing. The greatest benefit of RLOC Probing is that it can handle many failure scenarios allowing the ITR to determine when the path to a specific locator is reachable or has become unreachable, thus providing a robust mechanism for switching to using another locator from the cached locator. RLOC Probing can also provide rough RTT estimates between a pair of locators which can be useful for network management purposes as well as for selecting low delay paths. The major disadvantage of RLOC Probing is in the number of control messages required and the amount of bandwidth used to obtain those benefits, especially if the requirement for failure detection times are very small.

Continued research and testing will attempt to characterize the tradeoffs of failure detection times versus message overhead.

6.4. EID Reachability within a LISP Site

A site may be multihomed using two or more ETRs. The hosts and infrastructure within a site will be addressed using one or more EID prefixes that are mapped to the RLOCs of the relevant ETRs in the mapping system. One possible failure mode is for an ETR to lose reachability to one or more of the EID prefixes within its own site. When this occurs when the ETR sends Map-Replies, it can clear the R-bit associated with its own locator. And when the ETR is also an ITR, it can clear its locator-status-bit in the encapsulation data header.

It is recognized there are no simple solutions to the site partitioning problem because it is hard to know which part of the EID-prefix range is partitioned. And which locators can reach any sub-ranges of the EID-prefixes. This problem is under investigation...
with the expectation that experiments will tell us more. Note, this is not a new problem introduced by the LISP architecture. The problem exists today when a multi-homed site uses BGP to advertise its reachability upstream.

6.5. Routing Locator Hashing

When an ETR provides an EID-to-RLOC mapping in a Map-Reply message to a requesting ITR, the locator-set for the EID-prefix may contain different priority values for each locator address. When more than one best priority locator exists, the ITR can decide how to load share traffic against the corresponding locators.

The following hash algorithm may be used by an ITR to select a locator for a packet destined to an EID for the EID-to-RLOC mapping:

1. Either a source and destination address hash can be used or the traditional 5-tuple hash which includes the source and destination addresses, source and destination TCP, UDP, or SCTP port numbers and the IP protocol number field or IPv6 next-protocol fields of a packet a host originates from within a LISP site. When a packet is not a TCP, UDP, or SCTP packet, the source and destination addresses only from the header are used to compute the hash.

2. Take the hash value and divide it by the number of locators stored in the locator-set for the EID-to-RLOC mapping.

3. The remainder will yield a value of 0 to "number of locators minus 1". Use the remainder to select the locator in the locator-set.

Note that when a packet is LISP encapsulated, the source port number in the outer UDP header needs to be set. Selecting a hashed value allows core routers which are attached to Link Aggregation Groups (LAGs) to load-split the encapsulated packets across member links of such LAGs. Otherwise, core routers would see a single flow, since packets have a source address of the ITR, for packets which are originated by different EIDs at the source site. A suggested setting for the source port number computed by an ITR is a 5-tuple hash function on the inner header, as described above.

Many core router implementations use a 5-tuple hash to decide how to balance packet load across members of a LAG. The 5-tuple hash includes the source and destination addresses of the packet and the source and destination ports when the protocol number in the packet is TCP or UDP. For this reason, UDP encoding is used for LISP encapsulation.
6.6. Changing the Contents of EID-to-RLOC Mappings

Since the LISP architecture uses a caching scheme to retrieve and store EID-to-RLOC mappings, the only way an ITR can get a more up-to-date mapping is to re-request the mapping. However, the ITRs do not know when the mappings change and the ETRs do not keep track of which ITRs requested its mappings. For scalability reasons, we want to maintain this approach but need to provide a way for ETRs change their mappings and inform the sites that are currently communicating with the ETR site using such mappings.

When adding a new locator record in lexicographic order to the end of a locator-set, it is easy to update mappings. We assume new mappings will maintain the same locator ordering as the old mapping but just have new locators appended to the end of the list. So some ITRs can have a new mapping while other ITRs have only an old mapping that is used until they time out. When an ITR has only an old mapping but detects bits set in the loc-status-bits that correspond to locators beyond the list it has cached, it simply ignores them. However, this can only happen for locator addresses that are lexicographically greater than the locator addresses in the existing locator-set.

When a locator record is inserted in the middle of a locator-set, to maintain lexicographic order, the SMR procedure in Section 6.6.2 is used to inform ITRs and PITRs of the new locator-status-bit mappings.

When a locator record is removed from a locator-set, ITRs that have the mapping cached will not use the removed locator because the xTRs will set the loc-status-bit to 0. So even if the locator is in the list, it will not be used. For new mapping requests, the xTRs can set the locator API to 0 (indicating an unspecified address), as well as setting the corresponding loc-status-bit to 0. This forces ITRs with old or new mappings to avoid using the removed locator.

If many changes occur to a mapping over a long period of time, one will find empty record slots in the middle of the locator-set and new records appended to the locator-set. At some point, it would be useful to compact the locator-set so the loc-status-bit settings can be efficiently packed.

We propose here three approaches for locator-set compaction, one operational and two protocol mechanisms. The operational approach uses a clock sweep method. The protocol approaches use the concept of Solicit-Map-Requests and Map-Versioning.
6.6.1. Clock Sweep

The clock sweep approach uses planning in advance and the use of count-down TTLs to time out mappings that have already been cached. The default setting for an EID-to-RLOC mapping TTL is 24 hours. So there is a 24 hour window to time out old mappings. The following clock sweep procedure is used:

1. 24 hours before a mapping change is to take effect, a network administrator configures the ETRs at a site to start the clock sweep window.

2. During the clock sweep window, ETRs continue to send Map-Reply messages with the current (unchanged) mapping records. The TTL for these mappings is set to 1 hour.

3. 24 hours later, all previous cache entries will have timed out, and any active cache entries will time out within 1 hour. During this 1 hour window the ETRs continue to send Map-Reply messages with the current (unchanged) mapping records with the TTL set to 1 minute.

4. At the end of the 1 hour window, the ETRs will send Map-Reply messages with the new (changed) mapping records. So any active caches can get the new mapping contents right away if not cached, or in 1 minute if they had the mapping cached. The new mappings are cached with a time to live equal to the TTL in the Map-Reply.

6.6.2. Solicit-Map-Request (SMR)

Soliciting a Map-Request is a selective way for ETRs, at the site where mappings change, to control the rate they receive requests for Map-Reply messages. SMRs are also used to tell remote ITRs to update the mappings they have cached.

Since the ETRs don’t keep track of remote ITRs that have cached their mappings, they do not know which ITRs need to have their mappings updated. As a result, an ETR will solicit Map-Requests (called an SMR message) from those sites to which it has been sending encapsulated data to for the last minute. In particular, an ETR will send an SMR to an ITR to which it has recently sent encapsulated data.

An SMR message is simply a bit set in a Map-Request message. An ITR or PITR will send a Map-Request when they receive an SMR message. Both the SMR sender and the Map-Request responder MUST rate-limited these messages. Rate-limiting can be implemented as a global rate-limiter or one rate-limiter per SMR destination.
The following procedure shows how a SMR exchange occurs when a site is doing locator-set compaction for an EID-to-RLOC mapping:

1. When the database mappings in an ETR change, the ETRs at the site begin to send Map-Requests with the SMR bit set for each locator in each map-cache entry the ETR caches.

2. A remote ITR which receives the SMR message will schedule sending a Map-Request message to the source locator address of the SMR message or to the mapping database system. A newly allocated random nonce is selected and the EID-prefix used is the one copied from the SMR message. If the source locator is the only locator in the cached locator-set, the remote ITR SHOULD send a Map-Request to the database mapping system just in case the single locator has changed and may no longer be reachable to accept the Map-Request.

3. The remote ITR MUST rate-limit the Map-Request until it gets a Map-Reply while continuing to use the cached mapping. When Map Versioning is used, described in Section 6.6.3, an SMR sender can detect if an ITR is using the most up to date database mapping.

4. The ETRs at the site with the changed mapping will reply to the Map-Request with a Map-Reply message that has a nonce from the SMR-invoked Map-Request. The Map-Reply messages SHOULD be rate limited. This is important to avoid Map-Reply implosion.

5. The ETRs, at the site with the changed mapping, record the fact that the site that sent the Map-Request has received the new mapping data in the mapping cache entry for the remote site so the loc-status-bits are reflective of the new mapping for packets going to the remote site. The ETR then stops sending SMR messages.

Experimentation is in progress to determine the appropriate rate-limit parameters.

For security reasons an ITR MUST NOT process unsolicited Map- Replies. To avoid map-cache entry corruption by a third-party, a sender of an SMR-based Map-Request MUST be verified. If an ITR receives an SMR-based Map-Request and the source is not in the locator-set for the stored map-cache entry, then the responding Map-Request MUST be sent with an EID destination to the mapping database system. Since the mapping database system is more secure to reach an authoritative ETR, it will deliver the Map-Request to the authoritative source of the mapping data.

When an ITR receives an SMR-based Map-Request for which it does not
have a cached mapping for the EID in the SMR message, it MAY not send a SMR-invoked Map-Request. This scenario can occur when an ETR sends SMR messages to all locators in the locator-set it has stored in its map-cache but the remote ITRs that receive the SMR may not be sending packets to the site. There is no point in updating the ITRs until they need to send, in which case, they will send Map-Requests to obtain a map-cache entry.

6.6.3. Database Map Versioning

When there is unidirectional packet flow between an ITR and ETR, and the EID-to-RLOC mappings change on the ETR, it needs to inform the ITR so encapsulation can stop to a removed locator and start to a new locator in the locator-set.

An ETR, when it sends Map-Reply messages, conveys its own Map-Version number. This is known as the Destination Map-Version Number. ITRs include the Destination Map-Version Number in packets they encapsulate to the site. When an ETR decapsulates a packet and detects the Destination Map-Version Number is less than the current version for its mapping, the SMR procedure described in Section 6.6.2 occurs.

An ITR, when it encapsulates packets to ETRs, can convey its own Map-Version number. This is known as the Source Map-Version Number. When an ETR decapsulates a packet and detects the Source Map-Version Number is greater than the last Map-Version Number sent in a Map-Reply from the ITR’s site, the ETR will send a Map-Request to one of the ETRs for the source site.

A Map-Version Number is used as a sequence number per EID-prefix. So values that are greater, are considered to be more recent. A value of 0 for the Source Map-Version Number or the Destination Map-Version Number conveys no versioning information and an ITR does no comparison with previously received Map-Version Numbers.

A Map-Version Number can be included in Map-Register messages as well. This is a good way for the Map-Server can assure that all ETRs for a site registering to it will be Map-Version number synchronized.

See [VERSIONING] for a more detailed analysis and description of Database Map Versioning.
7. Router Performance Considerations

LISP is designed to be very hardware-based forwarding friendly. A few implementation techniques can be used to incrementally implement LISP:

- When a tunnel encapsulated packet is received by an ETR, the outer destination address may not be the address of the router. This makes it challenging for the control plane to get packets from the hardware. This may be mitigated by creating special FIB entries for the EID-prefixes of EIDs served by the ETR (those for which the router provides an RLOC translation). These FIB entries are marked with a flag indicating that control plane processing should be performed. The forwarding logic of testing for particular IP protocol number value is not necessary. There are a few proven cases where no changes to existing deployed hardware were needed to support the LISP data-plane.

- On an ITR, prepending a new IP header consists of adding more octets to a MAC rewrite string and prepending the string as part of the outgoing encapsulation procedure. Routers that support GRE tunneling [RFC2784] or 6to4 tunneling [RFC3056] may already support this action.

- A packet’s source address or interface the packet was received on can be used to select a VRF (Virtual Routing/Forwarding). The VRF’s routing table can be used to find EID-to-RLOC mappings.

For performance issues related to map-cache management, see section Section 12.
8. Deployment Scenarios

This section will explore how and where ITRs and ETRs can be deployed and will discuss the pros and cons of each deployment scenario. For a more detailed deployment recommendation, refer to [LISP-DEPLOY].

There are two basic deployment trade-offs to consider: centralized versus distributed caches and flat, recursive, or re-encapsulating tunneling. When deciding on centralized versus distributed caching, the following issues should be considered:

- Are the tunnel routers spread out so that the caches are spread across all the memories of each router? A centralized cache is when an ITR keeps a cache for all the EIDs it is encapsulating to. The packet takes a direct path to the destination locator. A distributed cache is when an ITR needs help from other re-encapsulating routers because it does not store all the cache entries for the EIDs it is encapsulating to. So the packet takes a path through re-encapsulating routers that have a different set of cache entries.

- Should management "touch points" be minimized by choosing few tunnel routers, just enough for redundancy?

- In general, using more ITRs doesn’t increase management load, since caches are built and stored dynamically. On the other hand, more ETRs does require more management since EID-prefix-to-RLOC mappings need to be explicitly configured.

When deciding on flat, recursive, or re-encapsulation tunneling, the following issues should be considered:

- Flat tunneling implements a single tunnel between source site and destination site. This generally offers better paths between sources and destinations with a single tunnel path.

- Recursive tunneling is when tunneled traffic is again further encapsulated in another tunnel, either to implement VPNs or to perform Traffic Engineering. When doing VPN-based tunneling, the site has some control since the site is prepending a new tunnel header. In the case of TE-based tunneling, the site may have control if it is prepending a new tunnel header, but if the site’s ISP is doing the TE, then the site has no control. Recursive tunneling generally will result in suboptimal paths but at the benefit of steering traffic to resource available parts of the network.
The technique of re-encapsulation ensures that packets only require one tunnel header. So if a packet needs to be rerouted, it is first decapsulated by the ETR and then re-encapsulated with a new tunnel header using a new RLOC.

The next sub-sections will survey where tunnel routers can reside in the network.

8.1. First-hop/Last-hop Tunnel Routers

By locating tunnel routers close to hosts, the EID-prefix set is at the granularity of an IP subnet. So at the expense of more EID-prefix-to-RLOC sets for the site, the caches in each tunnel router can remain relatively small. But caches always depend on the number of non-aggregated EID destination flows active through these tunnel routers.

With more tunnel routers doing encapsulation, the increase in control traffic grows as well: since the EID-granularity is greater, more Map-Requests and Map-Replies are traveling between more routers.

The advantage of placing the caches and databases at these stub routers is that the products deployed in this part of the network have better price-memory ratios than their core router counterparts. Memory is typically less expensive in these devices and fewer routes are stored (only IGP routes). These devices tend to have excess capacity, both for forwarding and routing state.

LISP functionality can also be deployed in edge switches. These devices generally have layer-2 ports facing hosts and layer-3 ports facing the Internet. Spare capacity is also often available in these devices as well.

8.2. Border/Edge Tunnel Routers

Using customer-edge (CE) routers for tunnel endpoints allows the EID space associated with a site to be reachable via a small set of RLOCs assigned to the CE routers for that site. This is the default behavior envisioned in the rest of this specification.

This offers the opposite benefit of the first-hop/last-hop tunnel router scenario: the number of mapping entries and network management touch points are reduced, allowing better scaling.

One disadvantage is that less of the network’s resources are used to reach host endpoints thereby centralizing the point-of-failure domain and creating network choke points at the CE router.
Note that more than one CE router at a site can be configured with the same IP address. In this case an RLOC is an anycast address. This allows resilience between the CE routers. That is, if a CE router fails, traffic is automatically routed to the other routers using the same anycast address. However, this comes with the disadvantage where the site cannot control the entrance point when the anycast route is advertised out from all border routers. Another disadvantage of using anycast locators is the limited advertisement scope of /32 (or /128 for IPv6) routes.

8.3. ISP Provider-Edge (PE) Tunnel Routers

Use of ISP PE routers as tunnel endpoint routers is not the typical deployment scenario envisioned in the specification. This section attempts to capture some of reasoning behind this preference of implementing LISP on CE routers.

Use of ISP PE routers as tunnel endpoint routers gives an ISP, rather than a site, control over the location of the egress tunnel endpoints. That is, the ISP can decide if the tunnel endpoints are in the destination site (in either CE routers or last-hop routers within a site) or at other PE edges. The advantage of this case is that two tunnel headers can be avoided. By having the PE be the first router on the path to encapsulate, it can choose a TE path first, and the ETR can decapsulate and re-encapsulate for a tunnel to the destination end site.

An obvious disadvantage is that the end site has no control over where its packets flow or the RLOCs used. Other disadvantages include the difficulty in synchronizing path liveness updates between CE and PE routers.

As mentioned in earlier sections a combination of these scenarios is possible at the expense of extra packet header overhead, if both site and provider want control, then recursive or re-encapsulating tunnels are used.

8.4. LISP Functionality with Conventional NATs

LISP routers can be deployed behind Network Address Translator (NAT) devices to provide the same set of packet services hosts have today when they are addressed out of private address space.

It is important to note that a locator address in any LISP control message MUST be a globally routable address and therefore SHOULD NOT contain [RFC1918] addresses. If a LISP router is configured with private addresses, they MUST be used only in the outer IP header so the NAT device can translate properly. Otherwise, EID addresses MUST
be translated before encapsulation is performed. Both NAT
translation and LISP encapsulation functions could be co-located in
the same device.

More details on LISP address translation can be found in [INTERWORK].

8.5. Packets Egressing a LISP Site

When a LISP site is using two ITRs for redundancy, the failure of one
ITR will likely shift outbound traffic to the second. This second
ITR’s cache may not be populated with the same EID-to-RLOC
mapping entries as the first. If this second ITR does not have these
mappings, traffic will be dropped while the mappings are retrieved
from the mapping system. The retrieval of these messages may
increase the load of requests being sent into the mapping system.
Deployment and experimentation will determine whether this issue
requires more attention.
9. Traceroute Considerations

When a source host in a LISP site initiates a traceroute to a destination host in another LISP site, it is highly desirable for it to see the entire path. Since packets are encapsulated from ITR to ETR, the hop across the tunnel could be viewed as a single hop. However, LISP traceroute will provide the entire path so the user can see 3 distinct segments of the path from a source LISP host to a destination LISP host:

Segment 1 (in source LISP site based on EIDs):
source-host ---> first-hop ... next-hop ---> ITR

Segment 2 (in the core network based on RLOCs):
ITR ---> next-hop ... next-hop ---> ETR

Segment 3 (in the destination LISP site based on EIDs):
ETR ---> next-hop ... last-hop ---> destination-host

For segment 1 of the path, ICMP Time Exceeded messages are returned in the normal manner as they are today. The ITR performs a TTL decrement and test for 0 before encapsulating. So the ITR hop is seen by the traceroute source has an EID address (the address of site-facing interface).

For segment 2 of the path, ICMP Time Exceeded messages are returned to the ITR because the TTL decrement to 0 is done on the outer header, so the destination of the ICMP messages are to the ITR RLOC address, the source RLOC address of the encapsulated traceroute packet. The ITR looks inside of the ICMP payload to inspect the traceroute source so it can return the ICMP message to the address of the traceroute client as well as retaining the core router IP address in the ICMP message. This is so the traceroute client can display the core router address (the RLOC address) in the traceroute output. The ETR returns its RLOC address and responds to the TTL decrement to 0 like the previous core routers did.

For segment 3, the next-hop router downstream from the ETR will be decrementing the TTL for the packet that was encapsulated, sent into the core, decapsulated by the ETR, and forwarded because it isn’t the final destination. If the TTL is decremented to 0, any router on the path to the destination of the traceroute, including the next-hop router or destination, will send an ICMP Time Exceeded message to the source EID of the traceroute client. The ICMP message will be
encapsulated by the local ITR and sent back to the ETR in the originated traceroute source site, where the packet will be delivered to the host.

9.1. IPv6 Traceroute

IPv6 traceroute follows the procedure described above since the entire traceroute data packet is included in ICMP Time Exceeded message payload. Therefore, only the ITR needs to pay special attention for forwarding ICMP messages back to the traceroute source.

9.2. IPv4 Traceroute

For IPv4 traceroute, we cannot follow the above procedure since IPv4 ICMP Time Exceeded messages only include the invoking IP header and 8 octets that follow the IP header. Therefore, when a core router sends an IPv4 Time Exceeded message to an ITR, all the ITR has in the ICMP payload is the encapsulated header it prepended followed by a UDP header. The original invoking IP header, and therefore the identity of the traceroute source is lost.

The solution we propose to solve this problem is to cache traceroute IPv4 headers in the ITR and to match them up with corresponding IPv4 Time Exceeded messages received from core routers and the ETR. The ITR will use a circular buffer for caching the IPv4 and UDP headers of traceroute packets. It will select a 16-bit number as a key to find them later when the IPv4 Time Exceeded messages are received. When an ITR encapsulates an IPv4 traceroute packet, it will use the 16-bit number as the UDP source port in the encapsulating header. When the ICMP Time Exceeded message is returned to the ITR, the UDP header of the encapsulating header is present in the ICMP payload thereby allowing the ITR to find the cached headers for the traceroute source. The ITR puts the cached headers in the payload and sends the ICMP Time Exceeded message to the traceroute source retaining the source address of the original ICMP Time Exceeded message (a core router or the ETR of the site of the traceroute destination).

The signature of a traceroute packet comes in two forms. The first form is encoded as a UDP message where the destination port is inspected for a range of values. The second form is encoded as an ICMP message where the IP identification field is inspected for a well-known value.

9.3. Traceroute using Mixed Locators

When either an IPv4 traceroute or IPv6 traceroute is originated and the ITR encapsulates it in the other address family header, you
cannot get all 3 segments of the traceroute. Segment 2 of the traceroute can not be conveyed to the traceroute source since it is expecting addresses from intermediate hops in the same address format for the type of traceroute it originated. Therefore, in this case, segment 2 will make the tunnel look like one hop. All the ITR has to do to make this work is to not copy the inner TTL to the outer, encapsulating header’s TTL when a traceroute packet is encapsulated using an RLOC from a different address family. This will cause no TTL decrement to 0 to occur in core routers between the ITR and ETR.
10. Mobility Considerations

There are several kinds of mobility of which only some might be of concern to LISP. Essentially they are as follows.

10.1. Site Mobility

A site wishes to change its attachment points to the Internet, and its LISP Tunnel Routers will have new RLOCs when it changes upstream providers. Changes in EID-RLOC mappings for sites are expected to be handled by configuration, outside of the LISP protocol.

10.2. Slow Endpoint Mobility

An individual endpoint wishes to move, but is not concerned about maintaining session continuity. Renumbering is involved. LISP can help with the issues surrounding renumbering [RFC4192] [LISA96] by decoupling the address space used by a site from the address spaces used by its ISPs. [RFC4984]

10.3. Fast Endpoint Mobility

Fast endpoint mobility occurs when an endpoint moves relatively rapidly, changing its IP layer network attachment point. Maintenance of session continuity is a goal. This is where the Mobile IPv4 [RFC5944] and Mobile IPv6 [RFC6275] [RFC4866] mechanisms are used, and primarily where interactions with LISP need to be explored.

The problem is that as an endpoint moves, it may require changes to the mapping between its EID and a set of RLOCs for its new network location. When this is added to the overhead of mobile IP binding updates, some packets might be delayed or dropped.

In IPv4 mobility, when an endpoint is away from home, packets to it are encapsulated and forwarded via a home agent which resides in the home area the endpoint’s address belongs to. The home agent will encapsulate and forward packets either directly to the endpoint or to a foreign agent which resides where the endpoint has moved to. Packets from the endpoint may be sent directly to the correspondent node, may be sent via the foreign agent, or may be reverse-tunneled back to the home agent for delivery to the mobile node. As the mobile node’s EID or available RLOC changes, LISP EID-to-RLOC mappings are required for communication between the mobile node and the home agent, whether via foreign agent or not. As a mobile endpoint changes networks, up to three LISP mapping changes may be required:
The mobile node moves from an old location to a new visited network location and notifies its home agent that it has done so. The Mobile IPv4 control packets the mobile node sends pass through one of the new visited network’s ITRs, which needs an EID-RLOC mapping for the home agent.

The home agent might not have the EID-RLOC mappings for the mobile node’s "care-of" address or its foreign agent in the new visited network, in which case it will need to acquire them.

When packets are sent directly to the correspondent node, it may be that no traffic has been sent from the new visited network to the correspondent node’s network, and the new visited network’s ITR will need to obtain an EID-RLOC mapping for the correspondent node’s site.

In addition, if the IPv4 endpoint is sending packets from the new visited network using its original EID, then LISP will need to perform a route-returnability check on the new EID-RLOC mapping for that EID.

In IPv6 mobility, packets can flow directly between the mobile node and the correspondent node in either direction. The mobile node uses its "care-of" address (EID). In this case, the route-returnability check would not be needed but one more LISP mapping lookup may be required instead:

- As above, three mapping changes may be needed for the mobile node to communicate with its home agent and to send packets to the correspondent node.

- In addition, another mapping will be needed in the correspondent node’s ITR, in order for the correspondent node to send packets to the mobile node’s "care-of" address (EID) at the new network location.

When both endpoints are mobile the number of potential mapping lookups increases accordingly.

As a mobile node moves there are not only mobility state changes in the mobile node, correspondent node, and home agent, but also state changes in the ITRs and ETRs for at least some EID-prefixes.

The goal is to support rapid adaptation, with little delay or packet loss for the entire system. Also IP mobility can be modified to require fewer mapping changes. In order to increase overall system performance, there may be a need to reduce the optimization of one area in order to place fewer demands on another.
In LISP, one possibility is to "glean" information. When a packet arrives, the ETR could examine the EID-RLOC mapping and use that mapping for all outgoing traffic to that EID. It can do this after performing a route-returnability check, to ensure that the new network location does have an internal route to that endpoint. However, this does not cover the case where an ITR (the node assigned the RLOC) at the mobile-node location has been compromised.

Mobile IP packet exchange is designed for an environment in which all routing information is disseminated before packets can be forwarded. In order to allow the Internet to grow to support expected future use, we are moving to an environment where some information may have to be obtained after packets are in flight. Modifications to IP mobility should be considered in order to optimize the behavior of the overall system. Anything which decreases the number of new EID-RLOC mappings needed when a node moves, or maintains the validity of an EID-RLOC mapping for a longer time, is useful.

10.4. Fast Network Mobility

In addition to endpoints, a network can be mobile, possibly changing xTRs. A "network" can be as small as a single router and as large as a whole site. This is different from site mobility in that it is fast and possibly short-lived, but different from endpoint mobility in that a whole prefix is changing RLOCs. However, the mechanisms are the same and there is no new overhead in LISP. A map request for any endpoint will return a binding for the entire mobile prefix.

If mobile networks become a more common occurrence, it may be useful to revisit the design of the mapping service and allow for dynamic updates of the database.

The issue of interactions between mobility and LISP needs to be explored further. Specific improvements to the entire system will depend on the details of mapping mechanisms. Mapping mechanisms should be evaluated on how well they support session continuity for mobile nodes.

10.5. LISP Mobile Node Mobility

A mobile device can use the LISP infrastructure to achieve mobility by implementing the LISP encapsulation and decapsulation functions and acting as a simple ITR/ETR. By doing this, such a "LISP mobile node" can use topologically-independent EID IP addresses that are not advertised into and do not impose a cost on the global routing system. These EIDs are maintained at the edges of the mapping system (in LISP Map-Servers and Map-Resolvers) and are provided on demand to only the correspondents of the LISP mobile node.
Refer to the LISP Mobility Architecture specification [LISP-MN] for more details.
11. Multicast Considerations

A multicast group address, as defined in the original Internet architecture, is an identifier of a grouping of topologically independent receiver host locations. The address encoding itself does not determine the location of the receiver(s). The multicast routing protocol, and the network-based state the protocol creates, determines where the receivers are located.

In the context of LISP, a multicast group address is both an EID and a Routing Locator. Therefore, no specific semantic or action needs to be taken for a destination address, as it would appear in an IP header. Therefore, a group address that appears in an inner IP header built by a source host will be used as the destination EID. The outer IP header (the destination Routing Locator address), prepended by a LISP router, will use the same group address as the destination Routing Locator.

Having said that, only the source EID and source Routing Locator needs to be dealt with. Therefore, an ITR merely needs to put its own IP address in the source Routing Locator field when prepending the outer IP header. This source Routing Locator address, like any other Routing Locator address, MUST be globally routable.

Therefore, an EID-to-RLOC mapping does not need to be performed by an ITR when a received data packet is a multicast data packet or when processing a source-specific Join (either by IGMPv3 or PIM). But the source Routing Locator is decided by the multicast routing protocol in a receiver site. That is, an EID to Routing Locator translation is done at control-time.

Another approach is to have the ITR not encapsulate a multicast packet and allow the host built packet to flow into the core even if the source address is allocated out of the EID namespace. If the RPF-Vector TLV [RFC5496] is used by PIM in the core, then core routers can RPF to the ITR (the Locator address which is injected into core routing) rather than the host source address (the EID address which is not injected into core routing).

To avoid any EID-based multicast state in the network core, the first approach is chosen for LISP-Multicast. Details for LISP-Multicast and Interworking with non-LISP sites is described in specification [MLISP].
12. Security Considerations

It is believed that most of the security mechanisms will be part of the mapping database service when using control plane procedures for obtaining EID-to-RLOC mappings. For data plane triggered mappings, as described in this specification, protection is provided against ETR spoofing by using Return-Routability (see Section 3) mechanisms evidenced by the use of a 24-bit Nonce field in the LISP encapsulation header and a 64-bit Nonce field in the LISP control message.

The nonce, coupled with the ITR accepting only solicited Map-Replies provides a basic level of security, in many ways similar to the security experienced in the current Internet routing system. It is hard for off-path attackers to launch attacks against these LISP mechanisms, as they do not have the nonce values. Sending a large number of packets to accidentally find the right nonce value is possible, but would already by itself be a denial-of-service attack. On-path attackers can perform far more serious attacks, but on-path attackers can launch serious attacks in the current Internet as well, including eavesdropping, blocking or redirecting traffic. See more discussion on this topic in Section 6.1.5.1.

LISP does not rely on a PKI or a more heavy weight authentication system. These systems challenge the scalability of LISP which was a primary design goal.

DoS attack prevention will depend on implementations rate-limiting Map-Requests and Map-Replies to the control plane as well as rate-limiting the number of data-triggered Map-Replies.

An incorrectly implemented or malicious ITR might choose to ignore the priority and weights provided by the ETR in its Map-Reply. This traffic steering would be limited to the traffic that is sent by this ITR’s site, and no more severe than if the site initiated a bandwidth DoS attack on (one of) the ETR’s ingress links. The ITR’s site would typically gain no benefit from not respecting the weights, and would likely to receive better service by abiding by them.

To deal with map-cache exhaustion attempts in an ITR/PITR, the implementation should consider putting a maximum cap on the number of entries stored with a reserve list for special or frequently accessed sites. This should be a configuration policy control set by the network administrator who manages ITRs and PITRs. When overlapping EID-prefixes occur across multiple map-cache entries, the integrity of the set must be wholly maintained. So if a more-specific entry cannot be added due to reaching the maximum cap, then none of the less specifics should be stored in the map-cache.
Given that the ITR/PITR maintains a cache of EID-to-RLOC mappings, cache sizing and maintenance is an issue to be kept in mind during implementation. It is a good idea to have instrumentation in place to detect thrashing of the cache. Implementation experimentation will be used to determine which cache management strategies work best. In general, it is difficult to defend against cache thrashing attacks. It should be noted that an undersized cache in an ITR/PITR not only causes adverse affect on the site or region they support, but may also cause increased Map-Request load on the mapping system.

"Piggybacked" mapping data discussed in Section 6.1.3 specifies how to handle such mappings and includes the possibility for an ETR to temporarily accept such a mapping before verification when running in "trusted" environments. In such cases, there is a potential threat that a fake mapping could be inserted (even if only for a short period) into a map-cache. As noted in Section 6.1.3, an ETR MUST be specifically configured to run in such a mode and might usefully only consider some specific ITRs as also running in that same trusted environment.

There is a security risk implicit in the fact that ETRs generate the EID prefix to which they are responding. An ETR can claim a shorter prefix than it is actually responsible for. Various mechanisms to ameliorate or resolve this issue will be examined in the future, [LISP-SEC].

Spoofing of inner header addresses of LISP encapsulated packets is possible like with any tunneling mechanism. ITRs MUST verify the source address of a packet to be an EID that belongs to the site’s EID-prefix range prior to encapsulation. An ETR must only decapsulate and forward datagrams with an inner header destination that matches one of its EID-prefix ranges. If, upon receipt and decapsulation, the destination EID of a datagram does not match one of the ETR’s configured EID-prefixes, the ETR MUST drop the datagram. If a LISP encapsulated packet arrives at an ETR, it SHOULD compare the inner header source EID address and the outer header source RLOC address with the mapping that exists in the mapping database. Then when spoofing attacks occur, the outer header source RLOC address can be used to trace back the attack to the source site, using existing operational tools.

This experimental specification does not address automated key management (AKM). BCP 107 provides guidance in this area. In addition, at the time of this writing, substantial work is being undertaken to improve security of the routing system [KARP], [RPKI], [BGP-SEC], [LISP-SEC]. Future work on LISP should address BCP-107 as well as other open security considerations, which may require changes to this specification.
13. Network Management Considerations

Considerations for Network Management tools exist so the LISP protocol suite can be operationally managed. The mechanisms can be found in [LISP-MIB] and [LISP-LIG].
14. IANA Considerations

This section provides guidance to the Internet Assigned Numbers Authority (IANA) regarding registration of values related to the LISP specification, in accordance with BCP 26 and RFC 5226 [RFC5226].

There are four name spaces in LISP that require registration:

-o LISP IANA registry allocations should not be made for purposes unrelated to LISP routing or transport protocols.

-o The following policies are used here with the meanings defined in BCP 26: "Specification Required", "IETF Review", "Experimental Use", "First Come First Served".

14.1. LISP ACT and Flag Fields

New ACT values (Section 6.1.4) can be allocated through IETF review or IESG approval. Four values have already been allocated by this specification (Section 6.1.4).

In addition, the LISP protocol has a number of flag and reserved fields, such as the LISP header flags field (Section 5.3). New bits for flags can be taken into use from these fields through IETF review or IESG approval, but these need not be managed by IANA.

14.2. LISP Address Type Codes

LISP Address [LCAF] type codes have a range from 0 to 255. New type codes MUST be allocated consecutively starting at 0. Type Codes 0 – 127 are to be assigned by IETF review or IESG approval.

Type Codes 128 – 255 are available on a First Come First Served policy.

This registry, initially empty, is constructed for future-use experimental work of LCAF values. See [LCAF] for details for other possible unapproved address encodings. The unapproved LCAF encodings are an area for further study and experimentation.
14.3. LISP UDP Port Numbers

The IANA registry has allocated UDP port numbers 4341 and 4342 for lisp-data and lisp-control operation, respectively. IANA is requested to update the description for udp ports 4341 and 4342 as follows:

<table>
<thead>
<tr>
<th>Port</th>
<th>Protocol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>4341</td>
<td>udp</td>
<td>lisp-data</td>
</tr>
<tr>
<td>4342</td>
<td>udp</td>
<td>lisp-control</td>
</tr>
</tbody>
</table>

14.4. LISP Key ID Numbers

The following Key ID values are defined by this specification as used in any packet type that references a Key ID field:

<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
<th>Defined in</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>HMAC-SHA-1-96</td>
<td>1</td>
<td>[RFC2404]</td>
</tr>
<tr>
<td>HMAC-SHA-256-128</td>
<td>2</td>
<td>[RFC6234]</td>
</tr>
</tbody>
</table>

Number values are in the range of 0 to 65535. The allocation of values is on a first come first serve basis.
15. Known Open Issues and Areas of Future Work

As an experimental specification, this work is, by definition, incomplete. Specific areas where additional experience and work are needed include:

- At present, only [ALT] is defined for implementing a database of EID-to-RLOC mapping information. Additional research on other mapping database systems is strongly encouraged.

- Failure and recovery of LISP site partitioning (see Section 6.4), in the presence of redundant configuration (see Section 8.5) needs further research and experimentation.

- The characteristics of map-cache management under exceptional conditions, such as denial-of-service attacks are not fully understood. Further experience is needed to determine whether current caching methods are practical or in need of further development. In particular, the performance, scaling and security characteristics of the map-cache will be discovered as part of this experiment. Performance metrics to be observed are packet reordering associated with the LISP data probe and loss of the first packet in a flow associated with map-caching. The impact of these upon TCP will be observed. See Section 12 for additional thoughts and considerations.

- Preliminary work has been done to ensure that sites employing LISP can interconnect with the rest of the Internet. This work is documented in [INTERWORK], but further experimentation and experience is needed.

- At present, no mechanism for automated key management for message authentication is defined. Addressing automated key management is necessary before this specification could be developed into a standards track RFC. See Section 12 for further details regarding security considerations.

- In order to maintain security and stability, Internet Protocols typically isolate the control and data planes. Therefore, user activity cannot cause control plane state to be created or destroyed. LISP does not maintain this separation. The degree to which the loss of separation impacts security and stability is a topic for experimental observation.

- LISP allows for different mapping database systems to be used. While only one [ALT] is currently well-defined, each mapping database will likely have some impact on the security of the EID-to-RLOC mappings. How each mapping database system’s security
properties impact on LISP overall is for further study.

- An examination of the implications of LISP on Internet traffic, applications, routers, and security is needed. This will help to understand the consequences for network stability, routing protocol function, routing scalability, migration and backward compatibility, and implementation scalability (as influenced by additional protocol components, additional state, and additional processing for encapsulation, decapsulation, liveness).

- Experiments need to verify that LISP produces no significant change in the behavior of protocols run between end-systems over a LISP infrastructure versus being run directly between those same end-systems.

- Experiments need to verify that the issues raised in the Critique section of [RFC6115] are either insignificant or have been addressed by updates to the LISP protocol.

Other LISP documents may also include open issues and areas for future work.
16. References

16.1. Normative References

[RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan", BCP 122, RFC 4632, August 2006.

16.2. Informative References

[INTERWORK]
Lewis, D., Meyer, D., Farinacci, D., and V. Fuller, "Interworking LISP with IPv4 and IPv6", draft-ietf-lisp-interworking-06.txt (work in progress).

[KARP]

[LCAF]

[LISA96]
Lear, E., Katinsky, J., Coffin, J., and D. Tharp, "Renumbering: Threat or Menace?", Usenix.

[LISP-DEPLOY]

[LISP-LIG]
Farinacci, D. and D. Meyer, "LISP Internet Groper (LIG)", draft-ietf-lisp-lig-06.txt (work in progress).

[LISP-MAIN]

[LISP-MIB]

[LISP-MN]

[LISP-SEC]

[LOC-ID-ARCH]

[NERD] Lear, E., "NERD: A Not-so-novel EID to RLOC Database", draft-lear-lisp-nerd-08.txt (work in progress).

[UDP-TUNNELS] Eubanks, M. and P. Chimento, "UDP Checksums for Tunneled
Packets", draft-ietf-6man-udpchecksums-05.txt (work in progress), October 2012.

[UDP-ZERO]
Appendix A. Acknowledgments

An initial thank you goes to Dave Oran for planting the seeds for the initial ideas for LISP. His consultation continues to provide value to the LISP authors.

A special and appreciative thank you goes to Noel Chiappa for providing architectural impetus over the past decades on separation of location and identity, as well as detailed review of the LISP architecture and documents, coupled with enthusiasm for making LISP a practical and incremental transition for the Internet.

The authors would like to gratefully acknowledge many people who have contributed discussion and ideas to the making of this proposal. They include Scott Brim, Andrew Partan, John Zwiebel, Jason Schiller, Lixia Zhang, Dorian Kim, Peter Schoenmaker, Vijay Gill, Geoff Huston, David Conrad, Mark Handley, Ron Bonica, Ted Seely, Mark Townsley, Chris Morrow, Brian Weis, Dave McGrew, Peter Lothberg, Dave Thaler, Eliot Lear, Shane Amante, Ved Kafle, Olivier Bonaventure, Luigi Iannone, Robin Whittle, Brian Carpenter, Joel Halpern, Terry Manderson, Roger Jorgensen, Ran Atkinson, Stig Venaas, Iljitsch van Beijnum, Roland Bless, Dana Blair, Bill Lynch, Marc Woolward, Damien Saucez, Damian Lezama, Attila De Groot, Parantap Lahiri, David Black, Roque Gagliano, Isidor Kouvelas, Jesper Skriver, Fred Templin, Margaret Wasserman, Sam Hartman, Michael Hofling, Pedro Marques, Jari Arkko, Gregg Schudel, Srinivas Subramanian, Amit Jain, Xu Xiaohu, Dhirendra Trivedi, Yakov Rekhter, John Scudder, John Drake, Dimitri Papadimitriou, Ross Callon, Selina Heimlich, Job Snijders, Vina Ermagan, Albert Cabellos, Fabio Maino, Victor Moreno, Chris White, Clarence Filsfils, and Alia Atlas.

This work originated in the Routing Research Group (RRG) of the IRTF. The individual submission [LISP-MAIN] was converted into this IETF LISP working group draft.

The LISP working group would like to give a special thanks to Jari Arkko, the Internet Area AD at the time the set of LISP documents were being prepared for IESG last call, for his meticulous review and detail commentary on the 7 working group last call drafts progressing toward experimental RFCs.
Appendix B. Document Change Log

B.1. Changes to draft-ietf-lisp-24.txt
 o Posted November 2012 for final pre-RFC version.
 o Move draft-ietf-6man-udpchecksums reference back to Informative References section.

B.2. Changes to draft-ietf-lisp-23.txt
 o Posted May 2012 for final pre-RFC version.
 o Move only the reference draft-ietf-6man-udpzero to the Informative References section. Leave the draft-ietf-6man-udpchecksums reference in the Normative References section. After talking to many people involved with this issue at Paris IETF, all thought this would be an acceptable change.
 o Added text to IANA Considerations section 14.4 to reflect IANA comments about allocating Key-ID numbers.

B.3. Changes to draft-ietf-lisp-22.txt
 o Posted February 2012 to reflect final DISCUSS comments from Adrian Farrel.

B.4. Changes to draft-ietf-lisp-21.txt
 o Posted February 2012 to reflect DISCUSS comments from Adrian Farrel, Stewart Bryant, and Wesley Eddy.

B.5. Changes to draft-ietf-lisp-20.txt
 o Posted January 2012 for resolution to Adrian Farrel’s security comments as well as additions to the end of section 2, Elwyn Davies Gen-Art comments, and Ralph Droms’ IANA and EID definition comments.

B.6. Changes to draft-ietf-lisp-19.txt
 o Posted January 2012 for Stephen Farrell’s comment resolution.

B.7. Changes to draft-ietf-lisp-18.txt
 o Posted December 2011 after reflecting comments from IANA.
Create reference to sections 5.4.1 and 5.4.2 about DF bit setting from section 5.3.

Inserted two references for Route-Returnability and on-path attacks in Security Considerations section.

B.8. Changes to draft-ietf-lisp-17.txt

Posted December 2011 after IETF last call comments.

Make Map-Notify port assignment be 4342 in both source and destination ports. This change was agreed on and put in [LISP-MS] but was not updated in this spec.

B.9. Changes to draft-ietf-lisp-16.txt

Posted October 2011 after AD review by Jari.

B.10. Changes to draft-ietf-lisp-15.txt

Posted July 2011. Fixing IDnits errors.

Change description on how to select a source address for RLOC-probe Map- Replies to refer to the "EID-to-RLOC Map-Reply Message" section.

B.11. Changes to draft-ietf-lisp-14.txt

Post working group last call and pre-IESG last call review.

Indicate that an ICMP Unreachable message should be sent when a packet matches a drop-based negative map-cache entry.

Indicate how a map-cache set of overlapping EID-prefixes must maintain integrity when the map-cache maximum cap is reached.

Add Joel’s description for the definition of an EID, that the bit string value can be an RLOC for another device in abstract but the architecture allows it to be an EID of one device and the same value as an RLOC for another device.

In the "Tunnel Encapsulation Details" section, indicate that 4 combinations of encapsulation are supported.

Add what ETR should do for a Data-Probe when received for a destination EID outside of its EID-prefix range. This was added in the Data Probe definition section.
Added text indicating that more-specific EID-prefixes must not be removed when less-specific entries stay in the map-cache. This is to preserve the integrity of the EID-prefix set.

Add clarifying text in the Security Considerations section about how an ETR must not decapsulate and forward a packet that is not for its configured EID-prefix range.

B.12. Changes to draft-ietf-lisp-13.txt

- Posted June 2011 to complete working group last call.
- Tracker item 87. Put Yakov suggested wording in the EID-prefix definition section to reference [INTERWORK] and [LISP-DEPLOY] about discussion on transition and access mechanisms.
- Change "ITRs" to "ETRs" in the Locator Status Bit definition section and data packet description section per Damien’s comment.
- Remove the normative reference to [LISP-SEC] when describing the S-bit in the ECM and Map-Reply headers.
- Tracker item 54. Added text from John Scudder in the "Packets Egressing a LISP Site" section.
- Add sentence to the "Reencapsulating Tunnel" definition about how reencapsulation loops can occur when not coordinating among multiple mapping database systems.
- Remove "In theory" from a sentence in the Security Considerations section.
- Remove Security Area Statement title and reword section with Eliot’s provided text. The text was agreed upon by LISP-WG chairs and Security ADs.
- Remove word "potential" from the over-claiming paragraph of the Security Considerations section per Stephen’s request.
- Wordsmithing and other editorial comments from Alia.

B.13. Changes to draft-ietf-lisp-12.txt

- Posted April 2011.
- Tracker item 87. Provided rewording how an EID-prefix can be reused in the definition section of "EID-prefix".
o Tracker item 95. Change "eliminate" to "defer" in section 4.1.

o Tracker item 110. Added that the Mapping Protocol Data field in the Map-Reply message is only used when needed by the particular Mapping Database System.

o Tracker item 111. Indicate that if an LSB that is associated with an anycast address, that there is at least one RLOC that is up.

o Tracker item 108. Make clear the R-bit does not define RLOC path reachability.

o Tracker item 107. Indicate that weights are relative to each other versus requiring an addition of up to 100%.

o Tracker item 46. Add a sentence how LISP products should be sized for the appropriate demand so cache thrashing is avoided.

o Change some references of RFC 5226 to [AFI] per Luigi.

o Per Luigi, make reference to "EID-AFI" consistent to "EID-prefix-AFI".

o Tracker item 66. Indicate that appending locators to a locator-set is done when the added locators are lexicographically greater than the previous ones in the set.

o Tracker item 87. Once again reword the definition of the EID-prefix to reflect recent comments.

o Tracker item 70. Added text to security section on what the implications could be if an ITR does not obey priority and weights from a Map-Reply message.

o Tracker item 54. Added text to the new section titled "Packets Egressing a LISP Site" to describe the implications when two or more ITRs exist at a site where only one ITR is used for egress traffic and when there is a shift of traffic to the others, how the map-cache will need to be populated in those new egress ITRs.

o Tracker item 33. Make more clear in the Routing Locator Selection section what an ITR should do when it sees an R-bit of 0 in a locator-record of a Map-Reply.

o Tracker item 33. Add paragraph to the EID Reachability section indicating that site partitioning is under investigation.
Tracker item 58. Added last paragraph of Security Considerations section about how to protect inner header EID address spoofing attacks.

Add suggested Sam text to indicate that all security concerns need not be addressed for moving document to Experimental RFC status. Put this in a subsection of the Security Considerations section.

B.14. Changes to draft-ietf-lisp-11.txt

2. Change IANA URL. The URL we had pointed to a general protocol numbers page.
3. Added the "s" bit to the Map-Request to allow SMR-invoked Map-Requests to be sent to a MN ETR via the map-server.
4. Generalize text for the definition of Reencapsulating tunnels.
5. Add paragraph suggested by Joel to explain how implementation experimentation will be used to determine the proper cache management techniques.
6. Add Yakov provided text for the definition of "EID-to-RLOC "Database".
7. Add reference in Section 8, Deployment Scenarios, to the draft-jakab-lisp-deploy-02.txt draft.
8. Clarify sentence about no hardware changes needed to support LISP encapsulation.
9. Add paragraph about what is the procedure when a locator is inserted in the middle of a locator-set.
10. Add a definition for Locator Status Bits so we can emphasize they are used as a hint for router up/down status and not path reachability.
11. Change "BGP RIB" to "RIB" per Clarence’s comment.
12. Fixed complaints by IDnits.
13. Add subsection to Security Considerations section indicating how EID-prefix overclaiming in Map-Replies is for further study and add a reference to LISP-SEC.
B.15. Changes to draft-ietf-lisp-10.txt

- Posted March 2011.
- Add p-bit to Map-Request so there is documentary reasons to know when a PITR has sent a Map-Request to an ETR.
- Add Map-Notify message which is used to acknowledge a Map-Register message sent to a Map-Server.
- Add M-bit to the Map-Register message so an ETR that wants an acknowledgment for the Map-Register can request one.
- Add S-bit to the ECM and Map-Reply messages to describe security data that can be present in each message. Then refer to [LISP-SEC] for expansive details.
- Add Network Management Considerations section and point to the MIB and LIG drafts.
- Remove the word "simple" per Yakov’s comments.

B.16. Changes to draft-ietf-lisp-09.txt

- Posted October 2010.
- Add to IANA Consideration section about the use of LCAF Type values that accepted and maintained by the IANA registry and not the LCAF specification.
- Indicate that implementations should be able to receive LISP control messages when either UDP port is 4342, so they can be robust in the face of intervening NAT boxes.
- Add paragraph to SMR section to indicate that an ITR does not need to respond to an SMR-based Map-Request when it has no map-cache entry for the SMR source’s EID-prefix.

B.17. Changes to draft-ietf-lisp-08.txt

- Posted August 2010.
- In section 6.1.6, remove statement about setting TTL to 0 in Map-Register messages.
- Clarify language in section 6.1.5 about Map-Replying to Data-Probes or Map-Requests.
o Indicate that outer TTL should only be copied to inner TTL when it is less than inner TTL.

o Indicate a source-EID for RLOC-probes are encoded with an AFI value of 0.

o Indicate that SMRs can have a global or per SMR destination rate-limiter.

o Add clarifications to the SMR procedures.

o Add definitions for "client-side" and 'server-side" terms used in this specification.

o Clear up language in section 6.4, last paragraph.

o Change ACT of value 0 to "no-action". This is so we can RLOC-probe a PETR and have it return a Map-Reply with a locator-set of size 0. The way it is spec’ed the map-cache entry has action "dropped". Drop-action is set to 3.

o Add statement about normalizing locator weights.

o Clarify R-bit definition in the Map-Reply locator record.

o Add section on EID Reachability within a LISP site.

o Clarify another disadvantage of using anycast locators.

o Reworded Abstract.

o Change section 2.0 Introduction to remove obsolete information such as the LISP variant definitions.

o Change section 5 title from "Tunneling Details" to "LISP Encapsulation Details".

o Changes to section 5 to include results of network deployment experience with MTU. Recommend that implementations use either the stateful or stateless handling.

o Make clarification wordsmithing to Section 7 and 8.

o Identify that if there is one locator in the locator-set of a map-cache entry, that an SMR from that locator should be responded to by sending the SMR-invoked Map-Request to the database mapping system rather than to the RLOC itself (which may be unreachable).
When describing Unicast and Multicast Weights indicate the the values are relative weights rather than percentages. So it doesn't imply the sum of all locator weights in the locator-set need to be 100.

Do some wordsmithing on copying TTL and TOS fields.

Numerous wordsmithing changes from Dave Meyer. He fine toothed combed the spec.

Removed Section 14 "Prototype Plans and Status". We felt this type of section is no longer appropriate for a protocol specification.

Add clarification text for the IRC description per Damien’s commentary.

Remove text on copying nonce from SMR to SMR-invoked Map-Request per Vina’s comment about a possible DoS vector.

Clarify (S/2 + H) in the stateless MTU section.

Add text to reflect Damien’s comment about the description of the "ITR-RLOC Address" field in the Map-Request. that the list of RLOC addresses are local addresses of the Map-Requester.

B.18. Changes to draft-ietf-lisp-07.txt

Posted April 2010.

Added I-bit to data header so LSB field can also be used as an Instance ID field. When this occurs, the LSB field is reduced to 8-bits (from 32-bits).

Added V-bit to the data header so the 24-bit nonce field can also be used for source and destination version numbers.

Added Map-Version 12-bit value to the EID-record to be used in all of Map-Request, Map-Reply, and Map-Register messages.

Added multiple ITR-RLOC fields to the Map-Request packet so an ETR can decide what address to select for the destination of a Map-Reply.

Added L-bit (Local RLOC bit) and p-bit (Probe-Reply RLOC bit) to the Locator-Set record of an EID-record for a Map-Reply message. The L-bit indicates which RLOCs in the locator-set are local to the sender of the message. The P-bit indicates which RLOC is the
source of a RLOC-probe Reply (Map-Reply) message.

- Add reference to the LISP Canonical Address Format [LCAF] draft.
- Made editorial and clarification changes based on comments from Dhirendra Trivedi.
- Added wordsmithing comments from Joel Halpern on DF=1 setting.
- Add John Zwiebel clarification to Echo Nonce Algorithm section 6.3.1.
- Add John Zwiebel comment about expanding on proxy-map-reply bit for Map-Register messages.
- Add NAT section per Ron Bonica comments.
- Fix IDnits issues per Ron Bonica.
- Added section on Virtualization and Segmentation to explain the use if the Instance ID field in the data header.
- There are too many P-bits, keep their scope to the packet format description and refer to them by name every where else in the spec.
- Scanned all occurrences of "should", "should not", "must" and "must not" and uppercased them.
- John Zwiebel offered text for section 4.1 to modernize the example. Thanks Z!
- Make it more clear in the definition of "EID-to-RLOC Database" that all ETRs need to have the same database mapping. This reflects a comment from John Scudder.
- Add a definition "Route-returnability" to the Definition of Terms section.
- In section 9.2, add text to describe what the signature of traceroute packets can look like.
- Removed references to Data Probe for introductory example. Data-probes are still part of the LISP design but not encouraged.
- Added the definition for "LISP site" to the Definition of Terms section.
B.19. Changes to draft-ietf-lisp-06.txt

Editorial based changes:

- Posted December 2009.
- Fix typo for flags in LISP data header. Changed from "4" to "5".
- Add text to indicate that Map-Register messages must contain a computed UDP checksum.
- Add definitions for PITR and PETR.
- Indicate an AFI value of 0 is an unspecified address.
- Indicate that the TTL field of a Map-Register is not used and set to 0 by the sender. This change makes this spec consistent with [LISP-MS].
- Change "... yield a packet size of L octets" to "... yield a packet size greater than L octets".
- Clarify section 6.1.5 on what addresses and ports are used in Map-Reply messages.
- Clarify that LSBs that go beyond the number of locators do not to be SMRed when the locator addresses are greater lexicographically than the locator in the existing locator-set.
- Add Gregg, Srini, and Amit to acknowledgment section.
- Clarify in the definition of a LISP header what is following the UDP header.
- Clarify "verifying Map-Request" text in section 6.1.3.
- Add Xu Xiaohu to the acknowledgment section for introducing the problem of overlapping EID-prefixes among multiple sites in an RRG email message.

Design based changes:

- Use stronger language to have the outer IPv4 header set DF=1 so we can avoid fragment reassembly in an ETR or PETR. This will also make IPv4 and IPv6 encapsulation have consistent behavior.

- Map-Requests should not be sent in ECM with the Probe bit is set. These type of Map-Requests are used as RLOC-probes and are sent...
directly to locator addresses in the underlying network.

- Add text in section 6.1.5 about returning all EID-prefixes in a Map-Reply sent by an ETR when there are overlapping EID-prefixes configure.

- Add text in a new subsection of section 6.1.5 about dealing with Map- Replies with coarse EID-prefixes.

B.20. Changes to draft-ietf-lisp-05.txt

- Posted September 2009.

- Added this Document Change Log appendix.

- Added section indicating that encapsulated Map-Requests must use destination UDP port 4342.

- Don’t use AH in Map-Registers. Put key-id, auth-length, and auth-data in Map-Register payload.

- Added Jari to acknowledgment section.

- State the source-EID is set to 0 when using Map-Requests to refresh or RLOC-probe.

- Make more clear what source-RLOC should be for a Map-Request.

- The LISP-CONS authors thought that the Type definitions for CONS should be removed from this specification.

- Removed nonce from Map-Register message, it wasn’t used so no need for it.

- Clarify what to do for unspecified Action bits for negative Map- Replies. Since No Action is a drop, make value 0 Drop.

B.21. Changes to draft-ietf-lisp-04.txt

- Posted September 2009.

- How do deal with record count greater than 1 for a Map-Request. Damien and Joel comment. Joel suggests: 1) Specify that senders compliant with the current document will always set the count to 1, and note that the count is included for future extensibility. 2) Specify what a receiver compliant with the draft should do if it receives a request with a count greater than 1. Presumably, it should send some error back.
Add Fred Templin in acknowledgment section.

Add Margaret and Sam to the acknowledgment section for their great comments.

Say more about LAGs in the UDP section per Sam Hartman’s comment.

Sam wants to use MAY instead of SHOULD for ignoring checksums on ETR. From the mailing list: "You’d need to word it as an ITR MAY send a zero checksum, an ETR MUST accept a 0 checksum and MAY ignore the checksum completely. And of course we’d need to confirm that can actually be implemented. In particular, hardware that verifies UDP checksums on receive needs to be checked to make sure it permits 0 checksums."

Margaret wants a reference to http://www.ietf.org/id/draft-eubanks-chimento-6man-00.txt.

Fix description in Map-Request section. Where we describe Map-Reply Record, change "R-bit" to "M-bit".

Add the mobility bit to Map- Replies. So PITRs don’t probe so often for MNs but often enough to get mapping updates.

Indicate SHA1 can be used as well for Map-Registers.

More Fred comments on MTU handling.

Isidor comment about spec’ing better periodic Map-Registers. Will be fixed in draft-ietf-lisp-ms-02.txt.

Margaret’s comment on gleaning: "The current specification does not make it clear how long gleaned map entries should be retained in the cache, nor does it make it clear how/when they will be validated. The LISP spec should, at the very least, include a (short) default lifetime for gleaned entries, require that they be validated within a short period of time, and state that a new gleaned entry should never overwrite an entry that was obtained from the mapping system. The security implications of storing "gleaned" entries should also be explored in detail."

Add section on RLOC-probing per working group feedback.

Change "loc-reach-bits" to "loc-status-bits" per comment from Noel.

Remove SMR-bit from data-plane. Dino prefers to have it in the control plane only.
Change LISP header to allow a "Research Bit" so the Nonce and LSB fields can be turned off and used for another future purpose. For Luigi et al versioning convergence.

Add a N-bit to the data header suggested by Noel. Then the nonce field could be used when N is not 1.

Clarify that when E-bit is 0, the nonce field can be an echoed nonce or a random nonce. Comment from Jesper.

Indicate when doing data-gleaning that a verifying Map-Request is sent to the source-EID of the gleaned data packet so we can avoid map-cache corruption by a 3rd party. Comment from Pedro.

Indicate that a verifying Map-Request, for accepting mapping data, should be sent over the ALT (or to the EID).

Reference IPsec RFC 4302. Comment from Sam and Brian Weis.

Put E-bit in Map-Reply to tell ITRs that the ETR supports echo-noncing. Comment by Pedro and Dino.

Jesper made a comment to loosen the language about requiring the copy of inner TTL to outer TTL since the text to get mixed-AF traceroute to work would violate the "MUST" clause. Changed from MUST to SHOULD in section 5.3.

B.22. Changes to draft-ietf-lisp-03.txt

- Posted July 2009.
- Removed loc-reach-bits longword from control packets per Damien comment.
- Clarifications in MTU text from Roque.
- Added text to indicate that the locator-set be sorted by locator address from Isidor.
- Clarification text from John Zwiebel in Echo-Nonce section.

B.23. Changes to draft-ietf-lisp-02.txt

- Posted July 2009.
- Encapsulation packet format change to add E-bit and make loc-reach-bits 32-bits in length.
Internet-Draft Locator/ID Separation Protocol (LISP) November 2012

 o Added Echo-Nonce Algorithm section.
 o Clarification how ECN bits are copied.
 o Moved S-bit in Map-Request.
 o Added P-bit in Map-Request and Map-Reply messages to anticipate
 RLOC-Probe Algorithm.
 o Added to Mobility section to reference [LISP-MN].

B.24. Changes to draft-ietf-lisp-01.txt

 o Posted 2 days after draft-ietf-lisp-00.txt in May 2009.
 o Defined LEID to be a "LISP EID".
 o Indicate encapsulation use IPv4 DF=0.
 o Added negative Map-Reply messages with drop, native-forward, and
 send-map-request actions.
 o Added Proxy-Map-Reply bit to Map-Register.

B.25. Changes to draft-ietf-lisp-00.txt

 o Posted May 2009.
 o Rename of draft-farinacci-lisp-12.txt.
 o Acknowledgment to RRG.
Authors’ Addresses

Dino Farinacci
cisco Systems
Tasman Drive
San Jose, CA 95134
USA

Email: dino@cisco.com

Vince Fuller
cisco Systems
Tasman Drive
San Jose, CA 95134
USA

Email: vaf@cisco.com

Dave Meyer
cisco Systems
170 Tasman Drive
San Jose, CA
USA

Email: dmm@cisco.com

Darrel Lewis
cisco Systems
170 Tasman Drive
San Jose, CA
USA

Email: darlewis@cisco.com
Interworking LISP with IPv4 and IPv6
draft-ietf-lisp-interworking-06.txt

Abstract

This document describes techniques for allowing sites running the Locator/ID Separation Protocol (LISP) to interoperate with Internet sites (which may be using either IPv4, IPv6, or both) but which are not running LISP. A fundamental property of LISP speaking sites is that they use Endpoint Identifiers (EIDs), rather than traditional IP addresses, in the source and destination fields of all traffic they emit or receive. While EIDs are syntactically identical to IPv4 or IPv6 addresses, normally routes to them are not carried in the global routing system so an interoperability mechanism is needed for non-LISP-speaking sites to exchange traffic with LISP-speaking sites. This document introduces three such mechanisms. The first uses a new network element, the LISP Proxy Ingress Tunnel Routers (Proxy-ITRs) (Section 5) to act as a intermediate LISP Ingress Tunnel Router (ITR) for non-LISP-speaking hosts. Second the document adds Network Address Translation (NAT) functionality to LISP Ingress and LISP Egress Tunnel Routers (xTRs) to substitute routable IP addresses for non-routable EIDs. Finally, this document introduces the Proxy Egress Tunnel Router (Proxy ETR) to handle cases where a LISP ITR cannot send packets to non-LISP sites without encapsulation.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
Table of Contents

1. Introduction ... 4
2. Definition of Terms 6
3. LISP Interworking Models 7
4. Routable EIDs 8
 4.1. Impact on Routing Table 8
 4.2. Requirement for sites to use BGP 8
 4.3. Limiting the Impact of Routable EIDs ... 8
 4.4. Use of Routable EIDs for sites transitioning to LISP ... 8
5. Proxy Ingress Tunnel Routers 10
 5.1. Proxy-ITR EID announcements 10
 5.2. Packet Flow with Proxy-ITRs 10
 5.3. Scaling Proxy-ITRs 12
 5.4. Impact of the Proxy-ITRs placement in the network ... 13
 5.5. Benefit to Networks Deploying Proxy-ITRs 13
6. Proxy Egress Tunnel Routers 14
 6.1. Packet Flow with Proxy Egress Tunnel Routers 14
7. LISP-NAT .. 16
 7.1. Using LISP-NAT with LISP-NR EIDs 16
 7.2. LISP Sites with Hosts using RFC 1918 Addresses Sending to non-LISP Sites 17
 7.3. LISP Sites with Hosts using RFC 1918 Addresses Sending Packets to Other LISP Sites 17
 7.4. LISP-NAT and multiple EIDs 18
8. Discussion of Proxy-ITRs (Proxy-ITRs), LISP-NAT, and Proxy-ETRs (Proxy-ETRs) 19
 8.1. How Proxy-ITRs and Proxy-ETRs Interact 19
9. Security Considerations 20
10. Acknowledgments 21
11. IANA Considerations 22
12. References 23
 12.1. Normative References 23
 12.2. Informative References 23
Authors’ Addresses 25
1. Introduction

This document describes interoperation mechanisms between LISP [LISP] sites which use non-globally-routed EIDs, and non-LISP sites. A key behavior of the separation of Locators and Endpoint IDs is that EID prefixes are normally not advertised into the Internet’s Default Free Zone (DFZ). (See section 4, for the exception case.) Specifically, only Routing Locators (RLOCs) are carried in the Internet’s DFZ. Existing Internet sites (and their hosts) which do not run in the LISP protocol must still be able to reach sites numbered from LISP EID space. This document describes three mechanisms that can be used to provide reachability between sites that are LISP-capable and those that are not.

The first mechanism uses a new network element, the LISP Proxy Ingress Tunnel Router (Proxy-ITR) to act as an intermediate LISP Ingress Tunnel Router (ITR) for non-LISP-speaking hosts. The second mechanism adds a form of Network Address Translation (NAT) functionality to Tunnel Routers (xTRs), to substitute routable IP addresses for non-routable EIDs. The final network element is the LISP Proxy Egress Tunnel Routers (Proxy-ETR), which act as an intermediate Egress Tunnel Router (ETR) for LISP sites which need to encapsulate LISP packets destined to non-LISP sites.

More detailed descriptions of these mechanisms and the network elements involved may be found in the following sections:

- Section 2 defines terms used throughout the document
- Section 2 describes the different cases where interworking mechanisms are needed
- Section 4 describes the relationship between the new EID prefix space and the IP address space used by the current Internet
- Section 5 introduces and describes the operation of Proxy Ingress tunnel Routers
- Section 6 introduces and describes the operations of Proxy-ETRs
- Section 7 defines how NAT is used by ETRs to translate non-routable EIDs into routable IP addresses.
- Section 8 describes the relationship between asymmetric and symmetric interworking mechanisms (Proxy-ITRs and Proxy-ETRs vs LISP-NAT)

Note that any successful interworking model should be independent of
any particular EID-to-RLOC mapping algorithm. This document does not comment on the value of any of the particular LISP mapping systems.

Several areas concerning the Interworking of LISP and non-LISP sites remain open for further study. These areas include an examination of the impact of LISP-NAT on Internet traffic and applications, understanding the deployment motivations for the deployment and operation of Proxy Tunnel Routers, the impact of EID routes originated into the Internet’s Default Free Zone, and the effects of Proxy Tunnel Routers or LISP-NAT on Internet traffic and applications. Until these issues are fully understood, it is possible that the interworking mechanisms described in this document are hard to deploy, or may have unintended consequences to applications.
2. Definition of Terms

Default Free Zone: The Default-Free Zone (DFZ) refers to the collection of all Internet autonomous systems that do not require a default route to route a packet to any destination.

LISP Routable (LISP-R) Site: A LISP site whose addresses are used as both globally routable IP addresses and LISP EIDs.

LISP Non-Routable (LISP-NR) Site: A LISP site whose addresses are EIDs only, these EIDs are not found in the legacy Internet routing table.

LISP Proxy Ingress Tunnel Router (Proxy-ITR): Proxy-ITRs are used to provide connectivity between sites which use LISP EIDs and those which do not. They act as gateways between those parts of the Internet which are not using LISP (the legacy Internet) A given Proxy-ITR advertises one or more highly aggregated EID prefixes into the public Internet and acts as the ITR for traffic received from the public Internet. LISP Proxy-ITRs are described in Section 5.

LISP Network Address Translation (LISP-NAT): Network Address Translation between EID space assigned to a site and RLOC space also assigned to that site. LISP Network Address Translation is described in Section 7.

LISP Proxy Egress Tunnel Router (Proxy-ETR): Proxy-ETRs provide a LISP (Routable or Non-Routable EID) site’s ITRs the ability to send packets to non-LISP sites in cases where unencapsulated packets (the default mechanism) would fail to be delivered. Proxy-ETRs function by having an ITR encapsulate all non-LISP destined traffic to a pre-configured Proxy-ETR. LISP Proxy Egress Tunnel Routers are described in Section 6.

EID Sub Namespace: A power-of-two block of aggregatable locators set aside for LISP interworking.

For definitions of other terms, notably Map-Request, Map-Reply, Ingress Tunnel Router (ITR), and Egress Tunnel Router (ETR), please consult the LISP specification [LISP].
3. LISP Interworking Models

There are 4 unicast connectivity cases which describe how sites can send packets to each other:

1. non-LISP site to non-LISP site
2. LISP site to LISP site
3. LISP site to non-LISP site
4. non-LISP site to LISP site

Note that while Cases 3 and 4 seem similar, there are subtle differences due to the way packets are originated.

The first case is the Internet as we know it today and as such will not be discussed further here. The second case is documented in [LISP] and there are no new interworking requirements because there are no new protocol requirements placed on intermediate non-LISP routers.

In case 3, LISP site to non-LISP site, a LISP site can (in most cases) send packets to a non-LISP site because the non-LISP site prefixes are routable. The non-LISP sites need not do anything new to receive packets. The only action the LISP site needs to take is to know when not to LISP-encapsulate packets. An ITR knows explicitly that the destination is non-LISP if the destination IP address of an IP packet matches a (negative) Map-Cache entry which has the action ‘Natively-Forward’.

There could be some situations where (unencapsulated) packets originated by a LISP site may not be forwarded to a non-LISP site. These cases are reviewed in section 7, (Proxy Egress Tunnel Routers).

Case 4, typically the most challenging, occurs when a host at a non-LISP site wishes to send traffic to a host at a LISP site. If the source host uses a (non-globally-routable) EID as the destination IP address, the packet is forwarded inside the source site until it reaches a router which cannot forward it (due to lack of a default route), at which point the traffic is dropped. For traffic not to be dropped, some mechanism to make this destination EID routable must be in place. Section 5 (Proxy-ITRs) and Section 6 (LISP-NAT) describe two such mechanisms. Case 4 also applies to packets returning to the LISP site, in Case 3.
4. Routable EIDs

An obvious way to achieve interworking between LISP and non-LISP hosts is for a LISP site to simply announce EID prefixes into the DFZ, much like the current routing system, effectively treating them as "Provider Independent (PI)" prefixes. Having a site do this is undesirable as it defeats one of the primary goals of LISP - to reduce global routing system state.

4.1. Impact on Routing Table

If EID prefixes are announced into the DFZ, the impact is similar to the case in which LISP has not been deployed, because these EID prefixes will be no more aggregatable than existing PI addresses. Such a mechanism is not viewed as a viable long term solution, but may be a viable short term way for a site to transition a portion of its address space to EID space without changing its existing routing policy.

4.2. Requirement for sites to use BGP

Routable EIDs might require non-LISP sites today to use BGP to, among other things, originate their site’s routes into the DFZ, in order to enable ingress traffic engineering. Relaxing this requirement, (thus potentially reducing global DFZ routing state) while still letting sites control their ingress traffic engineering policy is a design goal of LISP.

4.3. Limiting the Impact of Routable EIDs

Two schemes are proposed to limit the impact of having EIDs announced in the current global Internet routing table:

1. Section 5 discusses the LISP Proxy Ingress Tunnel Router, an approach that provides ITR functionality to bridge LISP-capable and non-LISP-capable sites.

2. Section 7 discusses another approach, LISP-NAT, in which NAT [RFC2993] is combined with ITR functionality to limit the impact of routable EIDs on the Internet routing infrastructure.

4.4. Use of Routable EIDs for sites transitioning to LISP

A primary design goal for LISP (and other Locator/ID separation proposals) is to facilitate topological aggregation of namespace used for the path computation, and, thus, decrease global routing system overhead. Another goal is to achieve the benefits of improved aggregation as soon as possible. Individual sites advertising their
own routes for LISP EID prefixes into the global routing system is therefore not recommended.

That being said, single-homed sites (or multi-homed sites that are not leaking more specific exceptions) that are already using provider-aggregated prefixes can use these prefixes as LISP EIDs without adding state to the routing system. In other words, such sites do not cause additional prefixes to be advertised. For such sites, connectivity to a non-LISP site does not require interworking machinery because the "PA" EIDs are already routable (they are effectively LISP-R type sites). Their EIDs are found in the LISP mapping system, and their (aggregate) PA prefix(es) are found in the DFZ of the Internet.

The continued announcements of an existing site’s Provider Independent (or "PI") prefix(es) is of course under control of that site. Some period of transition, where a site is found both in the LISP mapping system, and as a discrete prefix in the Internet routing system, may be a viable transition strategy. Care should be taken not to advertise additional more specific LISP EID prefixes into the DFZ.
Proxy Ingress Tunnel Routers (Proxy-ITRs) allow for non-LISP sites to send packets to LISP-NR sites. A Proxy-ITR is a new network element that shares many characteristics with the LISP ITR. Proxy-ITRs allow non-LISP sites to send packets to LISP-NR sites without any changes to protocols or equipment at the non-LISP site. Proxy-ITRs have two primary functions:

Originating EID Advertisements: Proxy-ITRs advertise highly aggregated EID-prefix space on behalf of LISP sites so that non-LISP sites can reach them.

Encapsulating Legacy Internet Traffic: Proxy-ITRs also encapsulate non-LISP Internet traffic into LISP packets and route them towards their destination RLOCs.

5.1. Proxy-ITR EID announcements

A key part of Proxy-ITR functionality is to advertise routes for highly-aggregated EID prefixes into parts of the global routing system. Aggressive aggregation is performed to minimize the number of new announced routes. In addition, careful placement of Proxy-ITRs can greatly reduce the advertised scope of these new routes. To this end, Proxy-ITRs should be deployed close to non-LISP-speaking rather than close to LISP sites. Such deployment not only limits the scope of EID-prefix route advertisements, it also allows traffic forwarding load to be spread among many Proxy-ITRs.

5.2. Packet Flow with Proxy-ITRs

What follows is an example of the path a packet would take when using a Proxy-ITR. In this example, the LISP-NR site is given the EID prefix 192.0.2.0/24. For the purposes of this example, neither this prefix nor any covering aggregate are present in the global routing system. In other words, without the Proxy-ITR announcing 192.0.2.0/24, if a packet with this destination were to reach a router in the "Default Free Zone", it would be dropped. The following diagram describes a high level view of the topology:
A full protocol exchange example follows:

1. The source host makes a DNS lookup EID for destination, and gets 192.0.2.1 in return.

2. The source host has a default route to Customer Edge (CE) router and forwards the packet to the CE.

3. The CE has a default route to its Provider Edge (PE) router, and forwards the packet to the PE.

4. The PE has a route to 192.0.2.0/24 and the next hop is the Proxy-ITR.

5. The Proxy-ITR has or acquires a mapping for 192.0.2.1 and LISP encapsulates the packet. The outer IP header now has a destination address of one of the destination EID’s RLOCs. The
outer source address of this encapsulated packet is the Proxy-ITR’s RLOC.

6. The Proxy-ITR looks up the RLOC, and forwards LISP packet to the next hop, after which, it is forwarded by other routers to the ETR’s RLOC.

7. The ETR decapsulates the packet and delivers the packet to the 192.0.2.1 host in the destination LISP site.

8. Packets from host 192.0.2.1 will flow back through the LISP site’s ITR. Such packets are not encapsulated because the ITR knows that the destination (the original source) is a non-LISP site. The ITR knows this because it can check the LISP mapping database for the destination EID, and on a failure determines that the destination site is not LISP enabled.

9. Packets are then routed natively and directly to the destination (original source) site.

Note that in this example the return path is asymmetric, so return traffic will not go back through the Proxy-ITR. This is because the LISP-NR site’s ITR will discover that the originating site is not a LISP site, and not encapsulate the returning packet (see [LISP] for details of ITR behavior).

The asymmetric nature of traffic flows allows the Proxy-ITR to be relatively simple — it will only have to encapsulate LISP packets.

5.3. Scaling Proxy-ITRs

Proxy-ITRs attract traffic by announcing the LISP EID namespace into parts of the non-LISP-speaking global routing system. There are several ways that a network could control how traffic reaches a particular Proxy-ITR to prevent it from receiving more traffic than it can handle:

1. The Proxy-ITR’s aggregate routes might be selectively announced, giving a coarse way to control the quantity of traffic attracted by that Proxy-ITR. For example, some of the routes being announced might be tagged with a BGP community and their scope of announcement limited by the routing policy of the provider.

2. The same address might be announced by multiple Proxy-ITRs in order to share the traffic using IP Anycast. The asymmetric nature of traffic flows through the Proxy-ITR means that operationally, deploying a set of Proxy-ITRs would be very similar to existing Anycasted services like DNS caches. Multiple
Proxy-ITRs could advertise the same BGP Next Hop IP address as their RLOC, and traffic would be attracted to the nearest Next Hop according to the network’s IGP.

5.4. Impact of the Proxy-ITRs placement in the network

There are several approaches that a network could take in placing Proxy-ITRs. Placing the Proxy-ITR near the source of traffic allows for the communication between the non-LISP site and the LISP site to have the least "stretch" (i.e. the least number of forwarding hops when compared to an optimal path between the sites).

Some proposals, for example Core Router-Integrated Overlay [CRIO], have suggested grouping Proxy-ITRs near an arbitrary subset of ETRs and announcing a ‘local’ subset of EID space. This model cannot guarantee minimum stretch if the EID prefix route advertisement points are changed (such a change might occur if a site adds, removes, or replaces one or more of its ISP connections).

5.5. Benefit to Networks Deploying Proxy-ITRs

When packets destined for LISP-NR sites arrive and are encapsulated at a Proxy-ITR, a new LISP packet header is pre-pended. This causes the packet’s destination to be set to the destination ETRs RLOC. Because packets are thus routed towards RLOCs, it can potentially better follow the Proxy-ITR network’s traffic engineering policies (such as closest exit routing). This also means that providers which are not default-free and do not deploy Proxy-ITRs end up sending more traffic to expensive transit links (assuming their upstreams have deployed Proxy-ITRs) rather than to the ETR’s RLOC addresses, to which they may well have cheaper and closer connectivity to (via, for example, settlement-free peering). A corollary to this would be that large transit providers, deploying Proxy-ITRs may attract more traffic, and therefore more revenue, from their customers.
6. Proxy Egress Tunnel Routers

Proxy Egress Tunnel Routers (Proxy-ETRs) allow for LISP sites to send packets to non-LISP sites in the case where the access network does not allow the LISP site to send packets with the source address of the site’s EID(s). A Proxy-ETR is a new network element that, conceptually, acts as an ETR for traffic destined to non-LISP sites. This also has the effect of allowing an ITR avoid having to decide whether to encapsulate packets or not - it can always encapsulate packets. An ITR would encapsulate packets destined for LISP sites (no change here) and these would be routed directly to the correspondent site’s ETR. All other packets (those destined to non-LISP sites) will be sent to the originating site’s Proxy-ETR.

There are two primary reasons why sites would want to utilize a Proxy-ETR:

Avoiding strict uRPF failures: Some provider’s access networks require the source of the packets emitted to be within the addressing scope of the access networks. (see section 9)

Traversing a different IP Protocol: A LISP site may want to transmit packets to a non-LISP site where some of the intermediate network does not support the particular IP protocol desired (v4 or v6). Proxy-ETRs can allow this LISP site’s data to ‘hop over’ this by utilizing LISP’s support for mixed protocol encapsulation.

6.1. Packet Flow with Proxy Egress Tunnel Routers

Packets from a LISP site can reach a non-LISP site with the aid of a Proxy-ETR (or Proxy-ETR). An ITR is simply configured to send all non-LISP traffic, which it normally would have forwarded natively (non-encapsulated), to a Proxy-ETR. In the case where the ITR uses a Map-Resolver(s), the ITR will encapsulate packets that match the received Negative Map-Cache to the configured Proxy-ETR(s). In the case where the ITR is connected to the mapping system directly it would encapsulate all packets to the configured Proxy-ETR that are cache misses. Note that this outer encapsulation to the Proxy-ETR may be in an IP protocol other than the (inner) encapsulated data. Routers then use the LISP (outer) header’s destination address to route the packets toward the configured Proxy-ETR.

A Proxy-ETR should verify the (inner) source EID of the packet at time of decapsulation in order to verify that this is from a configured LISP site. This is to prevent spoofed inner sources from being encapsulated through the Proxy-ETR.

What follows is an example of the path a packet would take when using
a Proxy-ETR. In this example, the LISP-NR (or LISP-R) site is given the EID prefix 192.0.2.0/24, and it is trying to reach host at a non-LISP site with the IP prefix of 198.51.100.0/24. For the purposes of this example, the destination (198.51.100.0/24) is found in the Internet’s routing system.

A full protocol exchange example follows:

1. The source host makes a DNS lookup for the destination, and gets 198.51.100.100 (an IP address of a host in the non-LISP site) in return.

2. The source host has a default route to Customer Edge (CE) router and forwards the packet towards the CE.

3. The CE is a LISP ITR, and is configured to encapsulate traffic destined for non-LISP sites to a Proxy-ETR.

4. The Proxy ETR decapsulates the LISP packet and forwards the original packet to its next hop.

5. The packet is then routed natively and directly to the destination (non-LISP) site 198.51.100.0/24.

Note that in this example the return path is asymmetric, so return traffic will not go back through the Proxy-ETR. This means that in order to reach LISP-NR sites, non-LISP sites must still use Proxy-ITRs.
7. LISP-NAT

LISP Network Address Translation (LISP-NAT) is a limited form of NAT [RFC2993]. LISP-NAT is designed to enable the interworking of non-LISP sites and LISP-NR sites by ensuring that the LISP-NR’s site addresses are always routable. LISP-NAT accomplishes this by translating a host’s source address from an ‘inner’ (LISP-NR EID) value to an ‘outer’ (LISP-R) value and keeping this translation in a table that it can reference for subsequent packets.

In addition, existing RFC 1918 [RFC1918] sites can use LISP-NAT to talk to both LISP or non-LISP sites.

The basic concept of LISP-NAT is that when transmitting a packet, the ITR replaces a non-routable EID source address with a routable source address, which enables packets to return to the site. Note that this section is intended as rough overview of what could be done and not an exhaustive guide to IPv4 NAT.

There are two main cases that involve LISP-NAT:

1. Hosts at LISP sites that use non-routable global EIDs speaking to non-LISP sites using global addresses.

2. Hosts at LISP sites that use RFC 1918 private EIDs speaking to other sites, who may be either LISP or non-LISP sites.

Note that LISP-NAT is not needed in the case of LISP-R (routable global EIDs) sources. This case occurs when a site is announcing its prefix into both the LISP mapping system as well as the Internet DFZ. This is because the LISP-R source’s address is routable, and return packets will be able to natively reach the site.

7.1. Using LISP-NAT with LISP-NR EIDs

LISP-NAT allows a host with a LISP-NR EID to send packets to non-LISP hosts by translating the LISP-NR EID to a globally unique address (a LISP-R EID). This globally unique address may be either a PI or PA address.

An example of this translation follows. For this example, a site has been assigned a LISP-NR EID of 203.0.113.0/24. In order to utilize LISP-NAT, the site has also been provided the PA EID of 192.0.2.0/24, and uses the first address (192.0.2.1) as the site’s RLOC. The rest of this PA space (192.0.2.2 to 192.0.2.254) is used as a translation pool for this site’s hosts who need to send packets to non-LISP hosts.
The translation table might look like the following:

<table>
<thead>
<tr>
<th>Site NR-EID</th>
<th>Site R-EID</th>
<th>Site’s RLOC</th>
<th>Translation Pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>203.0.113.0/24</td>
<td>192.0.2.0/24</td>
<td>192.0.2.1</td>
<td>192.0.2.2-254</td>
</tr>
</tbody>
</table>

Figure 2: Example Translation Table

The host 203.0.113.2 sends a packet (which, for the purposes of this example is destined for a non-LISP site) to its default route (the ITR). The ITR receives the packet, and determines that the destination is not a LISP site. How the ITR makes this determination is up to the ITRs implementation of the EID-to-RLOC mapping system used (see, for example [LISP-ALT]).

The ITR then rewrites the source address of the packet from 203.0.113.2 to 192.0.2.2, which is the first available address in the LISP-R EID space available to it. The ITR keeps this translation in a table in order to reverse this process when receiving packets destined to 192.0.2.2.

Finally, when the ITR forwards this packet without encapsulating it, it uses the entry in its LISP-NAT table to translate the returning packets’ destination IPs to the proper host.

7.2. LISP Sites with Hosts using RFC 1918 Addresses Sending to non-LISP Sites

In the case where hosts using RFC 1918 addresses desire to send packets to non-LISP hosts, the LISP-NAT implementation acts much like an existing IPv4 NAT device that is doing address only (not port translation. The ITR providing the NAT service must use LISP-R EIDs for its global address pool as well as providing all the standard NAT functions required today.

Note that the RFC 1918 addresses above are private addresses, not EIDs, and these RFC 1918 addresses are not found in the LISP mapping system.

The source of the packet must be translated to a LISP-R EID in a manner similar to Section 7, and this packet must be forwarded to the ITR’s next hop for the destination, without LISP encapsulation.

7.3. LISP Sites with Hosts using RFC 1918 Addresses Sending Packets to Other LISP Sites

LISP-NAT allows a host with an RFC 1918 address to send packets to LISP hosts by translating the RFC 1918 address to a LISP EID. After
translation, the communication between source and destination ITR and ETRs continues as described in [LISP].

While the communication of LISP EIDs to LISP EIDs is, strictly speaking, outside the scope of Interworking, it is included here in order to complete the conceptual framework of LISP-NAT.

An example of this translation and encapsulation follows. For this example, a host has been assigned a RFC 1918 address of 192.168.1.2. In order to utilize LISP-NAT, the site also has been provided the LISP-R EID prefix of 192.0.2.0/24, and uses the first address (192.0.2.1) as the site’s RLOC. The rest of this PA space (192.0.2.2 to 192.0.2.254) is used as a translation pool for this site’s hosts who need to send packets to both non-LISP and LISP hosts.

The host 192.168.1.2 sends a packet destined for a non-LISP site to its default route (the ITR). The ITR receives the packet and determines that the destination is a LISP site. How the ITR makes this determination is up to the ITRs implementation of the EID/RLOC mapping system.

The ITR then rewrites the source address of the packet from 192.168.1.2 to 192.0.2.2, which is the first available address in the LISP EID space available to it. The ITR keeps this translation in a table in order to reverse this process when receiving packets destined to 192.0.2.2.

The ITR then LISP encapsulates this packet (see [LISP] for details). The ITR uses the site’s RLOC as the LISP outer header’s source and the translation address as the LISP inner header’s source. Once it decapsulates returning traffic, it uses the entry in its LISP-NAT table to translate the returning packet’s destination IP address and then forwards to the proper host.

7.4. LISP-NAT and multiple EIDs

With LISP-NAT, there are two EIDs possible for a given host, the LISP-R EID and the LISP-NR EID. When a site has two addresses that a host might use for global reachability, name-to-address directories may need to be modified.

This problem, global vs. local addressability, exists for NAT in general, but the specific issue described above is unique to location/identity separation schemes. Some of these have suggested running a separate DNS instance for new types of EIDs. This solves the problem but introduces complexity for the site. Alternatively, using Proxy-ITRs can mitigate this problem, because the LISP-NR EID can be reached in all cases.
8. Discussion of Proxy-ITRs (Proxy-ITRs), LISP-NAT, and Proxy-ETRs (Proxy-ETRs)

In summary, there are three suggested mechanisms for interworking LISP with non-LISP Sites (for both IPv4 and IPv6). In the LISP-NAT option the LISP site can manage and control the interworking on its own. In the Proxy-ITR case, the site is not required to manage the advertisement of it’s EID prefix into the DFZ, with the cost of potentially adding stretch to the connections of non-LISP sites sending packets to the LISP site. The third option is Proxy-ETRs, which are optionally used by sites relying on Proxy-ITRs to mitigate two caveats for LISP sites sending packets to non-LISP sites. This means Proxy-ETRs are not usually expected to be deployed by themselves, rather they will be used to assist LISP-NR sites which are already using Proxy-ITRs.

8.1. How Proxy-ITRs and Proxy-ETRs Interact

There is a subtle difference between Symmetrical (LISP-NAT) vs Asymmetrical (Proxy-ITR and Proxy-ETR) Interworking techniques. Operationally, Proxy-ITRs (Proxy-ITRs) and Proxy-ETRs (Proxy-ETRs) can (and likely should) be decoupled since Proxy-ITRs are best deployed closest to non-LISP sites, and Proxy-ETRs are best located close to the LISP sites they are decapsulating for. This asymmetric placement of the two network elements minimizes the stretch imposed on each direction of the packet flow, while still allowing for coarsely aggregated announcements of EIDs into the Internet’s routing table.
9. Security Considerations

Like any router or LISP ITR, Proxy-ITRs will have the opportunity to inspect traffic at the time that they encapsulate. The location of these devices in the network can have implications for discarding malicious traffic on behalf of ETRs which request this behavior (via the drop action bit in Map-Reply packets for an EID or EID prefix). This is an area that would benefit from further experimentation and analysis.

LISP-Interworking via Proxy-ITRs should have no impact on the existing network beyond what LISP ITRs and ETRs introduce when multihoming. That is, if a site multi-homes today (with LISP or BGP) there is a possibility of asymmetric flows.

Proxy-ITRs and Proxy-ETRs will likely be operated by organizations other than those of the end site receiving or sending traffic. Care should be taken, then, in selecting a Proxy-ITR/Proxy-ETR provider to insure the quality of service meets the site’s expectations.

Proxy-ITRs and Proxy ETRs share many of the same security issues discussed of ITRs and ETRs. For further information, see the security considerations section of [LISP].

As with traditional NAT, LISP-NAT will obscure the actual host LISP-NR EID behind the LISP-R addresses used as the NAT pool.

When LISP sites send packets to non-LISP sites (these non-LISP sites rely on Proxy-ITRs to enable Interworking), packets will have the site’s EID as its source IP address. These EIDs may not be recognized by their Internet Service Provider’s Unicast Reverse Path Forwarding (uRPF) rules enabled on the Provider Edge Router. Several options are available to the service provider. For example they could enable a less strict version of uRPF, where they only look for the existence of the EID prefix in the routing table. Another, more secure, option is to add a static route for the customer on the PE router, but not redistribute this route into the provider’s routing table. Finally, Proxy-ETRs can enable LISP sites to bypass this uRPF check by encapsulating all of their egress traffic destined to non-LISP sites to the Proxy-ETR (thus ensuring the outer IP source address is the site’s RLOC).
10. Acknowledgments

Thanks goes to Christian Vogt, Lixia Zhang, Robin Whittle, Michael Menth, and Xuewei Wang, and Noel Chiappa who have made insightful comments with respect to LISP Interworking and transition mechanisms.

A special thanks goes to Scott Brim for his initial brainstorming of these ideas and also for his careful review.
11. IANA Considerations

This document creates no new requirements on IANA namespaces [RFC5226].
12. References

12.1. Normative References

[RFC4632] Fuller, V. and T. Li, "Classless Inter-domain Routing (CIDR): The Internet Address Assignment and Aggregation Plan", BCP 122, RFC 4632, August 2006.

12.2. Informative References

[RFC3027] Holdrege, M. and P. Srisuresh, "Protocol Complications with the IP Network Address Translator", RFC 3027,

Authors’ Addresses

Darrel Lewis
Cisco Systems, Inc.

Email: darlewis@cisco.com

David Meyer
Cisco Systems, Inc.

Email: dmm@cisco.com

Dino Farinacci
Cisco Systems, Inc.

Email: dino@cisco.com

Vince Fuller
Cisco Systems, Inc.

Email: vaf@cisco.com
Abstract

This document describes the LISP (Locator/ID Separation Protocol) Map-Versioning mechanism, which provides in-packet information about Endpoint-ID to Routing Locator (EID-to-RLOC) mappings used to encapsulate LISP data packets. The proposed approach is based on associating a version number to EID-to-RLOC mappings and transport such a version number in the LISP specific header of LISP-encapsulated packets. LISP Map-Versioning is particularly useful to inform communicating Ingress Tunnel Routers (ITRs) and Egress Tunnel Routers (ETRs) about modifications of the mappings used to encapsulate packets. The mechanism is transparent to implementations not supporting this feature, since in the LISP-specific header and in the Map Records, bits used for Map-Versioning can be safely ignored by ITRs and ETRs that do not support the mechanism.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 2, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the

Table of Contents

1. Introduction ... 3
2. Requirements Notation 4
3. Definitions of Terms 4
4. EID-to-RLOC Map-Version number 4
 4.1. The Null Map-Version 5
5. Dealing with Map-Version numbers 6
 5.1. Handling Destination Map-Version number 7
 5.2. Handling Source Map-Version number 9
6. LISP header and Map-Version numbers 10
7. Map Record and Map-Version 11
8. Benefits and case studies for Map-Versioning 11
 8.1. Map-Versioning and unidirectional traffic 12
 8.2. Map-Versioning and interworking 12
 8.2.1. Map-Versioning and Proxy-ITRs 12
 8.2.2. Map-Versioning and LISP-NAT 13
 8.2.3. Map-Versioning and Proxy-ETRs 13
 8.3. RLOC shutdown/withdraw 14
 8.4. Map-Version for lightweight LISP implementation .. 14
9. Incremental deployment and implementation status 15
10. Security Considerations 15
 10.1. Map-Versioning against traffic disruption 15
 10.2. Map-Versioning against reachability information DoS .. 16
11. IANA Considerations 17
12. Open Issues and Considerations 17
 12.1. Lack of Synchronization among ETRs 17
13. Acknowledgements 18
14. References ... 19
 14.1. Normative References 19
 14.2. Informative References 19
Appendix A. Estimation of time before Map-Version wrap-around . 19
Appendix B. Document Change Log 20
Authors’ Addresses 23
1. Introduction

This document describes the Map-Versioning mechanism used to provide information on changes in the EID-to-RLOC (Endsystem ID to Routing LOCator) mappings used in the LISP (Locator/Id Separation Protocol [I-D.ietf-lisp]) context to perform packet encapsulation. The mechanism is totally transparent to xTRs (Ingress and Egress Tunnel Routers) not supporting such functionality. It is not meant to replace any existing LISP mechanism, but rather to extend them providing new functionalities. If for any unforeseen reason a normative conflict between the present document and the LISP main specifications is found, the latter ([I-D.ietf-lisp]) has precedence on the present document.

The basic mechanism is to associate a Map-Version number to each LISP EID-to-RLOC mapping and transport such a version number in the LISP-specific header. When a mapping changes, a new version number is assigned to the updated mapping. A change in an EID-to-RLOC mapping can be a change in the RLOCs set, by adding or removing one or more RLOCs, but it can also be a change in the priority or weight of one or more RLOCs.

When Map-Versioning is used, LISP-encapsulated data packets contain the version number of the two mappings used to select the RLOCs in the outer header (i.e., both source and destination). These version numbers are encoded in the 24 low-order bits of the first longword of the LISP header and indicated by a specific bit in the flags (first 8 high-order bits of the first longword of the LISP header). Note that not all packets need to carry version numbers.

When an ITR (Ingress Tunnel Router) encapsulates a data packet, with a LISP header containing the Map-Version numbers, it puts in the LISP-specific header two version numbers:

1. The version number assigned to the mapping (contained in the EID-to-RLOC Database) used to select the source RLOC.
2. The version number assigned to the mapping (contained in the EID-to-RLOC Cache) used to select the destination RLOC.

This operation is two-fold. On the one hand, it enables the ETR (Egress Tunnel Router) receiving the packet to know if the ITR has the latest version number that any ETR at the destination EID site has provided to the ITR in a Map-Reply. If it is not the case the ETR can send to the ITR a Map-Request containing the updated mapping or soliciting a Map-Request from the ITR (both cases are already defined in [I-D.ietf-lisp]). In this way the ITR can update its EID-to-RLOC Cache. On the other hand, it enables an ETR receiving such a
packet to know if it has in its EID-to-RLOC Cache the latest mapping for the source EID (in case of bidirectional traffic). If it is not the case a Map-Request can be sent.

Issues and concerns about the deployment of LISP for Internet traffic are discussed in [I-D.ietf-lisp]. Section 12 provides additional issues and concerns raised by this document. In particular, Section 12.1 provides details about the ETRs’ synchronization issue in the context of Map-Versioning.

2. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Definitions of Terms

The present document uses terms already defined in main LISP specification [I-D.ietf-lisp]. Hereafter are defined only the terms that are specific to the Map-Versioning mechanism. Throughout the whole document Big Endian bit ordering is used.

Map-Version number: An unsigned 12-bits assigned to an EID-to-RLOC mapping, not including the value 0 (0x000).

Null Map-Version: The 12-bits null value of 0 (0x000) is not used as Map-Version number. It is used to signal that no Map-Version number is assigned to the EID-to-RLOC mapping.

Source Map-Version number: Map-Version number of the EID-to-RLOC mapping used to select the source address (RLOC) of the outer IP header of LISP-encapsulated packets.

Destination Map-Version number: Map-Version number of the EID-to-RLOC mapping used to select the destination address (RLOC) of the outer IP header of LISP-encapsulated packets.

4. EID-to-RLOC Map-Version number

The EID-to-RLOC Map-Version number consists in an unsigned 12-bits integer. The version number is assigned on a per-mapping basis, meaning that different mappings have a different version number, which is also updated independently. An update in the version number (i.e., a newer version) consists in incrementing by one the older
version number. Appendix A contains a rough estimation of the wrap-around time for the Map-Version number.

The space of version numbers has a circular order where half of the version numbers is greater (i.e., newer) than the current Map-Version number and the other half is smaller (i.e., older) than current Map-Version number. In a more formal way, assuming we have two version numbers V_1 and V_2 and that the numbers are expressed on N bits, the following steps MUST be performed (in the same order as hereafter) to strictly define their order:

1. $V_1 = V_2$: The map-version number are the same.

2. $V_2 > V_1$: if and only if

 $V_2 > V_1$ AND $(V_2 - V_1) \leq 2^{(N-1)}$

 OR

 $V_1 > V_2$ AND $(V_1 - V_2) > 2^{(N-1)}$

3. $V_1 > V_2$: otherwise.

Using 12 bits, as defined in this document, and assuming a Map-Version value of 69, Map-Version numbers in the range $[70; 69 + 2048]$ are greater than 69, while Map-Version numbers in the range $[69 + 2049; (69 + 4096) \mod 4096]$ are smaller than 69.

Map-version number are assigned to mappings by configuration. The initial Map-Version number of a new EID-to-RLOC mapping SHOULD be assigned randomly, but it MUST NOT be set to the Null Map-Version value (0x000), because it has a special meaning (see Section 4.1).

Upon reboot, an ETR will use mappings configured in its EID-to-RLOC Database. If those mappings have a Map-Version number, it will be used according to the mechanisms described in this document. ETRs MUST NOT automatically generate and assign Map-Version numbers to mappings in the EID-to-RLOC Database.

4.1. The Null Map-Version

The value 0x000 (zero) is not a valid Map-Version number indicating the version of the EID-to-RLOC mapping. Such a value is used for special purposes and is named the Null Map-Version number.

The Null Map-Version MAY appear in the LISP specific header as either Source Map-Version number (cf. Section 5.2) or Destination Map-Version number (cf. Section 5.1). When the Source Map-Version number
is set to the Null Map-version value it means that no map version information is conveyed for the source site. This means that if a mapping exists for the source EID in the EID-to-RLOC Cache, then the ETR MUST NOT compare the received Null Map-Version with the content of the EID-to-RLOC Cache. When the Destination Map-version number is set to the Null Map-version value it means that no map version information is conveyed for the destination site. This means that the ETR MUST NOT compare the value with the Map-Version number of the mapping for the destination EID present in the EID-to-RLOC Database.

The other use of the Null Map-Version number is in the Map Records, which are part of the Map-Request, Map-Reply and Map-Register messages (defined in [I-D.ietf-lisp]). Map Records that have a Null Map-Version number indicate that there is no Map-Version number associated with the mapping. This means that LISP encapsulated packets, destined to the EID-Prefix the Map Record refers to, MUST either not contain any Map-Version numbers (V bit set to 0), or if it contains Map-Version numbers (V bit set to 1) then the destination Map-Version number MUST be set to the Null Map-Version number. Any value different from zero means that Map-Versioning is supported and MAY be used.

The fact that the 0 value has a special meaning for the Map-Version number implies that, when updating a Map-Version number because of a change in the mapping, if the next value is 0 then Map-Version number MUST be incremented by 2 (i.e., set to 1, which is the next valid value).

5. Dealing with Map-Version numbers

The main idea of using Map-Version numbers is that whenever there is a change in the mapping (e.g., adding/removing RLOCs, a change in the weights due to TE policies, or a change in the priorities) or a LISP site realizes that one or more of its own RLOCs are not reachable anymore from a local perspective (e.g., through IGP, or policy changes) the LISP site updates the mapping also assigning a new Map-Version number.

To each mapping, a version number is associated and changes each time the mapping is changed. Note that map-versioning does not introduce new problems concerning the coordination of different ETRs of a domain. Indeed, ETRs belonging to the same LISP site must return for a specific EID-prefix the same mapping, including the same Map-Version number. In principle this is orthogonal to whether or not map-versioning is used. The synchronization problem and its implication on the traffic is out of the scope of this document (see Section 12).
In order to announce in a data-driven fashion that the mapping has been updated, Map-Version numbers used to create the outer IP header of the LISP-encapsulated packet are embedded in the LISP-specific header. This means that the header needs to contain two Map-Version numbers:

- The Source Map-Version number of the EID-to-RLOC mapping in the EID-to-RLOC Database used to select the source RLOC.
- The Destination Map-Version number of the EID-to-RLOC mapping in the EID-to-RLOC Cache used to select the destination RLOC.

By embedding both Source Map-Version number and Destination Map-Version number an ETR receiving a LISP packet with Map-Version numbers, can perform the following checks:

1. The ITR that has sent the packet has an up-to-date mapping in its EID-to-RLOC Cache for the destination EID and is performing encapsulation correctly.

2. In case of bidirectional traffic, the mapping in the local ETR EID-to-RLOC Cache for the source EID is up-to-date.

If one or both of the above conditions do not hold, the ETR can send a Map-Request either to make the ITR aware that a new mapping is available (see Section 5.1) or to update the mapping in the local EID-to-RLOC Cache (see Section 5.2).

5.1. Handling Destination Map-Version number

When an ETR receives a packet, the Destination Map-Version number relates to the mapping for the destination EID for which the ETR is a RLOC. This mapping is part of the ETR EID-to-RLOC Database. Since the ETR is authoritative for the mapping, it has the correct and up-to-date Destination Map-Version number. A check on this version number can be done, where the following cases can arise:

1. The packets arrive with the same Destination Map-Version number stored in the EID-to-RLOC Database. This is the regular case. The ITR sending the packet has in its EID-to-RLOC Cache an up-to-date mapping. No further actions are needed.

2. The packet arrives with a Destination Map-Version number greater (i.e., newer) than the one stored in the EID-to-RLOC Database. Since the ETR is authoritative on the mapping, meaning that the Map-Version number of its mapping is the correct one, this implies that someone is not behaving correctly with respect to the specifications. In this case the packet carries a version
number that is not valid, otherwise the ETR would have the same, and SHOULD be silently dropped.

3. The packets arrive with a Destination Map-Version number smaller (i.e., older) than the one stored in the EID-to-RLOC Database. This means that the ITR sending the packet has an old mapping in its EID-to-RLOC Cache containing stale information. The ETR MAY choose to normally process the encapsulated datagram according to [I-D.ietf-lisp], however, the ITR sending the packet has to be informed that a newer mapping is available. This is done with a Map-Request message sent back to the ITR. The Map-Request will either trigger a Map-Request back using the Solicit-Map-Request (SMR) bit or it will piggyback the newer mapping. These are not new mechanisms; how to SMR or piggyback mappings in Map-Request messages is already described in [I-D.ietf-lisp], while their security is discussed in [I-D.ietf-lisp-threats]. These Map-Request messages should be rate limited (rate limitation policies are also described in [I-D.ietf-lisp]). The feature introduced by Map-Version numbers is the possibility of blocking traffic not using the latest mapping. Indeed, after a certain number of retries, if the Destination Map-Version number in the packets is not updated, the ETR MAY drop packets with a stale Map-Version number while strongly reducing the rate of Map-Request messages. This because either the ITR is refusing to use the mapping for which the ETR is authoritative or (worse) it might be some form of attack. Another case might be that the control-plane is experiencing transient failures so the Map-Requests cannot reach that ITR. By keeping sending Map-Requests at very low rate it is possible to recover from this situation.

The rule in the third case MAY be more restrictive. If the mapping has been the same for a period of time as long as the TTL (defined in [I-D.ietf-lisp]) of the previous version of the mapping, all packets arriving with an old Map-Version SHOULD be silently dropped right away without issuing any Map-Request. The reason that allows such action is the fact that if the new mapping with the updated version number has been unchanged for at least the same time as the TTL of the older mapping, all the entries in the EID-to-RLOC Caches of ITRs must have expired. Hence, all ITRs sending traffic should have refreshed the mapping according to [I-D.ietf-lisp]. If packets with old Map-Version number are still received, then either someone has not respected the TTL, or it is a form of spoof/attack. In both cases this is not valid behavior with respect to the specifications and the packet SHOULD be silently dropped.

LISP-encapsulated packets with the V-bit set, when the original mapping in the EID-to-RLOC Database has version number set to the Null Map-Version value, MAY be silently dropped. As explained in
Section 4.1, if an EID-to-RLOC mapping has a Null Map-Version, it means that ITRs, using the mapping for encapsulation, MUST NOT use Map-Version number in the LISP-specific header.

For LISP-encapsulated packets with the V-bit set, when the original mapping in the EID-to-RLOC Database has version number set to a value different from the Null Map-Version value, a Destination Map-Version number equal to the Null Map-Version value means that the Destination Map-Version number MUST be ignored.

5.2. Handling Source Map-Version number

When an ETR receives a packet, the Source Map-Version number relates to the mapping for the source EID for which the ITR that sent the packet is authoritative. If the ETR has an entry in its EID-to-RLOC Cache for the source EID, then a check can be performed and the following cases can arise:

1. The packet arrives with the same Source Map-Version number stored in the EID-to-RLOC Cache. This is the correct regular case. The ITR has in its EID-to-RLOC Cache an up-to-date copy of the mapping. No further actions are needed.

2. The packet arrives with a Source Map-Version number greater (i.e., newer) than the one stored in the local EID-to-RLOC Cache. This means that ETR has in its EID-to-RLOC Cache a mapping that is stale and needs to be updated. A Map-Request SHOULD be sent to get the new mapping for the source EID. This is a normal Map-Request message sent through the mapping system and MUST respect the specifications in [I-D.ietf-lisp], including rate limitation policies.

3. The packet arrives with a Source Map-Version number smaller (i.e., older) than the one stored in the local EID-to-RLOC Cache. Such a case is not valid with respect to the specifications. Indeed, if the mapping is already present in the EID-to-RLOC Cache, this means that an explicit Map-Request has been sent and a Map-Reply has been received from an authoritative source. Assuming that the mapping system is not corrupted anyhow, the Map-Version in the EID-to-RLOC Cache is the correct one, while the one carried by the packet is stale. In this situation the packet MAY be silently dropped.

If the ETR does not have an entry in the EID-to-RLOC Cache for the source EID (e.g., in case of unidirectional traffic) then the Source Map-Version number can be safely ignored.

For LISP-encapsulated packets with the V-bit set, if the Source Map-
Version number is the Null Map-Version value, it means that the Source Map-Version number MUST be ignored.

6. LISP header and Map-Version numbers

In order for the versioning approach to work, the LISP specific header has to carry both Source Map-Version number and Destination Map-Version number. This is done by setting the V-bit in the LISP specific header as defined in [I-D.ietf-lisp] Section 5.3. When the V-bit is set the low-order 24-bits of the first longword are used to transport both source and destination Map-Version numbers. In particular the first 12 bits are used for Source Map-Version number and the second 12 bits for the Destination Map-Version number.

Hereafter is the example of LISP header carrying version numbers in the case of IPv4-in-IPv4 encapsulation. The same setting can be used for any other case (IPv4-in-IPv6, IPv6-in-IPv4, and IPv6-in-IPv6).

```
0                   1                   2                   3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|N|L|E|V|I|flags|  Source Map-Version   |Destination Map-Version|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                         Instance ID/Locator Status Bits               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
```

Source Map-Version number (12 bits): Map-Version of the mapping used by the ITR to select the RLOC present in the "Source Routing Locator" field. How to set on transmission and handle on reception this value is described in Section 5.2.

Destination Map-Version number (12 bits): Map-Version of the mapping used by the ITR to select the RLOC present in the "Destination Routing Locator" field. How to set on transmission and handle on reception this value is described in Section 5.1.

The present document just specifies how to use the low-order 24-bits of the first longword of the LISP-specific header when the V-bit is set to 1. All other cases, including the bit fields of the rest of the LISP-specific header and the whole LISP packet format are specified in [I-D.ietf-lisp]. Not all of the LISP encapsulated packets need to carry version numbers. When Map-Version numbers are carried the V-bit MUST be set to 1. All legal combinations of the flags, when the V-bit is set to 1, are described in [I-D.ietf-lisp].
7. Map Record and Map-Version

To accommodate the proposed mechanism, the Map Records that are transported on Map-Request/Map-Reply/Map-Register messages need to carry the Map-Version number as well. For this purpose the 12-bits before the EID-AFI field in the Record that describe a mapping is used. This is defined in Section 6.1.4 of [I-D.ietf-lisp] and reported here as example.

```
|             Record TTL             |
|--------------------------|--------------------------|
| Locator Count | EID mask-len | ACT | Reserved |
|--------------------------|--------------------------|
| Rsrvd | Map-Version Number | EID-prefix-AFI |
|--------------------------|--------------------------|
| EID-prefix |
```

Map-Version Number: Map-Version of the mapping contained in the Record. As explained in Section 4.1 this field can be zero (0), meaning that no Map-Version is associated to the mapping, hence packets that are LISP-encapsulated using this mapping MUST NOT contain Map-Version numbers in the LISP specific header and the V-bit MUST be set to 0.

This packet format works perfectly with xTRs that do not support Map-Versioning, since they can simply ignore those bits.

8. Benefits and case studies for Map-Versioning

In the following sections we provide more discussion on various aspects and use of the Map-Versioning. Security observations are instead grouped in Section 10.
8.1. Map-Versioning and unidirectional traffic

When using Map-Versioning the LISP specific header carries two Map-Version numbers, for both source and destination mappings. This can raise the question on what will happen in the case of unidirectional flows, like for instance in the case presented in Figure 1, since LISP specification do not mandate for ETR to have a mapping for the source EID.

```
+---------------------+   +---------------------+
| Domain A            |   | Domain B            |
|                     |   +---------------------+
|                     |   | ITR A               |
|                     |   +---------------------+   +---------------------+
|                     |   | ETR B               |
|                     |   +---------------------+   +---------------------+
+---------------------+   +---------------------+
```

Figure 1

For what concerns the ITR, it is able to put both source and destination version number in the LISP header since the Source Map-Version number is in ITR’s database, while the Destination Map-Version number is in ITR’s cache.

For what concerns the ETR, it simply checks only the Destination Map-Version number in the same way as described in Section 5, ignoring the Source Map-Version number.

8.2. Map-Versioning and interworking

Map-Versioning is compatible with the LISP interworking between LISP and non-LISP sites as defined in [I-D.ietf-lisp-interworking]. LISP interworking defines three techniques to make LISP sites and non-LISP sites, namely Proxy-ITR, LISP-NAT, and Proxy-ETR. Hereafter it is described how Map-Versioning relates to these three mechanisms.

8.2.1. Map-Versioning and Proxy-ITRs

The purpose of the Proxy-ITR (PITR) is to encapsulate traffic originating in a non-LISP site in order to deliver the packet to one of the ETRs of the LISP site (cf. Figure 2). This case is very similar to the unidirectional traffic case described in Section 8.1, hence similar rules apply.
The main difference is that a Proxy-ITR does not have any mapping, since it just encapsulate packets arriving from non-LISP site, thus cannot provide a Source Map-Version. In this case, the proxy-ITR will just put the Null Map-Version value as Source Map-Version number, while the receiving ETR will ignore the field.

With this setup the LISP Domain A is able to check whether or not the PITR is using the latest mapping. If this is not the case the mapping for LISP Domain A on the PITR can be updated using one of the mechanisms defined in [I-D.ietf-lisp] and [I-D.ietf-lisp-interworking].

8.2.2. Map-Versioning and LISP-NAT

The LISP-NAT mechanism is based on address translation from non-routable EIDs to routable EIDs and does not involve any form of encapsulation. As such Map-Versioning does not apply in this case.

8.2.3. Map-Versioning and Proxy-ETRs

The purpose of the Proxy-ETR (PETR) is to decapsulate traffic originating in a LISP site in order to deliver the packet to the non-LISP site (cf. Figure 3). One of the main reasons of deploy PETRs is to bypass uRPF (Unicast Reverse Path Forwarding) checks on the provider edge.
A Proxy-ETR does not have any mapping, since it just decapsulates packets arriving from LISP site. In this case, the ITR will just put the Null Map-Version value as Destination Map-Version number, while the receiving Proxy-ETR will ignore the field.

With this setup the Proxy-ETR is able to check whether or not the mapping has changed. If this is the case the mapping for LISP Domain A on the PETR can be updated using one of the mechanisms defined in [I-D.ietf-lisp] and [I-D.ietf-lisp-interworking].

8.3. RLOC shutdown/withdraw

Map-Versioning can be even used to perform a graceful shutdown or withdraw of a specific RLOC. This is achieved by simply issuing a new mapping, with an updated Map-Version number, where the specific RLOC to be shut down is withdrawn or announced as unreachable (R bit in the Map Record, see [I-D.ietf-lisp]), but without actually turning it off.

Once no more traffic is received by the RLOC, it can be shut down gracefully, because at least all sites actively using the mapping have updated it.

It should be pointed out that for frequent up/down changes such a mechanism should not be used since this can generate excessive load on the Mapping System.

8.4. Map-Version for lightweight LISP implementation

The use of Map-Versioning can help in developing a lightweight implementation of LISP. This comes with the price of not supporting Loc-Status-Bit, which are useful in some contexts.

In the current LISP specifications the set of RLOCs must always be maintained ordered and consistent with the content of the Loc Status Bits (see section 6.5 of [I-D.ietf-lisp]). With Map-Versioning such type of mechanisms can be avoided. When a new RLOC is added to a mapping, it is not necessary to "append" new locators to the existing ones as explained in Section 6.5 of [I-D.ietf-lisp]. A new mapping with a new Map-Version number will be issued, and since the old locators are still valid the transition will be with no disruptions. The same applies for the case a RLOC is withdrawn. There is no need to maintain holes in the list of locators, as is the case when using Locator Status Bits, for sites that are not using the RLOC that has been withdrawn the transition will be with no disruptions.

All of these operations, as already stated, do not need to maintain any consistency among Locator Status Bits, and the way RLOC are
stored in the EID-to-RLOC Cache.

Further, Map-Version can be used to substitute the "clock sweep" operation described in Section 6.5.1 of [I-D.ietf-lisp]. Indeed, every LISP site communicating to a specific LISP site that has updated the mapping will be informed of the available new mapping in a data-driven manner.

Note that what is proposed in the present section is just an example and MUST NOT be considered as specifications for a lightweight LISP implementation. In case the IETF decides to undertake such a work, it will be documented elsewhere.

9. Incremental deployment and implementation status

Map-Versioning can be incrementally deployed without any negative impact on existing LISP elements (e.g., xTRs, Map-Servers, Proxy-ITRs, etc). Any LISP element that does not support Map-Versioning can safely ignore them. Further, there is no need of any specific mechanism to discover if an xTR supports or not Map-Versioning. This information is already included in the Map Record.

Map-Versioning is currently implemented in OpenLISP [I-D.iannone-openlisp-implmentation].

Note that the reference document for LISP implementation and interoperability tests remains [I-D.ietf-lisp].

10. Security Considerations

Map-Versioning does not introduce any security issue concerning both the data-plane and the control-plane. On the contrary, as described in the following, if Map-Versioning may be used also to update mappings in case of change in the reachability information (i.e., instead of the Locator Status Bits) it is possible to reduce the effects of some DoS or spoofing attacks that can happen in an untrusted environment.

Robustness of the Map-Versioning mechanism leverages on a trusted Mapping Distribution System. A thorough security analysis of LISP is documented in [I-D.ietf-lisp-threats].

10.1. Map-Versioning against traffic disruption

An attacker can try to disrupt ongoing communications by creating LISP encapsulated packets with wrong Locator Status Bits. If the xTR
blindly trusts the Locator Status Bits it will change the encapsulation accordingly, which can result in traffic disruption.

This does not happen in the case of Map-Versioning. As described in Section 5, upon a version number change the xTR first issues a Map-Request. The assumption is that the mapping distribution system is sufficiently secure that Map-Request and Map-Reply messages and their content can be trusted. Security issues concerning specific mapping distribution system are out of the scope of this document. In the case of Map-Versioning the attacker should "guess" a valid version number that triggers a Map-Request, as described in Section 5, otherwise the packet is simply dropped. Nevertheless, guessing a version number that generates a Map-Request is easy, hence it is important to follow the rate limitations policies described in [I-D.ietf-lisp] in order to avoid DoS attacks.

Note that a similar level of security can be obtained with Loc Status Bits, by simply making mandatory to verify any change through a Map-Request. However, in this case Locator Status Bits loose their meaning, because, it does not matter anymore which specific bits has changed, the xTR will query the mapping system and trust the content of the received Map-Reply. Furthermore there is no way to perform filtering as in the Map-Versioning in order to drop packets that do not carry a valid Map-Version number. In the case of Locator Status Bits, any random change can trigger a Map-Request (unless rate limitation is enabled which raise another type of attack discussed in Section 10.2).

10.2. Map-Versioning against reachability information DoS

Attackers can try to trigger a large amount of Map-Request by simply forging packets with random Map-Version or random Locator Status Bits. In both cases the Map-Requests are rate limited as described in [I-D.ietf-lisp]. However, differently from Locator Status Bit where there is no filtering possible, in the case of Map-Versioning is possible to filter not valid version numbers before triggering a Map-Request, thus helping in reducing the effects of DoS attacks. In other words the use of Map-Versioning enables a fine control on when to update a mapping or when to notify that a mapping has been updated.

It is clear, that Map-Versioning does not protect against DoS and DDoS attacks, where an xTR looses processing power doing checks on the LISP header of packets sent by attackers. This is independent from Map-Versioning and is the same for Loc Status Bits.
11. IANA Considerations

This document has no actions for IANA.

12. Open Issues and Considerations

There are a number of implications of the use of Map-Versioning that are not yet completely explored. Among these are:

- Performance of the convergence time when an EID-to-RLOC mapping changes, i.e., how much time is needed to update mappings in the EID-to-RLOC Cache of the ITRs currently sending traffic to ETRs for the EID whose mapping has been changed.

- Support to ETR synchronization. The implications that a temporary lack of synchronization may have on the traffic is yet to be fully explored. Details on how to keep synchronization are presented in Section 6.6 of [I-D.ietf-lisp]. Section 12.1 hereafter discusses the issue in further details with respect to the Map-Versioning mechanism.

The authors expect that experimentation will help assess the performance and the limitations of the Map-Versioning mechanism. Issues and concerns about the deployment of LISP for Internet traffic are discussed in [I-D.ietf-lisp].

12.1. Lack of Synchronization among ETRs

Even without Map-Versioning, LISP ([I-D.ietf-lisp]) requires ETRs to announce the same mapping for the same EID-Prefix to a requester. The implications that a temporary lack of synchronization may have on the traffic is yet to be fully explored.

Map-Versioning does not require additional synchronization mechanism compared to the normal functioning of LISP without Map-Versioning. Clearly all the ETRs have to reply with the same Map-Version number, otherwise there can be an inconsistency that creates additional control traffic, instabilities, traffic disruptions. It is the same without Map-Versioning, with ETRs that have to reply with the same mapping, otherwise the same problems can arise.

There are two ways Map-Versioning is helpful with respect to the synchronization problem. On the one hand, assigning version numbers to mappings helps in debugging, since quick checks on the consistency of the mappings on different ETRs can be done by looking at the Map-Version number. On the other hand, Map-Versioning can be used to control the traffic toward ETRs that announce the latest mapping.
As an example, let’s consider the topology of Figure 4 where ITR A.1 of domain A is sending unidirectional traffic to the domain B, while A.2 of domain A exchanges bidirectional traffic with domain B. In particular, ITR A.2 sends traffic to ETR B and ETR A.2 receives traffic from ITR B.

![Figure 4](image)

Obviously in the case of Map-Versioning both ITR A.1 and ITR A.2 of domain A must use the same value otherwise the ETR of domain B will start to send Map-Requests.

The same problem can, however, arise without Map-Versioning. For instance, if the two ITRs of domain A send different Locator Status Bits. In this case either the traffic is disrupted, if the ETR B trusts the Locator Status Bits, or if ETR B does not trust the Locator Status Bits it will start sending Map-Requests to confirm the each change in the reachability.

So far, LISP does not provide any specific synchronization mechanism, but assumes that synchronization is provided by configuring the different xTRs consistently (see Section 6.6 in [I-D.ietf-lisp]). The same applies for Map-Versioning. If in the future any synchronization mechanism is provided, Map-Versioning will take advantage of it automatically since it is included in the Record format, as described in Section 7.

13. Acknowledgements

The authors would like to thank Alia Atlas, Jesper Skriver, Pierre Francois, Noel Chiappa, Dino Farinacci for their comments and review.
This work has been partially supported by the INFSO-ICT-216372 TRILOGY Project (www.trilogy-project.org).

14. References

14.1. Normative References

[I-D.ietf-lisp]

[I-D.ietf-lisp-interworking]
Lewis, D., Meyer, D., Farinacci, D., and V. Fuller, "Interworking LISP with IPv4 and IPv6", draft-ietf-lisp-interworking-05 (work in progress), February 2012.

14.2. Informative References

[I-D.iannone-openlisp-implementation]

[I-D.ietf-lisp-alt]

[I-D.ietf-lisp-ms]

[I-D.ietf-lisp-threats]

Appendix A. Estimation of time before Map-Version wrap-around

The present section proposes an estimation of the wrap-around time
for the 12 bits size of the Map-Version number.

Using a granularity of seconds and assuming as worst-case that a new version is issued each second, it takes slightly more than 1 hour before the version wraps around. Note that the granularity of seconds is in line with the rate limitation policy for Map-Request messages, as proposed in the LISP main specifications ([I-D.ietf-lisp]).

Alternatively a granularity of minutes can also be used, as for the TTL of the Map-Reply ([I-D.ietf-lisp]). In this case the worst scenario is when a new version is issued every minute, leading to a much longer time before wrap-around. In particular, when using 12 bits, the wrap-around time is almost 3 days.

For general information, hereafter there is a table with a rough estimation of the time before wrap-around in the worst-case scenario, considering different sizes (bits length) of the Map-Version number and different time granularity.

Since even in the case of high mapping change rate (1 per second) the wrap around time using 12 bits is far larger than any reasonable Round-Trip-Time (RTT), there is no risk of race conditions.

<table>
<thead>
<tr>
<th>Version Number Size (bits)</th>
<th>Time before wrap around</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Granularity: Minutes (mapping changes every 1 minute)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>32</td>
<td>8171 Years</td>
</tr>
<tr>
<td>30</td>
<td>2042 Years</td>
</tr>
<tr>
<td>24</td>
<td>31 Years</td>
</tr>
<tr>
<td>16</td>
<td>45 Days</td>
</tr>
<tr>
<td>15</td>
<td>22 Days</td>
</tr>
<tr>
<td>14</td>
<td>11 Days</td>
</tr>
<tr>
<td>13</td>
<td>5.6 Days</td>
</tr>
<tr>
<td>12</td>
<td>2.8 Days</td>
</tr>
</tbody>
</table>

Figure 5: Estimation of time before wrap-around

Appendix B. Document Change Log
* Text in Section 5.1 made more explicit in the case of smaller (i.e., older) Destination Map-Version Number, as pointed out by Ralph E. Droms.

* Clarifications added to Appendix A as requested by S. Bryant.

* Moved Subsection 8.1 in Section 12 as requested by R. Bonica.

* Added explicit reference to the discussion about ETR synchronization at the end of the Introduction, as requested by R. Bonica.

* Added cross-reference to Section 6.6 in [I-D.ietf-lisp] as requested by R. Bonica.

* Added long version of all acronyms in the Introduction as requested by S. Bryant.

* Added disclaimer in the Introduction about general issues concerning LISP as requested by A. Farrel.

* Fixed sentence about legacy systems in the abstract as requested by A. Farrel.

* Added Section 12 as requested by A. Farrel.

* Added sentence in Section 3 on the use of Big Endian, as for comment of P. Resnick.

* Extended the end of Section 4 in order to clarify that Map-Version numbers are assigned to mappings by configuration and not automatically generated by ETRs, as for comments of R. Sparks.
* Changed formal definition of Map-Version order (greater vs. smaller) in Section 4 as for comments from R. Housley and R. Sparks.

* Added disclaimer in Section 1 stating that in case of unforeseen conflict with the main spec the base document has precedence on the present one, as for comment from Stephen Farrell.

 o Version 04 Posted September 2011.

* Added clarifications in Section 1, Section 4, Section 5.2, and Section 5.1 to address Stephen Farrell’s comments.

* Used the term LISP Site instead of ISP in Section 5 as suggested by Stephen Farrell.

* Deleted "(usually contains the nonce)" from Section 6 because confusing, as suggested by Stephen Farrell.

* Fixed several typos pointed out by Stephen Farrell.

 o Version 03 Posted September 2011.

* Added reference in Section 7 toward the main lisp documents specifying the section, as requested by Jari Arkko.

* Fixed all typos and editorial issues pointed out by Jari Arkko.

* Added clarification in Section 8.3 as requested by Jari Arkko.

* Extend all acronyms in the abstract as requested by Jari Arkko.

* Clarified silent drop policy in Section 5.2 as requested by both Richard Barnes and Jari Arkko.

* Fixed typos pointed out by Richard Barnes.

 o Version 02 Posted July 2011.

* Added text in Section 5 about ETR synchronization, as suggested by Alia Atlas.

* Modified text in Section 8.4 concerning lightweight LISP implementation, as suggested by Alia Atlas.

* Deleted text concerning old versions of [I-D.ietf-lisp-ms] and [I-D.ietf-lisp-alt] in Section 7, as pointed out by Alia Atlas.
* Fixed section 4.1 to be less restrictive, as suggested by Jesper Skriver.

- Version 01 Posted March 2011.
 * Changed the wording from "Map-Version number 0" to "Null Map-Version.
 * Clarification of the use of the Null Map-Version value as Source Map-Version Number and Destination Map-Version Number.
 * Extended the section describing Map-Versioning and LISP Interworking co-existence.
 * Reduce packet format description to avoid double definitions with the main specs.

- Version 00 Posted September 2010.
 * Added Section "Definitions of Terms".
 * Editorial polishing of all sections.
 * Added clarifications in section "Dealing with Map-Version numbers" for the case of the special Map-Version number 0.
 * Rename of draft-iannone-mapping-versioning-02.txt.

Authors’ Addresses

Luigi Iannone
Telekom Innovation Laboratories
Ernst-Reuter Platz 7
Berlin
Germany

Email: luigi@net.t-labs.tu-berlin.de

Damien Saucez
INRIA Sophia Antipolis
2004 route des Lucioles - BP 93
Sophia Antipolis
France

Email: damien.saucez@inria.fr
Abstract

This draft describes the Mapping Service for the Locator Identifier Separation Protocol (LISP), implemented by two new types of LISP-speaking devices, the LISP Map Resolver and LISP Map Server, that provides a simplified "front end" to for one or more Endpoint ID to Routing Locator mapping databases.

By using this service interface and communicating with Map Resolvers and Map Servers, LISP Ingress Tunnel Routers and Egress Tunnel Routers, are not dependent on the details of mapping database systems, which facilitates experimentation with different database designs. Since these devices implement the "edge" of the LISP infrastructure, connect directly to LISP-capable Internet end sites, and comprise the bulk of LISP-speaking devices, reducing their implementation and operational complexity should also reduce the overall cost and effort of deploying LISP.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on September 5, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.
1. Introduction

[LISP], the Locator Identifier Separation Protocol, specifies an architecture and mechanism for replacing the addresses currently used by IP with two separate name spaces: Endpoint IDs (EIDs), used within sites, and Routing Locators (RLOCs), used on the transit networks that make up the Internet infrastructure. To achieve this separation, LISP defines protocol mechanisms for mapping from EIDs to RLOCs. In addition, LISP assumes the existence of a database to store and propagate those mappings globally. Several such databases have been proposed, among them: LISP-CONS [CONS], LISP-NERD, [NERD] and LISP+ALT [ALT].

The LISP Mapping Service defines two new types of LISP-speaking devices: the Map Resolver, which accepts Map-Requests from an Ingress Tunnel Router (ITR) and "resolves" the EID-to-RLOC mapping using a mapping database, and the Map Server, which learns authoritative EID-to-RLOC mappings from an Egress Tunnel Router (ETR) and publishes them in a database.

Conceptually, LISP Map Servers share some of the same basic configuration and maintenance properties as Domain Name System (DNS) [RFC1035] servers; likewise, Map Resolvers are conceptually similar to DNS caching resolvers. With this in mind, this specification borrows familiar terminology (resolver and server) from the DNS specifications.

Note that while this document assumes a LISP+ALT database mapping infrastructure to illustrate certain aspects of Map Server and Map Resolver operation, the Mapping Service interface can (and likely will) be used by ITRs and ETRs to access other mapping database systems as the LISP infrastructure evolves.

Section 5 of this document notes a number of issues with the Map Server and Map Resolver design that are not yet completely understood and are subjects of further experimentation.

The LISP Mapping Service is an important component of the LISP toolset. Issues and concerns about the deployment of LISP for Internet traffic are discussed in [LISP].
2. Definition of Terms

Map Server: a network infrastructure component which learns of EID-prefix mapping entries from an ETR, via the registration mechanism described below, or some other authoritative source if one exists. A Map Server publishes these EID-prefixes in a mapping database.

Map Resolver: a network infrastructure component which accepts LISP Encapsulated Map-Requests, typically from an ITR, determines whether or not the destination IP address is part of the EID namespace; if it is not, a Negative Map-Reply is returned. Otherwise, the Map Resolver finds the appropriate EID-to-RLOC mapping by consulting a mapping database system.

Encapsulated Map-Request: a LISP Map-Request carried within an Encapsulated Control Message, which has an additional LISP header prepended. Sent to UDP destination port 4342. The "outer" addresses are globally-routeable IP addresses, also known as RLOCs. Used by an ITR when sending to a Map Resolver and by a Map Server when forwarding a Map-Request to an ETR.

Negative Map-Reply: a LISP Map-Reply that contains an empty locator-set. Returned in response to a Map-Request if the destination EID does not exist in the mapping database. Typically, this means that the "EID" being requested is an IP address connected to a non-LISP site.

Map-Register message: a LISP message sent by an ETR to a Map Server to register its associated EID-prefixes. In addition to the set of EID-prefixes to register, the message includes one or more RLOCs to be be used by the Map Server when forwarding Map-Requests (re-formatted as Encapsulated Map-Requests) received through the database mapping system. An ETR may request that the Map Server answer Map-Requests on its behalf by setting the "proxy-map-reply" flag (P-bit) in the message.

Map-Notify message: a LISP message sent by a Map Server to an ETR to confirm that a Map-Register has been received and processed. An ETR requests that a Map-Notify be returned by setting the "want-map-notify" or "M" bit in the Map-Register message. Unlike a Map-Reply, a Map-Notify uses UDP port 4342 for both source and destination.

For definitions of other terms, notably Map-Request, Map-Reply, Ingress Tunnel Router (ITR), and Egress Tunnel Router (ETR), please consult the LISP specification [LISP].
3. Basic Overview

A Map Server is a device which publishes EID-prefixes in a LISP mapping database on behalf of a set of ETRs. When it receives a Map Request (typically from an ITR) it consults the mapping database to find an ETR that can answer with the set of RLOCs for an EID-prefix. To publish its EID-prefixes, an ETR periodically sends Map-Register messages to the Map Server. A Map-Register message contains a list of EID-prefixes plus a set of RLOCs that can be used to reach the ETR when a Map Server needs to forward a Map-Request to it.

When LISP+ALT is used as the mapping database, a Map Server connects to ALT network and acts as a "last-hop" ALT router. Intermediate ALT routers forward Map-Requests to the Map Server that advertises a particular EID-prefix and the Map Server forwards them to the owning ETR, which responds with Map-Reply messages.

A Map Resolver receives Encapsulated Map-Requests from its client ITRs and uses a mapping database system to find the appropriate ETR to answer those requests. On a LISP+ALT network, a Map Resolver acts as a "first-hop" ALT router. It has GRE tunnels configured to other ALT routers and uses BGP to learn paths to ETRs for different prefixes in the LISP+ALT database. The Map Resolver uses this path information to forward Map-Requests over the ALT to the correct ETRs.

Note that while it is conceivable that a Map Resolver could cache responses to improve performance, issues surrounding cache management will need to be resolved for doing so to be reliable and practical. As initially deployed, Map Resolvers will operate only in a non-caching mode, de-decapsulating and forwarding Encapsulated Map Requests received from ITRs. Any specification of caching functionality is left for future work.

Note that a single device can implement the functions of both a Map Server and a Map Resolver and, in many cases, the functions will be co-located in that way.

Detailed descriptions of the LISP packet types referenced by this document may be found in [LISP].
4. Interactions With Other LISP Components

4.1. ITR EID-to-RLOC Mapping Resolution

An ITR is configured with one or more Map Resolver addresses. These addresses are "locators" (or RLOCs) and must be routeable on the underlying core network; they must not need to be resolved through LISP EID-to-RLOC mapping as that would introduce a circular dependency. When using a Map Resolver, an ITR does not need to connect to any other database mapping system. In particular, the ITR need not connect to the LISP+ALT infrastructure or implement the BGP and GRE protocols that it uses.

An ITR sends an Encapsulated Map-Request to a configured Map Resolver when it needs an EID-to-RLOC mapping that is not found in its local map-cache. Using the Map Resolver greatly reduces both the complexity of the ITR implementation and the costs associated with its operation.

In response to an Encapsulated Map-Request, the ITR can expect one of the following:

- An immediate Negative Map-Reply (with action code of "forward-native", 15-minute TTL) from the Map Resolver if the Map Resolver can determine that the requested EID does not exist. The ITR saves the EID-prefix returned in the Map-Reply in its cache, marking it as non-LISP-capable and knows not to attempt LISP encapsulation for destinations matching it.

- A Negative Map-Reply (with action code of "forward-native") from the Map Server that has an aggregate EID-covering the EID in the Map-Request but where the EID matches a "hole" in the aggregate. If the "hole" is for a LISP EID-prefix that is defined in the Map Server configuration but for which no ETRs are currently registered, a 1-minute TTL is returned. If the "hole" is for an unassigned part of the aggregate, then it is not a LISP EID and a 15-minute TTL is returned. See Section 4.2 for discussion of aggregate EID-prefixes and details of Map Server EID-prefix matching.

- A LISP Map-Reply from the ETR that owns the EID-to-RLOC mapping or possibly from a Map Server answering on behalf of the ETR. See (Section 4.4) for more details on Map Resolver message processing.

Note that an ITR may be configured to both use a Map Resolver and to participate in a LISP+ALT logical network. In such a situation, the ITR should send Map-Requests through the ALT network for any EID-prefix learned via ALT BGP. Such a configuration is expected to be
very rare, since there is little benefit to using a Map Resolver if an ITR is already using LISP+ALT. There would be, for example, no need for such an ITR to send a Map-Request to a possibly non-existent EID (and rely on Negative Map- Replies) if it can consult the ALT database to verify that an EID-prefix is present before sending that Map-Request.

4.2. EID Prefix Configuration and ETR Registration

An ETR publishes its EID-prefixes on a Map Server by sending LISP Map-Register messages. A Map-Register message includes authentication data, so prior to sending a Map-Register message, the ETR and Map Server must be configured with a shared secret or other relevant authentication information. A Map Server’s configuration must also include a list of the EID-prefixes for which each ETR is authoritative. Upon receipt of a Map-Register from an ETR, a Map Server accepts only EID-prefixes that are configured for that ETR. Failure to implement such a check would leave the mapping system vulnerable to trivial EID-prefix hijacking attacks. As developers and operators gain experience with the mapping system, additional, stronger security measures may be added to the registration process.

In addition to the set of EID-prefixes defined for each ETR that may register, a Map Server is typically also configured with one or more aggregate prefixes that define the part of the EID numbering space assigned to it. When LISP+ALT is the database in use, aggregate EID-prefixes are implemented as discard routes and advertised into ALT BGP. The existence of aggregate EID-prefixes in a Map Server’s database means that it may receive Map Requests for EID-prefixes that match an aggregate but do not match a registered prefix; Section 4.3 describes how this is handled.

Map-Register messages are sent periodically from an ETR to a Map Server with a suggested interval between messages of one minute. A Map Server should time-out and remove an ETR’s registration if it has not received a valid Map-Register message within the past three minutes. When first contacting a Map Server after restart or changes to its EID-to-RLOC database mappings, an ETR may initially send Map-Register messages at an increased frequency, up to one every 20 seconds. This "quick registration" period is limited to five minutes in duration.

An ETR may request that a Map Server explicitly acknowledge receipt and processing of a Map-Register message by setting the "want-map-notify" ("M" bit) flag. A Map Server that receives a Map-Register with this flag set will respond with a Map-Notify message. Typical use of this flag by an ETR would be to set it for Map-Register messages sent during the initial "quick registration" with a Map
Server but then set it only occasionally during steady-state maintenance of its association with that Map Server. Note that the Map-Notify message is sent to UDP destination port 4342, not to the source port specified in the original Map-Register message.

Note that a one-minute minimum registration interval during maintenance of an ETR-MS association places a lower-bound on how quickly and how frequently a mapping database entry can be updated. This may have implications for what sorts of mobility can be supported directly by the mapping system; shorter registration intervals or other mechanisms might be needed to support faster mobility in some cases. For a discussion on one way that faster mobility may be implemented for individual devices, please see [LISP-MN].

An ETR may also request, by setting the "proxy-map-reply" flag (P-bit) in the Map-Register message, that a Map Server answer Map-Requests instead of forwarding them to the ETR. See [LISP] for details on how the Map Server sets certain flags (such as those indicating whether the message is authoritative and how returned locators should be treated) when sending a Map-Reply on behalf of an ETR. When an ETR requests proxy reply service, it should include all RLOCs for all ETRs for the EID-prefix being registered, along with the routable flag ("R-bit") setting for each RLOC. The Map Server includes all of this information in Map Reply messages that it sends on behalf of the ETR. This differs from a non-proxy registration since the latter need only provide one or more RLOCs for a Map Server to use for forwarding Map-Requests; the registration information is not used in Map-Replies so it being incomplete is not incorrect.

An ETR which uses a Map Server to publish its EID-to-RLOC mappings does not need to participate further in the mapping database protocol(s). When using a LISP+ALT mapping database, for example, this means that the ETR does not need to implement GRE or BGP, which greatly simplifies its configuration and reduces its cost of operation.

Note that use of a Map Server does not preclude an ETR from also connecting to the mapping database (i.e. it could also connect to the LISP+ALT network) but doing so doesn’t seem particularly useful as the whole purpose of using a Map Server is to avoid the complexity of the mapping database protocols.

4.3. Map Server Processing

Once a Map Server has EID-prefixes registered by its client ETRs, it can accept and process Map-Requests for them.
In response to a Map-Request (received over the ALT if LISP+ALT is in use), the Map Server first checks to see if the destination EID matches a configured EID-prefix. If there is no match, the Map Server returns a negative Map-Reply with action code "forward-native" and a 15-minute TTL. This may occur if a Map Request is received for a configured aggregate EID-prefix for which no more-specific EID-prefix exists; it indicates the presence of a non-LISP "hole" in the aggregate EID-prefix.

Next, the Map Server checks to see if any ETRs have registered the matching EID-prefix. If none are found, then the Map Server returns a negative Map-Reply with action code "forward-native" and a 1-minute TTL.

If any of the registered ETRs for the EID-prefix have requested proxy reply service, then the Map Server answers the request instead of forwarding it. It returns a Map-Reply with the EID-prefix, RLOCs, and other information learned through the registration process.

If none of the ETRs have requested proxy reply service, then the Map Server re-encapsulates and forwards the resulting Encapsulated Map-Request to one of the registered ETRs. It does not otherwise alter the Map-Request so any Map-Reply sent by the ETR is returned to the RLOC in the Map-Request, not to the Map Server. Unless also acting as a Map Resolver, a Map Server should never receive Map- Replies; any such messages should be discarded without response, perhaps accompanied by logging of a diagnostic message if the rate of Map-Replies is suggestive of malicious traffic.

4.4. Map Resolver Processing

Upon receipt of an Encapsulated Map-Request, a Map Resolver de-encapsulates the enclosed message then searches for the requested EID in its local database of mapping entries (statically configured or learned from associated ETRs if the Map Resolver is also a Map Server offering proxy reply service). If it finds a matching entry, it returns a LISP Map-Reply with the known mapping.

If the Map Resolver does not have the mapping entry and if it can determine that the EID is not in the mapping database (for example, if LISP+ALT is used, the Map Resolver will have an ALT forwarding table that covers the full EID space) it immediately returns a negative LISP Map-Reply, with action code "forward-native" and a 15-minute TTL. To minimize the number of negative cache entries needed by an ITR, the Map Resolver should return the least-specific prefix which both matches the original query and does not match any EID-prefix known to exist in the LISP-capable infrastructure.
If the Map Resolver does not have sufficient information to know whether the EID exists, it needs to forward the Map-Request to another device which has more information about the EID being requested. To do this, it forwards the unencapsulated Map-Request, with the original ITR RLOC as the source, to the mapping database system. Using LISP+ALT, the Map Resolver is connected to the ALT network and sends the Map-Request to the next ALT hop learned from its ALT BGP neighbors. The Map Resolver does not send any response to the ITR; since the source RLOC is that of the ITR, the ETR or Map Server which receives the Map-Request over the ALT and responds will do so directly to the ITR.

4.4.1. Anycast Map Resolver Operation

A Map Resolver can be set up to use "anycast", where the same address is assigned to multiple Map Resolvers and is propagated through IGP routing, to facilitate the use of a topologically-close Map Resolver each ITR.

Note that Map Server associations with ETRs should not use anycast addresses as registrations need to be established between an ETR and a specific set of Map Servers, each identified by a specific registration association.
5. Open Issues and Considerations

There are a number of issues with the Map Server and Map Resolver design that are not yet completely understood. Among these are:

- Constants, such as those used for Map-Register frequency, retransmission timeouts, retransmission limits, negative Map-Reply TTLs, et al are subject to further refinement as more experience with prototype deployment is gained.

- Convergence time when an EID-to-RLOC mapping changes and mechanisms for detecting and refreshing or removing stale, cached information

- Deployability and complexity trade-offs of implementing stronger security measures in both EID-prefix registration and Map-Request/Map-Reply processing

- Requirements for additional state in the registration process between Map Servers and ETRs

A discussion of other issues surrounding LISP deployment may also be found in Section 15 of [LISP].

The authors expect that experimentation on the LISP pilot network will help answer open questions surrounding these and other issues.
6. IANA Considerations

This document makes no request of the IANA.
7. Security Considerations

The 2-way LISP header nonce exchange documented in [LISP] can be used to avoid ITR spoofing attacks.

To publish an authoritative EID-to-RLOC mapping with a Map Server, an ETR includes authentication data that is a hash of the message using pair-wise shared key. An implementation must support use of HMAC-SHA-1-96 [RFC2104] and should support use of HMAC-SHA-256-128 [RFC6234] (SHA-256 truncated to 128 bits).

During experimental and prototype deployment, all authentication key configuration will be manual. Should LISP and its components be considered for IETF standardization, further work will be required to follow the BCP 107 [RFC4107] recommendations on automated key management.

As noted in Section 4.2, a Map Server should verify that all EID-prefixes registered by an ETR match configuration stored on the Map Server.

The currently-defined authentication mechanism for Map-Register messages does not provide protection against "replay" attacks by a "man-in-the-middle". Additional work is needed in this area.

[LISP-SEC] defines a proposed mechanism for providing origin authentication, integrity, anti-replay protection, and prevention of man-in-the-middle and "overclaiming" attacks on the Map-Request/Map-Reply exchange. Work is ongoing on this and other proposals for resolving these open security issues.

While beyond the scope of securing an individual Map Server or Map Resolver, it should be noted that a BGP-based LISP+ALT network (if ALT is used as the mapping database infrastructure) can take advantage standards work on adding security to BGP.
8. References

8.1. Normative References

8.2. Informative References

Appendix A. Acknowledgments

The authors would like to thank Greg Schudel, Darrel Lewis, John Zwiebel, Andrew Partan, Dave Meyer, Isidor Kouvelas, Jesper Skriver, Fabio Maino, and members of the lisp@ietf.org mailing list for their feedback and helpful suggestions.

Special thanks are due to Noel Chiappa for his extensive work on caching with LISP-CONS, some of which may be used by Map Resolvers.
Authors' Addresses

Vince Fuller
cisco Systems
Tasman Drive
San Jose, CA 95134
USA

Email: vaf@cisco.com

Dino Farinacci
cisco Systems
Tasman Drive
San Jose, CA 95134
USA

Email: dino@cisco.com
Abstract

This document discusses the different scenarios for the deployment of the new network elements introduced by the Locator/Identifier Separation Protocol (LISP).

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on October 10, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction ... 3
2. Tunnel Routers .. 4
 2.1. Customer Edge .. 4
 2.2. Provider Edge .. 5
 2.3. Split ITR/ETR .. 6
 2.4. Inter-Service Provider Traffic Engineering 8
 2.5. Tunnel Routers Behind NAT 10
 2.5.1. ITR ... 10
 2.5.2. ETR ... 10
 2.6. Summary and Feature Matrix 11
3. Map-Resolvers and Map-Servers 11
 3.1. Map-Servers .. 11
 3.2. Map-Resolvers .. 12
4. Proxy Tunnel Routers 13
 4.1. P-ITR .. 13
 4.1.1. LISP+BGP .. 14
 4.1.2. Mapping Service Provider P-ITR Service 15
 4.1.3. Tier 1 P-ITR Service 15
 4.1.4. Migration Summary 17
 4.2. P-ETR .. 17
5. Security Considerations 18
6. IANA Considerations 18
7. Acknowledgements 19
8. References ... 19
 8.1. Normative References 19
 8.2. Informative References 19
Authors’ Addresses 20
1. Introduction

The Locator/Identifier Separation Protocol (LISP) addresses the scaling issues of the global Internet routing system by separating the current addressing scheme into Endpoint IDentifiers (EIDs) and Routing LOCators (RLOCs). The main protocol specification [I-D.ietf-lisp] describes how the separation is achieved, which new network elements are introduced, and details the packet formats for the data and control planes.

While the boundary between the core and edge is not strictly defined, one widely accepted definition places it at the border routers of stub autonomous systems, which may carry a partial or complete default-free zone (DFZ) routing table. The initial design of LISP took this location as a baseline for protocol development. However, the applications of LISP go beyond of just decreasing the size of the DFZ routing table, and include improved multihoming and ingress traffic engineering (TE) support for edge networks, and even individual hosts. Throughout the draft we will use the term LISP site to refer to these networks/hosts behind a LISP Tunnel Router. We formally define it as:

LISP site: A single host or a set of network elements in an edge network under the administrative control of a single organization, delimited from other networks by LISP Tunnel Router(s).

Since LISP is a protocol which can be used for different purposes, it is important to identify possible deployment scenarios and the additional requirements they may impose on the protocol specification and other protocols. The main specification [I-D.ietf-lisp] mentions positioning of tunnel routers, but without an in-depth discussion. This document fills that gap, by exploring the most common cases. While the theoretical combinations of device placements are quite numerous, the more practical scenarios are given preference in the following.

Additionally, this documents is intended as a guide for the operational community for LISP deployments in their networks. It is expected to evolve as LISP deployment progresses, and the described scenarios are better understood or new scenarios are discovered.

Each subsection considers an element type, discussing the impact of deployment scenarios on the protocol specification. For definition of terms, please refer to the appropriate documents (as cited in the respective sections).

Comments and discussions about this memo should be directed to the LISP working group mailing list: lisp@ietf.org.
2. Tunnel Routers

LISP is a map-and-encap protocol, with the main goal of improving global routing scalability. To achieve its goal, it introduces several new network elements, each performing specific functions necessary to separate the edge from the core. The device that is the gateway between the edge and the core is called Tunnel Router (xTR), performing one or both of two separate functions:

1. Encapsulating packets originating from an end host to be transported over intermediary (transit) networks towards the other end-point of the communication

2. Decapsulating packets entering from intermediary (transit) networks, originated at a remote end host.

The first function is performed by an Ingress Tunnel Router (ITR), the second by an Egress Tunnel Router (ETR).

Section 8 of the main LISP specification [I-D.ietf-lisp] has a short discussion of where Tunnel Routers can be deployed and some of the associated advantages and disadvantages. This section adds more detail to the scenarios presented there, and provides additional scenarios as well.

2.1. Customer Edge

LISP was designed with deployment at the core-edge boundary in mind, which can be approximated as the set of DFZ routers belonging to non-transit ASes. For the purposes of this document, we will consider this boundary to be consisting of the routers connecting LISP sites to their upstreams. As such, this is the most common expected scenario for xTRs, and this document considers it the reference location, comparing the other scenarios to this one.

```
ISP1    ISP2
   |
  +----+  +----+
  |  |xTR1|  |xTR2|
  |  +-----+  +-----+
  LISP site
```

Figure 1: xTRs at the customer edge

From the LISP site perspective the main advantage of this type of
deployment (compared to the one described in the next section) is having direct control over its ingress traffic engineering. This makes it is easy to set up and maintain active/active, active/backup, or more complex TE policies, without involving third parties.

Being under the same administrative control, reachability information of all ETRs is easier to synchronize, because the necessary control traffic can be allowed between the locators of the ETRs. A correct synchronous global view of the reachability status is thus available, and the Loc-Status-Bits can be set correctly in the LISP data header of outgoing packets.

By placing the tunnel router at the edge of the site, existing internal network configuration does not need to be modified. Firewall rules, router configurations and address assignments inside the LISP site remain unchanged. This helps with incremental deployment and allows a quick upgrade path to LISP. For larger sites with many external connections, distributed in geographically diverse PoPs, and complex internal topology, it may however make more sense to both encapsulate and decapsulate as soon as possible, to benefit from the information in the IGP to choose the best path (see Section 2.3 for a discussion of this scenario).

Another thing to consider when placing tunnel routers are MTU issues. Since encapsulating packets increases overhead, the MTU of the end-to-end path may decrease, when encapsulated packets need to travel over segments having close to minimum MTU. Some transit networks are known to provide larger MTU than the typical value of 1500 bytes of popular access technologies used at end hosts (e.g., IEEE 802.3 and 802.11). However, placing the LISP router connecting to such a network at the customer edge could possibly bring up MTU issues, depending on the link type to the provider as opposed to the following scenario.

2.2. Provider Edge

The other location at the core-edge boundary for deploying LISP routers is at the Internet service provider edge. The main incentive for this case is that the customer does not have to upgrade the CE router(s), or change the configuration of any equipment. Encapsulation/decapsulation happens in the provider’s network, which may be able to serve several customers with a single device. For large ISPs with many residential/business customers asking for LISP this can lead to important savings, since there is no need to upgrade the software (or hardware, if it’s the case) at each client’s location. Instead, they can upgrade the software (or hardware) on a few PE routers serving the customers. This scenario is depicted in Figure 2.
While this approach can make transition easy for customers and may be cheaper for providers, the LISP site looses one of the main benefits of LISP: ingress traffic engineering. Since the provider controls the ETRs, additional complexity would be needed to allow customers to modify their mapping entries.

The problem is aggravated when the LISP site is multihomed. Consider the scenario in Figure 2: whenever a change to TE policies is required, the customer contacts both ISP1 and ISP2 to make the necessary changes on the routers (if they provide this possibility). It is however unlikely, that both ISPs will apply changes simultaneously, which may lead to inconsistent state for the mappings of the LISP site (e.g., weights for the same priority don’t sum 100). Since the different upstream ISPs are usually competing business entities, the ETRs may even be configured to compete, either to attract all the traffic or to get no traffic. The former will happen if the customer pays per volume, the latter if the connectivity has a fixed price. A solution could be to have the mappings in the Map-Server(s), and have their operator give control over the entries to customer, much like in today’s DNS.

Additionally, since xTR1, xTR2, and xTR3 are in different administrative domains, locator reachability information is unlikely to be exchanged among them, making it difficult to set Loc-Status-Bits correctly on encapsulated packets.

Compared to the customer edge scenario, deploying LISP at the provider edge might have the advantage of diminishing potential MTU issues, because the tunnel router is closer to the core, where links typically have higher MTUs than edge network links.

2.3. Split ITR/ETR

In a simple LISP deployment, xTRs are located at the border of the LISP site (see Section 2.1). In this scenario packets are routed inside the domain according to the EID. However, more complex
networks may want to route packets according to the destination RLOC. This would enable them to choose the best egress point.

The LISP specification separates the ITR and ETR functionality and considers that both entities can be deployed in separated network equipment. ITRs can be deployed closer to the host (i.e., access routers). This way packets are encapsulated as soon as possible, and packets exit the network through the best egress point in terms of BGP policy. In turn, ETRs can be deployed at the border routers of the network, and packets are decapsulated as soon as possible. Again, once decapsulated packets are routed according to the EID, and can follow the best path according to internal routing policy.

In the following figure we can see an example. The Source (S) transmits packets using its EID and in this particular case packets are encapsulated at ITR_1. The encapsulated packets are routed inside the domain according to the destination RLOC, and can egress the network through the best point (i.e., closer to the RLOC’s AS). On the other hand, inbound packets are received by ETR_1 which decapsulates them. Then packets are routed towards S according to the EID, again following the best path.

```
+---------------------------------------+
|                                       |
|       +-------+                   +-------+         +-------+
|       | ITR_1 |---------+         | ETR_1 |-RLOC_A--| ISP_A |
|       +-------+         |         +-------+         +-------+
|  |-+        |           |             | |
|  |S|        |    IGP    |             |
|  |-+        |           |             |
|       +-------+                   +-------+         +-------+
|       | ITR_2 |---------+         | ETR_2 |-RLOC_B--| ISP_B |
|       +-------+                   +-------+         +-------+
+---------------------------------------+
```

Figure 3: Split ITR/ETR Scenario

This scenario has a set of implications:

- The site must carry at least partial BGP routes in order to choose the best egress point, increasing the complexity of the network. However, this is usually already the case for LISP sites that would benefit from this scenario.

- If the site is multihomed to different ISPs and any of the upstream ISPs is doing uRPF filtering, this scenario may become impractical. ITRs need to determine the exit ETR, for setting the
correct source RLOC in the encapsulation header. This adds complexity and reliability concerns.

- In LISP, ITRs set the reachability bits when encapsulating data packets. Hence, ITRs need a mechanism to be aware of the liveness of ETRs.

- ITRs encapsulate packets and in order to achieve efficient communications, the MTU of the site must be large enough to accommodate this extra header.

- In this scenario, each ITR is serving fewer hosts than in the case when it is deployed at the border of the network. It has been shown that cache hit ratio grows logarithmically with the amount of users [cache]. Taking this into account, when ITRs are deployed closer to the host the effectiveness of the mapping cache may be lower (i.e., the miss ratio is higher). Another consequence of this is that the site will transmit a higher amount of Map-Requests, increasing the load on the distributed mapping database.

2.4. Inter-Service Provider Traffic Engineering

With LISP, two LISP sites can route packets among them and control their ingress TE policies. Typically, LISP is seen as applicable to stub networks, however the LISP protocol can also be applied to transit networks recursively.

Consider the scenario depicted in Figure 4. Packets originating from the LISP site Stub1, client of ISP_A, with destination Stub4, client of ISP_B, are LISP encapsulated at their entry point into the ISP_A’s network. The external IP header now has as the source RLOC an IP from ISP_A’s address space (R_A1, R_A2, or R_A3) and destination RLOC from ISP_B’s address space (R_B1 or R_B2). One or more ASes separate ISP_A from ISP_B. With a single level of LISP encapsulation, Stub4 has control over its ingress traffic. However, ISP_B only has the current tools (such as BGP prefix deaggregation) to control on which of his own upstream or peering links should packets enter. This is either not feasible (if fine-grained per-customer control is required, the very specific prefixes may not be propagated) or increases DFZ table size.
A solution for this is to apply LISP recursively. ISP_A and ISP_B may reach a bilateral agreement to deploy their own private mapping system. ISP_A then encapsulates packets destined for the prefixes of ISP_B, which are listed in the shared mapping system. Note that in this case the packet is double-encapsulated. ISP_B’s ETR removes the outer, second layer of LISP encapsulation from the incoming packet, and routes it towards the original RLOC, the ETR of Stub4, which does the final decapsulation.

If ISP_A and ISP_B agree to share a private distributed mapping database, both can control their ingress TE without the need of disaggregating prefixes. In this scenario the private database contains RLOC-to-RLOC bindings. The convergence time on the TE policies updates is expected to be fast, since ISPs only have to update/query a mapping to/from the database.

This deployment scenario includes two important recommendations. First, it is intended to be deployed only between two ISPs (ISP_A and ISP_B in Figure 4). If more than two ISPs use this approach, then the xTRs deployed at the participating ISPs must either query multiple mapping systems, or the ISPs must agree on a common shared mapping system. Second, the scenario is only recommended for ISPs providing connectivity to LISP sites, such that source RLOCs of packets to be reencapsulated belong to said ISP. Otherwise the participating ISPs must register prefixes they do not own in the above mentioned private mapping system. Failure to follow these recommendations may lead to operational and security issues when deploying this scenario.

Besides these recommendations, the main disadvantages of this deployment case are:

- Extra LISP header is needed. This increases the packet size and, for efficient communications, it requires that the MTU between both ISPs can accommodate double-encapsulated packets.

- The ISP ITR must encapsulate packets and therefore must know the RLOC-to-RLOC binding. These bindings are stored in a mapping database.
database and may be cached in the ITR’s mapping cache. Cache misses lead to an extra lookup latency, unless NERD [I-D.lear-lisp-nerd] is used for the lookups.

- The operational overhead of maintaining the shared mapping database.

2.5. Tunnel Routers Behind NAT

NAT in this section refers to IPv4 network address and port translation.

2.5.1. ITR

Packets encapsulated by an ITR are just UDP packets from a NAT device’s point of view, and they are handled like any UDP packet, there are no additional requirements for LISP data packets.

Map-Requests sent by an ITR, which create the state in the NAT table have a different 5-tuple in the IP header than the Map-Reply generated by the authoritative ETR. Since the source address of this packet is different from the destination address of the request packet, no state will be matched in the NAT table and the packet will be dropped. To avoid this, the NAT device has to do the following:

- Send all UDP packets with source port 4342, regardless of the destination port, to the RLOC of the ITR. The most simple way to achieve this is configuring 1:1 NAT mode from the external RLOC of the NAT device to the ITR’s RLOC (Called "DMZ" mode in consumer broadband routers).

- Rewrite the ITR-AFI and "Originating ITR RLOC Address" fields in the payload.

This setup supports a single ITR behind the NAT device.

2.5.2. ETR

An ETR placed behind NAT is reachable from the outside by the Internet-facing locator of the NAT device. It needs to know this locator (and configure a loopback interface with it), so that it can use it in Map-Reply and Map-Register messages. Thus support for dynamic locators for the mapping database is needed in LISP equipment.

Again, only one ETR behind the NAT device is supported.

An implication of the issues described above is that LISP sites with
xTRs cannot be behind carrier based NATs, since two different sites would collide on the port forwarding.

2.6. Summary and Feature Matrix

<table>
<thead>
<tr>
<th>Feature</th>
<th>CE</th>
<th>PE</th>
<th>Split</th>
<th>Rec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control of ingress TE</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>No modifications to existing int. network infrastructure</td>
<td>x</td>
<td>x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Loc-Status-Bits sync</td>
<td>x</td>
<td>-</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>MTU/PMTUD issues minimized</td>
<td>-</td>
<td>x</td>
<td>-</td>
<td>x</td>
</tr>
</tbody>
</table>

3. Map-Resolvers and Map-Servers

3.1. Map-Servers

The Map-Server learns EID-to-RLOC mapping entries from an authoritative source and publishes them in the distributed mapping database. These entries are learned through authenticated Map-Register messages sent by authoritative ETRs. Also, upon reception of a Map-Request, the Map-Server verifies that the destination EID matches an EID-prefix for which it is responsible for, and then re-encapsulates and forwards it to a matching ETR. Map-Server functionality is described in detail in [I-D.ietf-lisp-ms].

The Map-Server is provided by a Mapping Service Provider (MSP). A MSP can be any of the following:

- **EID registrar.** Since the IPv4 address space is nearing exhaustion, IPv4 EIDs will come from already allocated Provider Independent (PI) space. The registrars in this case remain the current five Regional Internet Registries (RIRs). In the case of IPv6, the possibility of reserving a /16 block as EID space is currently under consideration [I-D.meyer-lisp-eid-block]. If granted by IANA, the community will have to determine the body responsible for allocations from this block, and the associated policies. For already allocated IPv6 prefixes the principles from IPv4 should be applied.

- **Third parties.** Participating in the LISP mapping system is similar to participating in global routing or DNS: as long as there is at least another already participating entity willing to forward the newcomer’s traffic, there is no barrier to entry. Still, just like routing and DNS, LISP mappings have the issue of trust, with efforts underway to make the published information verifiable. When these mechanisms will be deployed in the LISP.
mapping system, the burden of providing and verifying trust should
be kept away from MSPs, which will simply host the secured
mappings. This will keep the low barrier of entry to become an
MSP for third parties.

In all cases, the MSP configures its Map-Server(s) to publish the
prefixes of its clients in the distributed mapping database and start
encapsulating and forwarding Map-Requests to the ETRs of the AS.
These ETRs register their prefix(es) with the Map-Server(s) through
periodic authenticated Map-Register messages. In this context, for
some LISP end sites, there is a need for mechanisms to:

- Automatically distribute EID prefix(es) shared keys between the
 ETRs and the EID-registrar Map-Server.

- Dynamically obtain the address of the Map-Server in the ETR of the
 AS.

The Map-Server plays a key role in the reachability of the EID-
prefixes it is serving. On the one hand it is publishing these
prefixes into the distributed mapping database and on the other hand
it is encapsulating and forwarding Map-Requests to the authoritative
ETRs of these prefixes. ITRs encapsulating towards EIDs under the
responsibility of a failed Map-Server will be unable to look up any
of their covering prefixes. The only exception are the ITRs that
already contain the mappings in their local cache. In this case ITRs
can reach ETRs until the entry expires (typically 24 hours). For
this reason, redundant Map-Server deployments are desirable. A set
of Map-Servers providing high-availability service to the same set of
prefixes is called a redundancy group. ETRs are configured to send
Map-Register messages to all Map-Servers in the redundancy group. To
achieve fail-over (or load-balancing, if desired), current known BGP
practices can be used on the LISP+ALT BGP overlay network.

Additionally, if a Map-Server has no reachability for any ETR serving
a given EID block, it should not originate that block into the
mapping system.

3.2. Map-Resolvers

A Map-Resolver a is a network infrastructure component which accepts
LISP encapsulated Map-Requests, typically from an ITR, and finds the
appropriate EID-to-RLOC mapping by either consulting its local cache
or by consulting the distributed mapping database. Map-Resolver
functionality is described in detail in [I-D.ietf-lisp-ms].

Anyone with access to the distributed mapping database can set up a
Map-Resolver and provide EID-to-RLOC mapping lookup service. In the
case of the LISP+ALT mapping system, the Map-Resolver needs to become part of the ALT overlay so that it can forward packets to the appropriate Map-Servers. For more detail on how the ALT overlay works, see [I-D.ietf-lisp-alt]

For performance reasons, it is recommended that LISP sites use Map-Resolvers that are topologically close to their ITRs. ISPs supporting LISP will provide this service to their customers, possibly restricting access to their user base. LISP sites not in this position can use open access Map-Resolvers, if available. However, regardless of the availability of open access resolvers, the MSP providing the Map-Server(s) for a LISP site should also make available Map-Resolver(s) for the use of that site.

In medium to large-size ASes, ITRs must be configured with the RLOC of a Map-Resolver, operation which can be done manually. However, in Small Office Home Office (SOHO) scenarios a mechanism for autoconfiguration should be provided.

One solution to avoid manual configuration in LISP sites of any size is the use of anycast RLOCs for Map-Resolvers similar to the DNS root server infrastructure. Since LISP uses UDP encapsulation, the use of anycast would not affect reliability. LISP routers are then shipped with a preconfigured list of well known Map-Resolver RLOCs, which can be edited by the network administrator, if needed.

The use of anycast also helps improving mapping lookup performance. Large MSPs can increase the number and geographical diversity of their Map-Resolver infrastructure, using a single anycasted RLOC. Once LISP deployment is advanced enough, very large content providers may also be interested running this kind of setup, to ensure minimal connection setup latency for those connecting to their network from LISP sites.

While Map-Servers and Map-Resolvers implement different functionalities within the LISP mapping system, they can coexist on the same device. For example, MSPs offering both services, can deploy a single Map-Resolver/Map-Server in each PoP where they have a presence.

4. Proxy Tunnel Routers

4.1. P-ITR

Proxy Ingress Tunnel Routers (P-ITRs) are part of the non-LISP/LISP transition mechanism, allowing non-LISP sites to reach LISP sites. They announce via BGP certain EID prefixes (aggregated, whenever
possible) to attract traffic from non-LISP sites towards EIDs in the covered range. They do the mapping system lookup, and encapsulate received packets towards the appropriate ETR. Note that for the reverse path LISP sites can reach non-LISP sites simply by not encapsulating traffic. See [I-D.ietf-lisp-interworking] for a detailed description of P-ITR functionality.

The success of new protocols depends greatly on their ability to maintain backwards compatibility and inter-operate with the protocol(s) they intend to enhance or replace, and on the incentives to deploy the necessary new software or equipment. A LISP site needs an interworking mechanism to be reachable from non-LISP sites. A P-ITR can fulfill this role, enabling early adopters to see the benefits of LISP, similar to tunnel brokers helping the transition from IPv4 to IPv6. A site benefits from new LISP functionality (proportionally with existing global LISP deployment) when going LISP, so it has the incentives to deploy the necessary tunnel routers. In order to be reachable from non-LISP sites it has two options: keep announcing its prefix(es) with BGP (see next subsection), or have a P-ITR announce prefix(es) covering them.

If the goal of reducing the DFZ routing table size is to be reached, the second option is preferred. Moreover, the second option allows LISP-based ingress traffic engineering from all sites. However, the placement of P-ITRs greatly influences performance and deployment incentives. The following subsections present the LISP+BGP transition strategy and then possible P-ITR deployment scenarios. They use the loosely defined terms of "early transition phase", "late transition phase", and "LISP Internet phase", which refer to time periods when LISP sites are a minority, a majority, or represent all edge networks respectively.

4.1.1. LISP+BGP

For sites wishing to go LISP with their PI prefix the least disruptive way is to upgrade their border routers to support LISP, register the prefix into the LISP mapping system, but keep announcing it with BGP as well. This way LISP sites will reach them over LISP, while legacy sites will be unaffected by the change. The main disadvantage of this approach is that no decrease in the DFZ routing table size is achieved. Still, just increasing the number of LISP sites is an important gain, as an increasing LISP/non-LISP site ratio will slowly decrease the need for BGP-based traffic engineering that leads to prefix deaggregation. That, in turn, may lead to a decrease in the DFZ size in the late transition phase.

This scenario is not limited to sites that already have their prefixes announced with BGP. Newly allocated EID blocks could follow
this strategy as well during the early LISP deployment phase, depending on the cost/benefit analysis of the individual networks. Since this leads to an increase in the DFZ size, one of the following scenarios should be preferred for new allocations.

4.1.2. Mapping Service Provider P-ITR Service

In addition to publishing their clients’ registered prefixes in the mapping system, MSPs with enough transit capacity can offer them P-ITR service as a separate service. This service is especially useful for new PI allocations, to sites without existing BGP infrastructure, that wish to avoid BGP altogether. The MSP announces the prefix into the DFZ, and the client benefits from ingress traffic engineering without prefix deaggregation. The downside of this scenario is path stretch, which may be greater than 1.

Routing all non-LISP ingress traffic through a third party which is not one of its ISPs is only feasible for sites with modest amounts of traffic (like those using the IPv6 tunnel broker services today), especially in the first stage of the transition to LISP, with a significant number of legacy sites. When the LISP/non-LISP site ratio becomes high enough, this approach can prove increasingly attractive.

Compared to LISP+BGP, this approach avoids DFZ bloat caused by prefix deaggregation for traffic engineering purposes, resulting in slower routing table increase in the case of new allocations and potential decrease for existing ones. Moreover, MSPs serving different clients with adjacent aggregable prefixes may lead to additional decrease, but quantifying this decrease is subject to future research study.

4.1.3. Tier 1 P-ITR Service

The ideal location for a P-ITR is on the traffic path, as close to non-LISP site as possible, to minimize or completely eliminate path stretch. However, this location is far away from the networks that most benefit from the P-ITR services (i.e., LISP sites, destinations of encapsulated traffic) and have the most incentives to deploy them. But the biggest challenge having P-ITRs close to the traffic source is the large number of devices and their wide geographical diversity required to have a good coverage, in addition to considerable transit capacity. Tier 1 service providers fulfill these requirements and have clear incentives to deploy P-ITRs: to attract more traffic from their customers. Since a large fraction is multihomed to different providers with more than one active link, they compete with the other providers for traffic.

To operate the P-ITR service, the ISP announces an aggregate of all
known EID prefixes (a mechanism will be needed to obtain this list) downstream to their customers with BGP. First, the performance concerns of the MSP P-ITR service described in the previous section are now addressed, as P-ITRs are on-path, eliminating path stretch (except when combined with LISP+BGP, see below). Second, thanks to the direction of the announcements, the DFZ routing table size is not affected.

The main downside of this approach is non-global coverage for the announced prefixes, caused by the downstream direction of the announcements. As a result, a LISP site will be only reachable from customers of service providers running P-ITRs, unless one of the previous approaches is used as well. Due to this issue, it is unlikely that existing BGP speakers migrating to LISP will withdraw their announcements to the DFZ, resulting in a combination of this approach with LISP+BGP. At the same time, smaller new LISP sites still depend on MSP for global reachability. The early transition phase thus will keep the status quo in the DFZ routing table size, but offers the benefits of increasingly better ingress traffic engineering to early adopters.

As the number of LISP destinations increases, traffic levels from those non-LISP, large multihomed clients who rely on BGP path length for provider selection (such as national/regional ISPs), start to shift towards the Tier 1 providing P-ITRs. The competition is then incentivised to deploy their own service, thus improving global P-ITR coverage. If all Tier 1 providers have P-ITR service, the LISP+BGP and MSP alternatives are not required for global reachability of LISP sites. Still, LISP+BGP users may still want to keep announcing their prefixes for security reasons (i.e., preventing hijacking). DFZ size evolution in this phase depends on that choice, and the aggregability of all LISP prefixes. As a result, it may decrease or stay at the same level.

For performance reasons, and to simplify P-ITR implementations, it is desirable to minimize the number of non-aggregable EID prefixes. In IPv6 this can be easily achieved if a large prefix block is reserved as LISP EID space [I-D.meyer-lisp-eid-block]. If the EID space is not fragmented, new LISP sites will not cause increase in the DFZ size, unless they do LISP+BGP.

To summarize, the main benefits of this scenario are stopping the increase and potentially decreasing the size of the DFZ routing tables, while keeping path stretch close to 1, with the cost of not having global coverage of one’s prefixes.
4.1.4. Migration Summary

The following table presents the expected effects of the different transition scenarios during a certain phase on the DFZ routing table size:

<table>
<thead>
<tr>
<th>Phase</th>
<th>LISP+BGP</th>
<th>MSP</th>
<th>Tier 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early transition</td>
<td>no change</td>
<td>slowdown increase</td>
<td>no change</td>
</tr>
<tr>
<td>Late transition</td>
<td>may decrease</td>
<td>slowdown increase</td>
<td>may decrease</td>
</tr>
<tr>
<td>LISP Internet</td>
<td></td>
<td>considerable decrease</td>
<td></td>
</tr>
</tbody>
</table>

It is expected that a combination of these scenarios will exist during the migration period, in particular existing sites choosing LISP+BGP, new small sites choosing MSP, and competition between Tier 1 providers bringing optimized service. If all Tier 1 ISPs have P-ITR service in place, the other scenarios can be deprecated, greatly reducing DFZ size.

4.2. P-ETR

In contrast to P-ITRs, P-ETRs are not required for the correct functioning of all LISP sites. There are two cases, where they can be of great help:

- LISP sites with unicast reverse path forwarding (uRPF) restrictions, and
- LISP sites without native IPv6 communicating with LISP nodes with IPv6-only locators.

In the first case, uRPF filtering is applied at their upstream PE router. When forwarding traffic to non-LISP sites, an ITR does not encapsulate packets, leaving the original IP headers intact. As a result, packets will have EIDs in their source address. Since we are discussing the transition period, we can assume that a prefix covering the EIDs belonging to the LISP site is advertised to the global routing tables by a P-ITR, and the PE router has a route towards it. However, the next hop will not be on the interface towards the CE router, so non-encapsulated packets will fail uRPF checks.

To avoid this filtering, the affected ITR encapsulates packets towards the locator of the P-ETR for non-LISP destinations. Now the source address of the packets, as seen by the PE router is the ITR’s locator, which will not fail the uRPF check. The P-ETR then decapsulates and forwards the packets.
The second use case is IPv4-to-IPv6 transition. Service providers using older access network hardware, which only supports IPv4 can still offer IPv6 to their clients, by providing a CPE device running LISP, and P-ETR(s) for accessing IPv6-only non-LISP sites and LISP sites, with IPv6-only locators. Packets originating from the client LISP site for these destinations would be encapsulated towards the P-ETR’s IPv4 locator. The P-ETR is in a native IPv6 network, decapsulating and forwarding packets. For non-LISP destination, the packet travels natively from the P-ETR. For LISP destinations with IPv6-only locators, the packet will go through a P-ITR, in order to reach its destination.

For more details on P-ETRs see the [I-D.ietf-lisp-interworking] draft.

P-ETRs can be deployed by ISPs wishing to offer value-added services to their customers. As is the case with P-ITRs, P-ETRs too may introduce path stretch. Because of this the ISP needs to consider the tradeoff of using several devices, close to the customers, to minimize it, or few devices, farther away from the customers, minimizing cost instead.

Since the deployment incentives for P-ITRs and P-ETRs are different, it is likely they will be deployed in separate devices, except for the CDN case, which may deploy both in a single device.

In all cases, the existence of a P-ETR involves another step in the configuration of a LISP router. CPE routers, which are typically configured by DHCP, stand to benefit most from P-ETRs. To enable autoconfiguration of the P-ETR locator, a DHCP option would be required.

As a security measure, access to P-ETRs should be limited to legitimate users by enforcing ACLs.

5. Security Considerations

Security implications of LISP deployments are to be discussed in separate documents. [I-D.saucez-lisp-security] gives an overview of LISP threat models, while securing mapping lookups is discussed in [I-D.maino-lisp-sec].

6. IANA Considerations

This memo includes no request to IANA.
7. Acknowledgements

Many thanks to Margaret Wasserman for her contribution to the IETF76 presentation that kickstarted this work. The authors would also like to thank Damien Saucez, Luigi Iannone, Joel Halpern, Vince Fuller, Dino Farinacci, Terry Manderson, Noel Chiappa, and everyone else who provided input.

8. References

8.1. Normative References

[I-D.ietf-lisp]

[I-D.ietf-lisp-alt]
Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, "LISP Alternative Topology (LISP+ALT)", draft-ietf-lisp-alt-06 (work in progress), March 2011.

[I-D.ietf-lisp-interworking]

[I-D.ietf-lisp-ms]
Fuller, V. and D. Farinacci, "LISP Map Server", draft-ietf-lisp-ms-07 (work in progress), March 2011.

[I-D.maino-lisp-sec]

[I-D.saucez-lisp-security]

8.2. Informative References

[I-D.lear-lisp-nerd]
Lear, E., "NERD: A Not-so-novel EID to RLOC Database", draft-lear-lisp-nerd-08 (work in progress), March 2010.
Authors’ Addresses

Lorand Jakab
Technical University of Catalonia
C/Jordi Girona, s/n
BARCELONA 08034
Spain

Email: ljakab@ac.upc.edu

Albert Cabellos-Aparicio
Technical University of Catalonia
C/Jordi Girona, s/n
BARCELONA 08034
Spain

Email: acabello@ac.upc.edu

Florin Coras
Technical University of Catalonia
C/Jordi Girona, s/n
BARCELONA 08034
Spain

Email: fcoras@ac.upc.edu

Jordi Domingo-Pascual
Technical University of Catalonia
C/Jordi Girona, s/n
BARCELONA 08034
Spain

Email: jordi.domingo@ac.upc.edu
Darrel Lewis
Cisco Systems
170 Tasman Drive
San Jose, CA 95134
USA

Email: darlewis@cisco.com
Abstract

This document defines managed objects for the Locator/ID Separation Protocol (LISP). These objects provide information useful for monitoring LISP devices, including basic configuration information, LISP status, and operational statistics.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on February 17, 2011.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Contents

1. Requirements Notation 3
2. Introduction 3
3. The Internet-Standard Management Framework 4
4. Definition of Terms 4
5. LISP MIB Objectives 6
6. Structure of LISP MIB Module 7
 6.1. Overview of Defined Notifications 7
 6.2. Overview of Defined Tables 7
7. LISP MIB Definition 8
8. Relationship to Other MIB Modules 37
 8.1. MIB modules required for IMPORTS 37
9. Security Considerations 37
10. IANA Considerations 37
11. References ... 38
 11.1. Normative References 38
 11.2. Informative References 39
Appendix A. Change Log 39
Appendix B. Open Issues 39
Appendix C. Acknowledgments 40
1. Requirements Notation

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Introduction

This draft describes the Management Information Base (MIB) module for use with network management protocols in the Internet community. Specifically, the MIB for managing Locator/ID Separation Protocol (LISP) devices is described.

LISP [LISP] specifies a network-based architecture and mechanisms that implement a new semantic for IP addressing using two separate name spaces: Endpoint Identifiers (EIDs), used within sites, and Routing Locators (RLOCs), used on the transit networks that make up the Internet infrastructure. To achieve this separation, LISP defines protocol mechanisms for mapping from EIDs to RLOCs. In addition, LISP assumes the existence of a database to store and globally propagate those mappings [LISP-MS] [LISP-ALT].

From a data plane perspective, LISP traffic is handled exclusively at the network layer by devices performing Ingress Tunnel Router (ITR) and Egress Tunnel Router (ETR) LISP functions. Data plane operations performed by these devices are described in [LISP]. Additionally, data plane interworking between legacy (Internet) and LISP sites is implemented by devices performing Proxy ITR (PITR) and Proxy ETR (PETR) functions. The data plane operations of these devices is described in [INTERWORK].

From a control plane perspective, LISP employs mechanisms related to creating, maintaining, and resolving mappings from EIDs to RLOCs. LISP ITRs, ETRs, PITRs, and PETRs perform specific control plane functions, and these control plane operations are described in [LISP]. Additionally, LISP infrastructure devices supporting LISP control plane functionality include Map-Servers and Map-Resolvers, and the control plane operations of these devices are described in [LISP-MS]. Finally, while not specifically required, this document assumes that a LISP+ALT database mapping infrastructure exists as part of the LISP control plane. The control plane operations of the ALT are described in [LISP-ALT]. Note that this MIB does not provide support for the ALT since ALT statistics may be obtained through existing BGP and tunnel MIBs.
3. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIV2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

4. Definition of Terms

Routing Locator (RLOC): a 32-bit (for IPv4) or 128-bit (for IPv6) value used in the source and destination address fields of the second (outer-most) IP header of a LISP packet. RLOC addresses are allocated to an egress tunnel router (ETR) and numbered from topologically-aggregatable blocks assigned to a site at each point to which it attaches to the global Internet.

Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value used in the source and destination address fields of the first (inner-most) IP header of a LISP packet. A source EID is allocated to a host from an EID-prefix block associated with the site where the host is located. A host determines a destination EID in the same way that it determines a destination address today, for example through a DNS lookup or SIP exchange.

EID-to-RLOC Map-Cache: a short-lived, on-demand table maintained locally in an ITR or PITR that stores, tracks, and is responsible for timing-out and otherwise validating EID-to-RLOC mappings. This table is distinct from the full "database" of EID-to-RLOC mappings in that it is dynamic and relatively small. At a given moment in time, it consists only of entries for those sites to which the ITR or PITR is currently communicating or has communicated with within the configured TTL period.

EID-to-RLOC Mapping-Database: a global distributed database that contains all known EID-to-RLOC mappings. Each potential ETR typically contains a small piece of the database consisting of only the EID-to-RLOC mappings for the EID prefix(es) for which the ETR is "authoritative" and the RLOC(s) by which those EID prefix(es) are reachable from the global Internet.
Ingress Tunnel Router (ITR): a router that accepts an IP packet with a single IP header (more precisely, an IP packet that does not contain a LISP header), treats this "inner" IP destination address as an EID and performs an EID-to-RLOC mapping lookup, and then prepends an "outer" IP header with one of its own globally-routable RLOCs in the source address field and the RLOC resulting from the mapping lookup in the destination address field. That is, in general an ITR receives an IP packet from site end-systems on one side and sends a LISP-encapsulated IP packet toward the Internet on the other side.

Egress Tunnel Router (ETR): a router that accepts an IP packet where the destination address in the "outer" IP header is one of its own RLOCs, strips the "outer" header, and forwards the packet based on the next IP header found. That is, in general an ETR receives LISP-encapsulated IP packets from the Internet on one side and sends decapsulated IP packets toward site end-systems on the other side.

xTR: is a general reference to an ITR or ETR when direction of data flow is not part of the context description. xTR refers to the router that is the tunnel endpoint and performs both ITR and ETR functionality. For example, "An xTR can be located at the Customer Edge (CE) router", meaning both ITR and ETR functionality is activated at the CE router.

Proxy ITR (PITR): a router that acts like an ITR but does so on behalf of non-LISP sites which send packets to destinations at LISP sites. The PITR, also known as a PTR, is defined and described in [INTERWORK].

Proxy ETR (PETR): a router that acts like an ETR but does so on behalf of LISP sites which send packets to destinations at non-LISP sites. The PETR is defined and described in [INTERWORK].

LISP Site: is a set of routers in an edge network that are under a single technical administration. LISP routers which reside in the edge network are the demarcation points to separate the edge network from the core network.

Map-Server: a LISP network infrastructure component which learns EID-to-RLOC mapping entries from an authoritative source such as an ETR though static configuration, or another out-of-band mechanism. A Map-Server advertises these mappings into the distributed mapping database such as that described in [LISP-ALT].
Map-Resolver: a LISP network infrastructure component which accepts LISP Encapsulated Map-Requests, typically from an ITR, and quickly determines whether or not the destination IP address is part of the EID namespace. If it is, the Map-Resolver finds the appropriate EID-to-RLOC mapping by consulting the distributed mapping database system such as that described in [LISP-ALT]. If it is not, a Negative Map-Reply is immediately returned.

Map-Reply: a LISP Map-Reply message type returned in response to a Map-Request for a destination EID that exists in the mapping database and contains the locator-set and associated policy for the queried EID. Information returned in a Map-Reply is stored in the EID-to-RLOC Map-Cache.

Negative Map-Reply: a LISP Map-Reply message type that contains an empty locator-set. Returned in response to a Map-Request if the destination EID does not exist in the mapping database. Typically, this means that the "EID" being requested is an IP address connected to a non-LISP site. Information returned in a Negative Map-Reply is stored in the EID-to-RLOC Map-Cache.

LISP+ALT: a static network built using Border Gateway Protocol (BGP, [RFC4271]), BGP multi-protocol extension [RFC4760], and Generic Routing Encapsulation (GRE, [RFC2784]) to construct an overlay network of devices (ALT Routers) which operate on EID-prefixes and use EIDs as forwarding destinations. This LISP+ALT network may, but is not required to be, used by LISP to find EID-to-RLOC mappings. LISP+ALT is described in [LISP-ALT].

5. LISP MIB Objectives

The objectives for defining this LISP MIB module are as follows:

- Provide a means for obtaining a list of enabled LISP features and the current status of configuration attributes related to those features. As an example, LISP capabilities which could be enabled include ITR, ETR, PITR, PETR, MS or MR support for IPv4 or IPv6 address families. Other examples include, indicating whether rloc-probing is enabled, and indicating the configured map-cache limit value.

- Provide a means for obtaining the current attributes of various LISP tables, such as the EID-to-RLOC policy data contained in the Map-Cache, or the local EID-to-RLOC policy data contained in the Mapping-Database.

- Provide a means for obtaining the current operational statistics of various LISP functions, such as the number of packets.
encapsulated and decapsulated by the device. Other counters of operational interest, depending on LISP function, include things like the current number of map-cache entries, and the total number and rate of map-requests received and sent.

6. Structure of LISP MIB Module

6.1. Overview of DefinedNotifications

No LISP MIB notifications are defined.

6.2. Overview of Defined Tables

The LISP MIB module is composed of ten tables of objects, as follows:

Lisp - This table provides information representing the various lisp features that can be enabled on LISP devices.

LispMappingDatabase - This table represents the EID-to-RLOC database that contains the EID-prefix to RLOC mappings configured on an ETR. In general, this table would be representative of all such mappings for a given site that this device belongs to.

LispMappingDatabaseLocator - This table represents the set of routing locators contained in the EID-to-RLOC database configured on an ETR.

LispMapCache - This table represents the short-lived, on-demand table on an ITR that stores, tracks, and is responsible for timing-out and otherwise validating EID-to-RLOC mappings.

LispMapCacheLocator - This table represents the set of locators per EID prefix contained in the map-cache table of an ITR.

LispSite - This table provides the properties of each lisp site that is served by this device when configured to be a Map-Server.

LispSiteLocator - This table provides the properties of all locators per lisp site that is served by this device when configured to be a Map-Server.

LispMapServers - This table provides the properties of all Map-Servers that this device is configured to use.

LispMapResolvers - This table provides the properties of all Map-Resolvers that this device is configured to use.
lispUseProxyEtr - This table provides the properties of all Proxy ETRs that this device is configured to use.

7. LISP MIB Definition

LISP-MIB DEFINITIONS ::= BEGIN
IMPORTS
MODULE-IDENTITY, OBJECT-TYPE,
Unsigned32, Counter64, TimeTicks,
NOTIFICATION-TYPE, OBJECT-GROUP
MODULE-COMPLIANCE, OBJECT-GROUP
NOTIFICATION-GROUP FROM SNMPv2-SMI -- [RFC2578]
TEXTUAL-CONVENTION, TruthValue,
RowStatus, AddressFamilyNumbers
FROM SNMPv2-CONF -- [RFC2580]
FROM SNMPv2-TC -- [RFC2579]
FROM IANA-ADDRESS-FAMILY-NUMBERS-MIB -- [IANA]

lispMIB MODULE-IDENTITY
LAST-UPDATED "201008160000Z" -- 16 August 2010
ORGANIZATION "IETF Locator/ID Separation Protocol (LISP) Working Group"
CONTACT-INFO "Email: lisp@ietf.org
WG charter: http://www.ietf.org/html.charters/lisp-charter.html"
DESCRIPTION "This memo describes the Management Information Base (MIB) module for use with network management protocols in the management of Locator/ID Separation Protocol (LISP) devices."
REVISION "2010081600000Z" -- 16 August 2010
::= { xxxxx }
--
-- Textual Conventions
--
LispAddressType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION "LISP architecture can be applied to a wide variety of address-families. This textual-convention is a generalization for representing addresses that belong to those address-families. For convenience, this document refers to any such address as a lisp address. LispAddressType textual-convention consists of
the following four tuples:

1. IANA Address Family Numbers: This tuple follows the AddressFamilyNumbers textual-convention described in [IANA]. The enumerations are listed in [IANA]. Note that the list of address family numbers is maintained by IANA.

2. Length of LISP address: This tuple is an INTEGER to give the octet length of the next tuple.

3. Lisp address: A lisp address can be an address belonging to any of the IANA Address Families. Particularly, when the address family is Lisp Canonical Address Format (LCAF) [LCAF] with IANA assigned Address Family Number 16387, then the first octet of this tuple indicates the LCAF type, and the rest of this tuple is same as the encoding format of the LISP Canonical Address after the length field, as defined in [LCAF].

4. Mask-length of lisp address.

REFERENCE "[LISP]"
SYNTAX OCTET STRING (SIZE (0..1024))

lispTable OBJECT-TYPE
SYNTAX SEQUENCE OF lispEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table represents the various lisp features that can be enabled on lisp devices."

REFERENCE "[LISP]"
::= { lisp 1 }

lispEntry OBJECT-TYPE
SYNTAX lispEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) in the lispTable."
INDEX { lispAfi }
::= { lispTable 1 }

lispEntry ::= SEQUENCE {
 lispAddressFamily AddressFamilyNumbers,
 lispItrEnabled TruthValue,
 lispEtrEnabled TruthValue,
 lispProxyItrEnabled TruthValue,
 lispProxyEtrEnabled TruthValue,

lispMapServerEnabled TruthValue,
lispMapResolverEnabled TruthValue,
lispMapCacheSize Unsigned32,
lispMapCacheLimit Unsigned32,
lispEtrMapCacheTtl Unsigned32,
lispRlocProbeEnabled TruthValue,
lispEtrAcceptMapDataEnabled TruthValue,
lispEtrAcceptMapDataVerifyEnabled TruthValue,
lispMapRequestsIn Counter64,
lispMapRequestsOut Counter64,
lispMapRepliesIn Counter64,
lispMapRepliesOut Counter64,
lispMapRegistersIn Counter64,
lispMapRegistersOut Counter64
}
lispAddressFamily OBJECT-TYPE
SYNTAX AddressFamilyNumbers
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The address family number of the lisp device that is able to lisp process a packet destined for that address family."
 ::= { lispEntry 1 }
lispItrEnabled OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS accessible
STATUS current
DESCRIPTION "Indicates the status of ITR role on this device."
 ::= { lispEntry 2 }
lispEtrEnabled OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS accessible
STATUS current
DESCRIPTION "Indicates the status of ETR role on this device."
 ::= { lispEntry 3 }
lispProxyItrEnabled OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS accessible
STATUS current
DESCRIPTION "Indicates the status of Proxy-ITR role on this
device.
 ::= { lispEntry 4 }

lispProxyEtrEnabled OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS accessible
 STATUS current
 DESCRIPTION
 "Indicates the status of Proxy-ETR role on this
device."
 ::= { lispEntry 5 }

lispMapServerEnabled OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS accessible
 STATUS current
 DESCRIPTION
 "Indicates the status of Map Server role on this
device."
 ::= { lispEntry 6 }

lispMapResolverEnabled OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS accessible
 STATUS current
 DESCRIPTION
 "Indicates the status of Map Resolver role on
this device."
 ::= { lispEntry 7 }

lispMapCacheSize OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS accessible
 STATUS current
 DESCRIPTION
 "Size of EID-to-RLOC map cache on this device."
 ::= { lispEntry 8 }

lispMapCacheLimit OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS accessible
 STATUS current
 DESCRIPTION
 "Maximum permissible size of EID-to-RLOC map
cache on this device."
 ::= { lispEntry 9 }

lispEtrMapCacheTtl OBJECT-TYPE
lispRlocProbeEnabled OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS accessible
STATUS current
DESCRIPTION "Indicates the status of rloc-probing feature on this device."
::= { lispEntry 11 }

lispEtrAcceptMapData OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS accessible
STATUS current
DESCRIPTION "Indicates the status of this device for accepting piggybacked mapping data received in a map-request."
::= { lispEntry 12 }

lispEtrAcceptMapDataVerify OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS accessible
STATUS current
DESCRIPTION "Indicates the status of this device for verifying accepted piggybacked mapping data received in a map-request."
::= { lispEntry 13 }

lispMapRequestsIn OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION "Total number of map requests received by this device for any EID prefix of the given address family."
::= { lispEntry 14 }

lispMapRequestsOut OBJECT-TYPE
lispMapRepliesIn OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION "Total number of map replies received by this device for any EID prefix of the given address family."
::= { lispEntry 16 }

lispMapRepliesOut OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION "Total number of map replies sent by this device for any EID prefix of the given address family."
::= { lispEntry 17 }

lispMapRegistersIn OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION "Total number of map registers received by this device for any EID prefix of the given address family."
::= { lispEntry 18 }

lispMapRegistersOut OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION "Total number of map registers sent by this device for any EID prefix of the given address family."
::= { lispEntry 19 }

lispMappingDatabaseTable OBJECT-TYPE
SYNTAX SEQUENCE OF lispMappingDatabaseEntry
MAX-ACCESS not-accessible

This table represents the EID-to-RLOC mapping database that contains the EID-prefix to RLOC mappings configured on an ETR. In general, this table would be representative of all such mappings for a given site that this device belongs to.

REFERENCE "[LISP]"

::= { lisp 2 }

lispMappingDatabaseEntry OBJECT-TYPE
SYNTAX lispMappingDatabaseEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "An entry (conceptual row) in the lispMappingDatabaseTable."
INDEX { lispMappingDatabaseEidLength lispMappingDatabaseEid }
::= { lispMappingDatabaseTable 1 }

lispMappingDatabaseEntry ::= SEQUENCE {
lispMappingDatabaseEidLength INTEGER,
lispMappingDatabaseEid LispAddressType,
lispMappingDatabaseLsb Unsigned32,
lispMappingDatabaseEidPartitioned TruthValue,
lispMappingDatabaseDecapOctets Counter64,
lispMappingDatabaseDecapPkts Counter64,
lispMappingDatabaseEncapOctets Counter64,
lispMappingDatabaseEncapPkts Counter64
}

lispMappingDatabaseEidLength OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This object gives the length of lispMappingDatabaseEid, the next object."
::= { lispMappingDatabaseEntry 1 }

lispMappingDatabaseEid OBJECT-TYPE
SYNTAX LispAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The EID prefix of the mapping database."
::= { lispMappingDatabaseEntry 2 }
lispMappingDatabaseLsb OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "The locator status bits for this EID prefix."
 ::= { lispMappingDatabaseEntry 3 }

lispMappingDatabaseEidPartitioned OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "Indicates if this device is partitioned from
the site that contains this EID prefix."
 ::= { lispMappingDatabaseEntry 4 }

lispMappingDatabaseDecapOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "The number of octets of Lisp packets that were
decapsulated by this device addressed to a host
within this EID-prefix."
 ::= { lispMappingDatabaseEntry 5 }

lispMappingDatabaseDecapPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "The number of Lisp packets that were decapsulated
by this device addressed to a host within this
EID-prefix."
 ::= { lispMappingDatabaseEntry 6 }

lispMappingDatabaseEncapOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "The number of octets of Lisp packets, that were
encapsulated by this device, whose inner header
source address matched this EID prefix."
 ::= { lispMappingDatabaseEntry 7 }

lispMappingDatabaseEncapPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The number of Lisp packets, that were encapsulated by this device, whose inner header source address matched this EID prefix."
::= { lispMappingDatabaseEntry 8 }

lispMappingDatabaseLocatorTable OBJECT-TYPE
SYNTAX SEQUENCE OF lispMappingDatabaseLocatorEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table represents the set of routing locators per EID prefix contained in the EID-to-RLOC database configured on an ETR."
REFERENCE "[LISP]"
::= { lisp 3 }

lispMappingDatabaseLocatorEntry OBJECT-TYPE
SYNTAX lispMappingDatabaseLocatorEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) in the lispMappingDatabaseLocatorTable."
INDEX
{ lispMappingDatabaseLocatorEidLength
 lispMappingDatabaseLocatorEid
 lispMappingDatabaseLocatorRlocAfi
 lispMappingDatabaseLocatorEncodedRlocLength
 lispMappingDatabaseLocatorEncodedRloc }
::= { lispMappingDatabaseLocatorTable 1 }

lispMappingDatabaseLocatorEntry ::= SEQUENCE {
 lispMappingDatabaseLocatorEidLength INTEGER,
 lispMappingDatabaseLocatorEid LispAddressType,
 lispMappingDatabaseLocatorRlocLength INTEGER,
 lispMappingDatabaseLocatorRloc LispAddressType,
 lispMappingDatabaseLocatorRlocPriority INTEGER,
 lispMappingDatabaseLocatorRlocWeight INTEGER,
 lispMappingDatabaseLocatorRlocMPriority INTEGER,
 lispMappingDatabaseLocatorRlocMWeight INTEGER,
 lispMappingDatabaseLocatorRlocState INTEGER,
 lispMappingDatabaseLocatorRlocLocal INTEGER,
 lispMappingDatabaseLocatorRlocDecapOctets Counter64,
 lispMappingDatabaseLocatorRlocDecapPackets Counter64
}
lispMappingDatabaseLocatorRlocEncapOctets Counter64,
lispMappingDatabaseLocatorRlocEncapPackets Counter64
}

lispMappingDatabaseLocatorEidLength OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This object is used to get the length of
 lispMappingDatabaseLocatorEid, the next
 object."
 ::= { lispMappingDatabaseLocatorEntry 1 }

lispMappingDatabaseLocatorEid OBJECT-TYPE
 SYNTAX LispAddressType
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The EID prefix of the mapping database
 mapped to the given locator."
 ::= { lispMappingDatabaseLocatorEntry 2 }

lispMappingDatabaseLocatorRlocLength OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This object is used to get the length of
 lispMappingDatabaseLocatorRloc, the next
 object."
 ::= { lispMappingDatabaseLocatorEntry 3 }

lispMappingDatabaseLocatorRloc OBJECT-TYPE
 SYNTAX LispAddressType
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This object is a locator for the given
 EID prefix in the mapping database."
 ::= { lispMappingDatabaseLocatorEntry 4 }

lispMappingDatabaseLocatorRlocPriority OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS accessible
 STATUS current
 DESCRIPTION
 "The unicast priority of the RLOC."

::= { lispMappingDatabaseLocatorEntry 5 }

lispMappingDatabaseLocatorRlocWeight OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION "The unicast weight of the RLOC."
::= { lispMappingDatabaseLocatorEntry 6 }

lispMappingDatabaseLocatorRlocMPriority OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION "The multicast priority of the RLOC."
::= { lispMappingDatabaseLocatorEntry 7 }

lispMappingDatabaseLocatorRlocMWeight OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION "The multicast weight of the RLOC."
::= { lispMappingDatabaseLocatorEntry 8 }

lispMappingDatabaseLocatorRlocState OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION "The state of this RLOC as per this device. 0 is for up, 1 is for down ..."
::= { lispMappingDatabaseLocatorEntry 9 }

lispMappingDatabaseLocatorRlocLocal OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION "Object value is 1 if the RLOC is an address on this device, 0 if otherwise."
::= { lispMappingDatabaseLocatorEntry 10 }

lispMappingDatabaseLocatorRlocDecapOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The number of octets of Lisp packets that were addressed to this RLOC of the EID-prefix and were decapsulated."
::= { lispMappingDatabaseLocatorEntry 11 }

lispMappingDatabaseLocatorRlocDecapPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The number of Lisp packets that were addressed to this RLOC of the EID-prefix and were decapsulated."
::= { lispMappingDatabaseLocatorEntry 12 }

lispMappingDatabaseLocatorRlocEncapOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The number of octets of Lisp packets that were encapsulated by this device using this RLOC address as the source, and that were sourced by an address of this EID-prefix."
::= { lispMappingDatabaseLocatorEntry 13 }

lispMappingDatabaseLocatorRlocEncapPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The number of Lisp packets that were encapsulated by this device using this RLOC address as the source, and that were sourced by an address of this EID-prefix."
::= { lispMappingDatabaseLocatorEntry 14 }

lispMapCacheTable OBJECT-TYPE
SYNTAX SEQUENCE OF lispMapCacheEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table represents the short-lived, on-demand table on an ITR that stores, tracks, and is responsible for timing-out and otherwise validating EID-to-RLOC mappings."
REFERENCE "[LISP]"
::= { lisp 4 }

lispMapCacheEntry OBJECT-TYPE
SYNTAX lispMapCacheEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) in the lispMapCacheTable."
INDEX { lispMapCacheEidLength
 lispMapCacheEid
 lispMapCacheEidMaskLength }
 ::= { lispMapCacheTable 1 }

lispMapCacheEntry ::= SEQUENCE {
 lispMapCacheEidLength INTEGER,
 lispMapCacheEid LispAddressType,
 lispMapCacheEidUpTime TimeTicks,
 lispMapCacheEidExpiryTime TimeTicks,
 lispMapCacheEidState INTEGER,
 lispMapCacheEidAuthoritative TruthValue,
 lispMapCacheDecapOctets Counter64,
 lispMapCacheDecapPkts Counter64,
 lispMapCacheEncapOctets Counter64,
 lispMapCacheEncapPkts Counter64
}

lispMapCacheEidLength OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This object is used to get the length of lispMapCacheEid, the next object."
 ::= { lispMapCacheEntry 1 }

lispMapCacheEid OBJECT-TYPE
SYNTAX LispAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The EID prefix in the mapping cache."
 ::= { lispMapCacheEntry 2 }

lispMapCacheEidUpTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS accessible
STATUS current
DESCRIPTION

"The up time of the EID prefix."
 ::= { lispMapCacheEntry 3 }

lispMapCacheEidExpiryTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "The time remaining on the EID prefix before the ITR times-out the prefix."
 ::= { lispMapCacheEntry 4 }

lispMapCacheEidState OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "This object is used to indicate the activity of this EID prefix. A value of 0 implies the EID prefix is idle. A value of 1 implies the EID prefix is active.
 ::= { lispMapCacheEntry 5 }

lispMapCacheEidAuthoritative OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "This object is used to indicate whether the EID prefix was installed by an authoritative map-reply. A value of 0 implies the EID prefix was installed by an authoritative map-reply, and a value of 1, otherwise."
 ::= { lispMapCacheEntry 6 }

lispMapCacheDecapOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "The number of octets of Lisp packets that were decapsulated by this device and were sourced from a remote host within this EID-prefix."
 ::= { lispMapCacheEntry 7 }

lispMapCacheDecapPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
The number of Lisp packets that were decapsulated by this device and were sourced from a remote host within this EID-prefix.

::= { lispMapCacheEntry 8 }

lispMapCacheEncapOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The number of octets of Lisp packets that were encapsulated by this device using the given EID-prefix in the map cache."
::= { lispMapCacheEntry 9 }

lispMapCacheEncapPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The number of Lisp packets that were encapsulated by this device using the given EID-prefix in the map cache."
::= { lispMapCacheEntry 10 }

lispMapCacheLocatorTable OBJECT-TYPE
SYNTAX SEQUENCE OF lispMapCacheLocatorEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table represents the set of locators per EID prefix contained in the map-cache table of an ITR."
REFERENCE "[LISP]"
::= { lisp 5 }

lispMapCacheLocatorEntry OBJECT-TYPE
SYNTAX lispMapCacheLocatorEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) in the lispMapCacheLocatorTable."
INDEX
{ lispMapCacheLocatorEidLength
 lispMapCacheLocatorEid
 lispMapCacheLocatorRlocLength

lispMapCacheLocatorRloc } ::= { lispMapCacheLocatorTable 1 }

lispMapCacheLocatorEntry ::= SEQUENCE {
 lispMapCacheLocatorEidLength INTEGER,
 lispMapCacheLocatorEid LispAddressType,
 lispMapCacheLocatorRlocLength INTEGER,
 lispMapCacheLocatorRloc LispAddressType,
 lispMapCacheLocatorRlocPriority INTEGER,
 lispMapCacheLocatorRlocWeight INTEGER,
 lispMapCacheLocatorRlocMPriority INTEGER,
 lispMapCacheLocatorRlocMWeight INTEGER,
 lispMapCacheLocatorRlocState INTEGER,
 lispMapCacheLocatorRlocUpTime TimeTicks,
 lispMapCacheLocatorRlocLastPriorityChange TimeTicks,
 lispMapCacheLocatorRlocLastWeightChange TimeTicks,
 lispMapCacheLocatorRlocLastMPriorityChange TimeTicks,
 lispMapCacheLocatorRlocLastMWeightChange TimeTicks,
 lispMapCacheLocatorRlocLastStateChange TimeTicks,
 lispMapCacheLocatorRlocRtt TimeTicks,
 lispMapCacheLocatorRlocDecapOctets Counter64,
 lispMapCacheLocatorRlocDecapPackets Counter64,
 lispMapCacheLocatorRlocEncapOctets Counter64,
 lispMapCacheLocatorRlocEncapPackets Counter64
}

lispMapCacheLocatorEidLength OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This object is used to get the length of
 lispMapCacheLocatorEid, the next object."
 ::= { lispMapCacheLocatorEntry 1 }

lispMapCacheLocatorEid OBJECT-TYPE
SYNTAX LispAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The EID prefix of mapping cache mapped to the locator."
 ::= { lispMapCacheLocatorEntry 2 }

lispMapCacheLocatorRlocLength OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This object is used to get the length of
lispMapCacheLocatorRloc, the next object."
::= { lispMapCacheLocatorEntry 3 }

lispMapCacheLocatorRloc OBJECT-TYPE
SYNTAX LispAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The locator for the EID prefix in the mapping cache."
 ::= { lispMapCacheLocatorEntry 4 }

lispMapCacheLocatorRlocPriority OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "The unicast priority of the RLOC for this EID prefix."
 ::= { lispMapCacheLocatorEntry 5 }

lispMapCacheLocatorRlocWeight OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "The unicast weight of the RLOC for this EID prefix."
 ::= { lispMapCacheLocatorEntry 6 }

lispMapCacheLocatorRlocMPriority OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "The multicast priority of the RLOC for this EID prefix."
 ::= { lispMapCacheLocatorEntry 7 }

lispMapCacheLocatorRlocMWeight OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "The multicast weight of the RLOC for this EID prefix."
 ::= { lispMapCacheLocatorEntry 8 }

lispMapCacheLocatorRlocState OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current

DESCRIPTION
 "The state of this RLOC as per this device.
 0 is for up, 1 is for down ..."
::= { lispMapCacheLocatorEntry 9 }

lispMapCacheLocatorRlocUpTime OBJECT-TYPE
 SYNTAX TimeTicks
 MAX-ACCESS accessible
 STATUS current
 DESCRIPTION
 "The up-time of this RLOC."
::= { lispMapCacheLocatorEntry 10 }

lispMapCacheLocatorRlocLastPriorityChange OBJECT-TYPE
 SYNTAX TimeTicks
 MAX-ACCESS accessible
 STATUS current
 DESCRIPTION
 "Time since the last change of the unicast
 priority of the RLOC for this EID prefix."
::= { lispMapCacheLocatorEntry 11 }

lispMapCacheLocatorRlocLastWeightChange OBJECT-TYPE
 SYNTAX TimeTicks
 MAX-ACCESS accessible
 STATUS current
 DESCRIPTION
 "Time since the last change of the unicast weight
 of the RLOC for this EID prefix."
::= { lispMapCacheLocatorEntry 12 }

lispMapCacheLocatorRlocLastMPriorityChange OBJECT-TYPE
 SYNTAX TimeTicks
 MAX-ACCESS accessible
 STATUS current
 DESCRIPTION
 "Time since the last change of the multicast
 priority of the RLOC for this EID prefix."
::= { lispMapCacheLocatorEntry 13 }

lispMapCacheLocatorRlocLastMWeightChange OBJECT-TYPE
 SYNTAX TimeTicks
 MAX-ACCESS accessible
 STATUS current
 DESCRIPTION
 "Time since the last change of the multicast
 weight of the RLOC for this EID prefix."
::= { lispMapCacheLocatorEntry 14 }
lispMapCacheLocatorRlocLastStateChange OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"Time since the last change of the up/down
state of the RLOC for this EID prefix."
::= { lispMapCacheLocatorEntry 15 }

lispMapCacheLocatorRlocRtt OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"Round trip time of RLOC probe and map-reply
for this RLOC address for this prefix."
::= { lispMapCacheLocatorEntry 16 }

lispMapCacheLocatorRlocDecapOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The number of octets of Lisp packets that were
decapsulated by this device and were sourced
from a remote host within this EID-prefix and
were encapsulated for this RLOC."
::= { lispMapCacheLocatorEntry 17 }

lispMapCacheLocatorRlocDecapPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The number of octets of Lisp packets that were
decapsulated by this device and were sourced
from a remote host within this EID-prefix and
were encapsulated for this RLOC."
::= { lispMapCacheLocatorEntry 18 }

lispMapCacheLocatorRlocEncapOctets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The number of octets of Lisp packets that matched
this EID-prefix and were encapsulated using this
RLOC address."
::= { lispMapCacheLocatorEntry 19 }

lispMapCacheLocatorRlocEncapPackets OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The number of Lisp packets that matched this
EID-prefix and were encapsulated using this
RLOC address."
::= { lispMapCacheLocatorEntry 20 }

lispSiteTable OBJECT-TYPE
SYNTAX SEQUENCE OF lispSiteEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table provides the properties of each lisp
site that is served by this device when configured
to be a Map-Server."
REFERENCE "[LISP]"
::= { lisp 6 }

lispSiteEntry OBJECT-TYPE
SYNTAX lispSiteEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) in the lispSiteTable."
INDEX { lispSiteName
 lispSiteEidLength
 lispSiteEid }
::= { lispSiteTable 1 }

lispSiteEntry ::= SEQUENCE {
lispSiteName OCTET STRING,
lispSiteEidLength INTEGER,
lispSiteEid LispAddressType,
lispSiteEidRegisterState TruthValue,
lispSiteEidFirstRegisterTime TimeTicks,
lispSiteEidRegisterSenderLength INTEGER,
lispSiteEidRegisterSender LispAddressType,
lispSiteEidRouteTag Unsigned32,
lispSiteEidAuthenticationErrors Counter64,
lispSiteEidRegisterRlocsMismatch Counter64
}

lispSiteName OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..63))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Site name used by a Map-Server to distinguish
 different lisp sites that are registering with it."
 ::= { lispSiteEntry 1 }

lispSiteEidLength OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This object is used to get the length of
 lispSiteEid, the next object."
 ::= { lispSiteEntry 2 }

lispSiteEid OBJECT-TYPE
SYNTAX LispAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "The EID prefix belonging to this site."
 ::= { lispSiteEntry 3 }

lispSiteEidRegisterState OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "Indicates the registration status of the given
 EID prefix. Value 1 implies registered, value 0
 implies not registered."
 ::= { lispEntry 4 }

lispSiteEidFirstRegisterTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "Time since a first valid register message for
 the given EID prefix was received by this device."
 ::= { lispSiteEntry 5 }

lispSiteEidRegisterSenderLength OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
This object is used to get the length of lispSiteEidRegisterSender, the next object.

::= { lispSiteEntry 6 }

lispSiteEidRegisterSender OBJECT-TYPE
SYNTAX LispAddressType
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"Source address of the last valid register message for the given EID prefix that was received by this device."
::= { lispSiteEntry 7 }

lispSiteEidRouteTag OBJECT-TYPE
SYNTAX Unsigned32
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"Value of the routing table tag that contains the given EID prefix."
::= { lispSiteEntry 8 }

lispSiteEidAuthenticationErrors OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"Count of total authentication errors of map-registers received for the given EID prefix."
::= { lispSiteEntry 9 }

lispSiteEidRegisterRlocsMismatch OBJECT-TYPE
SYNTAX Counter64
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"Count of total map-registers received that had at least one RLOC that was not in the allowed list of RLOCs for the given EID prefix."
::= { lispSiteEntry 10 }

lispSiteLocatorTable OBJECT-TYPE
SYNTAX SEQUENCE OF lispSiteLocatorEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table provides the properties of all locators per lisp site that is served by this device when configured to be a Map-Server."
REFERENCE "[LISP]"
::= { lisp 7 }
lispSiteLocatorEntry OBJECT-TYPE
SYNTAX lispSiteLocatorEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"An entry (conceptual row) in the lispSiteLocatorTable."
INDEX
{ lispSiteLocatorName
 lispSiteLocatorEid
 lispSiteLocatorEidMaskLength
 lispSiteLocatorRlocLength
 lispSiteLocatorRloc
 lispSiteLocatorRlocState
}
::= { lispSiteLocatorTable 1 }
lispSiteLocatorEntry ::= SEQUENCE {
lispSiteLocatorName OCTET STRING,
lispSiteLocatorEidLength INTEGER,
lispSiteLocatorEid LispAddressType,
lispSiteLocatorRlocLength INTEGER,
lispSiteLocatorRloc LispAddressType,
lispSiteLocatorRlocState INTEGER,
lispSiteLocatorRlocPriority INTEGER,
lispSiteLocatorRlocWeight INTEGER,
lispSiteLocatorRlocMPriority INTEGER,
lispSiteLocatorRlocMWeight INTEGER,
lispSiteLocatorRlocRegisterState TruthValue,
lispSiteLocatorRlocFirstRegisterTime TimeTicks,
lispSiteLocatorRlocRegisterTimeLast TimeTicks,
lispSiteLocatorRlocRegisterSenderLength INTEGER,
lispSiteLocatorRlocRegisterSender LispAddressType,
lispSiteLocatorRlocProxyReply TruthValue
}
lispSiteLocatorIdentifier OBJECT-TYPE
SYNTAX OCTET STRING (SIZE(0..63))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Site name used by a Map-Server to distinguish different lisp sites that are registering with it."
::= { lispSiteLocatorEntry 1 }

lispSiteLocatorEidLength OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This object is used to get the length of
 lispSiteLocatorEid, the next object."
 ::= { lispSiteLocatorEntry 2 }

lispSiteLocatorEid OBJECT-TYPE
SYNTAX LispAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The EID prefix belonging to this site."
 ::= { lispSiteLocatorEntry 3 }

lispSiteLocatorRlocLength OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "This object is used to get the length of
 lispSiteLocatorRloc, the next object."
 ::= { lispSiteLocatorEntry 4 }

lispSiteLocatorRloc OBJECT-TYPE
SYNTAX LispAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION "The locator of the given EID prefix belonging
to this site."
 ::= { lispSiteLocatorEntry 5 }

lispSiteLocatorRlocState OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION "The cached state of this RLOC received in
 map-register by the device, in the capacity of
 a Map-Server. Value 0 refers to down, value 1
 refers to up."
 ::= { lispSiteLocatorEntry 6 }

lispSiteLocatorRlocPriority OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The unicast priority of the RLOC for this EID prefix."
::= { lispSiteLocatorEntry 7 }

lispSiteLocatorRlocWeight OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The unicast weight of the RLOC for this EID prefix."
::= { lispSiteLocatorEntry 8 }

lispSiteLocatorRlocMPriority OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The multicast priority of the RLOC for this EID prefix."
::= { lispSiteLocatorEntry 9 }

lispSiteLocatorRlocMWeight OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"The multicast weight of the RLOC for this EID prefix."
::= { lispSiteLocatorEntry 10 }

lispSiteLocatorRlocRegisterState OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"Indicates the registration status of the EID prefix by this locator. Value 1 implies registered, value 0 implies not registered."
::= { lispSiteLocatorEntry 11 }

lispSiteLocatorRlocFirstRegisterTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"Time since a first valid register message for this EID prefix was received from this locator."
::= { lispSiteLocatorEntry 12 }

lispSiteLocatorRlocLastRegisterTime OBJECT-TYPE
SYNTAX TimeTicks
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"Time since a last valid register message for this
EID prefix was received from this locator."
::= { lispSiteLocatorEntry 13 }

lispSiteLocatorRlocRegisterSenderLength OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"This object is used to get the length of
lispSiteLocatorRlocRegisterSender, the next object."
::= { lispSiteLocatorEntry 14 }

lispSiteLocatorRlocRegisterSender OBJECT-TYPE
SYNTAX LispAddressType
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"Source address of the last valid register message for
this EID prefix that was received from this locator."
::= { lispSiteLocatorEntry 15 }

lispSiteLocatorRlocProxyReply OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"Indicates proxy-replying status of the registering
locator of this EID prefix."
::= { lispSiteLocatorEntry 16 }

lispMapServersTable OBJECT-TYPE
SYNTAX SEQUENCE OF lispMapServersEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table provides the properties of the map-servers
with which this device is configured to register."
REFERENCE "[LISP]"
::= { lisp 8 }

lispMapServersEntry OBJECT-TYPE
SYNTAX lispMapServersEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "An entry (conceptual row) in the lispMapServersTable."
INDEX { lispMapServersAddressLength
 lispMapServersAddress }
 ::= { lispMapServersTable 1 }

lispMapServersEntry ::= SEQUENCE {
 lispMapServersAddressLength INTEGER,
 lispMapServersAddress LispAddressType,
 lispMapServersState INTEGER
}

lispMapServersAddressLength OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This object is used to get the length of
 lispMapServersAddress, the next object."
 ::= { lispMapServersEntry 1 }

lispMapServersAddress OBJECT-TYPE
SYNTAX LispAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Address of Map-Server configured on this device."
 ::= { lispMapServersEntry 2 }

lispMapServersState OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS accessible
STATUS current
DESCRIPTION
 "State of this Map-Server configured on this device.
 Value 0 implies that the Map-Server is down, and a
 value of 1 implies that the Map-Server is up."
 ::= { lispMapServersEntry 3 }

lispMapResolversTable OBJECT-TYPE
SYNTAX SEQUENCE OF lispMapResolversEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"This table provides the properties of all map
resolvers that this device is configured to use."
REFERENCE "[LISP]"
 ::= { lisp 9 }

lispMapResolversEntry OBJECT-TYPE
 SYNTAX lispMapResolversEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "An entry (conceptual row) in the lispMapResolversTable."
 INDEX { lispMapResolversAddressLength
 lispMapResolversAddress } :
 { lispMapResolversTable 1 }

lispMapResolversEntry ::= SEQUENCE {
 lispMapResolversAddressLength INTEGER,
 lispMapResolversAddress LispAddressType,
 lispMapResolversState INTEGER
}

lispMapResolversAddressLength OBJECT-TYPE
 SYNTAX INTEGER
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This object is used to get the length of
 lispMapResolversAddress, the next object."
 ::= { lispMapResolversEntry 1 }

lispMapResolversAddress OBJECT-TYPE
 SYNTAX LispAddressType
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "Address of map-resolver configured on this device."
 ::= { lispMapResolversEntry 2 }

lispMapResolversState OBJECT-TYPE
 SYNTAX TruthValue
 MAX-ACCESS accessible
 STATUS current
 DESCRIPTION
 "State of this map-resolver configured on this device.
 Value 0 implies that the map-resolver is down, and a
 value of 1 implies that this map-resolver is up."
 ::= { lispMapResolversEntry 3 }

lispUseProxyEtrTable OBJECT-TYPE
SYNTAX SEQUENCE OF lispUseProxyEtrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This table provides the properties of all Proxy ETRs
 that this device is configured to use."
REFERENCE "[LISP]"
 ::= { lisp 10 }

lispUseProxyEtrEntry OBJECT-TYPE
SYNTAX lispUseProxyEtrEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "An entry (conceptual row) in the lispUseProxyEtrTable."
INDEX { lispUseProxyEtrAddressLength
 lispUseProxyEtrAddress }
 ::= { lispUseProxyEtrTable 1 }
lispUseProxyEtrEntry ::= SEQUENCE {
 lispUseProxyEtrAddressLength INTEGER,
 lispUseProxyEtrAddress LispAddressType,
 lispUseProxyEtrState INTEGER
}

lispUseProxyEtrAddressLength OBJECT-TYPE
SYNTAX INTEGER
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "This object is used to get the length of
 lispUseProxyEtrAddress, the next object."
 ::= { lispUseProxyEtrEntry 1 }

lispUseProxyEtrAddress OBJECT-TYPE
SYNTAX LispAddressType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
 "Address of Proxy ETR configured on this device."
 ::= { lispUseProxyEtrEntry 2 }

lispUseProxyEtrState OBJECT-TYPE
SYNTAX TruthValue
MAX-ACCESS accessible
STATUS current
DESCRIPTION
"State of this Proxy ETR configured on this device. Value 0 implies that this Proxy ETR is down, and a value of 1 implies that this Proxy ETR is up."

::= { lispUseProxyEtrEntry 3 }

8. Relationship to Other MIB Modules

8.1. MIB modules required for IMPORTS

The LISP MIB imports the textual-convention AddressFamilyNumbers from the IANA-ADDRESS-FAMILY-NUMBERS-MIB [IANA].

9. Security Considerations

There are no management objects defined in this MIB module that have a MAX-ACCESS clause of read-write and/or read-create. As long as these MIB modules are implemented correctly, there are no risks that any management objects of this MIB module can modify device settings via direct SNMP SET operations.

There are no readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) that are considered sensitive.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPsec), there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of these MIB modules is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

10. IANA Considerations

LISP is an experimental protocol and the LISP MIB is an experimental MIB. No IANA actions are required by this document.
11. References

11.1. Normative References

11.2. Informative References

Appendix A. Change Log

This is the first version of draft-schudel-lisp-mib-00.

Appendix B. Open Issues

Open issues for the LISP MIB include the following:

1. This initial version of the LISP MIB draft does not include LISP Multicast considerations. Multicast considerations will be added in the next version of this draft.
Appendix C. Acknowledgments

An initial thank you goes to Dino Farinacci for his inputs and review comments on the initial versions of this draft. In addition, the authors would like to gratefully acknowledge many people who have reviewed and commented on this draft. They include: Darrel Lewis, Isidor Kouvelas, Jesper Skriver, and Selina Heimlich.

Authors’ Addresses

Gregg Schudel
cisco Systems
Tasman Drive
San Jose, CA 95134
USA

EMail: gschudel@cisco.com

Amit Jain
cisco Systems
Tasman Drive
San Jose, CA 95134
USA

EMail: amijain@cisco.com

Victor Moreno
cisco Systems
Tasman Drive
San Jose, CA 95134
USA

EMail: vimoreno@cisco.com