
Network Working Group B. Linowski
Internet-Draft TCS/Nokia Siemens Networks
Intended status: Experimental M. Ersue
Expires: April 22, 2011 Nokia Siemens Networks
 S. Kuryla
 360 Treasury Systems
 October 19, 2010

 Extending YANG with Language Abstractions
 draft-linowski-netmod-yang-abstract-04

Abstract

 YANG - the NETCONF Data Modeling Language - supports modeling of a
 tree of data elements that represent the configuration and runtime
 status of a particular network element managed via NETCONF. This
 memo suggests to enhance YANG with supplementary modeling features
 and language abstractions with the aim to improve the model
 extensibility and reuse.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Linowski, et al. Expires April 22, 2011 [Page 1]

Internet-Draft YANG Language Abstractions October 2010

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Linowski, et al. Expires April 22, 2011 [Page 2]

Internet-Draft YANG Language Abstractions October 2010

Table of Contents

 1. Introduction . 5
 1.1. Key Words . 5
 1.2. Motivation . 5
 1.3. Modeling Improvements with Language Abstractions 6
 1.4. Design Approach . 8
 1.5. Modeling Resource Models with YANG 8
 1.5.1. Example of a Physical Network Resource Model 8
 1.5.2. Modeling Entity MIB Entries as Physical Resources . . 12
 2. Complex Types . 16
 2.1. Definition . 16
 2.2. complex-type extension statement 16
 2.3. instance extension statement 18
 2.4. instance-list extension statement 19
 2.5. extends extension statement 20
 2.6. abstract extension statement 20
 2.7. XML Encoding Rules . 21
 2.8. Type Encoding Rules 21
 2.9. Extension and Feature Definition Module 22
 2.10. Example Model for Complex Types 25
 2.11. NETCONF Payload Example 26
 2.12. Update Rules for Modules Using Complex Types 29
 2.13. Using Complex Types 29
 2.13.1. Overriding Complex Type Data Nodes 29
 2.13.2. Augmenting Complex Types 30
 2.13.3. Controlling the Use of Complex Types 31
 3. Typed Instance Identifier 32
 3.1. Definition . 32
 3.2. instance-type extension statement 32
 3.3. Typed Instance Identifier Example 32
 4. IANA Considerations . 33
 5. Security Considerations 34
 6. Acknowledgements . 34
 7. References . 34
 7.1. Normative References 34
 7.2. Informative References 35
 Appendix A. Change Log . 35
 A.1. 03-04 . 35
 A.2. 02-03 . 36
 A.3. 01-02 . 36
 A.4. 00-01 . 37
 Appendix B. YANG Modules for Physical Network Resource Model
 and Hardware Entities Model 37
 Appendix C. Example YANG Module for the IPFIX/PSAMP Model 44
 C.1. Modeling Improvements for the IPFIX/PSAMP Model with
 Complex types and Typed instance identifiers 44
 C.2. IPFIX/PSAMP Model with Complex Types and Typed

Linowski, et al. Expires April 22, 2011 [Page 3]

Internet-Draft YANG Language Abstractions October 2010

 Instance Identifiers 45

Linowski, et al. Expires April 22, 2011 [Page 4]

Internet-Draft YANG Language Abstractions October 2010

1. Introduction

 YANG - the NETCONF Data Modeling Language ([RFC6020]) - supports
 modeling of a tree of data elements that represent the configuration
 and runtime status of a particular network element managed via
 NETCONF. This document defines extensions for the modeling language
 YANG as new language statements, which introduce language
 abstractions to improve the model extensibility and reuse. A model
 example from an actual network management system is given to
 highlight the value of proposed language extensions, especially class
 inheritance and recursiveness. The language extensions defined in
 this document have been implemented with two open source tools.
 These tools have been used to validate the model examples through the
 document.

1.1. Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119].

1.2. Motivation

 o Many systems today have a management information base that in
 effect is organized as a tree build of recursively nested
 container nodes. For example, the physical resources in the
 ENTITY-MIB conceptually form a containment tree. The index
 entPhysicalContainedIn points to the containing entity in a flat
 list. The ability to represent nested, recursive data structures
 of arbitrary depth would enable the representation of the primary
 containment hierarchy of physical entities as a node tree in the
 server MIB and in the NETCONF payload.

 o A manager scanning the network in order to update the state of an
 inventory management system might be only interested in data
 structures that represent a specific type of hardware. Such a
 manager would then look for entities that are of this specific
 type, including those that are an extension or specialization of
 this type. To support this use case, it is helpful to bear the
 corresponding type information within the data structures, which
 describe the network element hardware.

 o A system that is managing network elements is concerned e.g. with
 managed objects of type "plug-in modules" that have a name, a
 version and an activation state. In this context, it is useful to
 define the "plug-in module" as a concept that is supposed to be
 further detailed and extended by additional concrete model

Linowski, et al. Expires April 22, 2011 [Page 5]

Internet-Draft YANG Language Abstractions October 2010

 elements. In order to realize such a system, it is worth to model
 abstract entities, which enable reuse and ease concrete
 refinements of that abstract entity in a second step.

 o As particular network elements have specific type of components
 that need to be managed (OS images, plug-in modules, equipment,
 etc.), it should be possible to define concrete types, which
 describe the managed object precisely. By using type-safe
 extensions of basic concepts a system in the manager role can
 safely and explicitly determine that e.g. the "equipment" is
 actually of type "network card".

 o Currently different SDOs are working on the harmonization of their
 management information models. Often a model mapping or
 transformation between systems becomes necessary. The
 harmonization of the models is done e.g. by mapping of the two
 models on object level or integrating an object hierarchy into an
 existing information model. Extending YANG with language
 abstractions can simplify on the one hand the adoption of IETF
 resource models by other SDOs and facilitate the alignment with
 other SDO’s resource models (e.g. TM Forum SID). The proposed
 YANG extensions can on the other hand enable the utilization of
 YANG modeling language in other SDOs, which are used to model
 complex management systems in a top-down manner and use high-level
 language features frequently.

 This memo specifies additional modeling features for the YANG
 language in the area of structured model abstractions, typed
 references as well as recursive data structures and discusses how
 these new features can improve the modeling capabilities of YANG.

 Section 1.5.1 contains a physical resource model, which deals with
 some of the modeling challenges illustrated above. Section 1.5.2
 gives an example, which uses the base classes defined in the physical
 resource model and derives a model for physical entities defined in
 Entity MIB".

1.3. Modeling Improvements with Language Abstractions

 Complex Types and Typed Instance Identifiers provide various
 technical improvements on modeling level:

 o In case the model of a system that should be managed with NETCONF
 makes use of inheritance, complex types enable an almost one-to-
 one mapping between the classes in the original model and the YANG
 module.

Linowski, et al. Expires April 22, 2011 [Page 6]

Internet-Draft YANG Language Abstractions October 2010

 o Typed instance identifiers allow representing associations between
 the concepts in a type-safe way to prevent type errors caused by
 referring to data nodes of incompatible types. This avoids
 referring to a particular location in the MIB, which is not
 mandated by the domain model.

 o Complex types allow defining complete, self-contained type
 definitions. It is not necessary to explicitly add a key
 statement to lists, which use a grouping defining the data nodes.

 o Complex types simplify concept refinement by extending a base
 complex type and make it superfluous to represent concept
 refinements with workarounds such as huge choice-statements with
 complex branches.

 o Abstract complex types ensure correct usage of abstract concepts
 by enforcing the refinement of common set of properties before
 instantiation.

 o Complex types allow defining recursive structures. This enables
 to represent complex structures of arbitrary depth by nesting
 instances of basic complex types that may contain themselves.

 o Complex types avoid introducing meta-data types (e.g. type code
 enumerations) and meta-data leafs (e.g. leafs containing a type
 code) to indicate, which concrete type of object is actually
 represented by a generic container in the MIB. This also avoids
 to explicitly rule out illegal use of sub-type specific properties
 in generic containers.

 o Complex type instances include the type information in the NETCONF
 payload. This allows to determine the actual type of an instance
 during the NETCONF payload parsing and avoids the use of
 additional leafs in the model, which provide the type information
 as content.

 o Complex types may be declared explicitly as optional features,
 which is not possible when the actual type of an entity
 represented by a generic container is indicated with a type code
 enumeration.

 Appendix C ’Example YANG Module for the IPFIX/PSAMP Model’ lists
 technical improvements for modeling with Complex Types and Typed
 Instance Identifiers and exemplifies the usage of the proposed YANG
 extensions based on the IPFIX/PSAMP configuration model in
 [IPFIXCONF].

Linowski, et al. Expires April 22, 2011 [Page 7]

Internet-Draft YANG Language Abstractions October 2010

1.4. Design Approach

 The proposed additional features for YANG in this memo are designed
 to reuse existing YANG statements whenever possible. Additional
 semantics is expressed by an extension that is supposed to be used as
 a substatement of an existing statement.

 The proposed features don’t change the semantics of models that are
 valid with respect to the YANG specification [RFC6020].

1.5. Modeling Resource Models with YANG

1.5.1. Example of a Physical Network Resource Model

 The diagram below depicts a portion of an information model for
 manageable network resources used in an actual network management
 system.

 Note: The referenced model (UDM, Unified Data Model) is based on key
 resource modelling concepts from [SID V8] and is compliant with
 selected parts of SID Resource Abstract Business Entities domain
 ([UDM]).

 The class diagram in Figure 1 and the according YANG module excerpt
 focus on basic resource ("Resource" and the distinction between
 logical- and physical resources) and hardware abstractions
 ("Hardware", "Equipment", and "EquipmentHolder"). Some class
 attributes were omitted to achieve decent readability.

+--------+
|Resource|
+--------+
 /\ /\
 -- --
 | |
 | +---------------+
 | |LogicalResource|
 | +---------------+
 |
 |
 |
 | +--------+
 | |Physical| +-----------+
 ’-|Resource|<|-+-|PhysicalLink|
 +---- ---+ | +------------+
 | |0..* physicalLink
 | |
 | | equipment

Linowski, et al. Expires April 22, 2011 [Page 8]

Internet-Draft YANG Language Abstractions October 2010

 | | Holder
 | | 0..*
 | | +-------+
 | |0..* hardware | |
 | +--------+ +---------------+ +---------+ |
 ’-|Hardware|<|-+-|ManagedHardware|<|-+-|Equipment|<>--+
 +--------+ | +---------------+ | | Holder |0..1
 <> | | +---------+
 0..1| | | <>
 | | | |0..* equipment
 | | | | Holder
 | | | |
 | | | |0..* equipment
 | | | |
 | | | | equipment
 | | | | 0..*
 | | | | +-------+
 | | | | | |
 | | | +---------+ |
 | | ’-|Equipment|<>--+
 | | +---------+0..1
 | | compositeEquipment
 | |
 | | +-----------------+
 | ’-|PhysicalConnector|----+0..* source
 ’----------+-----------------+ | Physical
 physicalConnector 0..* | | Connector
 | |
 +-----------+
 0..* targetPhysicalConnector

 Figure 1: Physical Network Resource Model

 Since this model is an abstraction of network element specific MIB
 topologies, modeling it with YANG creates some challenges. Some of
 these challenges and how they can be addressed with complex types are
 explained below:

 o Modeling of abstract concepts: Classes like "Resource" represent
 concepts that primarily serve as a base class for derived classes.
 With complex types, such an abstract concept could be represented
 by an abstract complex type (see "complex-type extension
 statement" and "abstract extension statement").

 o Class Inheritance: Information models for complex management
 domains often use class inheritance to create specialized classes

Linowski, et al. Expires April 22, 2011 [Page 9]

Internet-Draft YANG Language Abstractions October 2010

 like "PhysicalConnector" from a more generic base class (here
 "Hardware"), which itself might inherit from another base class
 ("PhysicalResource") etc. Complex types allow creating enhanced
 versions of an existing (abstract or concrete) base type via an
 extension (see "extends extension statement").

 o Recursive containment: In order to specify containment hierarchies
 models frequently contain different aggregation associations, in
 which the target (contained element) is either the containing
 class itself or a base class of the containing class. In the
 model above, the recursive containment of "EquipmentHolder" is an
 example of such a relationship. Complex types support such a
 containment by using a complex type (or one of its ancestor types)
 as type of an instance or instance list that is part of its
 definition (see "instance(-list) extension statement").

 o Reference relationships: A key requirement on large models for
 network domains with many related managed objects is the
 association between classes that represent an essential
 relationship between instances of such a class. For example, the
 relationship between "PhysicalLink" and "Hardware" tells which
 physical link is connecting which hardware resources. It is
 important to notice that this kind of relationships do not mandate
 any particular location of the two connected hardware instances in
 any MIB. Such containment agnostic relationships can be
 represented by a typed instance identifier that embodies one
 direction of such an association (see "Typed instance
 identifiers").

 The YANG module excerpt below shows how the challenges listed above
 can be addressed by the Complex Types extension (module import prefix
 "ct:"). The complete YANG module for the physical resource model in
 Figure 1 can be found in Appendix B: ’YANG Modules for Physical
 Network Resource Model and Hardware Entities Model’.

 Note: The YANG extensions proposed in this document have been
 implemented as the open source tools "Pyang Extension for Complex
 Types" ([Pyang-ct], ([Pyang]) and "Libsmi Extension for Complex
 Types" ([Libsmi]). All model examples in the document have been
 validated with the tools Pyang-ct and Libsmi.

 <CODE BEGINS>

 module udmcore {

 namespace "http://example.com/udmcore";

Linowski, et al. Expires April 22, 2011 [Page 10]

Internet-Draft YANG Language Abstractions October 2010

 prefix "udm";

 import ietf-complex-types {prefix "ct"; }

 // Basic complex types...

 ct:complex-type PhysicalResource {
 ct:extends Resource;
 ct:abstract true;
 // ...
 leaf serialNumber {type string;}
 }

 ct:complex-type Hardware {
 ct:extends PhysicalResource;
 ct:abstract true;
 // ...
 leaf-list physicalLink {
 type instance-identifier {ct:instance-type PhysicalLink;}
 }
 ct:instance-list containedHardware {
 ct:instance-type Hardware;
 }
 ct:instance-list physicalConnector {
 ct:instance-type PhysicalConnector;
 }
 }

 ct:complex-type PhysicalLink {
 ct:extends PhysicalResource;
 // ...
 leaf-list hardware {
 type instance-identifier {ct:instance-type Hardware;}
 }
 }

 ct:complex-type ManagedHardware {
 ct:extends Hardware;
 ct:abstract true;
 // ...
 }

 ct:complex-type PhysicalConnector {
 ct:extends Hardware;

Linowski, et al. Expires April 22, 2011 [Page 11]

Internet-Draft YANG Language Abstractions October 2010

 leaf location {type string;}
 // ...
 leaf-list sourcePhysicalConnector {
 type instance-identifier {ct:instance-type PhysicalConnector;}
 }
 leaf-list targetPhysicalConnector {
 type instance-identifier {ct:instance-type PhysicalConnector;}
 }
 }

 ct:complex-type Equipment {
 ct:extends ManagedHardware;
 // ...
 ct:instance-list equipment {
 ct:instance-type Equipment;
 }
 }

 ct:complex-type EquipmentHolder {
 ct:extends ManagedHardware;
 leaf vendorName {type string;}
 // ...
 ct:instance-list equipment {
 ct:instance-type Equipment;
 }
 ct:instance-list equipmentHolder {
 ct:instance-type EquipmentHolder;
 }
 }
 // ...
 }

 <CODE ENDS>

1.5.2. Modeling Entity MIB Entries as Physical Resources

 The physical resource module described above can now be used to model
 physical entities as defined in the Entity MIB [RFC4133]. For each
 physical entity class listed in the "PhysicalClass" enumeration, a
 complex type is defined. Each of these complex types extends the
 most specific complex type already available in the physical resource
 module. For example, the type "HWModule" extends the complex type
 "Equipment" as a hardware module. Physical entity properties that
 should be included in a physical entity complex type are combined in
 a grouping, which is then used in each complex type definition of an
 entity.

Linowski, et al. Expires April 22, 2011 [Page 12]

Internet-Draft YANG Language Abstractions October 2010

 This approach has following benefits:

 o The definition of the complex types for hardware entities becomes
 compact as many of the features can be reused from the basic
 complex type definition.

 o Physical entities are modeled in a consistent manner as predefined
 concepts are extended.

 o Entity MIB specific attributes as well as vendor specific
 attributes can be added without having to define separate
 extension data nodes.

 Module umdcore : Module hardware-entities
 :
 equipment :
 Holder :
 0..* :
 +-------+ :
 | | :
 +---------------+ +---------+ | :
 |ManagedHardware|<|-+-|Equipment|<>--+ :
 +---------------+ | | Holder |0..1 : +-------+
 | | |<|---------+--|Chassis|
 | +---------+ : | +-------+
 | <> : |
 | |0..* equipment : | +---------+
 | | Holder : ’--|Container|
 | | : +---------+
 | |0..* equipment :
 | | :
 | | equipment :
 | | 0..* :
 | | +-------+ :
 | | | | :
 | +---------+ | :
 ’-|Equipment|<>--+ : +--------+
 | |<|---------+--|HWModule|
 +---------+ : | +--------+
 compositeEquipment : |
 : | +---------+
 : |--|Backplane|
 : +---------+

Linowski, et al. Expires April 22, 2011 [Page 13]

Internet-Draft YANG Language Abstractions October 2010

 Figure 2: Hardware Entities Model

 Below is an excerpt of the according YANG module using complex types
 to model hardware entities. The complete YANG module for the
 Hardware Entities model in Figure 2 can be found in Appendix B: ’YANG
 Modules for Physical Network Resource Model and Hardware Entities
 Model’.

Linowski, et al. Expires April 22, 2011 [Page 14]

Internet-Draft YANG Language Abstractions October 2010

<CODE BEGINS>

module hardware-entities {

 namespace "http://example.com/hardware-entities";
 prefix "hwe";

 import ietf-yang-types {prefix "yt";}
 import ietf-complex-types {prefix "ct";}
 import udmcore {prefix "uc";}

 grouping PhysicalEntityProperties {
 // ...
 leaf mfgDate {type yang:date-and-time; }
 leaf-list uris {type string; }
 }

 // Physical entities representing equipment

 ct:complex-type HWModule {
 ct:extends uc:Equipment;
 description "Complex type representing module entries
 (entPhysicalClass = module(9)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 // ...

 // Physical entities representing equipment holders

 ct:complex-type Chassis {
 ct:extends uc:EquipmentHolder;
 description "Complex type representing chassis entries
 (entPhysicalClass = chassis(3)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 // ...
}

<CODE ENDS>

Linowski, et al. Expires April 22, 2011 [Page 15]

Internet-Draft YANG Language Abstractions October 2010

2. Complex Types

2.1. Definition

 YANG type concept is currently restricted to simple types, e.g.
 restrictions of primitive types, enumerations or union of simple
 types.

 Complex types are types with a rich internal structure, which may be
 composed of substatements defined in Table 1 (e.g. lists, leafs,
 containers, choices). A new complex type may extend an existing
 complex type. This allows providing type-safe extensions to existing
 YANG models as instances of the new type.

 Complex types have the following characteristics:

 o Introduction of new types, as a named, formal description of a
 concrete manageable resource as well as abstract concepts.

 o Types can be extended, i.e. new types can be defined by
 specializing existing types adding new features. Instances of
 such an extended type can be used wherever instances of the base
 type may appear.

 o The type information is made part of the NETCONF payload in case a
 derived type substitutes a base type. This enables easy and
 efficient consumption of payload elements representing complex
 type instances.

2.2. complex-type extension statement

 The extension statement "complex-type" is introduced that accepts an
 arbitrary number of node tree defining statements among other common
 YANG statements ("YANG Statements", [RFC6020] Section 7).

Linowski, et al. Expires April 22, 2011 [Page 16]

Internet-Draft YANG Language Abstractions October 2010

 +------------------+-------------+
 | substatement | cardinality |
 +------------------+-------------+
 | abstract | 0..1 |
 | anyxml | 0..n |
 | choice | 0..n |
 | container | 0..n |
 | description | 0..1 |
 | ct:instance | 0..n |
 | ct:instance-list | 0..n |
 | ct:extends | 0..1 |
 | grouping | 0..n |
 | if-feature | 0..n |
 | key | 0..1 |
 | leaf | 0..n |
 | leaf-list | 0..n |
 | list | 0..n |
 | must | 0..n |
 | ordered-by | 0..n |
 | reference | 0..1 |
 | refine | 0..n |
 | status | 0..1 |
 | typedef | 0..n |
 | uses | 0..n |
 +------------------+-------------+

 Table 1: complex-type’s substatements

 Complex type definitions may appear at every place, where a grouping
 may be defined. That includes the module, submodule, rpc, input,
 output, notification, container, and list statements.

 Complex type names populate a distinct namespace. As with YANG
 groupings, it is possible to define a complex type and a data node
 (e.g. leaf, list, instance statements) with the same name in the same
 scope. All complex type names defined within a parent node or at the
 top-level of the module or its submodules share the same type
 identifier namespace. This namespace is scoped to the parent node or
 module.

 A complex type MAY have an instance key. An instance key is either
 defined with the "key" statement as part of the complex type or is
 inherited from the base complex type. It is not allowed to define an
 additional key if the base complex type or one of its ancestors
 already defines a key.

 Complex-type definitions do not create nodes in the schema tree.

Linowski, et al. Expires April 22, 2011 [Page 17]

Internet-Draft YANG Language Abstractions October 2010

2.3. instance extension statement

 The "instance" extension statement is used to instantiate a complex
 type by creating a subtree in the management information node tree.
 The instance statement takes one argument that is the identifier of
 the complex type instance. It is followed by a block of
 substatements.

 The type of the instance is specified with the mandatory "ct:
 instance-type" substatement. The type of an instance MUST be a
 complex type. Common YANG statements may be used as substatements of
 the "instance" statement. An instance is by default optional. To
 make an instance mandatory, "mandatory true" has to be applied as
 substatement.

 +------------------+-------------+
 | substatement | cardinality |
 +------------------+-------------+
 | description | 0..1 |
 | config | 0..1 |
 | ct:instance-type | 1 |
 | if-feature | 0..n |
 | mandatory | 0..1 |
 | must | 0..n |
 | reference | 0..1 |
 | status | 0..1 |
 | when | 0..1 |
 | anyxml | 0..n |
 | choice | 0..n |
 | container | 0..n |
 | ct:instance | 0..n |
 | ct:instance-list | 0..n |
 | leaf | 0..n |
 | leaf-list | 0..n |
 | list | 0..n |
 +------------------+-------------+

 Table 2: instance’s substatements

 The "instance" and "instance-list" extension statements (see Section
 2.4 "instance-list extension statement") are similar to the existing
 "leaf" and "leaf-list" statements, with the exception that the
 content is composed of subordinate elements according to the
 instantiated complex type.

 It is also possible to add additional data nodes by using the
 according leaf, leaf-list, list, and choice statements etc. as sub-
 statements of the instance declaration. This is an in-place

Linowski, et al. Expires April 22, 2011 [Page 18]

Internet-Draft YANG Language Abstractions October 2010

 augmentation of the used complex type confined to a complex type
 instantiation (see also Section 2.13 "Using complex types" for
 details on augmenting complex types).

2.4. instance-list extension statement

 The "instance-list" extension statement is used to instantiate a
 complex type by defining a sequence of subtrees in the management
 information node tree. In addition, the "instance-list" statement
 takes one argument that is the identifier of the complex type
 instances. It is followed by a block of substatements.

 The type of the instance is specified with the mandatory "ct:
 instance-type" substatement. In addition it can be defined how often
 an instance may appear in the schema tree by using the min-elements
 and max-elements substatements. Common YANG statements may be used
 as substatements of the "instance-list" statement.

 In analogy to "instance" statement, sub-statement like "list",
 "choice", leaf" etc. MAY be used to augment the instance list
 elements at the root level with additional data nodes.

 +------------------+-------------+
 | substatementc | cardinality |
 +------------------+-------------+
 | description | 0..1 |
 | config | 0..1 |
 | ct:instance-type | 1 |
 | if-feature | 0..n |
 | max-elements | 0..1 |
 | min-elements | 0..1 |
 | must | 0..n |
 | ordered-by | 0..1 |
 | reference | 0..1 |
 | status | 0..1 |
 | when | 0..1 |
 | anyxml | 0..n |
 | choice | 0..n |
 | container | 0..n |
 | ct:instance | 0..n |
 | ct:instance-list | 0..n |
 | leaf | 0..n |
 | leaf-list | 0..n |
 | list | 0..n |
 +------------------+-------------+

 Table 3: instance-list’s substatements

Linowski, et al. Expires April 22, 2011 [Page 19]

Internet-Draft YANG Language Abstractions October 2010

 In case the instance list represents configuration data, the used
 complex type of an instance MUST have an instance key.

 Instances as well as instance lists may appear as arguments of the
 "deviate" statement.

2.5. extends extension statement

 A complex type MAY extend exactly one existing base complex type by
 using the "extends" extension statement. The keyword "extends" MAY
 occur as substatement of the "complex-type" extension statement. The
 argument of the "complex-type" extension statement refers to the base
 complex type via its name. In case a complex type represents
 configuration data (the default), it MUST have a key, otherwise it
 MAY have a key. A key is either defined with the key statement as
 part of the complex type or is inherited from the base complex type.

 +--------------+-------------+
 | substatement | cardinality |
 +--------------+-------------+
 | description | 0..1 |
 | reference | 0..1 |
 | status | 0..1 |
 +--------------+-------------+

 Table 4: extends’ substatements

2.6. abstract extension statement

 Complex types may be declared to be abstract by using the "abstract"
 extension statement. An abstract complex type cannot be
 instantiated, meaning it cannot appear as most specific type of an
 instance in NETCONF payload. In case an abstract type extends a base
 type, the base complex type MUST be also abstract. By default,
 complex types are not abstract.

 The abstract complex type serves only as a base type for derived
 concrete complex types and cannot be used as a type for an instance
 in NETCONF payload.

 The "abstract" extension statement takes a single string argument,
 which is either "true" or "false". In case a "complex-type"
 statement does not contain an "abstract" statement as substatement,
 the default is "false". The "abstract" statement does not support
 any substatements.

Linowski, et al. Expires April 22, 2011 [Page 20]

Internet-Draft YANG Language Abstractions October 2010

2.7. XML Encoding Rules

 An "instance" node is encoded as an XML element, where an "instance-
 list" node is encoded as a series of XML elements. The XML element
 name is the "instance" respectively "instance-list" identifier, and
 its XML namespace is the module’s XML namespace.

 Instance child nodes are encoded as subelements of the instance XML
 element. Subelements representing child nodes defined in the same
 complex type may appear in any order. However child nodes of an
 extending complex type follow the child nodes of the extended complex
 type. As such, the XML encoding of lists is similar to the encoding
 of containers and lists in YANG.

 Instance key nodes are encoded as subelements of the instance XML
 element. Instance key nodes must appear in the same order as they
 are defined within the "key" statement of the according complex type
 definition and precede all other nodes defined in the same complex
 type. I.e. if key nodes are defined in an extending complex type,
 XML elements representing key data precede all other XML elements
 representing child nodes. On the other hand XML elements
 representing key data follow the XML elements representing data nodes
 of the base type.

 The type of actual complex type instance is encoded in a type
 element, which is put in front of all instance child elements,
 including key nodes, as described in Section 2.8 ("Type Encoding
 Rules").

 The proposed XML encoding rules conform to the YANG XML encoding
 rules in [RFC6020]. Compared to YANG, enabling key definitions in
 derived hierarchies is a new feature introduced with the complex
 types extension. As a new language feature complex types introduce
 also a new payload entry for the instance type identifier.

 Based on our implementation experience, the proposed XML encoding
 rules support consistent mapping of YANG models with complex types to
 XML Schema using XML complex types.

2.8. Type Encoding Rules

 In order to encode the type of an instance in NETCONF payload, XML
 elements named "type" belonging to the XML namespace
 "urn:ietf:params:xml:ns:yang:ietf-complex-type-instance" are added to
 the serialized form of instance and instance-list nodes in the
 payload. The suggested namespace prefix is "cti". The "cti:type"
 XML elements are inserted before the serialized form of all members
 that have been declared in the according complex type definition.

Linowski, et al. Expires April 22, 2011 [Page 21]

Internet-Draft YANG Language Abstractions October 2010

 The "cti:type" element is inserted for each type in the extension
 chain to the actual type of the instance (most specific last). Each
 type name includes its corresponding namespace.

 The type of a complex type instance MUST be encoded in the reply to
 NETCONF <get> and <get-config> operations, and in the payload of
 NETCONF <edit-config> operation if the operation is "create" or
 "replace". The type of the instance MUST also be specified in case
 <copy-config> is used to export a configuration to a resource
 addressed with an URI. The type of the instance has to be specified
 in user defined RPC’s.

 The type of the instance MAY be specified in case the operation is
 "merge" (either because this is explicitly specified or no operation
 attribute is provided).

 In case the node already exists in the target configuration and the
 type attribute (type of a complex type instance) is specified but
 differs from the data in the target, an <rpc-error> element is
 returned with an <error-app-tag> value of "wrong-complex-type". In
 case no such element is present in the target configuration but the
 type attribute is missing in the configuration data, an <rpc-error>
 element is returned with an <error-tag> value of "missing-attribute".

 The type MUST NOT be specified in case the operation is "delete".

2.9. Extension and Feature Definition Module

 The module below contains all YANG extension definitions for complex
 types and typed instance identifiers. In addition a "complex-type"
 feature is defined, which may be used to provide conditional or
 alternative modeling for depending on the support status of complex
 types in a NETCONF server. A NETCONF server that supports the
 complex types modeling features and the XML encoding for complex
 types as defined in this document MUST advertise this as a feature.
 This is done by including the feature name "complex-types" into the
 feature parameter list as part of the NETCONF <hello> message as
 described in Section 5.6.4 in [RFC6020].

<CODE BEGINS> file "ietf-complex-types@2010-10-05.yang"

module ietf-complex-types {

 namespace "urn:ietf:params:xml:ns:yang:ietf-complex-types";
 prefix "ct";

Linowski, et al. Expires April 22, 2011 [Page 22]

Internet-Draft YANG Language Abstractions October 2010

 organization
 "NETMOD WG";

 contact
 "Editor: Bernd Linowski
 <bernd.linowski@ext.nsn.com>
 Editor: Mehmet Ersue
 <mehmet.ersue@nsn.com>
 Editor: Siarhei Kuryla
 <s.kuryla@jacobs-university.de>";

 description
 "YANG extensions for complex types and typed instance
 identifiers.

 Copyright (c) 2010 IETF Trust and the persons identified as
 the document authors. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: Please replace XXXX with actual RFC number and
 // remove this note

 revision 2010-10-19 {
 description "Initial revision.";
 }

 // RFC Ed.: Please replace the date of the revision statement
 // with RFC publication date and remove this note

 extension complex-type {
 description "Defines a complex-type.";
 reference "section 2.2., complex-type extension statement";
 argument type-identifier {
 yin-element true;
 }
 }

Linowski, et al. Expires April 22, 2011 [Page 23]

Internet-Draft YANG Language Abstractions October 2010

 extension extends {
 description "Defines the base type of a complex-type.";
 reference "section 2.5., extends extension statement";
 argument base-type-identifier {
 yin-element true;
 }
 }

 extension abstract {
 description "Makes the complex-type abstract.";
 reference "section 2.6., abstract extension statement";
 argument status;
 }

 extension instance {
 description "Declares an instance of the given
 complex type.";
 reference "section 2.3., instance extension statement";
 argument ct-instance-identifier {
 yin-element true;
 }
 }

 extension instance-list {
 description "Declares a list of instances of the given
 complex type";
 reference "section 2.4., instance-list extension statement";
 argument ct-instance-identifier {
 yin-element true;
 }
 }

 extension instance-type {
 description "Tells to which type instance the instance
 identifier refers to.";
 reference "section 3.2., instance-type extension statement";
 argument target-type-identifier {
 yin-element true;
 }
 }

 feature complex-types {
 description "This feature indicates that the server supports
 complex types and instance identifiers.";
 }

Linowski, et al. Expires April 22, 2011 [Page 24]

Internet-Draft YANG Language Abstractions October 2010

 }

<CODE ENDS>

2.10. Example Model for Complex Types

 The example model below shows how complex types can be used to
 represent physical equipment in a vendor independent, abstract way.
 It reuses the complex types defined in the physical resource model in
 Section 1.5.1

Linowski, et al. Expires April 22, 2011 [Page 25]

Internet-Draft YANG Language Abstractions October 2010

 <CODE BEGINS>

 module hw {

 namespace "http://example.com/hw";
 prefix "hw";

 import ietf-complex-types {prefix "ct"; }
 import udmcore {prefix "uc"; }

 // Holder types

 ct:complex-type Slot {
 ct:extends uc:EquipmentHolder;
 leaf slotNumber { type uint16; config false; }
 // ...
 }

 ct:complex-type Chassis {
 ct:extends uc:EquipmentHolder;
 leaf numberOfChassisSlots { type uint32; config false; }
 // ..
 }

 // Equipment types

 ct:complex-type Card {
 ct:extends uc:Equipment;
 leaf position { type uint32; mandatory true; }
 leaf slotsRequired {type unit32; }
 }

 // Root Element
 ct:instance hardware { type uc:ManagedHardware; }

 } // hw module

 <CODE ENDS>

2.11. NETCONF Payload Example

 Following example shows the payload of a reply to a NETCONF <get>
 command. The actual type of managed hardware instances is indicated
 with the "cti:type" elements as required by the type encoding rules.
 The containment hierarchy in the NETCONF XML payload reflects the
 containment hierarchy of hardware instances. This makes filtering

Linowski, et al. Expires April 22, 2011 [Page 26]

Internet-Draft YANG Language Abstractions October 2010

 based on the containment hierarchy possible without having to deal
 with values of key-ref leafs that represent the tree structure in a
 flattened hierarchy.

Linowski, et al. Expires April 22, 2011 [Page 27]

Internet-Draft YANG Language Abstractions October 2010

 <hardware>
 <cti:type>uc:BasicObject</cti:type>
 <distinguishedName>/R-T31/CH-2</distinguishedName>
 <globalId>6278279001</globalId>
 <cti:type>uc:Resource</cti:type>
 <cti:type>uc:PhysicalResource</cti:type>
 <otherIdentifier>Rack R322-1</otherIdentifier>
 <serialNumber>R-US-3276279a</serialNumber>
 <cti:type>uc:Hardware</cti:type>
 <cti:type>uc:ManagedHardware</cti:type>
 <cti:type>hw:EquipmentHolder</cti:type>
 <equipmentHolder>
 <cti:type>uc:BasicObject</cti:type>
 <distinguishedName>/R-T31/CH-2/SL-1</distinguishedName>
 <globalId>548872003</globalId>
 <cti:type>uc:Resource</cti:type>
 <cti:type>uc:PhysicalResource</cti:type>
 <otherIdentifier>CU-Slot</otherIdentifier>
 <serialNumber>T-K4733890x45</serialNumber>
 <cti:type>uc:Hardware</cti:type>
 <cti:type>uc:ManagedHardware</cti:type>
 <cti:type>uc:EquipmentHolder</cti:type>
 <equipment>
 <cti:type>uc:BasicObject</cti:type>
 <distinguishedName>/R-T31/CH-2/SL-1/C-3</distinguishedName>
 <globalId>89772001</globalId>
 <cti:type>uc:Resource</cti:type>
 <cti:type>uc:PhysicalResource</cti:type>
 <otherIdentifier>ATM-45252</otherIdentifier>
 <serialNumber>A-778911-b</serialNumber>
 <cti:type>uc:Hardware</cti:type>
 <cti:type>uc:ManagedHardware</cti:type>
 <cti:type>uc:Equipment</cti:type>
 <installed>true</installed>
 <version>A2</version>
 <redundancy>1</redundancy>
 <cti:type>hw:Card</cti:type>
 <usedSlots>1</usedSlots>
 </equipment>
 <cti:type>hw:Slot</cti:type>
 <slotNumber>1</slotNumber>
 </equitmentHolder>
 <cti:type>hw:Chassis</cti:type>
 <numberOfChassisSlots>6</numberOfChassisSlots>
 // ...
 </hardware>

Linowski, et al. Expires April 22, 2011 [Page 28]

Internet-Draft YANG Language Abstractions October 2010

2.12. Update Rules for Modules Using Complex Types

 In addition to the module update rules specified in Section 10 in
 [RFC6020], modules that define complex-types, instances of complex
 types and typed instance identifiers must obey following rules:

 o New complex types MAY be added.

 o A new complex type MAY extend an existing complex type.

 o New data definition statements MAY be added to a complex type only
 if:

 * they are not mandatory or

 * they are not conditionally dependent on a new feature (i.e.,
 have an "if-feature" statement, which refers to a new feature).

 o The type referred to by the instance-type statement may be changed
 to a type that derives from the original type only if the original
 type does not represent configuration data.

2.13. Using Complex Types

 All data nodes defined inside a complex type reside in the complex
 type namespace, which is their parent node namespace.

2.13.1. Overriding Complex Type Data Nodes

 It is not allowed to override a data node inherited from a base type.
 I.e. it is an error if a type "base" with a leaf named "foo" is
 extended by another complex type ("derived") with a leaf named "foo"
 in the same module. In case they are derived in different modules,
 there are two distinct "foo" nodes which are mapped to the XML
 namespaces of the module, where the complex types are specified.

 A complex type that extends a basic complex type may use the "refine"
 statement in order to improve an inherited data node. The target
 node identifier must be qualified by the module prefix to indicate
 clearly, which inherited node is refined.

 The following refinements can be done:

 o A leaf or choice node may have a default value, or a new default
 value if it already had one

 o Any node may have a different "description" or "reference" string.

Linowski, et al. Expires April 22, 2011 [Page 29]

Internet-Draft YANG Language Abstractions October 2010

 o A leaf, anyxml, or choice node may have a "mandatory true"
 statement. However, it is not allowed to change from "mandatory
 true" to "mandatory false".

 o A leaf, leaf-list, list, container, or anyxml node may have
 additional "must" expressions.

 o A list, leaf-list, instance or instance-list node may have a "min-
 elements" statement, if the base type does not have one or one
 with a value that is greater than the minimum value of the base
 type.

 o A list, leaf-list, instance or instance-list node may have a "max-
 elements" statement, if the base type does not have one or one
 with a value that is smaller than the maximum value of the base
 type.

 It is not allowed to refine complex-type nodes inside instance or
 instance-list statements.

2.13.2. Augmenting Complex Types

 Augmenting complex types is only allowed if a complex type is
 instantiated in an "instance" or "instance-list" statement. This
 confines the effect of the augmentation to the location in the schema
 tree, where the augmentation is done. The argument of the "augment"
 statement MUST be in the descendant form (as defined by the rule
 "descendant-schema-nodeid" in Section 12 in [RFC6020]).

 ct:complex-type Chassis {
 ct:extends EquipmentHolder;
 container chassisInfo {
 config false;
 leaf numberOfSlots { type uint16; }
 leaf occupiedSlots { type uint16; }
 leaf height {type unit16;}
 leaf width {type unit16;}
 }
 }

 ct:instance-list chassis {
 type Chassis;
 augment "chassisInfo" {
 leaf modelId { type string; }
 }
 }

Linowski, et al. Expires April 22, 2011 [Page 30]

Internet-Draft YANG Language Abstractions October 2010

 When augmenting a complex type, only the "container", "leaf", "list",
 "leaf-list", "choice", "instance", "instance-list" and "if-feature"
 statements may be used within the "augment" statement. The nodes
 added by the augmentation MUST NOT be mandatory nodes. One or many
 augment statements may not cause the creation of multiple nodes with
 the same name from the same namespace in the target node.

 To achieve less complex modeling this document proposes the
 augmentation of complex type instances without recursion.

2.13.3. Controlling the Use of Complex Types

 A server might not want to support all complex types defined in a
 supported module. This issue can be addressed with YANG features as
 follows:

 o Features are defined that are used inside complex type definitions
 (by using "if-feature" as substatement) to make them optional. In
 this case such complex types may only be instantiated if the
 feature is supported (advertized as capability in the NETCONF
 <hello> message).

 o The "deviation" statement may be applied to node trees, which are
 created by "instance" and "instance-list" statements. In this
 case, only the substatement "deviate not-supported" is allowed.

 o It is not allowed to apply the deviation statement to node tree
 elements that may occur because of the recursive use of a complex
 type. Other forms of deviations ("deviate add", "deviate
 replace", "deviate delete") are NOT supported inside node trees
 spanned by "instance" or "instance-list".

 As complex type definitions do not contribute by itself to the data
 node tree, data node declarations inside complex types cannot be
 target of deviations.

 In the example below, client applications are informed that the leaf
 "occupiedSlots" is not supported in the top-level chassis. However,
 if a chassis contains another chassis, the contained chassis may
 support the leaf informing about the number of occupied slots.

 deviation "/chassis/chassisSpec/occupiedSlots" {
 deviate not-supported;
 }

Linowski, et al. Expires April 22, 2011 [Page 31]

Internet-Draft YANG Language Abstractions October 2010

3. Typed Instance Identifier

3.1. Definition

 Typed instance identifier relationships are an addition to the
 relationship types already defined in YANG, where the leafref
 relationship is location dependent, and the instance-identifier does
 not specify to which type of instances the identifier points to.

 A typed instance identifier represents a reference to an instance of
 a complex type without being restricted to a particular location in
 the containment tree. This is done by using the extension statement
 "instance-type" as a substatement of the existing "type instance
 identifier" statement.

 Typed instance identifiers allow referring to instances of complex
 types that may be located anywhere in the schema tree. The "type"
 statement plays the role of a restriction that must be fulfilled by
 the target node, which is referred to with the instance identifier.
 The target node MUST be of a particular complex type, either the type
 itself or any type that extends this complex type.

3.2. instance-type extension statement

 The "instance-type" extension statement specifies the complex type of
 the instance referred by the instance-identifier. The referred
 instance may also instantiate any complex type that extends the
 specified complex type.

 The instance complex type is identified by the single name argument.
 The referred complex type MUST have a key. This extension statement
 MUST be used as a substatement of the "type instance-identifier"
 statement. The "instance-type" extension statement does not support
 any substatements.

3.3. Typed Instance Identifier Example

 In the example below, a physical link connects an arbitrary number of
 physical ports. Here typed instance identifiers are used to denote,
 which "PhysicalPort" instances (anywhere in the data tree) are
 connected by a "PhysicalLink".

Linowski, et al. Expires April 22, 2011 [Page 32]

Internet-Draft YANG Language Abstractions October 2010

 // Extended version of type Card
 ct:complex-type Card {
 ct:extends Equipment;
 leaf usedSlot { type uint16; mandatory true; }
 ct:instance-list port {
 type PhysicalPort;
 }
 }

 ct:complex-type PhysicalPort {
 ct:extends ManagedHardware;
 leaf portNumber { type int32; mandatory true; }
 }

 ct:complex-type PhysicalLink {
 ct:extends ManagedHardware;
 leaf media { type string; }
 leaf-list connectedPort {
 type instance-identifier {
 ct:instance-type PhysicalPort;
 }
 min-elements 2;
 }
 }

 Below is the XML encoding of an element named "link" of type
 "PhysicalLink":

 <link>
 <objectId>FTCL-771</objectId>
 <media>Fiber</media>
 <connectedPort>/hw:hardware[objectId=’R-11’]
 /hw:equipment[objectId=’AT22’]/hw:port[objectId=’P12’]
 </connectedPort>
 <connectedPort>/hw:hardware[objectId=’R-42]
 /hw:equipment[objectId=’AT30’]/hw:port[objectId=’P3’]
 </connectedPort>
 <serialNumeber>F-7786828</serialNumber>
 <commonName>FibCon 7</commonName>
 </link>

4. IANA Considerations

 This document registers two URIs in the IETF XML registry. Following
 the format in [RFC3688], the following registrations are requested:

Linowski, et al. Expires April 22, 2011 [Page 33]

Internet-Draft YANG Language Abstractions October 2010

 URI: urn:ietf:params:xml:ns:yang:ietf-complex-types
 URI: urn:ietf:params:xml:ns:yang:ietf-complex-type-instance

 Registrant Contact: The NETMOD WG of the IETF.

 XML: N/A, the requested URIs are XML namespaces.

 This document registers one module name in the ’YANG Module Names’
 registry, defined in [RFC6020].

 name: ietf-complex-types

 namespace: urn:ietf:params:xml:ns:yang:ietf-complex-types

 prefix: ct

 RFC: XXXX

 RFC Ed.: Please replace XXXX with actual RFC number and remove this
 note.

5. Security Considerations

 The YANG module "complex-types" in this memo defines YANG extensions
 for Complex-types and Typed Instance Identifiers as new language
 statements.

 Complex-types and Typed Instance Identifiers themselves do not have
 any security impact on the Internet.

 The security considerations described throughout [RFC6020] apply here
 as well.

6. Acknowledgements

 The authors would like to thank to Martin Bjorklund, Balazs Lengyel,
 Gerhard Muenz, Dan Romascanu, Juergen Schoenwaelder and Martin Storch
 for their valuable review and comments on different versions of the
 document.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", March 1997.

Linowski, et al. Expires April 22, 2011 [Page 34]

Internet-Draft YANG Language Abstractions October 2010

 [RFC3688] Mealling, M., "The IETF XML Registry", January 2004.

 [RFC5226] Narten, T., "Guidelines for Writing an IANA
 Considerations Section in RFCs", May 2008.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", October 2010.

7.2. Informative References

 [IPFIXCONF] Muenz, G., "Configuration Data Model for IPFIX and
 PSAMP", draft-ietf-ipfix-configuration-model-07 (work in
 progress), July 2010.

 [Libsmi] Kuryla, S., "Libsmi Extension for Complex Types",
 April 2010, <http://www.ibr.cs.tu-bs.de/svn/libsmi>.

 [Pyang] Bjorklund, M., "An extensible YANG validator and
 converter", October 2010,
 <http://code.google.com/p/pyang/>.

 [Pyang-ct] Kuryla, S., "Pyang Extension for Complex Types",
 April 2010, <http://code.google.com/p/pyang-ct/>.

 [RFC4133] Bierman, A. and K. McCloghrie, "Entity MIB (Version 3)",
 August 2005.

 [SID V8] Tele Management Forum, "GB922-Information Framework
 (SID) Solution Suite, Release 8.0", July 2008, < http:/
 /www.tmforum.org/DocumentsInformation/
 GB922InformationFramework/35499/article.html>.

 [UDM] NSN, "Unified Data Model SID Compliance Statement",
 May 2010, <http://www.tmforum.org/InformationFramework/
 NokiaSiemensNetworks/8815/home.html>.

Appendix A. Change Log

A.1. 03-04

 o Changed the complex type XML encoding rules so that XML elements
 reprensenting data nodes defined in the same complex type may
 appear in any order.

 o Used the "ct:" prefix in substatement tables when referring to
 complex type extension statements.

Linowski, et al. Expires April 22, 2011 [Page 35]

Internet-Draft YANG Language Abstractions October 2010

 o Modeled the IPFIX/PSMAP example based on v-07 of the IPFIX
 configuration draft. Changed motivation text accordingly.

 o Minor updates and clarifications in the text.

A.2. 02-03

 o Added an example based on the physical resource modeling concepts
 of SID. A simplified class diagram and an excerpt of an according
 YANG module were added in the introduction section.

 o Changed the example YANG module in the NETCONF payload section to
 be based on the physical resource types defined in the added
 physical resource model.

 o A second example shows how Entity MIB entries can be modeled as
 physical resources. The example includes a class diagram and an
 according YANG module excerpt.

 o The complete YANG modules for both examples were added into the
 appendix.

 o Changed the complex type encoding rules.

 o Updated the NETCONF payload example the changed type encoding
 rules and the changed example module.

 o Changed the augmentation rules for complex types. Instead of
 using "." as argument in the augment statement, instance and
 instance-list statement may now contain additional data node
 statements. The substatement tables for the instance and
 instance-list statements were updated accordingly.

 o Minor updates in the text and examples.

A.3. 01-02

 o It is no longer allowed to use the "config" statement inside a
 complex type definition.

 o Complex type can now be defined where a grouping can be defined.
 Complex types have their own namespace.

 o Explicitly specified which kind of refinements can be applied to
 elements of the base type in the definition of an extending
 complex type.

Linowski, et al. Expires April 22, 2011 [Page 36]

Internet-Draft YANG Language Abstractions October 2010

 o Confined the use of deviations for complex types to complex type
 instantiations.

 o Defined augmentation of complex types allowing augmentation only
 during instantiation via an "instance" or "instance-list"
 statement.

 o Removed leftovers from substatement tables.

 o Updates and bug-fixes in the examples.

A.4. 00-01

 o Transformed proposed new YANG statements to YANG extension
 statements (complex-type, element, extends, abstract).

 o Renamed statement "element" to the extension statement "instance"
 in order to avoid confusion with XML payload elements.

 o Introduced extension statement "instance-type" as allowing the use
 of the existing "type" statement as substatement in the existing
 "instance-identifier" statement cannot be done with extensions.

 o Added the complex type extension statement module.

 o Updated examples to reflect the changes mentioned above.

 o Added update rules for complex types.

 o Updated IANA Considerations section.

 o Added this change log.

Appendix B. YANG Modules for Physical Network Resource Model and
 Hardware Entities Model

 YANG module for the ’Physical Network Resource Model’:

 <CODE BEGINS>

 module udmcore {

 namespace "http://example.com/udmcore";
 prefix "udm";

 import ietf-yang-types {prefix "yang";}
 import ietf-complex-types {prefix "ct";}

Linowski, et al. Expires April 22, 2011 [Page 37]

Internet-Draft YANG Language Abstractions October 2010

 ct:complex-type BasicObject {
 ct:abstract true;
 key "distinguishedName";
 leaf globalId {type int64;}
 leaf distinguishedName {type string; mandatory true;}
 }

 ct:complex-type ManagedObject {
 ct:extends BasicObject;
 ct:abstract true;
 leaf instance {type string;}
 leaf objectState {type int32;}
 leaf release {type string;}
 }

 ct:complex-type Resource {
 ct:extends ManagedObject;
 ct:abstract true;
 leaf usageState {type int16;}
 leaf managementMethodSupported {type string;}
 leaf managementMethodCurrent {type string;}
 leaf managementInfo {type string;}
 leaf managementDomain {type string;}
 leaf version {type string;}
 leaf entityIdentification {type string;}
 leaf desription {type string;}
 leaf rootEntityType {type string;}
 }

 ct:complex-type LogicalResource {
 ct:extends Resource;
 ct:abstract true;
 leaf lrStatus {type int32;}
 leaf serviceState {type int32;}
 leaf isOperational {type boolean;}
 }

 ct:complex-type PhysicalResource {
 ct:extends Resource;
 ct:abstract true;
 leaf manufactureDate {type string;}
 leaf otherIdentifier {type string;}
 leaf powerState {type int32;}
 leaf serialNumber {type string;}
 leaf versionNumber {type string;}

Linowski, et al. Expires April 22, 2011 [Page 38]

Internet-Draft YANG Language Abstractions October 2010

 }

 ct:complex-type Hardware {
 ct:extends PhysicalResource;
 ct:abstract true;
 leaf width {type string;}
 leaf height {type string;}
 leaf depth {type string;}
 leaf measurementUnits {type int32;}
 leaf weight {type string;}
 leaf weightUnits {type int32;}
 leaf-list physicalLink {
 type instance-identifier {
 ct:instance-type PhysicalLink;
 }
 }
 ct:instance-list containedHardware {
 ct:instance-type Hardware;
 }
 ct:instance-list physicalConnector {
 ct:instance-type PhysicalConnector;
 }
 }

 ct:complex-type PhysicalLink {
 ct:extends PhysicalResource;
 leaf isWiereless {type boolean;}
 leaf currentLength {type string;}
 leaf maximumLength {type string;}
 leaf mediaType {type int32;}
 leaf-list hardware {
 type instance-identifier {
 ct:instance-type Hardware;
 }
 }
 }

 ct:complex-type ManagedHardware {
 ct:extends Hardware;
 leaf additionalinfo {type string;}
 leaf physicalAlarmReportingEnabled {type boolean;}
 leaf pyhsicalAlarmStatus {type int32;}
 leaf coolingRequirements {type string;}
 leaf hardwarePurpose {type string;}
 leaf isPhysicalContainer {type boolean;}

Linowski, et al. Expires April 22, 2011 [Page 39]

Internet-Draft YANG Language Abstractions October 2010

 }

 ct:complex-type AuxiliaryComponent {
 ct:extends ManagedHardware;
 ct:abstract true;
 }

 ct:complex-type PhysicalPort {
 ct:extends ManagedHardware;
 leaf portNumber {type int32;}
 leaf duplexMode {type int32;}
 leaf ifType {type int32;}
 leaf vendorPortName {type string;}
 }

 ct:complex-type PhysicalConnector {
 ct:extends Hardware;
 leaf location {type string;}
 leaf cableType {type int32;}
 leaf gender {type int32;}
 leaf inUse {type boolean;}
 leaf pinDescription {type string;}
 leaf typeOfConnector {type int32;}
 leaf-list sourcePhysicalConnector {
 type instance-identifier {
 ct:instance-type PhysicalConnector;
 }
 }
 leaf-list targetPhysicalConnector {
 type instance-identifier {
 ct:instance-type PhysicalConnector;
 }
 }
 }

 ct:complex-type Equipment {
 ct:extends ManagedHardware;
 leaf installStatus {type int32;}
 leaf expectedEquipmentType {type string;}
 leaf installedEquipmentType {type string;}
 leaf installedVersion {type string;}
 leaf redundancy {type int32;}
 leaf vendorName {type string;}
 leaf dateOfLastService {type yang:date-and-time;}

Linowski, et al. Expires April 22, 2011 [Page 40]

Internet-Draft YANG Language Abstractions October 2010

 leaf interchangeability {type string;}
 leaf identificationCode {type string;}
 ct:instance-list equipment {
 ct:instance-type Equipment;
 }
 }

 ct:complex-type EquipmentHolder {
 ct:extends ManagedHardware;
 leaf vendorName {type string;}
 leaf locationName {type string;}
 leaf dateOfLastService {type yang:date-and-time;}
 leaf partNumber {type string;}
 leaf availabilityStatus {type int16;}
 leaf nameFromPlanningSystem {type string;}
 leaf modelNumber {type string;}
 leaf acceptableEquipmentList {type string;}
 leaf isSolitaryHolder {type boolean;}
 leaf holderStatus {type int16;}
 leaf interchangeability {type string;}
 leaf equipmentHolderSpecificType {type string; }
 leaf position {type string;}
 leaf atomicCompositeType {type int16;}
 leaf uniquePhysical {type boolean;}
 leaf physicalDescription {type string;}
 leaf serviceApproach {type string;}
 leaf mountingOptions {type int32;}
 leaf cableManagementStrategy {type string;}
 leaf isSecureHolder {type boolean;}
 ct:instance-list equipment {
 ct:instance-type Equipment;
 }
 ct:instance-list equipmentHolder {
 ct:instance-type EquipmentHolder;
 }
 }

 // ... other resource complex types ...
 }
 <CODE ENDS>

 YANG module for the ’Hardware Entities Model’:

 <CODE BEGINS>

Linowski, et al. Expires April 22, 2011 [Page 41]

Internet-Draft YANG Language Abstractions October 2010

 module hardware-entities {

 namespace "http://example.com/:hardware-entities";
 prefix "hwe";

 import ietf-yang-types {prefix "yang";}
 import ietf-complex-types {prefix "ct";}
 import udmcore {prefix "uc";}

 grouping PhysicalEntityProperties {
 leaf hardwareRev {type string; }
 leaf firmwareRev {type string; }
 leaf softwareRev {type string; }
 leaf serialNum {type string; }

 leaf mfgName {type string; }
 leaf modelName {type string; }
 leaf alias {type string; }
 leaf ssetID{type string; }
 leaf isFRU {type boolean; }
 leaf mfgDate {type yang:date-and-time; }
 leaf-list uris {type string; }
 }

 // Physical entities representing equipment

 ct:complex-type Module {
 ct:extends uc:Equipment;
 description "Complex type representing module entries
 (entPhysicalClass = module(9)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 ct:complex-type Backplane {
 ct:extends uc:Equipment;
 description "Complex type representing backplane entries
 (entPhysicalClass = backplane(4)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 // Physical entities representing auxiliray hardware components

 ct:complex-type PowerSupply {
 ct:extends uc:AuxiliaryComponent;
 description "Complex type representing power supply entries

Linowski, et al. Expires April 22, 2011 [Page 42]

Internet-Draft YANG Language Abstractions October 2010

 (entPhysicalClass = powerSupply(6)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 ct:complex-type Fan {
 ct:extends uc:AuxiliaryComponent;
 description "Complex type representing fan entries
 (entPhysicalClass = fan(7)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 ct:complex-type Sensor {
 ct:extends uc:AuxiliaryComponent;
 description "Complex type representing sensor entries
 (entPhysicalClass = sensor(8)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 // Physical entities representing equipment holders

 ct:complex-type Chassis {
 ct:extends uc:EquipmentHolder;
 description "Complex type representing chassis entries
 (entPhysicalClass = chassis(3)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 ct:complex-type Container {
 ct:extends uc:EquipmentHolder;
 description "Complex type representing container entries
 (entPhysicalClass = container(5)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 ct:complex-type Stack {
 ct:extends uc:EquipmentHolder;
 description "Complex type representing stack entries
 (entPhysicalClass = stack(11)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 // Other kinds of physical entities

 ct:complex-type Port {
 ct:extends uc:PhysicalPort;
 description "Complex type representing port entries

Linowski, et al. Expires April 22, 2011 [Page 43]

Internet-Draft YANG Language Abstractions October 2010

 (entPhysicalClass = port(10)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 ct:complex-type CPU {
 ct:extends uc:Hardware;
 description "Complex type representing cpu entries
 (entPhysicalClass = cpu(12)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 }
 <CODE ENDS>

Appendix C. Example YANG Module for the IPFIX/PSAMP Model

C.1. Modeling Improvements for the IPFIX/PSAMP Model with Complex types
 and Typed instance identifiers

 The module below is a variation of the IPFIX/PSAMP configuration
 model, which uses complex types and typed instance identifiers to
 model the concept outlined in [IPFIXCONF].

 When looking at the YANG module with complex types and typed instance
 identifiers, various technical improvements on modeling level become
 apparent.

 o There is almost a one-to-one mapping between the domain concepts
 introduced in IPFIX and the complex types in the YANG module

 o All associations between the concepts (which are not containment)
 are represented with typed identifiers. That avoids having to
 refer to a particular location in the tree, which is not mandated
 by the original model.

 o It is superfluous to represent concept refinement (class
 inheritance in the original model) with containment in form of
 quite big choice-statements with complex branches. Instead,
 concept refinement is realized by complex types extending a base
 complex type.

 o It is unnecessary to introduce metadata identities and leafs (e.g.
 "identity cacheMode" and "leaf cacheMode" in "grouping
 cacheParameters") that just serve the purpose of indicating which
 concrete sub-type of a generic type (modeled as grouping, which
 contains the union of all features of all subtypes) is actually
 represented in the MIB.

Linowski, et al. Expires April 22, 2011 [Page 44]

Internet-Draft YANG Language Abstractions October 2010

 o Ruling out illegal use of sub-type specific properties (e.g. "leaf
 maxFlows") by using "when" statements that refer to a sub-type
 discriminator is not necessary (e.g. when "../cacheMode !=
 ’immediate’").

 o It is not needed to define properties like the configuration
 status wherever a so called "parameter grouping" is used. Instead
 those definitions can be put inside the complex-type definition
 itself.

 o It can be avoided to separating the declaration of the key from
 the related data nodes definitions in a grouping (see use of
 "grouping selectorParameters").

 o Complex types may be declared as optional features. If the type
 is indicated with an identity (e.g. "identity immediate"), this is
 not possible, since "if-feature" is not allowed as a substatement
 of "identity".

C.2. IPFIX/PSAMP Model with Complex Types and Typed Instance
 Identifiers

<CODE BEGINS>
module ct-ipfix-psamp-example {
 namespace "http://example.com/ns/ct-ipfix-psamp-example";
 prefix ipfix;

 import ietf-yang-types { prefix yang; }
 import ietf-inet-types { prefix inet; }
 import ietf-complex-types {prefix "ct"; }

 description "Example IPFIX/PSAMP Configuration Data Model
 with complex types and typed instance identifiers";

 revision 2010-10-19 {
 description "Version of draft-ietf-ipfix-configuration-model-07
 modeled with complex types and typed instance identifiers.";
 }

 /***
 * Features
 ***/

 feature exporter {
 description "If supported, the Monitoring Device can be used as
 an Exporter. Exporting Processes can be configured.";
 }

Linowski, et al. Expires April 22, 2011 [Page 45]

Internet-Draft YANG Language Abstractions October 2010

 feature collector {
 description "If supported, the Monitoring Device can be used as
 a Collector. Collecting Processes can be configured.";
 }

 feature meter {
 description "If supported, Observation Points, Selection
 Processes, and Caches can be configured.";
 }

 feature psampSampCountBased {
 description "If supported, the Monitoring Device supports
 count-based Sampling...";
 }

 feature psampSampTimeBased {
 description "If supported, the Monitoring Device supports
 time-based Sampling...";
 }

 feature psampSampRandOutOfN {
 description "If supported, the Monitoring Device supports
 random n-out-of-N Sampling...";
 }

 feature psampSampUniProb {
 description "If supported, the Monitoring Device supports
 uniform probabilistic Sampling...";
 }

 feature psampFilterMatch {
 description "If supported, the Monitoring Device supports
 property match Filtering...";
 }

 feature psampFilterHash {
 description "If supported, the Monitoring Device supports
 hash-based Filtering...";
 }

 feature cacheModeImmediate {
 description "If supported, the Monitoring Device supports
 Cache Mode ’immediate’.";
 }

 feature cacheModeTimeout {
 description "If supported, the Monitoring Device supports
 Cache Mode ’timeout’.";

Linowski, et al. Expires April 22, 2011 [Page 46]

Internet-Draft YANG Language Abstractions October 2010

 }

 feature cacheModeNatural {
 description "If supported, the Monitoring Device supports
 Cache Mode ’natural’.";
 }

 feature cacheModePermanent {
 description "If supported, the Monitoring Device supports
 Cache Mode ’permanent’.";
 }

 feature udpTransport {
 description "If supported, the Monitoring Device supports UDP
 as transport protocol.";
 }

 feature tcpTransport {
 description "If supported, the Monitoring Device supports TCP
 as transport protocol.";
 }

 feature fileReader {
 description "If supported, the Monitoring Device supports the
 configuration of Collecting Processes as File Readers.";
 }

 feature fileWriter {
 description "If supported, the Monitoring Device supports the
 configuration of Exporting Processes as File Writers.";
 }

 /***
 * Identities
 ***/

 /*** Hash function identities ***/
 identity hashFunction {
 description "Base identity for all hash functions...";
 }
 identity BOB {
 base "hashFunction";
 description "BOB hash function";
 reference "RFC5475, Section 6.2.4.1.";
 }
 identity IPSX {
 base "hashFunction";
 description "IPSX hash function";

Linowski, et al. Expires April 22, 2011 [Page 47]

Internet-Draft YANG Language Abstractions October 2010

 reference "RFC5475, Section 6.2.4.1.";
 }
 identity CRC {
 base "hashFunction";
 description "CRC hash function";
 reference "RFC5475, Section 6.2.4.1.";
 }

 /*** Export mode identities ***/
 identity exportMode {
 description "Base identity for different usages of export
 destinations configured for an Exporting Process...";
 }
 identity parallel {
 base "exportMode";
 description "Parallel export of Data Records to all
 destinations configured for the Exporting Process.";
 }
 identity loadBalancing {
 base "exportMode";
 description "Load-balancing between the different
 destinations...";
 }
 identity fallback {
 base "exportMode";
 description "Export to the primary destination...";
 }

 /*** Options type identities ***/
 identity optionsType {
 description "Base identity for report types exported
 with options...";
 }
 identity meteringStatistics {
 base "optionsType";
 description "Metering Process Statistics.";
 reference "RFC 5101, Section 4.1.";
 }
 identity meteringReliability {
 base "optionsType";
 description "Metering Process Reliability Statistics.";
 reference "RFC 5101, Section 4.2.";
 }
 identity exportingReliability {
 base "optionsType";
 description "Exporting Process Reliability
 Statistics.";
 reference "RFC 5101, Section 4.3.";

Linowski, et al. Expires April 22, 2011 [Page 48]

Internet-Draft YANG Language Abstractions October 2010

 }
 identity flowKeys {
 base "optionsType";
 description "Flow Keys.";
 reference "RFC 5101, Section 4.4.";
 }
 identity selectionSequence {
 base "optionsType";
 description "Selection Sequence and Selector Reports.";
 reference "RFC5476, Sections 6.5.1 and 6.5.2.";
 }
 identity selectionStatistics {
 base "optionsType";
 description "Selection Sequence Statistics Report.";
 reference "RFC5476, Sections 6.5.3.";
 }
 identity accuracy {
 base "optionsType";
 description "Accuracy Report.";
 reference "RFC5476, Section 6.5.4.";
 }
 identity reducingRedundancy {
 base "optionsType";
 description "Enables the utilization of Options Templates to
 reduce redundancy in the exported Data Records.";
 reference "RFC5473.";
 }
 identity extendedTypeInformation {
 base "optionsType";
 description "Export of extended type information for
 enterprise-specific Information Elements used in the
 exported Templates.";
 reference "RFC5610.";
 }

 /***
 * Type definitions
 ***/

 typedef nameType {
 type string {
 length "1..max";
 pattern "\S(.*\S)?";
 }
 description "Type for ’name’ leafs...";
 }

 typedef direction {

Linowski, et al. Expires April 22, 2011 [Page 49]

Internet-Draft YANG Language Abstractions October 2010

 type enumeration {
 enum ingress {
 description "This value is used for monitoring incoming
 packets.";
 }
 enum egress {
 description "This value is used for monitoring outgoing
 packets.";
 }
 enum both {
 description "This value is used for monitoring incoming and
 outgoing packets.";
 }
 }
 description "Direction of packets going through an interface or
 linecard.";
 }

 typedef transportSessionStatus {
 type enumeration {
 enum inactive {
 description "This value MUST be used for...";
 }
 enum active {
 description "This value MUST be used for...";
 }
 enum unknown {
 description "This value MUST be used if the status...";
 }
 }
 description "Status of a Transport Session.";
 reference "RFC5815, Section 8 (ipfixTransportSessionStatus).";
 }

 /***
 * Complex types
 ***/

 ct:complex-type ObservationPoint {
 description "Observation Point";
 key name;
 leaf name {
 type nameType;
 description "Key of an observation point.";
 }
 leaf observationPointId {
 type uint32;
 config false;

Linowski, et al. Expires April 22, 2011 [Page 50]

Internet-Draft YANG Language Abstractions October 2010

 description "Observation Point ID...";
 reference "RFC5102, Section 5.1.10.";
 }
 leaf observationDomainId {
 type uint32;
 mandatory true;
 description "The Observation Domain ID associates...";
 reference "RFC5101.";
 }
 choice OPLocation {
 mandatory true;
 description "Location of the Observation Point.";
 leaf ifIndex {
 type uint32;
 description "Index of an interface...";
 reference "RFC 1229.";
 }
 leaf ifName {
 type string;
 description "Name of an interface...";
 reference "RFC 1229.";
 }
 leaf entPhysicalIndex {
 type uint32;
 description "Index of a linecard...";
 reference "RFC 4133.";
 }
 leaf entPhysicalName {
 type string;
 description "Name of a linecard...";
 reference "RFC 4133.";
 }
 }
 leaf direction {
 type direction;
 default both;
 description "Direction of packets....";
 }
 leaf-list selectionProcess {
 type instance-identifier { ct:instance-type SelectionProcess; }
 description "Selection Processes in this list process packets
 in parallel.";
 }
 }

 ct:complex-type Selector {
 ct:abstract true;
 description "Abstract selector";

Linowski, et al. Expires April 22, 2011 [Page 51]

Internet-Draft YANG Language Abstractions October 2010

 key name;
 leaf name {
 type nameType;
 description "Key of a selector";
 }
 leaf packetsObserved {
 type yang:counter64;
 config false;
 description "The number of packets observed ...";
 reference "RFC5815, Section 8
 (ipfixSelectorStatsPacketsObserved).";
 }
 leaf packetsDropped {
 type yang:counter64;
 config false;
 description "The total number of packets discarded ...";
 reference "RFC5815, Section 8
 (ipfixSelectorStatsPacketsDropped).";
 }
 leaf selectorDiscontinuityTime {
 type yang:date-and-time;
 config false;
 description "Timestamp of the most recent occasion at which
 one or more of the Selector counters suffered a
 discontinuity...";
 reference "RFC5815, Section 8
 (ipfixSelectionProcessStatsDiscontinuityTime).";
 }
 }

 ct:complex-type SelectAllSelector {
 ct:extends Selector;
 description "Method which selects all packets.";
 }

 ct:complex-type SampCountBasedSelector {
 if-feature psampSampCountBased;
 ct:extends Selector;
 description "Selector applying systematic count-based
 packet sampling to the packet stream.";
 reference "RFC5475, Section 5.1;
 RFC5476, Section 6.5.2.1.";
 leaf packetInterval {
 type uint32;
 units packets;
 mandatory true;
 description "The number of packets that are consecutively
 sampled between gaps of length packetSpace.

Linowski, et al. Expires April 22, 2011 [Page 52]

Internet-Draft YANG Language Abstractions October 2010

 This parameter corresponds to the Information Element
 samplingPacketInterval.";
 reference "RFC5477, Section 8.2.2.";
 }
 leaf packetSpace {
 type uint32;
 units packets;
 mandatory true;
 description "The number of unsampled packets between two
 sampling intervals.
 This parameter corresponds to the Information Element
 samplingPacketSpace.";
 reference "RFC5477, Section 8.2.3.";
 }
 }

 ct:complex-type SampTimeBasedSelector {
 if-feature psampSampTimeBased;
 ct:extends Selector;
 description "Selector applying systematic time-based
 packet sampling to the packet stream.";
 reference "RFC5475, Section 5.1;
 RFC5476, Section 6.5.2.2.";
 leaf timeInterval {
 type uint32;
 units microseconds;
 mandatory true;
 description "The time interval in microseconds during
 which all arriving packets are sampled between gaps
 of length timeSpace.
 This parameter corresponds to the Information Element
 samplingTimeInterval.";
 reference "RFC5477, Section 8.2.4.";
 }
 leaf timeSpace {
 type uint32;
 units microseconds;
 mandatory true;
 description "The time interval in microseconds during
 which no packets are sampled between two sampling
 intervals specified by timeInterval.
 This parameter corresponds to the Information Element
 samplingTimeInterval.";
 reference "RFC5477, Section 8.2.5.";
 }
 }

 ct:complex-type SampRandOutOfNSelector {

Linowski, et al. Expires April 22, 2011 [Page 53]

Internet-Draft YANG Language Abstractions October 2010

 if-feature psampSampRandOutOfN;
 ct:extends Selector;
 description "This container contains the configuration
 parameters of a Selector applying n-out-of-N packet
 sampling to the packet stream.";
 reference "RFC5475, Section 5.2.1;
 RFC5476, Section 6.5.2.3.";
 leaf size {
 type uint32;
 units packets;
 mandatory true;
 description "The number of elements taken from the parent
 population.
 This parameter corresponds to the Information Element
 samplingSize.";
 reference "RFC5477, Section 8.2.6.";
 }
 leaf population {
 type uint32;
 units packets;
 mandatory true;
 description "The number of elements in the parent
 population.
 This parameter corresponds to the Information Element
 samplingPopulation.";
 reference "RFC5477, Section 8.2.7.";
 }
 }

 ct:complex-type SampUniProbSelector {
 if-feature psampSampUniProb;
 ct:extends Selector;
 description "Selector applying uniform probabilistic
 packet sampling (with equal probability per packet) to the
 packet stream.";
 reference "RFC5475, Section 5.2.2.1;
 RFC5476, Section 6.5.2.4.";
 leaf probability {
 type decimal64 {
 fraction-digits 18;
 range "0..1";
 }
 mandatory true;
 description "Probability that a packet is sampled,
 expressed as a value between 0 and 1. The probability
 is equal for every packet.
 This parameter corresponds to the Information Element
 samplingProbability.";

Linowski, et al. Expires April 22, 2011 [Page 54]

Internet-Draft YANG Language Abstractions October 2010

 reference "RFC5477, Section 8.2.8.";
 }
 }

 ct:complex-type FilterMatchSelector {
 if-feature psampFilterMatch;
 ct:extends Selector;
 description "This container contains the configuration
 parameters of a Selector applying property match filtering
 to the packet stream.";
 reference "RFC5475, Section 6.1;
 RFC5476, Section 6.5.2.5.";
 choice nameOrId {
 mandatory true;
 description "The field to be matched is specified by
 either the name or the ID of the Information
 Element.";
 leaf ieName {
 type string;
 description "Name of the Information Element.";
 }
 leaf ieId {
 type uint16 {
 range "1..32767" {
 description "Valid range of Information Element
 identifiers.";
 reference "RFC5102, Section 4.";
 }
 }
 description "ID of the Information Element.";
 }
 }
 leaf ieEnterpriseNumber {
 type uint32;
 description "If present, ... ";
 }
 leaf value {
 type string;
 mandatory true;
 description "Matching value of the Information Element.";
 }
 }

 ct:complex-type FilterHashSelector {
 if-feature psampFilterHash;
 ct:extends Selector;
 description "This container contains the configuration
 parameters of a Selector applying hash-based filtering

Linowski, et al. Expires April 22, 2011 [Page 55]

Internet-Draft YANG Language Abstractions October 2010

 to the packet stream.";
 reference "RFC5475, Section 6.2;
 RFC5476, Section 6.5.2.6.";
 leaf hashFunction {
 type identityref {
 base "hashFunction";
 }
 default BOB;
 description "Hash function to be applied. According to
 RFC5475, Section 6.2.4.1, ’BOB’ must be used in order to
 be compliant with PSAMP.";
 }
 leaf ipPayloadOffset {
 type uint64;
 units octets;
 default 0;
 description "IP payload offset ... ";
 reference "RFC5477, Section 8.3.2.";
 }
 leaf ipPayloadSize {
 type uint64;
 units octets;
 default 8;
 description "Number of IP payload bytes ... ";
 reference "RFC5477, Section 8.3.3.";
 }
 leaf digestOutput {
 type boolean;
 default false;
 description "If true, the output ... ";
 reference "RFC5477, Section 8.3.8.";
 }
 leaf initializerValue {
 type uint64;
 description "Initializer value to the hash function.
 If not configured by the user, the Monitoring Device
 arbitrarily chooses an initializer value.";
 reference "RFC5477, Section 8.3.9.";
 }
 list selectedRange {
 key name;
 min-elements 1;
 description "List of hash function return ranges for
 which packets are selected.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }

Linowski, et al. Expires April 22, 2011 [Page 56]

Internet-Draft YANG Language Abstractions October 2010

 leaf min {
 type uint64;
 description "Beginning of the hash function’s selected
 range.
 This parameter corresponds to the Information Element
 hashSelectedRangeMin.";
 reference "RFC5477, Section 8.3.6.";
 }
 leaf max {
 type uint64;
 description "End of the hash function’s selected range.
 This parameter corresponds to the Information Element
 hashSelectedRangeMax.";
 reference "RFC5477, Section 8.3.7.";
 }
 }
 }

 ct:complex-type Cache {
 ct:abstract true;
 description "Cache of a Monitoring Device.";
 key name;
 leaf name {
 type nameType;
 description "Key of a cache";
 }
 leaf-list exportingProcess {
 type leafref { path "/ipfix/exportingProcess/name"; }
 description "Records are exported by all Exporting Processes
 in the list.";
 }
 description "Configuration and state parameters of a Cache.";
 container cacheLayout {
 description "Cache Layout.";
 list cacheField {
 key name;
 min-elements 1;
 description "List of fields in the Cache Layout.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 choice nameOrId {
 mandatory true;
 description "Name or ID of the Information Element.";
 reference "RFC5102.";
 leaf ieName {
 type string;

Linowski, et al. Expires April 22, 2011 [Page 57]

Internet-Draft YANG Language Abstractions October 2010

 description "Name of the Information Element.";
 }
 leaf ieId {
 type uint16 {
 range "1..32767" {
 description "Valid range of Information Element
 identifiers.";
 reference "RFC5102, Section 4.";
 }
 }
 description "ID of the Information Element.";
 }
 }
 leaf ieLength {
 type uint16;
 units octets;
 description "Length of the field ... ";
 reference "RFC5101, Section 6.2; RFC5102.";
 }
 leaf ieEnterpriseNumber {
 type uint32;
 description "If present, the Information Element is
 enterprise-specific. ... ";
 reference "RFC5101; RFC5102.";
 }
 leaf isFlowKey {
 when "(../../../cacheMode != ’immediate’)
 and
 ((count(../ieEnterpriseNumber) = 0)
 or
 (../ieEnterpriseNumber != 29305))" {
 description "This parameter is not available
 for Reverse Information Elements (which have
 enterprise number 29305) or if the Cache Mode
 is ’immediate’.";
 }
 type empty;
 description "If present, this is a flow key.";
 }
 }
 }
 leaf dataRecords {
 type yang:counter64;
 units "Data Records";
 config false;
 description "The number of Data Records generated ... ";
 reference "ietf-draft-ipfix-mib-10, Section 8
 (ipfixMeteringProcessDataRecords).";

Linowski, et al. Expires April 22, 2011 [Page 58]

Internet-Draft YANG Language Abstractions October 2010

 }
 leaf cacheDiscontinuityTime {
 type yang:date-and-time;
 config false;
 description "Timestamp of the ... ";
 reference "ietf-draft-ipfix-mib-10, Section 8
 (ipfixMeteringProcessDiscontinuityTime).";
 }
 }

 ct:complex-type ImmediateCache {
 if-feature cacheModeImmediate;
 ct:extends Cache;
 }

 ct:complex-type NonImmediateCache {
 ct:abstract true;
 ct:extends Cache;
 leaf maxFlows {
 type uint32;
 units flows;
 description "This parameter configures the maximum number of
 Flows in the Cache ... ";
 }
 leaf activeFlows {
 type yang:gauge32;
 units flows;
 config false;
 description "The number of Flows currently active in this
 Cache.";
 reference "ietf-draft-ipfix-mib-10, Section 8
 (ipfixMeteringProcessCacheActiveFlows).";
 }
 leaf unusedCacheEntries {
 type yang:gauge32;
 units flows;
 config false;
 description "The number of unused Cache entries in this
 Cache.";
 reference "ietf-draft-ipfix-mib-10, Section 8
 (ipfixMeteringProcessCacheUnusedCacheEntries).";
 }
 }

 ct:complex-type NonPermanentCache {
 ct:abstract true;
 ct:extends NonImmediateCache;

Linowski, et al. Expires April 22, 2011 [Page 59]

Internet-Draft YANG Language Abstractions October 2010

 leaf activeTimeout {
 type uint32;
 units milliseconds;
 description "This parameter configures the time in
 milliseconds after which ... ";
 }
 leaf inactiveTimeout {
 type uint32;
 units milliseconds;
 description "This parameter configures the time in
 milliseconds after which ... ";
 }
 }

 ct:complex-type NaturalCache {
 if-feature cacheModeNatural;
 ct:extends NonPermanentCache;
 }

 ct:complex-type TimeoutCache {
 if-feature cacheModeTimeout;
 ct:extends NonPermanentCache;
 }

 ct:complex-type PermanentCache {
 if-feature cacheModePermanent;
 ct:extends NonImmediateCache;
 leaf exportInterval {
 type uint32;
 units milliseconds;
 description "This parameter configures the interval for
 periodical export of Flow Records in milliseconds.
 If not configured by the user, the Monitoring Device sets
 this parameter.";
 }
 }

 ct:complex-type ExportDestination {
 ct:abstract true;
 description "Abstract export destination.";
 key name;
 leaf name {
 type nameType;
 description "Key of an export destination.";
 }
 }

 ct:complex-type IpDestination {

Linowski, et al. Expires April 22, 2011 [Page 60]

Internet-Draft YANG Language Abstractions October 2010

 ct:abstract true;
 ct:extends ExportDestination;
 description "IP export destination.";
 leaf ipfixVersion {
 type uint16;
 default 10;
 description "IPFIX version number.";
 }
 leaf destinationPort {
 type inet:port-number;
 description "If not configured by the user, the Monitoring
 Device uses the default port number for IPFIX, which is
 4739 without transport layer security and 4740 if transport
 layer security is activated.";
 }
 choice indexOrName {
 description "Index or name of the interface ... ";
 reference "RFC 1229.";
 leaf ifIndex {
 type uint32;
 description "Index of an interface as stored in the ifTable
 of IF-MIB.";
 reference "RFC 1229.";
 }
 leaf ifName {
 type string;
 description "Name of an interface as stored in the ifTable
 of IF-MIB.";
 reference "RFC 1229.";
 }
 }
 leaf sendBufferSize {
 type uint32;
 units bytes;
 description "Size of the socket send buffer.
 If not configured by the user, this parameter is set by
 the Monitoring Device.";
 }
 leaf rateLimit {
 type uint32;
 units "bytes per second";
 description "Maximum number of bytes per second ... ";
 reference "RFC5476, Section 6.3";
 }
 container transportLayerSecurity {
 presence "If transportLayerSecurity is present, DTLS is
 enabled if the transport protocol is SCTP or UDP, and TLS
 is enabled if the transport protocol is TCP.";

Linowski, et al. Expires April 22, 2011 [Page 61]

Internet-Draft YANG Language Abstractions October 2010

 description "Transport layer security configuration.";
 uses transportLayerSecurityParameters;
 }
 container transportSession {
 config false;
 description "State parameters of the Transport Session
 directed to the given destination.";
 uses transportSessionParameters;
 }
 }

 ct:complex-type SctpExporter {
 ct:extends IpDestination;
 description "SCTP exporter.";
 leaf-list sourceIPAddress {
 type inet:ip-address;
 description "List of source IP addresses used ... ";
 reference "RFC 4960 (multi-homed SCTP endpoint).";
 }
 leaf-list destinationIPAddress {
 type inet:ip-address;
 min-elements 1;
 description "One or multiple IP addresses ... ";
 reference "RFC 4960 (multi-homed SCTP endpoint).";
 }
 leaf timedReliability {
 type uint32;
 units milliseconds;
 default 0;
 description "Lifetime in milliseconds ... ";
 reference "RFC 3758; RFC 4960.";
 }
 }

 ct:complex-type UdpExporter {
 ct:extends IpDestination;
 if-feature udpTransport;
 description "UDP parameters.";
 leaf sourceIPAddress {
 type inet:ip-address;
 description "Source IP address used by the Exporting
 Process ...";
 }
 leaf destinationIPAddress {
 type inet:ip-address;
 mandatory true;
 description "IP address of the Collection Process to which
 IPFIX Messages are sent.";

Linowski, et al. Expires April 22, 2011 [Page 62]

Internet-Draft YANG Language Abstractions October 2010

 }
 leaf maxPacketSize {
 type uint16;
 units octets;
 description "This parameter specifies the maximum size of
 IP packets ... ";
 }
 leaf templateRefreshTimeout {
 type uint32;
 units seconds;
 default 600;
 description "Sets time after which Templates are resent in the
 UDP Transport Session. ... ";
 reference "RFC5101, Section 10.3.6; RFC5815, Section 8
 (ipfixTransportSessionTemplateRefreshTimeout).";
 }
 leaf optionsTemplateRefreshTimeout {
 type uint32;
 units seconds;
 default 600;
 description "Sets time after which Options Templates are
 resent in the UDP Transport Session. ... ";
 reference "RFC5101, Section 10.3.6; RFC5815, Section 8
 (ipfixTransportSessionOptionsTemplateRefreshTimeout).";
 }
 leaf templateRefreshPacket {
 type uint32;
 units "IPFIX Messages";
 description "Sets number of IPFIX Messages after which
 Templates are resent in the UDP Transport Session. ... ";
 reference "RFC5101, Section 10.3.6; RFC5815, Section 8
 (ipfixTransportSessionTemplateRefreshPacket).";
 }
 leaf optionsTemplateRefreshPacket {
 type uint32;
 units "IPFIX Messages";
 description "Sets number of IPFIX Messages after which
 Options Templates are resent in the UDP Transport Session
 protocol. ... ";
 reference "RFC5101, Section 10.3.6; RFC5815, Section 8
 (ipfixTransportSessionOptionsTemplateRefreshPacket).";
 }
 }

 ct:complex-type TcpExporter {
 ct:extends IpDestination;
 if-feature tcpTransport;
 description "TCP exporter";

Linowski, et al. Expires April 22, 2011 [Page 63]

Internet-Draft YANG Language Abstractions October 2010

 leaf sourceIPAddress {
 type inet:ip-address;
 description "Source IP address used by the Exporting
 Process...";
 }
 leaf destinationIPAddress {
 type inet:ip-address;
 mandatory true;
 description "IP address of the Collection Process to which
 IPFIX Messages are sent.";
 }
 }

 ct:complex-type FileWriter {
 ct:extends ExportDestination;
 if-feature fileWriter;
 description "File Writer.";
 leaf ipfixVersion {
 type uint16;
 default 10;
 description "IPFIX version number.";
 }
 leaf file {
 type inet:uri;
 mandatory true;
 description "URI specifying the location of the file.";
 }
 leaf bytes {
 type yang:counter64;
 units octets;
 config false;
 description "The number of bytes written by the File
 Writer...";
 }
 leaf messages {
 type yang:counter64;
 units "IPFIX Messages";
 config false;
 description "The number of IPFIX Messages written by the File
 Writer. ... ";
 }
 leaf discardedMessages {
 type yang:counter64;
 units "IPFIX Messages";
 config false;
 description "The number of IPFIX Messages that could not be
 written by the File Writer ... ";
 }

Linowski, et al. Expires April 22, 2011 [Page 64]

Internet-Draft YANG Language Abstractions October 2010

 leaf records {
 type yang:counter64;
 units "Data Records";
 config false;
 description "The number of Data Records written by the File
 Writer. ... ";
 }
 leaf templates {
 type yang:counter32;
 units "Templates";
 config false;
 description "The number of Template Records (excluding
 Options Template Records) written by the File Writer.
 ... ";
 }
 leaf optionsTemplates {
 type yang:counter32;
 units "Options Templates";
 config false;
 description "The number of Options Template Records written
 by the File Writer. ... ";
 }
 leaf fileWriterDiscontinuityTime {
 type yang:date-and-time;
 config false;
 description "Timestamp of the most recent occasion at which
 one or more File Writer counters suffered a discontinuity.
 ... ";
 }
 list template {
 config false;
 description "This list contains the Templates and Options
 Templates that have been written by the File Reader. ... ";
 uses templateParameters;
 }
 }

 ct:complex-type ExportingProcess {
 if-feature exporter;
 description "Exporting Process of the Monitoring Device.";
 key name;
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 leaf exportMode {
 type identityref {
 base "exportMode";

Linowski, et al. Expires April 22, 2011 [Page 65]

Internet-Draft YANG Language Abstractions October 2010

 }
 default parallel;
 description "This parameter determines to which configured
 destination(s) the incoming Data Records are exported.";
 }
 ct:instance-list destination {
 ct:instance-type ExportDestination;
 min-elements 1;
 description "Export destinations.";
 }
 list options {
 key name;
 description "List of options reported by the Exporting
 Process.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 leaf optionsType {
 type identityref {
 base "optionsType";
 }
 mandatory true;
 description "Type of the exported options data.";
 }
 leaf optionsTimeout {
 type uint32;
 units milliseconds;
 description "Time interval for periodic export of the options
 data. ... ";
 }
 }
 }

 ct:complex-type CollectingProcess {
 description "A Collecting Process.";
 key name;
 leaf name {
 type nameType;
 description "Key of a collecing process.";
 }
 ct:instance-list sctpCollector {
 ct:instance-type SctpCollector;
 description "List of SCTP receivers (sockets) on which the
 Collecting Process receives IPFIX Messages.";
 }
 ct:instance-list udpCollector {
 if-feature udpTransport;

Linowski, et al. Expires April 22, 2011 [Page 66]

Internet-Draft YANG Language Abstractions October 2010

 ct:instance-type UdpCollector;
 description "List of UDP receivers (sockets) on which the
 Collecting Process receives IPFIX Messages.";
 }
 ct:instance-list tcpCollector {
 if-feature tcpTransport;
 ct:instance-type TcpCollector;
 description "List of TCP receivers (sockets) on which the
 Collecting Process receives IPFIX Messages.";
 }
 ct:instance-list fileReader {
 if-feature fileReader;
 ct:instance-type FileReader;
 description "List of File Readers from which the Collecting
 Process reads IPFIX Messages.";
 }
 leaf-list exportingProcess {
 type instance-identifier { ct:instance-type ExportingProcess; }
 description "Export of received records without any
 modifications. Records are processed by all Exporting
 Processes in the list.";
 }
 }

 ct:complex-type Collector {
 ct:abstract true;
 description "Abstract collector.";
 key name;
 leaf name {
 type nameType;
 description "Key of collectors";
 }
 }

 ct:complex-type IpCollector {
 ct:abstract true;
 ct:extends Collector;
 description "Collector for IP transport protocols.";
 leaf localPort {
 type inet:port-number;
 description "If not configured, the Monitoring Device uses the
 default port number for IPFIX, which is 4739 without
 transport layer security and 4740 if transport layer
 security is activated.";
 }
 container transportLayerSecurity {
 presence "If transportLayerSecurity is present, DTLS is enabled
 if the transport protocol is SCTP or UDP, and TLS is enabled

Linowski, et al. Expires April 22, 2011 [Page 67]

Internet-Draft YANG Language Abstractions October 2010

 if the transport protocol is TCP.";
 description "Transport layer security configuration.";
 uses transportLayerSecurityParameters;
 }
 list transportSession {
 config false;
 description "This list contains the currently established
 Transport Sessions terminating at the given socket.";
 uses transportSessionParameters;
 }
 }

 ct:complex-type SctpCollector {
 ct:extends IpCollector;
 description "Collector listening on aSCTP socket";
 leaf-list localIPAddress {
 type inet:ip-address;
 description "List of local IP addresses ... ";
 reference "RFC 4960 (multi-homed SCTP endpoint).";
 }
 }

 ct:complex-type UdpCollector {
 ct:extends IpCollector;
 description "Parameters of a listening UDP socket at a
 Collecting Process.";
 leaf-list localIPAddress {
 type inet:ip-address;
 description "List of local IP addresses on which the Collecting
 Process listens for IPFIX Messages.";
 }
 leaf templateLifeTime {
 type uint32;
 units seconds;
 default 1800;
 description "Sets the lifetime of Templates for all UDP
 Transport Sessions ... ";
 reference "RFC5101, Section 10.3.7; RFC5815, Section 8
 (ipfixTransportSessionTemplateRefreshTimeout).";
 }
 leaf optionsTemplateLifeTime {
 type uint32;
 units seconds;
 default 1800;
 description "Sets the lifetime of Options Templates for all
 UDP Transport Sessions terminating at this UDP socket.
 ... ";
 reference "RFC5101, Section 10.3.7; RFC5815, Section 8

Linowski, et al. Expires April 22, 2011 [Page 68]

Internet-Draft YANG Language Abstractions October 2010

 (ipfixTransportSessionOptionsTemplateRefreshTimeout).";
 }
 leaf templateLifePacket {
 type uint32;
 units "IPFIX Messages";
 description "If this parameter is configured, Templates
 defined in a UDP Transport Session become invalid if ...";
 reference "RFC5101, Section 10.3.7; RFC5815, Section 8
 (ipfixTransportSessionTemplateRefreshPacket).";
 }
 leaf optionsTemplateLifePacket {
 type uint32;
 units "IPFIX Messages";
 description "If this parameter is configured, Options
 Templates defined in a UDP Transport Session become
 invalid if ...";
 reference "RFC5101, Section 10.3.7; RFC5815, Section 8
 (ipfixTransportSessionOptionsTemplateRefreshPacket).";
 }
 }

 ct:complex-type TcpCollector {
 ct:extends IpCollector;
 description "Collector listening on a TCP socket.";
 leaf-list localIPAddress {
 type inet:ip-address;
 description "List of local IP addresses on which the Collecting
 Process listens for IPFIX Messages.";
 }
 }

 ct:complex-type FileReader {
 ct:extends Collector;
 description "File Reading collector.";
 leaf file {
 type inet:uri;
 mandatory true;
 description "URI specifying the location of the file.";
 }
 leaf bytes {
 type yang:counter64;
 units octets;
 config false;
 description "The number of bytes read by the File Reader.
 ... ";
 }
 leaf messages {
 type yang:counter64;

Linowski, et al. Expires April 22, 2011 [Page 69]

Internet-Draft YANG Language Abstractions October 2010

 units "IPFIX Messages";
 config false;
 description "The number of IPFIX Messages read by the File
 Reader. ... ";
 }
 leaf records {
 type yang:counter64;
 units "Data Records";
 config false;
 description "The number of Data Records read by the File
 Reader. ... ";
 }
 leaf templates {
 type yang:counter32;
 units "Templates";
 config false;
 description "The number of Template Records (excluding
 Options Template Records) read by the File Reader. ...";
 }
 leaf optionsTemplates {
 type yang:counter32;
 units "Options Templates";
 config false;
 description "The number of Options Template Records read by
 the File Reader. ... ";
 }
 leaf fileReaderDiscontinuityTime {
 type yang:date-and-time;
 config false;
 description "Timestamp of the most recent occasion ... ";
 }
 list template {
 config false;
 description "This list contains the Templates and Options
 Templates that have been read by the File Reader.
 Withdrawn or invalidated (Options) Template MUST be removed
 from this list.";
 uses templateParameters;
 }
 }

 ct:complex-type SelectionProcess {
 description "Selection Process";
 key name;
 leaf name {
 type nameType;
 description "Key of a selection process.";
 }

Linowski, et al. Expires April 22, 2011 [Page 70]

Internet-Draft YANG Language Abstractions October 2010

 ct:instance-list selector {
 ct:instance-type Selector;
 min-elements 1;
 ordered-by user;
 description "List of Selectors that define the action of the
 Selection Process on a single packet. The Selectors are
 serially invoked in the same order as they appear in this
 list.";
 }
 list selectionSequence {
 config false;
 description "This list contains the Selection Sequence IDs
 which are assigned by the Monitoring Device ... ";
 reference "RFC5476.";
 leaf observationDomainId {
 type uint32;
 description "Observation Domain ID for which the
 Selection Sequence ID is assigned.";
 }
 leaf selectionSequenceId {
 type uint64;
 description "Selection Sequence ID used in the Selection
 Sequence (Statistics) Report Interpretation.";
 }
 }
 leaf cache {
 type instance-identifier { ct:instance-type Cache; }
 description "Cache which receives the output of the
 Selection Process.";
 }
 }

 /***
 * Groupings
 ***/

 grouping transportLayerSecurityParameters {
 description "Transport layer security parameters.";
 leaf-list localCertificationAuthorityDN {
 type string;
 description "Distinguished names of certification authorities
 whose certificates may be used to identify the local
 endpoint.";
 }
 leaf-list localSubjectDN {
 type string;
 description "Distinguished names which may be used in the
 certificates to identify the local endpoint.";

Linowski, et al. Expires April 22, 2011 [Page 71]

Internet-Draft YANG Language Abstractions October 2010

 }
 leaf-list localSubjectFQDN {
 type inet:domain-name;
 description "Fully qualified domain names which may be used to
 in the certificates to identify the local endpoint.";
 }
 leaf-list remoteCertificationAuthorityDN {
 type string;
 description "Distinguished names of certification authorities
 whose certificates are accepted to authorize remote
 endpoints.";
 }
 leaf-list remoteSubjectDN {
 type string;
 description "Distinguished names which are accepted in
 certificates to authorize remote endpoints.";
 }
 leaf-list remoteSubjectFQDN {
 type inet:domain-name;
 description "Fully qualified domain name which are accepted in
 certificates to authorize remote endpoints.";
 }
 }

 grouping templateParameters {
 description "State parameters of a Template used by an Exporting
 Process or received by a Collecting Process ... ";
 reference "RFC5101; RFC5815, Section 8 (ipfixTemplateEntry,
 ipfixTemplateDefinitionEntry, ipfixTemplateStatsEntry)";
 leaf observationDomainId {
 type uint32;
 description "The ID of the Observation Domain for which this
 Template is defined.";
 reference "RFC5815, Section 8
 (ipfixTemplateObservationDomainId).";
 }
 leaf templateId {
 type uint16 {
 range "256..65535" {
 description "Valid range of Template IDs.";
 reference "RFC5101";
 }
 }
 description "This number indicates the Template Id in the IPFIX
 message.";
 reference "RFC5815, Section 8 (ipfixTemplateId).";
 }
 leaf setId {

Linowski, et al. Expires April 22, 2011 [Page 72]

Internet-Draft YANG Language Abstractions October 2010

 type uint16;
 description "This number indicates the Set ID of the Template.
 ... ";
 reference "RFC5815, Section 8 (ipfixTemplateSetId).";
 }
 leaf accessTime {
 type yang:date-and-time;
 description "Used for Exporting Processes, ... ";
 reference "RFC5815, Section 8 (ipfixTemplateAccessTime).";
 }
 leaf templateDataRecords {
 type yang:counter64;
 description "The number of transmitted or received Data
 Records ... ";
 reference "RFC5815, Section 8 (ipfixTemplateDataRecords).";
 }
 leaf templateDiscontinuityTime {
 type yang:date-and-time;
 description "Timestamp of the most recent occasion at which
 the counter templateDataRecords suffered a discontinuity.
 ... ";
 reference "RFC5815, Section 8
 (ipfixTemplateDiscontinuityTime).";
 }
 list field {
 description "This list contains the (Options) Template
 fields of which the (Options) Template is defined.
 ... ";
 leaf ieId {
 type uint16 {
 range "1..32767" {
 description "Valid range of Information Element
 identifiers.";
 reference "RFC5102, Section 4.";
 }
 }
 description "This parameter indicates the Information
 Element Id of the field.";
 reference "RFC5815, Section 8 (ipfixTemplateDefinitionIeId);
 RFC5102.";
 }
 leaf ieLength {
 type uint16;
 units octets;
 description "This parameter indicates the length of the
 Information Element of the field.";
 reference "RFC5815, Section 8
 (ipfixTemplateDefinitionIeLength); RFC5102.";

Linowski, et al. Expires April 22, 2011 [Page 73]

Internet-Draft YANG Language Abstractions October 2010

 }
 leaf ieEnterpriseNumber {
 type uint32;
 description "This parameter indicates the IANA enterprise
 number of the authority ... ";
 reference "RFC5815, Section 8
 (ipfixTemplateDefinitionIeEnterpriseNumber).";
 }
 leaf isFlowKey {
 when "../../setId = 2" {
 description "This parameter is available for non-Options
 Templates (Set ID is 2).";
 }
 type empty;
 description "If present, this is a Flow Key field.";
 reference "RFC5815, Section 8
 (ipfixTemplateDefinitionFlags).";
 }
 leaf isScope {
 when "../../setId = 3" {
 description "This parameter is available for Options
 Templates (Set ID is 3).";
 }
 type empty;
 description "If present, this is a scope field.";
 reference "RFC5815, Section 8
 (ipfixTemplateDefinitionFlags).";
 }
 }
 }

 grouping transportSessionParameters {
 description "State parameters of a Transport Session ... ";
 reference "RFC5101, RFC5815, Section 8
 (ipfixTransportSessionEntry,
 ipfixTransportSessionStatsEntry)";
 leaf ipfixVersion {
 type uint16;
 description "Used for Exporting Processes, this parameter
 contains the version number of the IPFIX protocol ... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionIpfixVersion).";
 }
 leaf sourceAddress {
 type inet:ip-address;
 description "The source address of the Exporter of the
 IPFIX Transport Session... ";
 reference "RFC5815, Section 8

Linowski, et al. Expires April 22, 2011 [Page 74]

Internet-Draft YANG Language Abstractions October 2010

 (ipfixTransportSessionSourceAddressType,
 ipfixTransportSessionSourceAddress).";
 }
 leaf destinationAddress {
 type inet:ip-address;
 description "The destination address of the Collector of
 the IPFIX Transport Session... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionDestinationAddressType,
 ipfixTransportSessionDestinationAddress).";
 }
 leaf sourcePort {
 type inet:port-number;
 description "The transport protocol port number of the
 Exporter of the IPFIX Transport Session.";
 reference "RFC5815, Section 8
 (ipfixTransportSessionSourcePort).";
 }
 leaf destinationPort {
 type inet:port-number;
 description "The transport protocol port number of the
 Collector of the IPFIX Transport Session... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionDestinationPort).";
 }
 leaf sctpAssocId {
 type uint32;
 description "The association id used for the SCTP session
 between the Exporter and the Collector ... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionSctpAssocId),
 RFC3871";
 }
 leaf status {
 type transportSessionStatus;
 description "Status of the Transport Session.";
 reference "RFC5815, Section 8 (ipfixTransportSessionStatus).";
 }
 leaf rate {
 type yang:gauge32;
 units "bytes per second";
 description "The number of bytes per second transmitted by the
 Exporting Process or received by the Collecting Process.
 This parameter is updated every second.";
 reference "RFC5815, Section 8 (ipfixTransportSessionRate).";
 }
 leaf bytes {
 type yang:counter64;

Linowski, et al. Expires April 22, 2011 [Page 75]

Internet-Draft YANG Language Abstractions October 2010

 units bytes;
 description "The number of bytes transmitted by the
 Exporting Process or received by the Collecting
 Process ... ";
 reference "RFC5815, Section 8 (ipfixTransportSessionBytes).";
 }
 leaf messages {
 type yang:counter64;
 units "IPFIX Messages";
 description "The number of messages transmitted by the
 Exporting Process or received by the Collecting Process... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionMessages).";
 }
 leaf discardedMessages {
 type yang:counter64;
 units "IPFIX Messages";
 description "Used for Exporting Processes, this parameter
 indicates the number of messages that could not be
 sent ...";
 reference "RFC5815, Section 8
 (ipfixTransportSessionDiscardedMessages).";
 }
 leaf records {
 type yang:counter64;
 units "Data Records";
 description "The number of Data Records transmitted ... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionRecords).";
 }
 leaf templates {
 type yang:counter32;
 units "Templates";
 description "The number of Templates transmitted by the
 Exporting Process or received by the Collecting Process.
 ... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionTemplates).";
 }
 leaf optionsTemplates {
 type yang:counter32;
 units "Options Templates";
 description "The number of Option Templates transmitted by the
 Exporting Process or received by the Collecting Process...";
 reference "RFC5815, Section 8
 (ipfixTransportSessionOptionsTemplates).";
 }
 leaf transportSessionStartTime {

Linowski, et al. Expires April 22, 2011 [Page 76]

Internet-Draft YANG Language Abstractions October 2010

 type yang:date-and-time;
 description "Timestamp of the start of the given Transport
 Session... ";
 }
 leaf transportSessionDiscontinuityTime {
 type yang:date-and-time;
 description "Timestamp of the most recent occasion at which
 one or more of the Transport Session counters suffered a
 discontinuity... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionDiscontinuityTime).";
 }
 list template {
 description "This list contains the Templates and Options
 Templates that are transmitted by the Exporting Process
 or received by the Collecting Process.
 Withdrawn or invalidated (Options) Template MUST be removed
 from this list.";
 uses templateParameters;
 }
 }

 /***
 * Main container
 ***/

 container ipfix {
 description "Top-level node of the IPFIX/PSAMP configuration
 data model.";

 ct:instance-list collectingProcess {
 if-feature collector;
 ct:instance-type CollectingProcess;
 }

 ct:instance-list observationPoint {
 if-feature meter;
 ct:instance-type ObservationPoint;
 }

 ct:instance-list selectionProcess {
 if-feature meter;
 ct:instance-type SelectionProcess;
 }

 ct:instance-list cache {
 if-feature meter;
 description "Cache of the Monitoring Device.";

Linowski, et al. Expires April 22, 2011 [Page 77]

Internet-Draft YANG Language Abstractions October 2010

 ct:instance-type Cache;
 }

 ct:instance-list exportingProcess {
 if-feature exporter;
 description "Exporting Process of the Monitoring Device.";
 ct:instance-type ExportingProcess;
 }

 }
}
<CODE ENDS>

Authors’ Addresses

 Bernd Linowski
 TCS/Nokia Siemens Networks
 Heltorfer Strasse 1
 Duesseldorf 40472
 Germany

 EMail: bernd.linowski@ext.nsn.com

 Mehmet Ersue
 Nokia Siemens Networks
 St.-Martin-Strasse 53
 Munich 81541
 Germany

 EMail: mehmet.ersue@nsn.com

 Siarhei Kuryla
 360 Treasury Systems
 Grueneburgweg 16-18
 Frankfurt am Main 60322
 Germany

 EMail: s.kuryla@gmail.com

Linowski, et al. Expires April 22, 2011 [Page 78]

