
Network Working Group P. Shafer
Internet-Draft Juniper Networks
Intended status: Informational September 23, 2010
Expires: March 27, 2011

 An Architecture for Network Management using NETCONF and YANG
 draft-ietf-netmod-arch-10

Abstract

 The Network Configuration Protocol (NETCONF) gives access to native
 capabilities of the devices within a network, defining methods for
 manipulating configuration databases, retrieving operational data,
 and invoking specific operations. YANG provides the means to define
 the content carried via NETCONF, both data and operations. Using
 both technologies, standard modules can be defined to give
 interoperability and commonality to devices, while still allowing
 devices to express their unique capabilities.

 This document describes how NETCONF and YANG help build network
 management applications that meet the needs of network operators.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 27, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Shafer Expires March 27, 2011 [Page 1]

Internet-Draft NETMODARCH September 2010

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Shafer Expires March 27, 2011 [Page 2]

Internet-Draft NETMODARCH September 2010

Table of Contents

 1. Origins of NETCONF and YANG 4
 2. Elements of the Architecture 6
 2.1. NETCONF . 6
 2.1.1. NETCONF Transport Mappings 8
 2.2. YANG . 9
 2.2.1. Constraints . 11
 2.2.2. Flexibility . 12
 2.2.3. Extensibility Model 12
 2.3. YANG Translations . 13
 2.3.1. YIN . 14
 2.3.2. DSDL (RELAX NG) 14
 2.4. YANG Types . 15
 2.5. IETF Guidelines . 15
 3. Working with YANG . 16
 3.1. Building NETCONF- and YANG-based Solutions 16
 3.2. Addressing Operator Requirements 17
 3.3. Roles in Building Solutions 20
 3.3.1. Modeler . 20
 3.3.2. Reviewer . 20
 3.3.3. Device Developer 20
 3.3.4. Application Developer 21
 4. Modeling Considerations 24
 4.1. Default Values . 24
 4.2. Compliance . 25
 4.3. Data Distinctions . 26
 4.3.1. Background . 26
 4.3.2. Definitions . 27
 4.3.3. Implications . 28
 4.4. Direction . 29
 5. Security Considerations 30
 6. IANA Considerations . 31
 7. Normative References . 32
 Author’s Address . 34

Shafer Expires March 27, 2011 [Page 3]

Internet-Draft NETMODARCH September 2010

1. Origins of NETCONF and YANG

 Networks are increasing in complexity and capacity, as well as the
 density of the services deployed upon them. Uptime, reliability, and
 predictable latency requirements drive the need for automation. The
 problems with network management are not simple. They are complex
 and intricate. But these problems must be solved for networks to
 meet the stability needs of existing services while incorporating new
 services in a world where the growth of networks is exhausting the
 supply of qualified networking engineers.

 In June of 2002, Internet Architecture Board (IAB) held a workshop on
 Network Management ([RFC3535]). The members of this workshop made a
 number of observations and recommendations for the IETF’s
 consideration concerning the issues operators were facing in their
 network management-related work as well as issues they were having
 with the direction of the IETF activities in this area.

 The output of this workshop was focused on current problems. The
 observations were reasonable and straight forward, including the need
 for transactions, rollback, low implementation costs, and the ability
 to save and restore the device’s configuration data. Many of the
 observations give insight into the problems operators were having
 with existing network management solutions, such as the lack of full
 coverage of device capabilities and the ability to distinguish
 between configuration data and other types of data.

 Based on these directions, the NETCONF working group was formed and
 the Network Configuration (NETCONF) protocol was created. This
 protocol defines a simple mechanism where network management
 applications, acting as clients, can invoke operations on the
 devices, which act as servers. The NETCONF specification ([RFC4741])
 defines a small set of operations, but goes out of its way to avoid
 making any requirements on the data carried in those operations,
 preferring to allow the protocol to carry any data. This "data model
 agnostic" approach allows data models to be defined independently.

 But lacking a means of defining data models, the NETCONF protocol was
 not usable for standards-based work. Existing data modeling
 languages such as the XML Schema Language (XSD) ([W3CXSD]) and the
 Document Schema Definition Languages (DSDL) ([ISODSDL]) were
 considered, but were rejected because the problem domains have little
 natural overlap. Defining a data model or protocol that is encoded
 in XML is a distinct problem from defining an XML document. The use
 of NETCONF operations place requirements on the data content that are
 not shared with the static document problem domain addressed by
 schema languages like XSD or RELAX NG.

Shafer Expires March 27, 2011 [Page 4]

Internet-Draft NETMODARCH September 2010

 In 2007 and 2008, the issue of a data modeling language for NETCONF
 was discussed in the OPS and APPS areas of IETF 70 and 71, and a
 design team was tasked with creating a requirements document (expired
 I-D draft-presuhn-rcdml-03.txt). After discussing the available
 options at the CANMOD BoF at IETF71, the community wrote a charter
 for the NETMOD working group. An excellent description of this time
 period is available at
 http://www.ietf.org/mail-archive/web/ietf/current/msg51644.html

 In 2008 and 2009, the NETMOD working group produced a specification
 for YANG ([RFCYANG]) as a means for defining data models for NETCONF,
 allowing both standard and proprietary data models to be published in
 a form that is easily digestible by human readers and satisfies many
 of the issues raised in the IAB NM workshop. This brings NETCONF to
 a point where is can be used to develop standard data models within
 the IETF.

 YANG allows a modeler to create a data model, to define the
 organization of the data in that model, and to define constraints on
 that data. Once published, the YANG module acts as a contract
 between the client and server, with both parties understanding how
 their peer will expect them to behave. A client knows how to create
 valid data for the server, and knows what data will be sent from the
 server. A server knows the rules that govern the data and how it
 should behave.

 YANG also incorporates a level of extensibility and flexibility not
 present in other model languages. New modules can augment the data
 hierarchies defined in other modules, seamlessly adding data at
 appropriate places in the existing data organization. YANG also
 allows new statements to be defined, allowing the language itself to
 be expanded in a consistent way.

 This document presents an architecture for YANG, describing how YANG-
 related technologies work and how solutions built on them can address
 the network management problem domain.

Shafer Expires March 27, 2011 [Page 5]

Internet-Draft NETMODARCH September 2010

2. Elements of the Architecture

2.1. NETCONF

 NETCONF defines an XML-based remote procedure call (RPC) mechanism
 that leverages the simplicity and availability of high-quality XML
 parsers. XML gives a rich, flexible, hierarchical, standard
 representation of data that matches the needs of networking devices.
 NETCONF carries configuration data and operations as requests and
 replies using RPCs encoded in XML over a connection-oriented
 transport.

 XML’s hierarchical data representation allows complex networking data
 to be rendered in a natural way. For example, the following
 configuration places interfaces in OSPF areas. The <ospf> element
 contains a list of <area> elements, each of which contain a list of
 <interface> elements. The <name> element identifies the specific
 area or interface. Additional configuration for each area or
 interface appears directly inside the appropriate element.

Shafer Expires March 27, 2011 [Page 6]

Internet-Draft NETMODARCH September 2010

 <ospf xmlns="http://example.org/netconf/ospf">

 <area>
 <name>0.0.0.0</name>

 <interface>
 <name>ge-0/0/0.0</name>
 <!-- The priority for this interface -->
 <priority>30</priority>
 <metric>100</metric>
 <dead-interval>120</dead-interval>
 </interface>

 <interface>
 <name>ge-0/0/1.0</name>
 <metric>140</metric>
 </interface>
 </area>

 <area>
 <name>10.1.2.0</name>

 <interface>
 <name>ge-0/0/2.0</name>
 <metric>100</metric>
 </interface>

 <interface>
 <name>ge-0/0/3.0</name>
 <metric>140</metric>
 <dead-interval>120</dead-interval>
 </interface>
 </area>
 </ospf>

 NETCONF includes mechanisms for controlling configuration datastores.
 Each datastore is a specific collection of configuration data that
 can be used as source or target of the configuration-related
 operations. The device can indicate whether it has a distinct
 "startup" configuration datastore, whether the current or "running"
 datastore is directly writable, or whether there is a "candidate"
 configuration datastore where configuration changes can be made that
 will not affect the device until a "commit-configuration" operation
 is invoked.

 NETCONF defines operations that are invoked as RPCs from the client
 (the application) to the server (running on the device). The
 following table lists some of these operations:

Shafer Expires March 27, 2011 [Page 7]

Internet-Draft NETMODARCH September 2010

 +---------------+---+
 | Operation | Description |
 +---------------+---+
commit	Commits the "candidate" configuration to
	"running"
copy-config	Copy one configuration datastore to another
delete-config	Delete a configuration datastore
edit-config	Change the contents of a configuration datastore
get-config	Retrieve all or part of a configuration datastore
lock	Prevent changes to a datastore from another party
unlock	Release a lock on a datastore
 +---------------+---+

 NETCONF’s "capability" mechanism allows the device to announce the
 set of capabilities that the device supports, including protocol
 operations, datastores, data models, and other abilities. These are
 announced during session establishment as part of the <hello>
 message. A client can inspect the hello message to determine what
 the device is capable of and how to interact with the device to
 perform the desired tasks.

 NETCONF also defines a means of sending asynchronous notifications
 from the server to the client, described in [RFC5277].

 In addition, NETCONF can fetch state data, receive notifications, and
 invoke additional RPC methods defined as part of a capability.
 Complete information about NETCONF can be found in [RFC4741].

2.1.1. NETCONF Transport Mappings

 NETCONF can run over any transport protocol that meets the
 requirements defined in RFC4741, including

 o connection-oriented operation

 o authentication

 o integrity

 o confidentiality

 [RFC4742] defines an mapping for the SSH ([RFC4251]) protocol, which
 is the mandatory transport protocol. Others include SOAP
 ([RFC4743]), BEEP ([RFC4744]), and TLS ([RFC5539]).

Shafer Expires March 27, 2011 [Page 8]

Internet-Draft NETMODARCH September 2010

2.2. YANG

 YANG is a data modeling language for NETCONF. It allows the
 description of hierarchies of data nodes ("nodes") and the
 constraints that exist among them. YANG defines data models and how
 to manipulate those models via NETCONF protocol operations.

 Each YANG module defines a data model, uniquely identified by a
 namespace URI. These data models are extensible in a manner that
 allows tight integration of standard data models and proprietary data
 models. Models are built from organizational containers, lists of
 data nodes and data node forming leafs of the data tree.

Shafer Expires March 27, 2011 [Page 9]

Internet-Draft NETMODARCH September 2010

 module example-ospf {
 namespace "http://example.org/netconf/ospf";
 prefix ospf;

 import network-types { // Access another module’s def’ns
 prefix nett;
 }

 container ospf { // Declare the top-level tag
 list area { // Declare a list of "area" nodes
 key name; // The key "name" identifies list members
 leaf name {
 type nett:area-id;
 }
 list interface {
 key name;
 leaf name {
 type nett:interface-name;
 }
 leaf priority {
 description "Designated router priority";
 type uint8; // The type is a constraint on
 // valid values for "priority".
 }
 leaf metric {
 type uint16 {
 range 1..65535;
 }
 }
 leaf dead-interval {
 units seconds;
 type uint16 {
 range 1..65535;
 }
 }
 }
 }
 }
 }

 A YANG module defines a data model in terms of the data, its
 hierarchical organization, and the constraints on that data. YANG
 defines how this data is represented in XML and how that data is used
 in NETCONF operations.

 The following table briefly describes some common YANG statements:

Shafer Expires March 27, 2011 [Page 10]

Internet-Draft NETMODARCH September 2010

 +--------------+--+
 | Statement | Description |
 +--------------+--+
augment	Extends existing data hierarchies
choice	Defines mutually exclusive alternatives
container	Defines a layer of the data hierarchy
extension	Allows new statements to be added to YANG
feature	Indicates parts of the model are optional
grouping	Groups data definitions into reusable sets
key	Defines the key leafs for lists
leaf	Defines a leaf node in the data hierarchy
leaf-list	A leaf node that can appear multiple times
list	A hierarchy that can appear multiple times
notification	Defines notification
rpc	Defines input and output parameters for an RPC
	operation
typedef	Defines a new type
uses	Incorporates the contents of a "grouping"
 +--------------+--+

2.2.1. Constraints

 YANG allows the modeler to add constraints to the data model to
 prevent impossible or illogical data. These constraints give clients
 information about the data being sent from the device, and also allow
 the client to know as much as possible about the data the device will
 accept, so the client can send correct data. These constraints apply
 to configuration data, but can also be used for rpc and notification
 data.

 The principal constraint is the "type" statement, which limits the
 contents of a leaf node to that of the named type. The following
 table briefly describes some other common YANG constraints:

 +--------------+--+
 | Statement | Description |
 +--------------+--+
length	Limits the length of a string
mandatory	Requires the node appear
max-elements	Limits the number of instances in a list
min-elements	Limits the number of instances in a list
must	XPath expression must be true
pattern	Regular expression must be satisfied
range	Value must appear in range
reference	Value must appear elsewhere in the data
unique	Value must be unique within the data
when	Node is only present when XPath expression is true
 +--------------+--+

Shafer Expires March 27, 2011 [Page 11]

Internet-Draft NETMODARCH September 2010

 The "must" and "when" statements use XPath ([W3CXPATH]) expressions
 to specify conditions that are semantically evaluated against the
 data hierarchy, but neither the client nor the server are required to
 implement the XPath specification. Instead they can use any means to
 ensure these conditions are met.

2.2.2. Flexibility

 YANG uses the "union" type and the "choice" and "feature" statements
 to give modelers flexibility in defining their data models. The
 "union" type allows a single leaf to accept multiple types, like an
 integer or the word "unbounded":

 type union {
 type int32;
 type enumeration {
 enum "unbounded";
 }
 }

 The "choice" statement lists a set of mutually exclusive nodes, so a
 valid configuration can choose any one node (or case). The "feature"
 statement allows the modeler to identify parts of the model which can
 be optional, and allows the device to indicate whether it implements
 these optional portions.

 The "deviation" statement allows the device, to indicate parts of a
 YANG module which the device does not faithfully implement. While
 devices are encouraged to fully abide according to the contract
 presented in the YANG module, real world situations may force the
 device to break the contract. Deviations give a means of declaring
 this limitation, rather than leaving it to be discovered via run-time
 errors.

2.2.3. Extensibility Model

 XML includes the concept of namespaces, allowing XML elements from
 different sources to be combined in the same hierarchy without
 risking collision. YANG modules define content for specific
 namespaces, but one module may augment the definition of another
 module, introducing elements from that module’s namespace into the
 first module’s hierarchy.

 Since one module can augment another module’s definition, hierarchies
 of definitions are allowed to grow, as definitions from multiple
 sources are added to the base hierarchy. These augmentations are
 qualified using the namespace of the source module, helping to avoid
 issues with name conflicts as the modules change over time.

Shafer Expires March 27, 2011 [Page 12]

Internet-Draft NETMODARCH September 2010

 For example, if the above OSPF configuration were the standard, a
 vendor module may augment this with vendor-specific extensions.

 module vendorx-ospf {
 namespace "http://vendorx.example.com/ospf";
 prefix vendorx;

 import example-ospf {
 prefix ospf;
 }

 augment /ospf:ospf/ospf:area/ospf:interfaces {
 leaf no-neighbor-down-notification {
 type empty;
 description "Don’t inform other protocols about"
 + " neighbor down events";
 }
 }
 }

 The <no-neighbor-down-notification> element is then placed in the
 vendorx namespace:

 <ospf xmlns="http://example.org/netconf/ospf"
 xmlns:vendorx=""http://vendorx.example.com/ospf">

 <area>
 <name>0.0.0.0</name>

 <interface>
 <name>ge-0/0/0.0</name>
 <priority>30</priority>
 <vendorx:no-neighbor-down-notification/>
 </interface>

 </area>
 </ospf>

 Augmentations are seamlessly integrated with base modules, allowing
 them to be fetched, archived, loaded, and deleted within their
 natural hierarchy. If a client application asks for the
 configuration for a specific OSPF area, it will receive the sub-
 hierarchy for that area, complete with any augmented data.

2.3. YANG Translations

 The YANG data modeling language is the central piece of a group of
 related technologies. The YANG language itself, described in

Shafer Expires March 27, 2011 [Page 13]

Internet-Draft NETMODARCH September 2010

 [RFCYANG], defines the syntax of the language and its statements, the
 meaning of those statements, and how to combine them to build the
 hierarchy of nodes that describe a data model.

 That document also defines the "on the wire" XML content for NETCONF
 operations on data models defined in YANG modules. This includes the
 basic mapping between YANG data tree nodes and XML elements, as well
 as mechanisms used in <edit-config> content to manipulate that data,
 such as arranging the order of nodes within a list.

 YANG uses a syntax that is regular and easily described, primarily
 designed for human readability. YANG’s syntax is friendly to email,
 diff, patch, and the constraints of RFC formatting.

2.3.1. YIN

 In some environments, incorporating a YANG parser may not be an
 acceptable option. For those scenarios, an XML grammar for YANG is
 defined as YIN (YANG Independent Notation). YIN allows the use of
 XML parsers which are readily available in both open source and
 commercial versions. Conversion between YANG and YIN is direct,
 loss-less and reversible. YANG statements are converted to XML
 elements, preserving the structure and content of YANG, but enabling
 the use of off-the-shelf XML parsers rather than requiring the
 integration of a YANG parser. YIN maintains complete semantic
 equivalence with YANG.

2.3.2. DSDL (RELAX NG)

 Since NETCONF content is encoded in XML, it is natural to use XML
 schema languages for their validation. To facilitate this, YANG
 offers a standardized mapping of YANG modules into Document Schema
 Description Languages ([RFCYANGDSDL]), of which RELAX NG is a major
 component.

 DSDL is considered to be the best choice as a standard schema
 language because it addresses not only grammar and datatypes of XML
 documents but also semantic constraints and rules for modifying the
 information set of the document.

 In addition, DSDL offers formal means for coordinating multiple
 independent schemas and specifying how to apply the schemas to the
 various parts of the document. This is useful since YANG content is
 typically composed of multiple vocabularies.

Shafer Expires March 27, 2011 [Page 14]

Internet-Draft NETMODARCH September 2010

2.4. YANG Types

 YANG supports a number of builtin types, and allows additional types
 to be derived from those types in an extensible manner. New types
 can add additional restrictions to allowable data values.

 A standard type library for use by YANG is available [RFCYANGTYPES].
 These YANG modules define commonly used data types for IETF-related
 standards.

2.5. IETF Guidelines

 A set of additional guidelines are defined that indicate desirable
 usage for authors and reviewers of standards track specifications
 containing YANG data model modules ([RFCYANGUSAGE]). These
 guidelines should be used as a basis for reviews of other YANG data
 model documents.

Shafer Expires March 27, 2011 [Page 15]

Internet-Draft NETMODARCH September 2010

3. Working with YANG

3.1. Building NETCONF- and YANG-based Solutions

 In the typical YANG-based solution, the client and server are driven
 by the content of YANG modules. The server includes the definitions
 of the modules as meta-data that is available to the NETCONF engine.
 This engine processes incoming requests, uses the meta-data to parse
 and verify the request, performs the requested operation, and returns
 the results to the client.

 +----------------------------+
 |Server (device) |
 | +--------------------+ |
 | | configuration | |
 +----+ | | ---------------| |
 |YANG|+ | | m d state data | |
 |mods||+ | | e a ---------------| |
 +----+|| -----> | t t notifications | |
 +----+| | | a a ---------------| |
 +----+ | | operations | |
 | +--------------------+ |
 | ^ |
 | | |
 | v |
 +------+ | +-------------+ |
 | | -------------> | | | |
 |Client| <rpc> | | NETCONF | |
 | (app)| | | engine | |
 | | <------------ | | |
 +------+ <rpc-reply> +-------------+ |
 | / \ |
 | / \ |
 | / \ |
 | +--------+ +---------+ |
 | | config | |system |+ | | |
 | | data- | |software ||+ |
 | | base | |component||| |
 | +--------+ +---------+|| |
 | +---------+| |
 | +---------+ |
 +----------------------------+

 To use YANG, YANG modules must be defined to model the specific
 problem domain. These modules are then loaded, compiled, or coded
 into the server.

 The sequence of events for the typical client/server interaction may

Shafer Expires March 27, 2011 [Page 16]

Internet-Draft NETMODARCH September 2010

 be as follows:

 o A client application ([C]) opens a NETCONF session to the server
 (device) ([S])

 o [C] and [S] exchange <hello> messages containing the list of
 capabilities supported by each side, allowing [C] to learn the
 modules supported by [S]

 o [C] builds and sends an operation defined in the YANG module,
 encoded in XML, within NETCONF’s <rpc> element

 o [S] receives and parses the <rpc> element

 o [S] verifies the contents of the request against the data model
 defined in the YANG module

 o [S] performs the requested operation, possibly changing the
 configuration datastore

 o [S] builds the response, containing the response, any requested
 data, and any errors

 o [S] sends the response, encoded in XML, within NETCONF’s
 <rpc-reply> element

 o [C] receives and parses the <rpc-reply> element

 o [C] inspects the response and processes it as needed

 Note that there is no requirement for the client or server to process
 the YANG modules in this way. The server may hard code the contents
 of the data model, rather than handle the content via a generic
 engine. Or the client may be targeted at the specific YANG model,
 rather than being driven generically. Such a client might be a
 simple shell script that stuffs arguments into an XML payload
 template and sends it to the server.

3.2. Addressing Operator Requirements

 NETCONF and YANG address many of the issues raised in the IAB NM
 workshop.

 o Ease of use: YANG is designed to be human friendly, simple and
 readable. Many tricky issues remain due to the complexity of the
 problem domain, but YANG strives to make them more visible and
 easier to deal with.

Shafer Expires March 27, 2011 [Page 17]

Internet-Draft NETMODARCH September 2010

 o Configuration and state data: YANG clearly divides configuration
 data from other types of data.

 o Transactions: NETCONF provides a simple transaction mechanism.

 o Generation of deltas: A YANG module gives enough information to
 generate the delta needed to change between two configuration data
 sets.

 o Dump and restore: NETCONF gives the ability to save and restore
 configuration data. This can also performed for a specific YANG
 module.

 o Network-wide configuration: NETCONF supports robust network-wide
 configuration transactions via the commit and confirmed-commit
 capability. When a change is attempted that affects multiple
 devices, these capabilities simplifies the management of failure
 scenarios, resulting in the ability to have transactions that will
 dependably succeed or fail atomically.

 o Text-friendly: YANG modules are very text friendly, as is the data
 they define.

 o Configuration handling: NETCONF addresses the ability to
 distinguish between distributing configuration data and activating
 it.

 o Task-oriented: A YANG module can define specific tasks as RPC
 operations. A client can choose to invoke the RPC operation or to
 access any underlying data directly.

 o Full coverage: YANG modules can be defined that give full coverage
 to all the native abilities of the device. Giving this access
 avoids the need to resort to the command line interface (CLI)
 using tools such as Expect ([SWEXPECT]).

 o Timeliness: YANG modules can be tied to CLI operations, so all
 native operations and data are immediately available.

 o Implementation difficulty: YANG’s flexibility enables modules that
 can be more easily implemented. Adding "features" and replacing
 "third normal form" with a natural data hierarchy should reduce
 complexity.

 o Simple data modeling language: YANG has sufficient power to be
 usable in other situations. In particular, on-box API and native
 CLI can be integrated to achieve simplification of the
 infrastructure.

Shafer Expires March 27, 2011 [Page 18]

Internet-Draft NETMODARCH September 2010

 o Internationalization: YANG uses UTF-8 ([RFC3629]) encoded unicode
 characters.

 o Event correlation: YANG integrates RPC operations, notification,
 configuration and state data, enabling internal references. For
 example, a field in a notification can be tagged as pointing to a
 BGP peer, and the client application can easily find that peer in
 the configuration data.

 o Implementation costs: Significant effort has been made to keep
 implementation costs as low as possible.

 o Human friendly syntax: YANG’s syntax is optimized for the reader,
 specifically the reviewer on the basis that this is the most
 common human interaction.

 o Post-processing: Use of XML will maximize the opportunities for
 post-processing of data, possibly using XML-based technologies
 like XPath ([W3CXPATH], XQuery ([W3CXQUERY]), and XSLT
 ([W3CXSLT]).

 o Semantic mismatch: Richer, more descriptive data models will
 reduce the possibility of semantic mismatch. With the ability to
 define new primitives, YANG modules will be more specific in
 content, allowing more enforcement of rules and constraints.

 o Security: NETCONF runs over transport protocols secured by SSH or
 TLS, allowing secure communications and authentication using well-
 trusted technology. The secure transport can use existing key and
 credential management infrastructure, reducing deployment costs.

 o Reliable: NETCONF and YANG are solid and reliable technologies.
 NETCONF is connection based, and includes automatic recovery
 mechanisms when the connection is lost.

 o Delta friendly: YANG-based models support operations that are
 delta friendly. Add, change, insert, and delete operations are
 all well defined.

 o Method-oriented: YANG allows new RPC operations to be defined,
 including an operation name, which is essentially a method. The
 input and output parameters of the RPC operations are also defined
 in the YANG module.

Shafer Expires March 27, 2011 [Page 19]

Internet-Draft NETMODARCH September 2010

3.3. Roles in Building Solutions

 Building NETCONF- and YANG-based solutions requires interacting with
 many distinct groups. Modelers must understand how to build useful
 models that give structure and meaning to data while maximizing the
 flexibility of that data to "future proof" their work. Reviewers
 need to quickly determine if that structure is accurate. Device
 developers need to code that data model into their devices, and
 application developers need to code their applications to take
 advantage of that data model. There are a variety of strategies for
 performing each piece of this work. This section discusses some of
 those strategies.

3.3.1. Modeler

 The modeler defines a data model based on their in-depth knowledge of
 the problem domain being modeled. This model should be as simple as
 possible, but should balance complexity with expressiveness. The
 organization of the model should target not only the current model,
 but should allow for extensibility from other modules and for
 adaptability to future changes.

 Additional modeling issues are discussed in Section 4.

3.3.2. Reviewer

 The reviewer role is perhaps the most important and the time
 reviewers are willing to give is precious. To help the reviewer,
 YANG stresses readability, with a human-friendly syntax, natural data
 hierarchy, and simple, concise statements.

3.3.3. Device Developer

 The YANG model tells the device developer what data is being modeled.
 The developer reads the YANG models and writes code that supports the
 model. The model describes the data hierarchy and associated
 constraints, and the description and reference material helps the
 developer understand how to transform the models view into the
 device’s native implementation.

3.3.3.1. Generic Content Support

 The YANG model can be compiled into a YANG-based engine for either
 the client or server side. Incoming data can be validated, as can
 outgoing data. The complete configuration datastore may be validated
 in accordance with the constraints described in the data model.

 Serializers and deserializers for generating and receiving NETCONF

Shafer Expires March 27, 2011 [Page 20]

Internet-Draft NETMODARCH September 2010

 content can be driven by the meta-data in the model. As data is
 received, the meta-data is consulted to ensure the validity of
 incoming XML elements.

3.3.3.2. XML Definitions

 The YANG module dictates the XML encoding for data sent via NETCONF.
 The rules that define the encoding are fixed, so the YANG module can
 be used to ascertain whether a specific NETCONF payload is obeying
 the rules.

3.3.4. Application Developer

 The YANG module tells the application developer what data can be
 modeled. Developers can inspect the modules and take one of three
 distinct views. In this section, we will consider them and the
 impact of YANG on their design. In the real world, most applications
 are a mixture of these approaches.

3.3.4.1. Hard Coded

 An application can be coded against the specific, well-known contents
 of YANG modules, implementing their organization, rules, and logic
 directly with explicit knowledge. For example, a script could be
 written to change the domain name of a set of devices using a
 standard YANG module that includes such a leaf node. This script
 takes the new domain name as an argument and inserts it into a string
 containing the rest of the XML encoding as required by the YANG
 module. This content is then sent via NETCONF to each of the
 devices.

 This type of application is useful for small, fixed problems where
 the cost and complexity of flexibility is overwhelmed by the ease of
 hard coding direct knowledge into the application.

3.3.4.2. Bottom Up

 An application may take a generic, bottom up approach to
 configuration, concentrating on the device’s data directly and
 treating that data without specific understanding.

 YANG modules may be used to drive the operation of the YANG
 equivalent of a "MIB Browser". Such an application manipulates the
 device’s configuration data based on the data organization contained
 in the YANG module. For example, a GUI may present a straight-
 forward visualization where elements of the YANG hierarchy are
 depicted in a hierarchy of folders or GUI panels. Clicking on a line
 expands to the contents of the matching XML hierarchy.

Shafer Expires March 27, 2011 [Page 21]

Internet-Draft NETMODARCH September 2010

 This type of GUI can easily be built by generating XSLT stylesheets
 from the YANG data models. An XSLT engine can then be used to turn
 configuration data into a set of web pages.

 The YANG modules allow the application to enforce a set of
 constraints without understanding the semantics of the YANG module.

3.3.4.3. Top Down

 In contrast to the bottom-up approach, the top-down approach allows
 the application to take a view of the configuration data which is
 distinct from the standard and/or proprietary YANG modules. The
 application is free to construct its own model for data organization
 and to present this model to the user. When the application needs to
 transmit data to a device, the application transforms its data from
 the problem-oriented view of the world into the data needed for that
 particular device. This transformation is under the control and
 maintenance of the application, allowing the transformation to be
 changed and updated without affecting the device.

 For example, an application could be written that models VPNs in a
 network-oriented view. The application would need to transform these
 high-level VPN definitions into the configuration data that would be
 handed to any particular device within a VPN.

 Even in this approach, YANG is useful since it can be used to model
 the VPN. For example, the following VPN straw-man models a list of
 VPNs, each with a protocol, a topology, a list of member interfaces,
 and a list of classifiers.

Shafer Expires March 27, 2011 [Page 22]

Internet-Draft NETMODARCH September 2010

 list example-bgpvpn {
 key name;
 leaf name { ... }
 leaf protocol {
 type enumeration {
 enum bgpvpn;
 enum l2vpn;
 }
 }
 leaf topology {
 type enumeration {
 enum hub-n-spoke;
 enum mesh;
 }
 }
 list members {
 key "device interface";
 leaf device { ... }
 leaf interface { ... }
 }
 list classifiers {
 ...
 }
 }

 The application can use such a YANG module to drive its operation,
 building VPN instances in a database and then pushing the
 configuration for those VPNs to individual devices using either a
 standard device model (e.g. example-bgpvpn.yang) or by transforming
 that standard device content into some proprietary format for devices
 that do not support that standard.

Shafer Expires March 27, 2011 [Page 23]

Internet-Draft NETMODARCH September 2010

4. Modeling Considerations

 This section discusses considerations the modeler should be aware of
 while developing models in YANG.

4.1. Default Values

 The concept of default values is simple, but their details,
 representation, and interaction with configuration data can be
 difficult issues. NETCONF leaves default values as a data model
 issue, and YANG gives flexibility to the device implementation in
 terms of how default values are handled. The requirement is that the
 device "MUST operationally behave as if the leaf was present in the
 data tree with the default value as its value". This gives the
 device implementation choices in how default values are handled.

 One choice is to view the configuration as a set of instructions for
 how the device should be configured. If a data value that is given
 as part of those instructions is the default value, then it should be
 retained as part of the configuration, but if it is not explicitly
 given, then the value is not considered to be part of configuration.

 Another choice is to trim values that are identical to the default
 values, implicitly removing them from the configuration datastore.
 The act of setting a leaf to its default value effectively deletes
 that leaf.

 The device could also choose to report all default values, regardless
 of whether they were explicitly set. This choice eases the work of a
 client that needs default values, but may significantly increase the
 size of the configuration data.

 These choices reflect the default handling schemes of widely deployed
 networking devices and supporting them allows YANG to reduce
 implementation and deployment costs of YANG-based models.

 When the client retrieves data from the device, it must be prepared
 to handle the absence of leaf nodes with the default value, since the
 server is not required to send such leaf elements. This permits the
 device to implement either of the first two default handling schemes
 given above.

 Regardless of the implementation choice, the device can support the
 "with-defaults" capability ([RFCWITHDEFAULTS]) and give the client
 the ability to select the desired handling of default values.

 When evaluating the XPath expressions for constraints like "must" and
 "when", the evaluation context for the expressions will include any

Shafer Expires March 27, 2011 [Page 24]

Internet-Draft NETMODARCH September 2010

 appropriate default values, so the modeler can depend on consistent
 behavior from all devices.

4.2. Compliance

 In developing good data models, there are many conflicting interests
 the data modeler must keep in mind. Modelers need to be aware of
 five issues with models and devices:

 o usefulness

 o compliance

 o flexibility

 o extensibility

 o deviations

 For a model to be interesting, it must be useful, solving a problem
 in a more direct or more powerful way than can be accomplished
 without the model. The model should maximize the usefulness of the
 model with in the problem domain.

 Modelers should build models that maximize the number of devices that
 can faithfully implement the model. If the model is drawn too
 narrowly, or includes too many assumptions about the device, then the
 difficulty and cost of accurately implementing the model will lead to
 low quality implementations, interoperability issues, and will reduce
 the value of the model.

 Modelers can use the "feature" statement in their models to give the
 device some flexibility by partitioning their model and allowing the
 device to indicate which portions of the model are implemented on the
 device. For example, if the model includes some a "logging" feature
 , a device with no storage facilities for the log can tell the client
 that it does not support this feature of the model.

 Models can be extended via the "augment" statement, and the modeler
 should consider how their model is likely to be extended. These
 augmentations can be defined by vendors, applications, or standards
 bodies.

 Deviations are a means of allowing the devices to indicate where its
 implementation is not in full compliance with the model. For
 example, once a model is published, an implementer may decide to make
 a particular node configurable, where the standard model describes it
 as state data. The implementation reports the value normally and may

Shafer Expires March 27, 2011 [Page 25]

Internet-Draft NETMODARCH September 2010

 declare a deviation that this device behaves in a different manner
 than the standard. Applications capable of discovering this
 deviation can make allowances, but applications that do not discover
 the deviation can continue treating the implementation as if it were
 compliant.

 Rarely, implementations may make decisions that prevent compliance
 with the standard. Such occasions are regrettable, but they remain a
 part of reality, and modelers and application writers ignore them at
 their own risk. An implementation that emits an integer leaf as
 "cow" would be difficult to manage, but applications should expect to
 encounter such misbehaving devices in the field.

 Despite this, both client and server should view the YANG module as a
 contract, with both sides agreeing to abide by the terms. The
 modeler should be explicit about the terms of such a contract, and
 both client and server implementations should strive to faithfully
 and accurately implement the data model described in the YANG module.

4.3. Data Distinctions

 The distinction between configuration data, operational state data,
 and statistics is important to understand for data model writers and
 people who plan to extend the NETCONF protocol. This section first
 discusses some background and then provides a definition and some
 examples.

4.3.1. Background

 During the IAB NM workshop, operators did formulate the following two
 requirements:

 2. It is necessary to make a clear distinction between
 configuration data, data that describes operational state
 and statistics. Some devices make it very hard to determine
 which parameters were administratively configured and which
 were obtained via other mechanisms such as routing
 protocols.

 3. It is required to be able to fetch separately configuration
 data, operational state data, and statistics from devices,
 and to be able to compare these between devices.

 The NETCONF protocol defined in RFC 4741 distinguishes two types of
 data, namely configuration data and state data:

Shafer Expires March 27, 2011 [Page 26]

Internet-Draft NETMODARCH September 2010

 Configuration data is the set of writable data that is
 required to transform a system from its initial default state
 into its current state.

 State data is the additional data on a system that is not
 configuration data such as read-only status information and
 collected statistics.

 NETCONF does not follow the distinction formulated by the operators
 between configuration data, operational state data, and statistical
 data, since it considers state data to include both statistics and
 operational state data.

4.3.2. Definitions

 Below is a definition for configuration data, operational state data,
 and statistical data. The definition borrows from previous work.

 o Configuration data is the set of writable data that is required to
 transform a system from its initial default state into its current
 state. [RFC4741]

 o Operational state data is a set of data that has been obtained by
 the system at runtime and influences the system’s behaviour
 similar to configuration data. In contrast to configuration data,
 operational state is transient and modified by interactions with
 internal components or other systems via specialized protocols.

 o Statistical data is the set of read-only data created by a system
 itself. It describes the performance of the system and its
 components.

 The following examples help to clarify the difference between
 configuration data, operational state data and statistical data.

4.3.2.1. Example 1: IP Routing Table

 IP routing tables can contain entries that are statically configured
 (configuration data) as well as entries obtained from routing
 protocols such as OSPF (operational state data). In addition, a
 routing engine might collect statistics like how often a particular
 routing table entry has been used.

4.3.2.2. Example 2: Interfaces

 Network interfaces usually come with a large number of attributes
 that are specific to the interface type and in some cases specific to
 the cable plugged into an interface. Examples are the maximum

Shafer Expires March 27, 2011 [Page 27]

Internet-Draft NETMODARCH September 2010

 transmission unit of an interface or the speed detected by an
 Ethernet interface.

 In many deployments, systems use the interface attributes detected
 when an interface is initialized. As such, these attributes
 constitute operational state. However, there are usually provisions
 to overwrite the discovered attributes with static configuration
 data, like for example configuring the interface MTU to use a
 specific value or forcing an Ethernet interface to run at a given
 speed.

 The system will record statistics (counters) measuring the number of
 packets, bytes, and errors received and transmitted on each
 interface.

4.3.2.3. Example 3: Account Information

 Systems usually maintain static configuration information about the
 accounts on the system. In addition, systems can obtain information
 about accounts from other sources (e.g. LDAP, NIS) dynamically,
 leading to operational state data. Information about account usage
 are examples of statistic data.

 Note that configuration data supplied to a system in order to create
 a new account might be supplemented with additional configuration
 information determined by the system when the account is being
 created (such as a unique account id). Even though the system might
 create such information, it usually becomes part of the static
 configuration of the system since this data is not transient.

4.3.3. Implications

 The primary focus of YANG is configuration data. There is no single
 mechanism defined for the separation of operational state data and
 statistics since NETCONF treats them both as state data. This
 section describes several different options for addressing this
 issue.

4.3.3.1. Data Models

 The first option is to have data models that explicitly differentiate
 between configuration data and operational state data. This leads to
 duplication of data structures and might not scale well from a
 modeling perspective.

 For example, the configured duplex value and the operational duplex
 value would be distinct leafs in the data model.

Shafer Expires March 27, 2011 [Page 28]

Internet-Draft NETMODARCH September 2010

4.3.3.2. Additional Operations to Retrieve Operational State

 The NETCONF protocol can be extended with new protocol operations
 that specifically allow the retrieval of all operational state, e.g.
 by introducing a <get-ops> operation (and perhaps also a <get-stats>
 operation).

4.3.3.3. Introduction of an Operational State Datastore

 Another option could be to introduce a new "configuration" data store
 that represents the operational state. A <get-config> operation on
 the <operational> data store would then return the operational state
 determining the behaviour of the box instead of its static and
 explicit configuration state.

4.4. Direction

 At this time, the only viable solution is to distinctly model the
 configuration and operational values. The configuration leaf would
 indicate the desired value, as given by the user, and the operational
 leaf would indicate the current value, as observed on the device.

 In the duplex example, this would result in two distinct leafs being
 defined, "duplex" and "op-duplex", one with "config true" and one
 with "config false".

 In some cases, distinct leafs would be used, but in others, distinct
 lists might be used. Distinct lists allows the list to be organized
 in different ways, with different constraints. Keys, sorting, and
 constraint statements like must, unique, or when may differ between
 configuration data and operational data.

 For example, configured static routes might be a distinct list from
 the operational routing table, since the use of keys and sorting
 might differ.

Shafer Expires March 27, 2011 [Page 29]

Internet-Draft NETMODARCH September 2010

5. Security Considerations

 This document discusses an architecture for network management using
 NETCONF and YANG. It has no security impact on the Internet.

Shafer Expires March 27, 2011 [Page 30]

Internet-Draft NETMODARCH September 2010

6. IANA Considerations

 This document has no actions for IANA.

Shafer Expires March 27, 2011 [Page 31]

Internet-Draft NETMODARCH September 2010

7. Normative References

 [ISODSDL] International Organization for Standardization, "Document
 Schema Definition Languages (DSDL) - Part 1: Overview",
 ISO/IEC 19757-1, November 2004.

 [RFC3535] Schoenwaelder, J., "Overview of the 2002 IAB Network
 Management Workshop", RFC 3535, May 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC4742] Wasserman, M. and T. Goddard, "Using the NETCONF
 Configuration Protocol over Secure SHell (SSH)", RFC 4742,
 December 2006.

 [RFC4743] Goddard, T., "Using NETCONF over the Simple Object Access
 Protocol (SOAP)", RFC 4743, December 2006.

 [RFC4744] Lear, E. and K. Crozier, "Using the NETCONF Protocol over
 the Blocks Extensible Exchange Protocol (BEEP)", RFC 4744,
 December 2006.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, July 2008.

 [RFC5539] Badra, M., "NETCONF over Transport Layer Security (TLS)",
 RFC 5539, May 2009.

 [RFCWITHDEFAULTS]
 Bierman, A. and B. Lengyel, "With-defaults capability for
 NETCONF", draft-ietf-netconf-with-defaults-11.txt (work in
 progress).

 [RFCYANG] Bjorklund, M., Ed., "YANG - A data modeling language for
 the Network Configuration Protocol (NETCONF)",
 draft-ietf-netmod-yang-13 (work in progress).

 [RFCYANGDSDL]
 Lhotka, L., Mahy, R., and S. Chishom, "Mapping YANG to
 Document Schema Definition Languages and Validating
 NETCONF Content", draft-ietf-netmod-dsdl-map-07 (work in

Shafer Expires March 27, 2011 [Page 32]

Internet-Draft NETMODARCH September 2010

 progress).

 [RFCYANGTYPES]
 Schoenwaelder, J., "Common YANG Data Types",
 draft-ietf-netmod-yang-types-09.txt (work in progress).

 [RFCYANGUSAGE]
 Bierman, A., "Guidelines for Authors and Reviewers of YANG
 Data Model Documents", draft-ietf-netmod-yang-usage-10.txt
 (work in progress).

 [SWEXPECT]
 "The Expect Home Page", <http://expect.sourceforge.net/>.

 [W3CXPATH]
 DeRose, S. and J. Clark, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium
 Recommendation REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

 [W3CXQUERY]
 Boag, S., "XQuery 1.0: An XML Query Language", W3C WD WD-
 xquery-20050915, September 2005.

 [W3CXSD] Walmsley, P. and D. Fallside, "XML Schema Part 0: Primer
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-0-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-0-20041028>.

 [W3CXSLT] Clark, J., "XSL Transformations (XSLT) Version 1.0", World
 Wide Web Consortium Recommendation REC-xslt-19991116,
 November 1999,
 <http://www.w3.org/TR/1999/REC-xslt-19991116>.

Shafer Expires March 27, 2011 [Page 33]

Internet-Draft NETMODARCH September 2010

Author’s Address

 Phil Shafer
 Juniper Networks

 Email: phil@juniper.net

Shafer Expires March 27, 2011 [Page 34]

