
NETMOD L. Lhotka, Ed.
Internet-Draft CESNET
Intended status: Standards Track October 21, 2010
Expires: April 24, 2011

 Mapping YANG to Document Schema Definition Languages and Validating
 NETCONF Content
 draft-ietf-netmod-dsdl-map-10

Abstract

 This document specifies the mapping rules for translating YANG data
 models into Document Schema Definition Languages (DSDL), a
 coordinated set of XML schema languages standardized as ISO/IEC
 19757. The following DSDL schema languages are addressed by the
 mapping: RELAX NG, Schematron and DSRL. The mapping takes one or
 more YANG modules and produces a set of DSDL schemas for a selected
 target document type - datastore content, NETCONF message etc.
 Procedures for schema-based validation of such documents are also
 discussed.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Lhotka Expires April 24, 2011 [Page 1]

Internet-Draft Mapping YANG to DSDL October 2010

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 6
 2. Terminology and Notation 8
 2.1. Glossary of New Terms 11
 3. Objectives and Motivation 12
 4. DSDL Schema Languages . 14
 4.1. RELAX NG . 14
 4.2. Schematron . 15
 4.3. Document Semantics Renaming Language (DSRL) 16
 5. Additional Annotations 17
 5.1. Dublin Core Metadata Elements 17
 5.2. RELAX NG DTD Compatibility Annotations 17
 5.3. NETMOD-Specific Annotations 18
 6. Overview of the Mapping 20
 7. NETCONF Content Validation 22
 8. Design Considerations . 23
 8.1. Hybrid Schema . 23
 8.2. Modularity . 25
 8.3. Granularity . 27
 8.4. Handling of XML Namespaces 27
 9. Mapping YANG Data Models to the Hybrid Schema 29
 9.1. Occurrence Rules for Data Nodes 29
 9.1.1. Optional and Mandatory Nodes 30
 9.1.2. Implicit Nodes 31
 9.2. Mapping YANG Groupings and Typedefs 32
 9.2.1. YANG Refinements and Augments 33
 9.2.2. Type Derivation Chains 36
 9.3. Translation of XPath Expressions 38
 9.4. YANG Language Extensions 39
 10. Mapping YANG Statements to the Hybrid Schema 41
 10.1. The ’anyxml’ Statement 41
 10.2. The ’argument’ Statement 42
 10.3. The ’augment’ Statement 43
 10.4. The ’base’ Statement 43
 10.5. The ’belongs-to’ Statement 43
 10.6. The ’bit’ Statement 43
 10.7. The ’case’ Statement 43
 10.8. The ’choice’ Statement 43
 10.9. The ’config’ Statement 44
 10.10. The ’contact’ Statement 44

Lhotka Expires April 24, 2011 [Page 2]

Internet-Draft Mapping YANG to DSDL October 2010

 10.11. The ’container’ Statement 44
 10.12. The ’default’ Statement 44
 10.13. The ’description’ Statement 46
 10.14. The ’deviation’ Statement 46
 10.15. The ’enum’ Statement 46
 10.16. The ’error-app-tag’ Statement 46
 10.17. The ’error-message’ Statement 46
 10.18. The ’extension’ Statement 46
 10.19. The ’feature’ Statement 46
 10.20. The ’grouping’ Statement 46
 10.21. The ’identity’ Statement 47
 10.22. The ’if-feature’ Statement 48
 10.23. The ’import’ Statement 49
 10.24. The ’include’ Statement 49
 10.25. The ’input’ Statement 49
 10.26. The ’key’ Statement 49
 10.27. The ’leaf’ Statement 49
 10.28. The ’leaf-list’ Statement 50
 10.29. The ’length’ Statement 50
 10.30. The ’list’ Statement 51
 10.31. The ’mandatory’ Statement 52
 10.32. The ’max-elements’ Statement 52
 10.33. The ’min-elements’ Statement 52
 10.34. The ’module’ Statement 52
 10.35. The ’must’ Statement 53
 10.36. The ’namespace’ Statement 53
 10.37. The ’notification’ Statement 54
 10.38. The ’ordered-by’ Statement 54
 10.39. The ’organization’ Statement 54
 10.40. The ’output’ Statement 54
 10.41. The ’path’ Statement 54
 10.42. The ’pattern’ Statement 54
 10.43. The ’position’ Statement 55
 10.44. The ’prefix’ Statement 55
 10.45. The ’presence’ Statement 55
 10.46. The ’range’ Statement 55
 10.47. The ’reference’ Statement 55
 10.48. The ’require-instance’ Statement 55
 10.49. The ’revision’ Statement 55
 10.50. The ’rpc’ Statement 55
 10.51. The ’status’ Statement 56
 10.52. The ’submodule’ Statement 56
 10.53. The ’type’ Statement 56
 10.53.1. The "empty" Type 57
 10.53.2. The "boolean" Type 57
 10.53.3. The "binary" Type 58
 10.53.4. The "bits" Type 58
 10.53.5. The "enumeration" and "union" Types 58

Lhotka Expires April 24, 2011 [Page 3]

Internet-Draft Mapping YANG to DSDL October 2010

 10.53.6. The "identityref" Type 58
 10.53.7. The "instance-identifier" Type 59
 10.53.8. The "leafref" Type 59
 10.53.9. The Numeric Types 59
 10.53.10. The "string" Type 61
 10.53.11. Derived Types 62
 10.54. The ’typedef’ Statement 63
 10.55. The ’unique’ Statement 63
 10.56. The ’units’ Statement 64
 10.57. The ’uses’ Statement 64
 10.58. The ’value’ Statement 64
 10.59. The ’when’ Statement 64
 10.60. The ’yang-version’ Statement 64
 10.61. The ’yin-element’ Statement 64
 11. Mapping the Hybrid Schema to DSDL 65
 11.1. Generating RELAX NG Schemas for Various Document Types . 65
 11.2. Mapping Semantic Constraints to Schematron 66
 11.2.1. Constraints on Mandatory Choice 69
 11.3. Mapping Default Values to DSRL 70
 12. Mapping NETMOD-specific Annotations to DSDL Schema
 Languages . 75
 12.1. The @nma:config Annotation 75
 12.2. The @nma:default Annotation 75
 12.3. The <nma:error-app-tag> Annotation 75
 12.4. The <nma:error-message> Annotation 75
 12.5. The @if-feature Annotation 75
 12.6. The @nma:implicit Annotation 76
 12.7. The <nma:instance-identifier> Annotation 76
 12.8. The @nma:key Annotation 76
 12.9. The @nma:leaf-list Annotation 76
 12.10. The @nma:leafref Annotation 77
 12.11. The @nma:min-elements Annotation 77
 12.12. The @nma:max-elements Annotation 77
 12.13. The <nma:must> Annotation 77
 12.14. The <nma:ordered-by> Annotation 78
 12.15. The <nma:status> Annotation 78
 12.16. The @nma:unique Annotation 78
 12.17. The @nma:when Annotation 78
 13. IANA Considerations . 79
 14. Security Considerations 80
 15. Contributors . 81
 16. Acknowledgments . 82
 17. References . 83
 17.1. Normative References 83
 17.2. Informative References 84
 Appendix A. RELAX NG Schema for NETMOD-Specific Annotations . . 86
 Appendix B. Schema-Independent Library 91
 Appendix C. Mapping DHCP Data Model - A Complete Example 92

Lhotka Expires April 24, 2011 [Page 4]

Internet-Draft Mapping YANG to DSDL October 2010

 C.1. Input YANG Module 92
 C.2. Hybrid Schema . 94
 C.3. Final DSDL Schemas 99
 C.3.1. Main RELAX NG Schema for <nc:get> Reply 100
 C.3.2. RELAX NG Schema - Global Named Pattern
 Definitions . 102
 C.3.3. Schematron Schema for <nc:get> Reply 104
 C.3.4. DSRL Schema for <nc:get> Reply 106
 Appendix D. Change Log . 107
 D.1. Changes Between Versions -07 and -08 107
 D.2. Changes Between Versions -06 and -07 107
 D.3. Changes Between Versions -05 and -06 107
 D.4. Changes Between Versions -04 and -05 108
 D.5. Changes Between Versions -03 and -04 108
 D.6. Changes Between Versions -02 and -03 109
 D.7. Changes Between Versions -01 and -02 110
 D.8. Changes Between Versions -00 and -01 110
 Author’s Address . 112

Lhotka Expires April 24, 2011 [Page 5]

Internet-Draft Mapping YANG to DSDL October 2010

1. Introduction

 The NETCONF Working Group has completed a base protocol used for
 configuration management [RFC4741]. This base specification defines
 protocol bindings and an XML container syntax for configuration and
 management operations, but does not include a data modeling language
 or accompanying rules for how to model configuration and state
 information carried by NETCONF. The IETF Operations Area has a long
 tradition of defining data for SNMP Management Information Bases
 (MIB) modules [RFC1157] using the Structure of Management Information
 (SMI) language [RFC2578] to model its data. While this specific
 modeling approach has a number of well-understood problems, most of
 the data modeling features provided by SMI are still considered
 extremely important. Simply modeling the valid syntax without the
 additional semantic relationships has caused significant
 interoperability problems in the past.

 The NETCONF community concluded that a data modeling framework is
 needed to support ongoing development of IETF and vendor-defined
 management information modules. The NETMOD Working Group was
 chartered to design a modeling language defining the semantics of
 operational data, configuration data, event notifications and
 operations, with focus on "human-friendliness", i.e., readability and
 ease of use. The result is the YANG data modeling language
 [RFC6020], which now serves for the normative description of NETCONF
 data models.

 Since NETCONF uses XML for encoding its messages, it is natural to
 express the constraints on NETCONF content using standard XML schema
 languages. For this purpose, the NETMOD WG selected the Document
 Schema Definition Languages (DSDL) that is being standardized as ISO/
 IEC 19757 [DSDL]. The DSDL framework comprises a set of XML schema
 languages that address grammar rules, semantic constraints and other
 data modeling aspects, but also, and more importantly, do it in a
 coordinated and consistent way. While it is true that some DSDL
 parts have not been standardized yet and are still work in progress,
 the three parts that the YANG-to-DSDL mapping relies upon - Regular
 Language for XML Next Generation (RELAX NG), Schematron and Document
 Schema Renaming Language (DSRL) - already have the status of an ISO/
 IEC International Standard and are supported in a number of software
 tools.

 This document contains a specification of a mapping that translates
 YANG data models to XML schemas utilizing a subset of the DSDL schema
 languages. The mapping procedure is divided into two steps: In the
 first step, the structure of the data tree, signatures of remote
 procedure call (RPC) operations and notifications is expressed as the
 so-called "hybrid schema" - a single RELAX NG schema with annotations

Lhotka Expires April 24, 2011 [Page 6]

Internet-Draft Mapping YANG to DSDL October 2010

 representing additional data model information (metadata,
 documentation, semantic constraints, default values etc.). The
 second step then generates a coordinated set of DSDL schemas that can
 be used for validating specific XML documents such as client
 requests, server responses or notifications, perhaps also taking into
 account additional context such as active capabilities or features.

Lhotka Expires April 24, 2011 [Page 7]

Internet-Draft Mapping YANG to DSDL October 2010

2. Terminology and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [RFC4741]:

 o client

 o datastore

 o message

 o operation

 o server

 The following terms are defined in [RFC6020]:

 o augment

 o base type

 o built-in type

 o configuration data

 o container

 o data model

 o data node

 o data tree

 o derived type

 o device deviation

 o extension

 o feature

 o grouping

 o instance identifier

Lhotka Expires April 24, 2011 [Page 8]

Internet-Draft Mapping YANG to DSDL October 2010

 o leaf-list

 o list

 o mandatory node

 o module

 o RPC

 o RPC operation

 o schema node

 o schema tree

 o state data

 o submodule

 o top-level data node

 o uses

 The following terms are defined in [XML-INFOSET]:

 o attribute

 o document

 o document element

 o document type declaration (DTD)

 o element

 o information set

 o namespace

 In the text, the following typographic conventions are used:

 o YANG statement keywords are delimited by single quotes.

 o XML element names are delimited by "<" and ">" characters.

 o Names of XML attributes are prefixed by the "@" character.

Lhotka Expires April 24, 2011 [Page 9]

Internet-Draft Mapping YANG to DSDL October 2010

 o Other literal values are delimited by double quotes.

 XML elements names are always written with explicit namespace
 prefixes corresponding to the following XML vocabularies:

 "a" DTD compatibility annotations [RNG-DTD];

 "dc" Dublin Core metadata elements [RFC5013];

 "dsrl" Document Semantics Renaming Language [DSRL];

 "en" NETCONF event notifications [RFC5277];

 "nc" NETCONF protocol [RFC4741];

 "nma" NETMOD-specific schema annotations (see Section 5.3);

 "nmf" NETMOD-specific XPath extension functions (see Section 12.7);

 "rng" RELAX NG [RNG];

 "sch" ISO Schematron [Schematron];

 "xsd" W3C XML Schema [XSD].

 The following table shows the mapping of these prefixes to namespace
 URIs.

Lhotka Expires April 24, 2011 [Page 10]

Internet-Draft Mapping YANG to DSDL October 2010

 +--------+---+
 | Prefix | Namespace URI |
 +--------+---+
 | a | http://relaxng.org/ns/compatibility/annotations/1.0 |
 | | |
 | dc | http://purl.org/dc/terms |
 | | |
 | dsrl | http://purl.oclc.org/dsdl/dsrl |
 | | |
 | en | urn:ietf:params:xml:ns:netconf:notification:1.0 |
 | | |
 | nc | urn:ietf:params:xml:ns:netconf:base:1.0 |
 | | |
 | nma | urn:ietf:params:xml:ns:netmod:dsdl-annotations:1 |
 | | |
 | nmf | urn:ietf:params:xml:ns:netmod:xpath-extensions:1 |
 | | |
 | rng | http://relaxng.org/ns/structure/1.0 |
 | | |
 | sch | http://purl.oclc.org/dsdl/schematron |
 | | |
 | xsd | http://www.w3.org/2001/XMLSchema |
 +--------+---+

 Table 1: Used namespace prefixes and corresponding URIs

2.1. Glossary of New Terms

 o ancestor datatype: Any datatype a given datatype is (transitively)
 derived from.

 o ancestor built-in datatype: The built-in datatype that is at the
 start of the type derivation chain for a given datatype.

 o hybrid schema: A RELAX NG schema with annotations, which embodies
 the same information as the source YANG module(s). See
 Section 8.1 for details.

 o implicit node: A data node that, if it is not instantiated in a
 data tree, may be added to the information set of that data tree
 (configuration, RPC input or output, notification) without
 changing the semantics of the data tree.

Lhotka Expires April 24, 2011 [Page 11]

Internet-Draft Mapping YANG to DSDL October 2010

3. Objectives and Motivation

 The main objective of this work is to complement YANG as a data
 modeling language with validation capabilities of DSDL schema
 languages, namely RELAX NG, Schematron and DSRL. This document
 describes the correspondence between grammatical, semantic and data
 type constraints expressed in YANG and equivalent DSDL patterns and
 rules. The ultimate goal is to be able to capture all substantial
 information contained in YANG modules and express it in DSDL schemas.
 While the mapping from YANG to DSDL described in this document may in
 principle be invertible, the inverse mapping from DSDL to YANG is
 beyond the scope of this document.

 XML-based information models and XML-encoded data appear in several
 different forms in various phases of YANG data modeling and NETCONF
 workflow - configuration datastore contents, RPC requests and
 replies, and notifications. Moreover, RPC operations are
 characterized by an inherent diversity resulting from selective
 availability of capabilities and features. YANG modules can also
 define new RPC operations. The mapping should be able to accommodate
 this variability and generate schemas that are specifically tailored
 to a particular situation and thus considerably more effective for
 validation than generic all-encompassing schemas.

 In order to cope with this variability, we assume that the DSDL
 schemas will be generated on demand for a particular purpose from the
 available collection of YANG modules and their lifetime will be
 relatively short. In other words, we don’t envision that any
 collection of DSDL schemas will be created and maintained over an
 extended period of time in parallel to YANG modules.

 The generated schemas are primarily intended as input to existing XML
 schema validators and other off-the-shelf tools. However, the
 schemas may also be perused by developers and users as a formal
 representation of constraints on a particular XML-encoded data
 object. Consequently, our secondary goal is to keep the schemas as
 readable as possible. To this end, the complexity of the mapping is
 distributed into two steps:

 1. The first step maps one or more YANG modules to the so-called
 hybrid schema, which is a single RELAX NG schema that describes
 grammatical constraints for the main data tree as well as for RPC
 operations and notifications. Semantic constraints and other
 information appearing in the input YANG modules is recorded in
 the hybrid schema in the form of foreign namespace annotations.
 The output of the first step can thus be considered a virtually
 complete equivalent of the input YANG modules.

Lhotka Expires April 24, 2011 [Page 12]

Internet-Draft Mapping YANG to DSDL October 2010

 2. In the second step, the hybrid schema from step 1 is transformed
 further to a coordinated set of fully conformant DSDL schemas
 containing constraints for a particular data object and a
 specific situation. The DSDL schemas are intended mainly for
 machine validation using off-the-shelf tools.

Lhotka Expires April 24, 2011 [Page 13]

Internet-Draft Mapping YANG to DSDL October 2010

4. DSDL Schema Languages

 Document Schema Definition Languages (DSDL) is a framework of schema
 languages that is being developed as the International Standard ISO/
 IEC 19757 [DSDL]. Unlike other approaches to XML document
 validation, most notably W3C XML Schema Definition (XSD) [XSD], the
 DSDL framework adheres to the principle of "small languages": Each of
 the DSDL constituents is a stand-alone schema language with a
 relatively narrow purpose and focus. Together, these schema
 languages may be used in a coordinated way to accomplish various
 validation tasks.

 The mapping described in this document uses three of the DSDL schema
 languages, namely RELAX NG [RNG], Schematron [Schematron] and DSRL
 [DSRL].

4.1. RELAX NG

 RELAX NG (pronounced "relaxing") is an XML schema language for
 grammar-based validation and Part 2 of the ISO/IEC DSDL family of
 standards [RNG]. Like the W3C XML Schema language [XSD], it is able
 to describe constraints on the structure and contents of XML
 documents. However, unlike the DTD [XML] and XSD schema languages,
 RELAX NG intentionally avoids any infoset augmentation such as
 defining default values. In the DSDL architecture, the particular
 task of defining and applying default values is delegated to another
 schema language, DSRL (see Section 4.3).

 As its base datatype library, RELAX NG uses the W3C XML Schema
 Datatype Library [XSD-D], but unlike XSD, other datatype libraries
 may be used along with it or even replace it if necessary.

 RELAX NG is very liberal in accepting annotations from other
 namespaces. With a few exceptions, such annotations may be placed
 anywhere in the schema and need no encapsulating elements such as
 <xsd:annotation> in XSD.

 RELAX NG schemas can be represented in two equivalent syntaxes: XML
 and compact. The compact syntax is described in Annex C of the RELAX
 NG specification [RNG-CS], which was added to the standard in 2006
 (Amendment 1). Automatic bidirectional conversions between the two
 syntaxes can be accomplished using several tools, for example Trang
 [Trang].

 For its terseness and readability, the compact syntax is often the
 preferred form for publishing RELAX NG schemas whereas validators and
 other software tools usually work with the XML syntax. However, the
 compact syntax has two drawbacks:

Lhotka Expires April 24, 2011 [Page 14]

Internet-Draft Mapping YANG to DSDL October 2010

 o External annotations make the compact syntax schema considerably
 less readable. While in the XML syntax the annotating elements
 and attributes are represented in a simple and uniform way (XML
 elements and attributes from foreign namespaces), the compact
 syntax uses as many as four different syntactic constructs:
 documentation, grammar, initial and following annotations.
 Therefore, the impact of annotations on readability is often much
 stronger for the compact syntax than it is for the XML syntax.

 o In a computer program, it is more difficult to generate the
 compact syntax than the XML syntax. While a number of software
 libraries exist that make it easy to create an XML tree in the
 memory and then serialize it, no such aid is available for the
 compact syntax.

 For these reasons, the mapping specification in this document uses
 exclusively the XML syntax. Where appropriate, though, the schemas
 resulting from the translation MAY be presented in the equivalent
 compact syntax.

 RELAX NG elements are qualified with the namespace URI
 "http://relaxng.org/ns/structure/1.0". The namespace of the W3C
 Schema Datatype Library is
 "http://www.w3.org/2001/XMLSchema-datatypes".

4.2. Schematron

 Schematron is Part 3 of DSDL that reached the status of a full ISO/
 IEC standard in 2006 [Schematron]. In contrast to the traditional
 schema languages such as DTD, XSD or RELAX NG, which are based on the
 concept of a formal grammar, Schematron utilizes a rule-based
 approach. Its rules may specify arbitrary conditions involving data
 from different parts of an XML document. Each rule consists of three
 essential components:

 o context - an XPath expression that defines the set of locations
 where the rule is to be applied;

 o assert or report condition - another XPath expression that is
 evaluated relative to the location matched by the context
 expression;

 o human-readable message that is displayed when the assert condition
 is false or report condition is true.

 The difference between the assert and report condition is that the
 former is positive in that it states a condition that a valid
 document has to satisfy, whereas the latter specifies an error

Lhotka Expires April 24, 2011 [Page 15]

Internet-Draft Mapping YANG to DSDL October 2010

 condition.

 Schematron draws most of its expressive power from XPath [XPath] and
 Extensible Stylesheet Language Transformations (XSLT) [XSLT]. ISO
 Schematron allows for dynamic query language binding so that the
 following XML query languages can be used: STX, XSLT 1.0, XSLT 1.1,
 EXSLT, XSLT 2.0, XPath 1.0, XPath 2.0 and XQuery 1.0 (this list may
 be extended in the future).

 Human-readable error messages are another feature that sets
 Schematron apart from other common schema languages. The messages
 may even contain XPath expressions that are evaluated in the actual
 context and thus refer to information items in the XML document being
 validated.

 Another feature of Schematron that is used by the mapping are
 abstract patterns. These work essentially as macros and may also
 contain parameters which are supplied when the abstract pattern is
 used.

 Schematron elements are qualified with namespace URI
 "http://purl.oclc.org/dsdl/schematron".

4.3. Document Semantics Renaming Language (DSRL)

 DSRL (pronounced "disrule") is Part 8 of DSDL that reached the status
 of a full ISO/IEC standard in 2008 [DSRL]. Unlike RELAX NG and
 Schematron, DSRL is allowed to modify XML information set of the
 validated document. While DSRL is primarily intended for renaming
 XML elements and attributes, it can also define default values for
 XML attributes and default contents for XML elements or subtrees so
 that the default contents are inserted if they are missing in the
 validated documents. The latter feature is used by the YANG-to-DSDL
 mapping for representing YANG default contents consisting of leaf
 nodes with default values and their ancestor non-presence containers.

 DSRL elements are qualified with namespace URI
 "http://purl.oclc.org/dsdl/dsrl".

Lhotka Expires April 24, 2011 [Page 16]

Internet-Draft Mapping YANG to DSDL October 2010

5. Additional Annotations

 Besides the DSDL schema languages, the mapping also uses three sets
 of annotations that are added as foreign-namespace attributes and
 elements to RELAX NG schemas.

 Two of the annotation sets - Dublin Core elements and DTD
 compatibility annotations - are standard vocabularies for
 representing metadata and documentation, respectively. Although
 these data model items are not used for formal validation, they quite
 often carry important information for data model implementers.
 Therefore, they SHOULD be included in the hybrid schema and MAY also
 appear in the final validation schemas.

 The third set are NETMOD-specific annotations. They are specifically
 designed for the hybrid schema and convey semantic constraints and
 other information that cannot be expressed directly in RELAX NG. In
 the second mapping step, these annotations are converted to
 Schematron and DSRL rules.

5.1. Dublin Core Metadata Elements

 Dublin Core is a system of metadata elements that was originally
 created for describing metadata of World Wide Web resources in order
 to facilitate their automated lookup. Later it was accepted as a
 standard for describing metadata of arbitrary resources. This
 specification uses the definition from [RFC5013].

 Dublin Core elements are qualified with namespace URI
 "http://purl.org/dc/terms".

5.2. RELAX NG DTD Compatibility Annotations

 DTD compatibility annotations are a part of the RELAX NG DTD
 Compatibility specification [RNG-DTD]. YANG-to-DSDL mapping uses
 only the <a:documentation> annotation for representing YANG
 ’description’ and ’reference’ texts.

 Note that there is no intention to make the resulting schemas DTD-
 compatible, the main reason for using these annotations is technical:
 they are well supported and adequately formatted by several RELAX NG
 tools.

 DTD compatibility annotations are qualified with namespace URI
 "http://relaxng.org/ns/compatibility/annotations/1.0".

Lhotka Expires April 24, 2011 [Page 17]

Internet-Draft Mapping YANG to DSDL October 2010

5.3. NETMOD-Specific Annotations

 NETMOD-specific annotations are XML elements and attributes qualified
 with the namespace URI
 "urn:ietf:params:xml:ns:netmod:dsdl-annotations:1" which appear in
 various locations of the hybrid schema. YANG statements are mapped
 to these annotations in a straightforward way. In most cases, the
 annotation attributes and elements have the same name as the
 corresponding YANG statement.

 Table 2 lists alphabetically the names of NETMOD-specific annotation
 attributes (prefixed with "@") and elements (in angle brackets) along
 with a reference to the section where their use is described.
 Appendix A contains a RELAX NG schema for this annotation vocabulary.

 +---------------------------+--------------------+------+
 | annotation | section | note |
 +---------------------------+--------------------+------+
 | @nma:config | 10.9 | |
 | | | |
 | <nma:data> | 8.1 | 4 |
 | | | |
 | @nma:default | 10.12 | |
 | | | |
 | <nma:error-app-tag> | 10.16 | 1 |
 | | | |
 | <nma:error-message> | 10.17 | 1 |
 | | | |
 | @nma:if-feature | 10.22 | |
 | | | |
 | @nma:implicit | 10.11, 10.7, 10.12 | |
 | | | |
 | <nma:input> | 8.1 | 4 |
 | | | |
 | <nma:instance-identifier> | 10.53.7 | 2 |
 | | | |
 | @nma:key | 10.26 | |
 | | | |
 | @nma:leaf-list | 10.28 | |
 | | | |
 | @nma:leafref | 10.53.8 | |
 | | | |
 | @nma:mandatory | 10.8 | |
 | | | |
 | @nma:max-elements | 10.28 | |
 | | | |
 | @nma:min-elements | 10.28 | |
 | | | |

Lhotka Expires April 24, 2011 [Page 18]

Internet-Draft Mapping YANG to DSDL October 2010

 | @nma:module | 10.34 | |
 | | | |
 | <nma:must> | 10.35 | 3 |
 | | | |
 | <nma:notification> | 8.1 | 4 |
 | | | |
 | <nma:notifications> | 8.1 | 4 |
 | | | |
 | @nma:ordered-by | 10.38 | |
 | | | |
 | <nma:output> | 8.1 | 4 |
 | | | |
 | <nma:rpc> | 8.1 | 4 |
 | | | |
 | <nma:rpcs> | 8.1 | 4 |
 | | | |
 | @nma:status | 10.51 | |
 | | | |
 | @nma:unique | 10.55 | |
 | | | |
 | @nma:units | 10.56 | |
 | | | |
 | @nma:when | 10.59 | |
 +---------------------------+--------------------+------+

 Table 2: NETMOD-specific annotations

 Notes:

 1. Appears only as a subelement of <nma:must>.

 2. Has an optional attribute @require-instance.

 3. Has a mandatory attribute @assert and two optional subelements
 <nma:error-app-tag> and <nma:error-message>.

 4. Marker element in the hybrid schema.

Lhotka Expires April 24, 2011 [Page 19]

Internet-Draft Mapping YANG to DSDL October 2010

6. Overview of the Mapping

 This section gives an overview of the YANG-to-DSDL mapping, its
 inputs and outputs. Figure 1 presents an overall structure of the
 mapping:

 +----------------+
 | YANG module(s) |
 +----------------+
 |
 |T
 |
 +------------------------------------+
 | hybrid schema |
 +------------------------------------+
 / | | \
 / | | \
 Tg/ Tr| |Tn \
 / | | \
 +---------+ +-----+ +-------+ +------+
 |get reply| | rpc | | notif | | |
 +---------+ +-----+ +-------+ +------+

 Figure 1: Structure of the mapping

 The mapping procedure is divided into two steps:

 1. Transformation T in the first step maps one or more YANG modules
 to the hybrid schema (see Section 8.1). Constraints that cannot
 be expressed directly in RELAX NG (list key definitions, ’must’
 statements etc.) and various documentation texts are recorded in
 the schema as foreign-namespace annotations.

 2. In the second step, the hybrid schema may be transformed in
 multiple ways to a coordinated set of DSDL schemas that can be
 used for validating a particular data object in a specific
 context. Figure 1 shows three simple possibilities as examples.
 In the process, appropriate parts of the hybrid schema are
 extracted and specific annotations transformed to equivalent, but
 usually more complex, Schematron patterns, DSRL element maps etc.

 An implementation of the mapping algorithm MUST accept one or more
 valid YANG modules as its input. It is important to be able to
 process multiple YANG modules together since multiple modules may be
 negotiated for a NETCONF session and the contents of the
 configuration datastore is then obtained as the union of data trees
 specified by the individual modules, which may also lead to multiple
 root nodes of the datastore hierarchy. In addition, the input

Lhotka Expires April 24, 2011 [Page 20]

Internet-Draft Mapping YANG to DSDL October 2010

 modules may be further coupled by the ’augment’ statement in which
 one module augments the data tree of another module.

 It is also assumed that the algorithm has access, perhaps on demand,
 to all YANG modules that the input modules import (directly or
 transitively).

 Other information contained in input YANG modules, such as semantic
 constraints and default values, are recorded in the hybrid schema as
 annotations - XML attributes or elements qualified with namespace URI
 "urn:ietf:params:xml:ns:netmod:dsdl-annotations:1". Metadata
 describing the YANG modules are mapped to Dublin Core annotations
 elements (Section 5.1). Finally, documentation strings are mapped to
 <a:documentation> elements belonging to the DTD compatibility
 vocabulary (Section 5.2).

 The output of the second step is a coordinated set of three DSDL
 schemas corresponding to a specific data object and context:

 o RELAX NG schema describing the grammatical and datatype
 constraints;

 o Schematron schema expressing other constraints such as uniqueness
 of list keys or user-specified semantic rules;

 o DSRL schema containing the specification of default contents.

Lhotka Expires April 24, 2011 [Page 21]

Internet-Draft Mapping YANG to DSDL October 2010

7. NETCONF Content Validation

 This section describes how the schemas generated by the YANG-to-DSDL
 mapping are supposed to be applied for validating XML instance
 documents such as the contents of a datastore or various NETCONF
 messages.

 The validation proceeds in the following steps, which are also
 illustrated in Figure 2:

 1. The XML instance document is checked for grammatical and data
 type validity using the RELAX NG schema.

 2. Default values for leaf nodes have to be applied and their
 ancestor containers added where necessary. It is important to
 add the implicit nodes before the next validation step because
 YANG specification [RFC6020] requires that the data tree against
 which XPath expressions are evaluated already has all defaults
 filled-in. Note that this step modifies the information set of
 the validated XML document.

 3. The semantic constraints are checked using the Schematron schema.

 +----------+ +----------+
 | | | XML | |
 | XML | | document |
 | document |-----------o----------->| with |
 | | ^ | defaults |
 | | | | |
 +----------+ | +----------+
 ^ | filling in ^
 | grammar, | defaults | semantic
 | datatypes | | constraints
 | | |
 +----------+ +--------+ +------------+
 | RELAX NG | | DSRL | | Schematron |
 | schema | | schema | | schema |
 +----------+ +--------+ +------------+

 Figure 2: Outline of the validation procedure

Lhotka Expires April 24, 2011 [Page 22]

Internet-Draft Mapping YANG to DSDL October 2010

8. Design Considerations

 YANG data models could in principle be mapped to the DSDL schemas in
 a number of ways. The mapping procedure described in this document
 uses several specific design decisions that are discussed in the
 following subsections.

8.1. Hybrid Schema

 As was explained in Section 6, the first step of the mapping produces
 an intermediate document - the hybrid schema, which specifies all
 constraints for the entire data model in a single RELAX NG schema.

 Every input YANG module corresponds to exactly one embedded grammar
 in the hybrid schema. This separation of input YANG modules allows
 each embedded grammar to include named pattern definitions into its
 own namespace, which is important for mapping YANG groupings (see
 Section 9.2 for additional details).

 In addition to grammatical and datatype constraints, YANG modules
 provide other important information that cannot be expressed in a
 RELAX NG schema: semantic constraints, default values, metadata,
 documentation and so on. Such information items are represented in
 the hybrid schema as XML attributes and elements belonging to the
 namespace with the following URI:
 "urn:ietf:params:xml:ns:netmod:dsdl-annotations:1". A complete list
 of these annotations is given in Section 5.3, detailed rules about
 their use are then contained in the following sections.

 YANG modules define data models not only for configuration and state
 data but also for (multiple) RPC operations [RFC4741] and/or event
 notifications [RFC5277]. In order to be able to capture all three
 types of data models in one schema document, the hybrid schema uses
 special markers that enclose sub-schemas for configuration and state
 data, individual RPC operations (both input and output part) and
 individual notifications.

 The markers are the following XML elements in the namespace of
 NETMOD-specific annotations (URI
 urn:ietf:params:xml:ns:netmod:dsdl-annotations:1):

Lhotka Expires April 24, 2011 [Page 23]

Internet-Draft Mapping YANG to DSDL October 2010

 +-------------------+---------------------------------------+
 | Element name | Role |
 +-------------------+---------------------------------------+
 | nma:data | encloses configuration and state data |
 | | |
 | nma:rpcs | encloses all RPC operations |
 | | |
 | nma:rpc | encloses an individual RPC operation |
 | | |
 | nma:input | encloses an RPC request |
 | | |
 | nma:output | encloses an RPC reply |
 | | |
 | nma:notifications | encloses all notifications |
 | | |
 | nma:notification | encloses an individual notification |
 +-------------------+---------------------------------------+

 Table 3: Marker elements in the hybrid schema

 For example, consider a data model formed by two YANG modules
 "example-a" and "example-b" that define nodes in the namespaces
 "http://example.com/ns/example-a" and
 "http://example.com/ns/example-b". Module "example-a" defines
 configuration/state data, RPC methods and notifications, whereas
 "example-b" defines only configuration/state data. The hybrid schema
 can then be schematically represented as follows:

 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
 xmlns:exa="http://example.com/ns/example-a"
 xmlns:exb="http://example.com/ns/example-b"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <start>
 <grammar nma:module="example-a"
 ns="http://example.com/ns/example-a">
 <start>
 <nma:data>
 ...configuration and state data defined in "example-a"...
 </nma:data>
 <nma:rpcs>
 <nma:rpc>
 <nma:input>
 <element name="exa:myrpc">
 ...
 </element>
 </nma:input>
 <nma:output>

Lhotka Expires April 24, 2011 [Page 24]

Internet-Draft Mapping YANG to DSDL October 2010

 ...
 </nma:output>
 </nma:rpc>
 ...
 </nma:rpcs>
 <nma:notifications>
 <nma:notification>
 <element name="exa:mynotif">
 ...
 </element>
 </nma:notification>
 ...
 </nma:notifications>
 </start>
 ...local named pattern definitions of example-a...
 </grammar>
 <grammar nma:module="example-b"
 ns="http://example.com/ns/example-a">
 <start>
 <nma:data>
 ...configuration and state data defined in "example-b"...
 </nma:data>
 <nma:rpcs/>
 <nma:notifications/>
 </start>
 ...local named pattern definitions of example-b...
 </grammar>
 </start>
 ...global named pattern definitions...
 </grammar>

 A complete hybrid schema for the data model of a DHCP server is given
 in Appendix C.2.

8.2. Modularity

 Both YANG and RELAX NG offer means for modularity, i.e., for
 splitting the contents of a full schema into separate modules and
 combining or reusing them in various ways. However, the approaches
 taken by YANG and RELAX NG differ. Modularity in RELAX NG is
 suitable for ad hoc combinations of a small number of schemas whereas
 YANG assumes a large set of modules similar to SNMP MIB modules. The
 following differences are important:

 o In YANG, whenever module A imports module B, it gets access to the
 definitions (groupings and typedefs) appearing at the top level of
 module B. However, no part of data tree from module B is imported
 along with it. In contrast, the <rng:include> pattern in RELAX NG

Lhotka Expires April 24, 2011 [Page 25]

Internet-Draft Mapping YANG to DSDL October 2010

 imports both definitions of named patterns and the entire schema
 tree from the included schema.

 o The names of imported YANG groupings and typedefs are qualified
 with the namespace of the imported module. On the other hand, the
 names of data nodes contained inside the imported groupings, when
 used within the importing module, become part of the importing
 module’s namespace. In RELAX NG, the names of patterns are
 unqualified and so named patterns defined in both the importing
 and imported module share the same flat namespace. The contents
 of RELAX NG named patterns may either keep the namespace of the
 schema where they are defined or inherit the namespace of the
 importing module, analogically to YANG. However, in order to
 achieve the latter behavior, the definitions of named patterns
 must be included from an external schema which has to be prepared
 in a special way (see [Vli04], Chapter 11).

 In order to map, as much as possible, the modularity of YANG to RELAX
 NG, a validating RELAX NG schema (the result of the second mapping
 step) has to be split into two files, one of them containing all
 global definitions that are mapped from top-level YANG groupings
 appearing in all input YANG module. This RELAX NG schema MUST NOT
 define any namespace via the @ns attribute.

 The other RELAX NG schema file then defines actual data trees mapped
 from input YANG modules, each of them enclosed in an own embedded
 grammar. Those embedded grammars in which at least one of the global
 definitions is used MUST include the first schema with definitions
 and also MUST define the local namespace using the @ns attribute.
 This way, the global definitions can be used inside different
 embedded grammar, each time accepting a different local namespace.

 Named pattern definition that are mapped from non-top-level YANG
 groupings MUST be placed inside the embedded grammar corresponding to
 the YANG module where the grouping is defined.

 In the hybrid schema, we need to distinguish the global and non-
 global named pattern definitions while still keeping the hybrid
 schema in one file. This is accomplished in the following way:

 o Every global definition MUST be placed as a child of the the outer
 <rng:grammar> element (the document root of the hybrid schema).

 o Every non-global definitions MUST be placed as a child of the
 corresponding embedded <rng:grammar> element.

 YANG also allows for splitting a module into a number of submodules.
 However, as submodules have no impact on the scope of identifiers and

Lhotka Expires April 24, 2011 [Page 26]

Internet-Draft Mapping YANG to DSDL October 2010

 namespaces, the modularity based on submodules is not mapped in any
 way. The contents of submodules is therefore handled as if the
 submodule text appeared directly in the main module.

8.3. Granularity

 RELAX NG supports different styles of schema structuring: One
 extreme, often called "Russian Doll", specifies the structure of an
 XML instance document in a single hierarchy. The other extreme, the
 flat style, uses a similar approach as the Data Type Definition (DTD)
 schema language - every XML element corresponds to a named pattern
 definition. In practice, some compromise between the two extremes is
 usually chosen.

 YANG supports both styles in principle, too, but in most cases the
 modules are organized in a way closer to the "Russian Doll" style,
 which provides a better insight into the structure of the
 configuration data. Groupings are usually defined only for contents
 that are prepared for reuse in multiple places via the ’uses’
 statement. In contrast, RELAX NG schemas tend to be much flatter,
 because finer granularity is also needed in RELAX NG for
 extensibility of the schemas - it is only possible to replace or
 modify schema fragments that are factored out as named patterns. For
 YANG this is not an issue since its ’augment’ and ’refine’ statements
 can delve, by using path expressions, into arbitrary depths of
 existing structures.

 In general, it not feasible to map YANG’s powerful extension
 mechanisms to those available in RELAX NG. For this reason, the
 mapping essentially keeps the granularity of the original YANG data
 model: YANG groupings and definitions of derived types usually have
 direct counterparts in definitions of named patterns in the resulting
 RELAX NG schema.

8.4. Handling of XML Namespaces

 Most modern XML schema languages, including RELAX NG, Schematron and
 DSRL, support schemas for so-called compound XML documents which
 contain elements from multiple namespaces. This is useful for our
 purpose since the YANG-to-DSDL mapping allows for multiple input YANG
 modules, which naturally leads to compound document schemas.

 RELAX NG offers two alternatives for defining the target namespaces
 in the schema:

 1. First possibility is the traditional XML way via the @xmlns:xxx
 attribute.

Lhotka Expires April 24, 2011 [Page 27]

Internet-Draft Mapping YANG to DSDL October 2010

 2. One of the target namespace URIs may be declared using the @ns
 attribute.

 In both the hybrid schema and validation RELAX NG schemas generated
 in the second step, the namespaces MUST be declared as follows:

 1. The root <rng:grammar> MUST have @xmlns:xxx attributes declaring
 prefixes of all namespaces that are used in the data model. The
 prefixes SHOULD be identical to those defined in the ’prefix’
 statements. An implementation of the mapping MUST resolve all
 collisions in the prefixes defined by different input modules, if
 there are any.

 2. Each embedded <rng:grammar> element MUST declare the namespace of
 the corresponding module using the @ns attribute. This way, the
 names of nodes defined by global named patterns are able to adopt
 the local namespace of each embedded grammar, as explained in
 Section 8.2.

 This setup is illustrated by the example at the end of Section 8.1.

 DSRL schemas may declare any number of target namespaces via the
 standard XML attributes xmlns:xxx.

 In contrast, Schematron requires all used namespaces to be defined in
 the <sch:ns> subelements of the document element <sch:schema>.

Lhotka Expires April 24, 2011 [Page 28]

Internet-Draft Mapping YANG to DSDL October 2010

9. Mapping YANG Data Models to the Hybrid Schema

 This section explains the main principles governing the first step of
 the mapping. Its result is the hybrid schema which is described in
 Section 8.1.

 A detailed specification of the mapping of individual YANG statements
 is contained in the following Section 10.

9.1. Occurrence Rules for Data Nodes

 In DSDL schema languages, occurrence constraints for a node are
 always localized together with that node. In a RELAX NG schema, for
 example, <rng:optional> pattern appears as the parent element of the
 pattern defining a leaf or non-leaf element. Similarly, DSRL
 specifies default contents separately for every single node, be it a
 leaf or non-leaf element.

 For leaf nodes in YANG modules, the occurrence constraints are also
 easily inferred from the substatements of ’leaf’. On the other hand,
 for a YANG container it is often necessary to examine its entire
 subtree in order to determine the container’s occurrence constraints.

 Therefore, one of the goals of the first mapping step is to infer the
 occurrence constraints for all data nodes and mark accordingly the
 corresponding <rng:element> patterns in the hybrid schema so that any
 transformation procedure in the second mapping step can simply use
 this information and need not examine the subtree again.

 First, it has to be decided whether a given data node must always be
 present in a valid configuration. If so, such a node is called
 mandatory, otherwise it is called optional. This constraint is
 closely related to the notion of mandatory nodes in Section 3.1 in
 [RFC6020]. The only difference is that this document also considers
 list keys to be mandatory.

 The other occurrence constraint has to do with the semantics of the
 ’default’ statement and the possibility of removing empty non-
 presence containers. As a result, the information set of a valid
 configuration may be modified by adding or removing certain leaf or
 container elements without changing the meaning of the configuration.
 In this document, such elements are called implicit. In the hybrid
 schema, they can be identified as RELAX NG patterns having either
 @nma:default or @nma:implicit attribute.

 Note that both occurrence constraints apply to containers at the top
 level of the data tree, and then also to other containers under the
 additional condition that their parent node exists in the instance

Lhotka Expires April 24, 2011 [Page 29]

Internet-Draft Mapping YANG to DSDL October 2010

 document. For example, consider the following YANG fragment:

 container outer {
 presence ’Presence of "outer" means something.’;
 container c1 {
 leaf foo {
 type uint8;
 default 1;
 }
 }
 container c2 {
 leaf-list bar {
 type uint8;
 min-elements 0;
 }
 }
 container c3 {
 leaf baz {
 type uint8;
 mandatory true;
 }
 }
 }

 Here, container "outer" has the ’presence’ substatement, which means
 that it is optional and not implicit. If "outer" is not present in a
 configuration, its child containers are not present as well.
 However, if "outer" does exist, it makes sense to ask which of its
 child containers are optional and which are implicit. In this case,
 "c1" is optional and implicit, "c2" is optional but not implicit and
 "c3" is mandatory (and therefore not implicit).

 The following subsections give precise rules for determining whether
 a container is optional or mandatory and whether it is implicit. In
 order to simplify the recursive definition of these occurrence
 characteristics, it is useful to define them also for other types of
 YANG schema nodes, i.e., leaf, list, leaf-list and anyxml and choice.

9.1.1. Optional and Mandatory Nodes

 The decision whether a given node is mandatory or optional is
 governed by the following rules:

 o Leaf, anyxml and choice nodes are mandatory if they contain the
 substatement "mandatory true;". For a choice node this means that
 at least one node from exactly one case branch must exist.

Lhotka Expires April 24, 2011 [Page 30]

Internet-Draft Mapping YANG to DSDL October 2010

 o In addition, a leaf node is mandatory if it is declared as a list
 key.

 o A list or leaf-list node is mandatory if it contains the ’min-
 elements’ substatement with an argument value greater than zero.

 o A container node is mandatory if its definition does not contain
 the ’presence’ substatement and at least one of its child nodes is
 mandatory.

 A node which is not mandatory is said to be optional.

 In RELAX NG, definitions of nodes that are optional must be
 explicitly wrapped in the <rng:optional> element. The mapping MUST
 use the above rules to determine whether a YANG node is optional and
 if so, insert the <rng:optional> element in the hybrid schema.

 However, alternatives in <rng:choice> MUST NOT be defined as optional
 in the hybrid schema. If a choice in YANG is not mandatory, <rng:
 optional> MUST be used to wrap the entire <rng:choice> pattern.

9.1.2. Implicit Nodes

 The following rules are used to determine whether a given data node
 is implicit:

 o List, leaf-list and anyxml nodes are never implicit.

 o A leaf node is implicit if and only if it has a default value,
 defined either directly or via its datatype.

 o A container node is implicit if and only if it does not have the
 ’presence’ substatement, none of its children are mandatory and at
 least one child is implicit.

 In the hybrid schema, all implicit containers, as well as leafs that
 obtain their default value from a typedef and don’t have the @nma:
 default attribute, MUST be marked with @nma:implicit attribute having
 the value of "true".

 Note that Section 7.9.3 in [RFC6020] specifies other rules that must
 be taken into account when deciding whether a given container or leaf
 appearing inside a case of a choice is ultimately implicit or not.
 Specifically, a leaf or container under a case can be implicit only
 if the case appears in the argument of the choice’s ’default’
 statement. However, this is not sufficient by itself but also
 depends on the particular instance XML document, namely on the
 presence or absence of nodes from other (non-default) cases. The

Lhotka Expires April 24, 2011 [Page 31]

Internet-Draft Mapping YANG to DSDL October 2010

 details are explained in Section 11.3.

9.2. Mapping YANG Groupings and Typedefs

 YANG groupings and typedefs are generally mapped to RELAX NG named
 patterns. There are, however, several caveats that the mapping has
 to take into account.

 First of all, YANG typedefs and groupings may appear at all levels of
 the module hierarchy and are subject to lexical scoping, see Section
 5.5 in [RFC6020]. Second, top-level symbols from external modules
 may be imported as qualified names represented using the external
 module namespace prefix and the name of the symbol. In contrast,
 named patterns in RELAX NG (both local and imported via the <rng:
 include> pattern) share the same namespace and within a grammar they
 are always global - their definitions may only appear at the top
 level as children of the <rng:grammar> element. Consequently,
 whenever YANG groupings and typedefs are mapped to RELAX NG named
 pattern definitions, their names MUST be disambiguated in order to
 avoid naming conflicts. The mapping uses the following procedure for
 mangling the names of groupings and type definitions:

 o Names of groupings and typedefs appearing at the top level of the
 YANG module hierarchy are prefixed with the module name and two
 underscore characters ("__").

 o Names of other groupings and typedefs, i.e., those that do not
 appear at the top level of a YANG module, are prefixed with the
 module name, double underscore, and then the names of all ancestor
 data nodes separated by double underscore.

 o Finally, since the names of groupings and typedefs in YANG have
 different namespaces, an additional underscore character is added
 to the beginning of the mangled names of all groupings.

 An additional complication is caused by the YANG rules for subelement
 ordering (see, e.g., Section 7.5.7 in [RFC6020]): In RPC input and
 output parameters, subelements must follow the order specified in the
 data model, otherwise the order is arbitrary. Consequently, if a
 grouping is used both in RPC input/output parameters and elsewhere,
 it MUST be mapped to two different named pattern definitions - one
 with fixed order and the other with arbitrary order. To distinguish
 them, the "__rpc" suffix MUST be appended to the version with fixed
 order.

 EXAMPLE. Consider the following YANG module which imports the
 standard module "ietf-inet-types" [RFC6021]:

Lhotka Expires April 24, 2011 [Page 32]

Internet-Draft Mapping YANG to DSDL October 2010

 module example1 {
 namespace "http://example.com/ns/example1";
 prefix ex1;
 typedef vowels {
 type string {
 pattern "[aeiouy]*";
 }
 }
 grouping "grp1" {
 leaf "void" {
 type "empty";
 }
 }
 container "cont" {
 leaf foo {
 type vowels;
 }
 uses "grp1";
 }
 }

 The hybrid schema generated by the first mapping step will then
 contain the following two (global) named pattern definitions:

 <rng:define name="example1__vowels">
 <rng:data type="string">
 <rng:param name="pattern">[aeiouy]*</rng:param>
 </rng:data>
 </rng:define>

 <rng:define name="_example1__grp1">
 <rng:optional>
 <rng:element name="void">
 <rng:empty/>
 </rng:element>
 </rng:optional>
 </rng:define>

9.2.1. YANG Refinements and Augments

 YANG groupings represent a similar concept as named pattern
 definitions in RELAX NG and both languages also offer mechanisms for
 their subsequent modification. However, in RELAX NG the definitions
 themselves are modified whereas YANG provides two substatements of
 ’uses’ which modify expansions of groupings:

 o ’refine’ statement allows for changing parameters of a schema node
 inside the grouping referenced by the parent ’uses’ statement;

Lhotka Expires April 24, 2011 [Page 33]

Internet-Draft Mapping YANG to DSDL October 2010

 o ’augment’ statement can be used for adding new schema nodes to the
 grouping contents.

 Both ’refine’ and ’augment’ statements are quite powerful in that
 they can address, using XPath-like expressions as their arguments,
 schema nodes that are arbitrarily deep inside the grouping contents.
 In contrast, modifications of named pattern definitions in RELAX NG
 are applied exclusively at the topmost level of the named pattern
 contents. In order to achieve a modifiability of named patterns
 comparable to YANG, a RELAX NG schema would have to be extremely flat
 (cf. Section 8.3) and very difficult to read.

 Since the goal of the mapping described in this document is to
 generate ad hoc DSDL schemas, we decided to avoid these complications
 and instead expand the grouping and refine and/or augment it "in
 place". In other words, every ’uses’ statement which has ’refine’
 and/or ’augment’ substatements is replaced by the contents of the
 corresponding grouping, the changes specified in the ’refine’ and
 ’augment’ statements are applied and the resulting YANG schema
 fragment is mapped as if the ’uses’/’grouping’ indirection wasn’t
 there.

 If there are further ’uses’ statements inside the grouping contents,
 they may require expansion, too: it is necessary if the contained
 ’uses’/’grouping’ pair lies on the "modification path" specified in
 the argument of a ’refine’ or ’augment’ statement.

 EXAMPLE. Consider the following YANG module:

 module example2 {
 namespace "http://example.com/ns/example2";
 prefix ex2;
 grouping leaves {
 uses fr;
 uses es;
 }
 grouping fr {
 leaf feuille {
 type string;
 }
 }
 grouping es {
 leaf hoja {
 type string;
 }
 }
 uses leaves;
 }

Lhotka Expires April 24, 2011 [Page 34]

Internet-Draft Mapping YANG to DSDL October 2010

 The resulting hybrid schema contains three global named pattern
 definitions corresponding to the three groupings, namely

 <rng:define name="_example2__leaves">
 <rng:interleave>
 <rng:ref name="_example2__fr"/>
 <rng:ref name="_example2__es"/>
 </rng:interleave>
 </rng:define>

 <rng:define name="_example2__fr">
 <rng:optional>
 <rng:element name="feuille">
 <rng:data type="string"/>
 </rng:element>
 </rng:optional>
 </rng:define>

 <rng:define name="_example2__es">
 <rng:optional>
 <rng:element name="hoja">
 <rng:data type="string"/>
 </rng:element>
 </rng:optional>
 </rng:define>

 and the configuration data part of the hybrid schema is a single
 named pattern reference:

 <nma:data>
 <rng:ref name="_example2__leaves"/>
 </nma:data>

 Now assume that the "uses leaves" statement contains a ’refine’
 substatement, for example:

 uses leaves {
 refine "hoja" {
 default "alamo";
 }
 }

 The resulting hybrid schema now contains just one named pattern
 definition - "_example2__fr". The other two groupings "leaves" and
 "es" have to be expanded because they both lie on the "modification
 path", i.e., contain the leaf "hoja" that is being refined. The
 configuration data part of the hybrid schema now looks like this:

Lhotka Expires April 24, 2011 [Page 35]

Internet-Draft Mapping YANG to DSDL October 2010

 <nma:data>
 <rng:interleave>
 <rng:ref name="_example2__fr"/>
 <rng:optional>
 <rng:element name="ex2:hoja" nma:default="alamo">
 <rng:data type="string"/>
 </rng:element>
 </rng:optional>
 </rng:interleave>
 </nma:data>

9.2.2. Type Derivation Chains

 RELAX NG has no equivalent of the type derivation mechanism in YANG
 that allows to restrict a built-in type (perhaps in multiple steps)
 by adding new constraints. Whenever a derived YANG type is used
 without restrictions - as a substatement of either ’leaf’ or another
 ’typedef’ - then the ’type’ statement is mapped simply to a named
 pattern reference <rng:ref>, and the type definition is mapped to a
 RELAX NG named pattern definition <rng:define>. However, if any
 restrictions are specified as substatements of the ’type’ statement,
 the type definition MUST be expanded at that point so that only the
 ancestor built-in type appears in the hybrid schema, restricted with
 facets that correspond to the combination of all restrictions found
 along the type derivation chain and also in the ’type’ statement.

 EXAMPLE. Consider this YANG module:

 module example3 {
 namespace "http://example.com/ns/example3";
 prefix ex3;
 typedef dozen {
 type uint8 {
 range 1..12;
 }
 }
 leaf month {
 type dozen;
 }
 }

 The ’type’ statement in "leaf month" has no restrictions and is
 therefore mapped simply to the reference <rng:ref
 name="example3__dozen"/> and the corresponding named pattern is
 defined as follows:

Lhotka Expires April 24, 2011 [Page 36]

Internet-Draft Mapping YANG to DSDL October 2010

 <rng:define name="example3__dozen">
 <rng:data type="unsignedByte">
 <rng:param name="minInclusive">1</rng:param>
 <rng:param name="maxInclusive">12</rng:param>
 </rng:data>
 </rng:define>

 Assume now that the definition of leaf "month" is changed to

 leaf month {
 type dozen {
 range 7..max;
 }
 }

 The output RELAX NG schema then will not contain any named pattern
 definition and the leaf "month" will be mapped directly to

 <rng:element name="ex3:month">
 <rng:data type="unsignedByte">
 <rng:param name="minInclusive">7</rng:param>
 <rng:param name="maxInclusive">12</rng:param>
 </rng:data>
 </rng:element>

 The mapping of type derivation chains may be further complicated by
 the presence of the ’default’ statement in type definitions. In the
 simple case, when a type definition containing the ’default’
 statement is used without restrictions, the ’default’ statement is
 mapped to the @nma:default attribute attached to the <rng:define>
 element.

 However, if that type definition has to be expanded due to
 restrictions, the @nma:default annotation arising from the expanded
 type or ancestor types in the type derivation chain MUST be attached
 to the pattern where the expansion occurs. If there are multiple
 ’default’ statements in consecutive steps of the type derivation,
 only the ’default’ statement that is closest to the expanded type is
 used.

 EXAMPLE. Consider this variation of the last example:

Lhotka Expires April 24, 2011 [Page 37]

Internet-Draft Mapping YANG to DSDL October 2010

 module example3bis {
 namespace "http://example.com/ns/example3bis";
 prefix ex3bis;
 typedef dozen {
 type uint8 {
 range 1..12;
 }
 default 7;
 }
 leaf month {
 type dozen;
 }
 }

 The ’typedef’ statement in this module is mapped to the following
 named pattern definition:

 <rng:define name="example3bis__dozen" @nma:default="7">
 <rng:data type="unsignedByte">
 <rng:param name="minInclusive">1</rng:param>
 <rng:param name="maxInclusive">12</rng:param>
 </rng:data>
 </rng:define>

 If the "dozen" type is restricted when used in the leaf "month"
 definition as in the previous example, the "dozen" type has to be
 expanded and @nma:default becomes an attribute of the <ex3bis:month>
 element definition:

 <rng:element name="ex3bis:month" @nma:default="7">
 <rng:data type="unsignedByte">
 <rng:param name="minInclusive">7</rng:param>
 <rng:param name="maxInclusive">12</rng:param>
 </rng:data>
 </rng:element>

 However, if the definition of the leaf "month" itself contained the
 ’default’ substatement, the default specified for the "dozen" type
 would be ignored.

9.3. Translation of XPath Expressions

 YANG uses full XPath 1.0 syntax [XPath] for the arguments of ’must’,
 ’when’ and ’path’ statements. As the names of data nodes defined in
 a YANG module always belong to the namespace of that YANG module,
 YANG adopted a simplification similar to the concept of default
 namespace in XPath 2.0: node names in XPath expressions needn’t carry
 a namespace prefix inside the module where they are defined and the

Lhotka Expires April 24, 2011 [Page 38]

Internet-Draft Mapping YANG to DSDL October 2010

 local module’s namespace is assumed.

 Consequently, all XPath expressions MUST be translated into a fully
 conformant XPath 1.0 expression: Every unprefixed node name MUST be
 prepended with the local module’s namespace prefix as declared by the
 ’prefix’ statement.

 XPath expressions appearing inside top-level groupings require
 special attention because all unprefixed node names contained in them
 must adopt the namespace of each module where the grouping is used
 (cf. Section 8.2. In order to achieve this, the local prefix MUST be
 represented using the variable "$pref" in the hybrid schema. A
 Schematron schema which encounters such an XPath expression then
 supplies an appropriate value for this variable via a parameter to an
 abstract pattern to which the YANG grouping is mapped (see
 Section 11.2).

 For example, XPath expression "/dhcp/max-lease-time" appearing in a
 YANG module with the "dhcp" prefix will be translated to

 o "$pref:dhcp/$pref:max-lease-time", if the expression is inside a
 top-level grouping;

 o "dhcp:dhcp/dhcp:max-lease-time", otherwise.

 YANG also uses other XPath-like expressions, namely key identifiers
 and "descendant schema node identifiers" (see the ABNF production for
 and "descendant-schema-nodeid" in Section 12 of [RFC6020]). These
 expressions MUST be translated by adding local module prefixes as
 well.

9.4. YANG Language Extensions

 YANG allows for extending its own language in-line by adding new
 statements with keywords from special namespaces. Such extensions
 first have to be declared using the ’extension’ statement and then
 they can be used as the standard YANG statements, from which they are
 distinguished by a namespace prefix qualifying the extension keyword.
 RELAX NG has a similar extension mechanism - XML elements and
 attributes with names from foreign namespaces may be inserted at
 almost any place of a RELAX NG schema.

 YANG language extensions may or may not have a meaning in the context
 of DSDL schemas. Therefore, an implementation MAY ignore any or all
 of the extensions. However, an extension that is not ignored MUST be
 mapped to XML element(s) and/or attribute(s) that exactly match the
 YIN form of the extension, see Section 11.1 in [RFC6020].

Lhotka Expires April 24, 2011 [Page 39]

Internet-Draft Mapping YANG to DSDL October 2010

 EXAMPLE. Consider the following extension defined by the "acme"
 module:

 extension documentation-flag {
 argument number;
 }

 This extension can then be used in the same or another module, for
 instance like this:

 leaf folio {
 acme:documentation-flag 42;
 type string;
 }

 If this extension is honored by the mapping, it will be mapped to

 <rng:element name="acme:folio">
 <acme:documentation-flag number="42"/>
 <rng:data type="string"/>
 </rng:element>

 Note that the ’extension’ statement itself is not mapped in any way.

Lhotka Expires April 24, 2011 [Page 40]

Internet-Draft Mapping YANG to DSDL October 2010

10. Mapping YANG Statements to the Hybrid Schema

 Each subsection in this section is devoted to one YANG statement and
 provides the specification of how the statement is mapped to the
 hybrid schema. The subsections are sorted alphabetically by the
 statement keyword.

 Each YANG statement is mapped to an XML fragment, typically a single
 element or attribute but it may also be a larger structure. The
 mapping procedure is inherently recursive, which means that after
 finishing a statement the mapping continues with its substatements,
 if there are any, and a certain element of the resulting fragment
 becomes the parent of other fragments resulting from the mapping of
 substatements. Any changes to this default recursive procedure are
 explicitly specified.

 YANG XML encoding rules translate to the following rules for ordering
 multiple subelements:

 1. Within the <nma:rpcs> subtree (i.e., for input and output
 parameters of an RPC operation) the order of subelements is fixed
 and their definitions in the hybrid schema MUST follow the order
 specified in the source YANG module.

 2. When mapping the ’list’ statement, all keys MUST come before any
 other subelements and in the same order as they are declared in
 the ’key’ statement. The order of the remaining (non-key)
 subelements is not specified, so their definitions in the hybrid
 schema MUST be enclosed in the <rng:interleave> element.

 3. Otherwise, the order of subelements is arbitrary and,
 consequently, all definitions of subelements in the hybrid schema
 MUST be enclosed in the <rng:interleave> element.

 The following conventions are used in this section:

 o The argument of the statement being mapped is denoted by ARGUMENT.

 o The element in the RELAX NG schema that becomes the parent of the
 resulting XML fragment is denoted by PARENT.

10.1. The ’anyxml’ Statement

 This statement is mapped to <rng:element> element and ARGUMENT with
 prepended local namespace prefix becomes the value of its @name
 attribute. The contents of <rng:element> are

 <rng:ref name="__anyxml__"/>

Lhotka Expires April 24, 2011 [Page 41]

Internet-Draft Mapping YANG to DSDL October 2010

 Substatements of the ’anyxml’ statement, if any, MAY be mapped to
 additional children of the <rng:element> element.

 If at least one ’anyxml’ statement occurs in any of the input YANG
 modules, the following pattern definition MUST be added exactly once
 to the RELAX NG schema as a child of the root <rng:grammar> element
 (cf. [Vli04], p. 172):

 <rng:define name="__anyxml__">
 <rng:zeroOrMore>
 <rng:choice>
 <rng:attribute>
 <rng:anyName/>
 </rng:attribute>
 <rng:element>
 <rng:anyName/>
 <rng:ref name="__anyxml__"/>
 </rng:element>
 <rng:text/>
 </rng:choice>
 </rng:zeroOrMore>
 </rng:define>

 EXAMPLE: YANG statement in a module with namespace prefix "yam"

 anyxml data {
 description "Any XML content allowed here.";
 }

 is mapped to the following fragment:

 <rng:element name="yam:data">
 <a:documentation>Any XML content allowed here</a:documentation>
 <rng:ref name="__anyxml__"/>
 </rng:element>

 An anyxml node is optional if there is no "mandatory true;"
 substatement. The <rng:element> element then MUST be wrapped in
 <rng:optional>, except when the ’anyxml’ statement is a child of the
 ’choice’ statement and thus forms a shorthand case for that choice
 (see Section 9.1.1 for details).

10.2. The ’argument’ Statement

 This statement is not mapped to the output schema, but see the rules
 for handling extensions in Section 9.4.

Lhotka Expires April 24, 2011 [Page 42]

Internet-Draft Mapping YANG to DSDL October 2010

10.3. The ’augment’ Statement

 As a substatement of ’uses’, this statement is handled as a part of
 ’uses’ mapping, see Section 10.57.

 At the top level of a module or submodule, the ’augment’ statement is
 used for augmenting the schema tree of another YANG module. If the
 augmented module is not processed within the same mapping session,
 the top-level ’augment’ statement MUST be ignored. Otherwise, the
 contents of the statement are added to the foreign module with the
 namespace of the module where the ’augment’ statement appears.

10.4. The ’base’ Statement

 This statement is ignored as a substatement of ’identity’ and handled
 within the ’identityref’ type if it appears as a substatement of that
 type definition, see Section 10.53.6.

10.5. The ’belongs-to’ Statement

 This statement is not used since the processing of submodules is
 always initiated from the main module, see Section 10.24.

10.6. The ’bit’ Statement

 This statement is handled within the "bits" type, see
 Section 10.53.4.

10.7. The ’case’ Statement

 This statement is mapped to <rng:group> or <rng:interleave> element,
 depending on whether the statement belongs to an definition of an RPC
 operation or not. If the argument of a sibling ’default’ statement
 equals to ARGUMENT, @nma:implicit attribute with the value of "true"
 MUST be added to that <rng:group> or <rng:interleave> element. The
 @nma:implicit attribute MUST NOT be used for nodes at the top-level
 of a non-default case (see Section 7.9.3 in [RFC6020]).

10.8. The ’choice’ Statement

 This statement is mapped to <rng:choice> element.

 If ’choice’ has the ’mandatory’ substatement with the value of
 "true", the attribute @nma:mandatory MUST be added to the <rng:
 choice> element with the value of ARGUMENT. This case may require
 additional handling, see Section 11.2.1. Otherwise, if "mandatory
 true;" is not present, the <rng:choice> element MUST be wrapped in
 <rng:optional>.

Lhotka Expires April 24, 2011 [Page 43]

Internet-Draft Mapping YANG to DSDL October 2010

 The alternatives in <rng:choice> - mapped from either the ’case’
 statement or a shorthand case - MUST NOT be defined as optional.

10.9. The ’config’ Statement

 This statement is mapped to @nma:config attribute and ARGUMENT
 becomes its value.

10.10. The ’contact’ Statement

 This statement SHOULD NOT be used by the mapping since the hybrid
 schema may be mapped from multiple YANG modules created by different
 authors. The hybrid schema contains references to all input modules
 in the Dublin Core elements <dc:source>, see Section 10.34. The
 original YANG modules are the authoritative sources of the authorship
 information.

10.11. The ’container’ Statement

 Using the rules specified in Section 9.1.1, the mapping algorithm
 MUST determine whether the statement defines an optional container,
 and if so, insert the <rng:optional> element and make it the new
 PARENT.

 The container defined by this statement is then mapped to the <rng:
 element> element, which becomes a child of PARENT and uses ARGUMENT
 with prepended local namespace prefix as the value of its @name
 attribute.

 Finally, using the rules specified in Section 9.1.2, the mapping
 algorithm MUST determine whether the container is implicit, and if
 so, add the attribute @nma:implicit with the value of "true" to the
 <rng:element> element.

10.12. The ’default’ Statement

 If this statement is a substatement of ’leaf’, it is mapped to the
 @nma:default attribute of PARENT and ARGUMENT becomes its value.

 As a substatement of ’typedef’, the ’default’ statement is also
 mapped to the @nma:default attribute with the value of ARGUMENT. The
 placement of this attribute depends on whether or not the type
 definition has to be expanded when it is used:

 o If the type definition is not expanded, @nma:default becomes an
 attribute of the <rng:define> pattern resulting from the parent
 ’typedef’ mapping.

Lhotka Expires April 24, 2011 [Page 44]

Internet-Draft Mapping YANG to DSDL October 2010

 o Otherwise, @nma:default becomes an attribute of the ancestor RELAX
 NG pattern inside which the expansion takes place.

 Details and an example are given in Section 9.2.2.

 Finally, as a substatement of ’choice’, the ’default’ statement
 identifies the default case and is handled within the ’case’
 statement, see Section 10.7. If the default case uses the shorthand
 notation where the ’case’ statement is omitted, the @nma:implicit
 attribute with the value of "true" is either attached to the node
 representing the default case in the shorthand notation or,
 alternatively, an extra <rng:group> element MAY be inserted and the
 @nma:implicit attribute attached to it. In the latter case, the net
 result is the same as if the ’case’ statement wasn’t omitted for the
 default case.

 EXAMPLE. The following ’choice’ statement in a module with namespace
 prefix "yam"

 choice leaves {
 default feuille;
 leaf feuille { type empty; }
 leaf hoja { type empty; }
 }

 is either mapped directly to

 <rng:choice>
 <rng:element name="yam:feuille" nma:implicit="true">
 <rng:empty/>
 </rng:element>
 <rng:element name="yam:hoja">
 <rng:empty/>
 </rng:element/>
 </rng:choice>

 or the default case may be wrapped in an extra <rng:group>:

 <rng:choice>
 <rng:group nma:implicit="true">
 <rng:element name="yam:feuille">
 <rng:empty/>
 </rng:element>
 </rng:group>
 <rng:element name="yam:hoja">
 <rng:empty/>
 </rng:element/>
 </rng:choice>

Lhotka Expires April 24, 2011 [Page 45]

Internet-Draft Mapping YANG to DSDL October 2010

10.13. The ’description’ Statement

 This statement is mapped to the DTD compatibility element
 <a:documentation> and ARGUMENT becomes its text.

 In order to get properly formatted in the RELAX NG compact syntax,
 this element SHOULD be inserted as the first child of PARENT.

10.14. The ’deviation’ Statement

 This statement is ignored. However, it is assumed that all
 deviations are known beforehand and the corresponding changes have
 already been applied to the input YANG modules.

10.15. The ’enum’ Statement

 This statement is mapped to <rng:value> element and ARGUMENT becomes
 its text. All substatements except ’status’ are ignored because the
 <rng:value> element cannot contain annotation elements, see [RNG],
 section 6.

10.16. The ’error-app-tag’ Statement

 This statement is ignored unless it is a substatement of ’must’. In
 the latter case it is mapped to the <nma:error-app-tag> element. See
 also Section 10.35.

10.17. The ’error-message’ Statement

 This statement is ignored unless it is a substatement of ’must’. In
 the latter case it is mapped to the <nma:error-message> element. See
 also Section 10.35.

10.18. The ’extension’ Statement

 This statement is ignored. However, extensions to the YANG language
 MAY be mapped as described in Section 9.4.

10.19. The ’feature’ Statement

 This statement is ignored.

10.20. The ’grouping’ Statement

 This statement is mapped to a RELAX NG named pattern definition <rng:
 define>, but only if the grouping defined by this statement is used
 without refinements and augments in at least one of the input
 modules. In this case, the named pattern definition becomes a child

Lhotka Expires April 24, 2011 [Page 46]

Internet-Draft Mapping YANG to DSDL October 2010

 of the <rng:grammar> element and its name is ARGUMENT mangled
 according to the rules specified in Section 9.2.

 As explained in Section 8.2, a named pattern definition MUST be
 placed

 o as a child of the root <rng:grammar> element if the corresponding
 grouping is defined at the top level of an input YANG module;

 o otherwise as a child of the embedded <rng:grammar> element
 corresponding to the module in which the grouping is defined.

 Whenever a grouping is used with refinements and/or augments, it is
 expanded so that the refinements and augments may be applied in place
 to the prescribed schema nodes. See Section 9.2.1 for further
 details and an example.

 An implementation MAY offer the option of mapping all ’grouping’
 statements as named pattern definitions in the output RELAX NG schema
 even if they are not referenced. This is useful for mapping YANG
 "library" modules that typically contain only ’typedef’ and/or
 ’grouping’ statements.

10.21. The ’identity’ Statement

 This statement is mapped to the following named pattern definition
 which is placed as a child of the root <rng:grammar> element:

 <rng:define name="__PREFIX_ARGUMENT">
 <rng:choice>
 <rng:value type="QName">PREFIX:ARGUMENT</rng:value>
 <rng:ref name="IDENTITY1"/>
 ...
 </rng:choice>
 </rng:define>

 where

 PREFIX is the prefix used in the hybrid schema for the namespace
 of the module where the current identity is defined.

 IDENTITY1 is the name of of the named pattern corresponding to an
 identity which is derived from the current identity. Exactly one
 <rng:ref> element MUST be present for every such identity.

 EXAMPLE ([RFC6020], Section 7.16.3). The identities in the input
 YANG modules

Lhotka Expires April 24, 2011 [Page 47]

Internet-Draft Mapping YANG to DSDL October 2010

 module crypto-base {
 namespace "http://example.com/crypto-base";
 prefix "crypto";
 identity crypto-alg {
 description
 "Base identity from which all crypto algorithms
 are derived.";
 }
 }

 module des {
 namespace "http://example.com/des";
 prefix "des";
 import "crypto-base" {
 prefix "crypto";
 }
 identity des {
 base "crypto:crypto-alg";
 description "DES crypto algorithm";
 }
 identity des3 {
 base "crypto:crypto-alg";
 description "Triple DES crypto algorithm";
 }
 }

 will be mapped to the following named pattern definitions:

 <define name="__crypto_crypto-alg">
 <choice>
 <value type="QName">crypto:crypto-alg</value>
 <ref name="__des_des"/>
 <ref name="__des_des3"/>
 </choice>
 </define>
 <define name="__des_des">
 <value type="QName">des:des</value>
 </define>
 <define name="__des_des3">
 <value type="QName">des:des3</value>
 </define>

10.22. The ’if-feature’ Statement

 ARGUMENT together with arguments of all sibling ’if-feature’
 statements (with added prefixes, if missing) MUST be collected in a
 space-separated list which becomes the value of the @nma:if-feature
 attribute. This attribute is attached to PARENT.

Lhotka Expires April 24, 2011 [Page 48]

Internet-Draft Mapping YANG to DSDL October 2010

10.23. The ’import’ Statement

 This statement is not specifically mapped. The module whose name is
 in ARGUMENT has to be parsed so that the importing module is able to
 use its top-level groupings, typedefs and identities, and also
 augment the data tree of the imported module.

 If the ’import’ statement has the ’revision’ substatement, the
 corresponding revision of the imported module MUST be used. The
 mechanism for finding a given module revision is outside the scope of
 this document.

10.24. The ’include’ Statement

 This statement is not specifically mapped. The submodule whose name
 is in ARGUMENT has to be parsed and its contents mapped exactly as if
 the submodule text appeared directly in the main module text.

 If the ’include’ statement has the ’revision’ substatement, the
 corresponding revision of the submodule MUST be used. The mechanism
 for finding a given submodule revision is outside the scope of this
 document.

10.25. The ’input’ Statement

 This statement is handled within ’rpc’ statement, see Section 10.50.

10.26. The ’key’ Statement

 This statement is mapped to @nma:key attribute. ARGUMENT MUST be
 translated so that every key is prefixed with the namespace prefix of
 the local module. The result of this translation then becomes the
 value of the @nma:key attribute.

10.27. The ’leaf’ Statement

 This statement is mapped to the <rng:element> element and ARGUMENT
 with prepended local namespace prefix becomes the value of its @name
 attribute.

 If the leaf is optional, i.e., if there is no "mandatory true;"
 substatement and the leaf is not declared among the keys of an
 enclosing list, then the <rng:element> element MUST be enclosed in
 <rng:optional>, except when the ’leaf’ statement is a child of the
 ’choice’ statement and thus represents a shorthand case for that
 choice (see Section 9.1.1 for details).

Lhotka Expires April 24, 2011 [Page 49]

Internet-Draft Mapping YANG to DSDL October 2010

10.28. The ’leaf-list’ Statement

 This statement is mapped to a block enclosed by either <rng:
 zeroOrMore> or <rng:oneOrMore> element depending on whether the
 argument of ’min-elements’ substatement is "0" or positive,
 respectively (it is zero by default). This <rng:zeroOrMore> or <rng:
 oneOrMore> element becomes the PARENT.

 <rng:element> is then added as a child element of PARENT and ARGUMENT
 with prepended local namespace prefix becomes the value of its @name
 attribute. Another attribute, @nma:leaf-list, MUST also be added to
 this <rng:element> element with the value of "true". If the ’leaf-
 list’ statement has the ’min-elements’ substatement and its argument
 is greater than one, additional attribute @nma:min-elements is
 attached to <rng:element> and the argument of ’min-elements’ becomes
 the value of this attribute. Similarly, if there is the ’max-
 elements’ substatement and its argument value is not "unbounded",
 attribute @nma:max-elements is attached to this element and the
 argument of ’max-elements’ becomes the value of this attribute.

 EXAMPLE. A leaf-list appearing in a module with the namespace prefix
 "yam"

 leaf-list foliage {
 min-elements 3;
 max-elements 6378;
 ordered-by user;
 type string;
 }

 is mapped to the following RELAX NG fragment:

 <rng:oneOrMore>
 <rng:element name="yam:foliage" nma:leaf-list="true"
 nma:ordered-by="user"
 nma:min-elements="3" nma:max-elements="6378">
 <rng:data type="string"/>
 </rng:element>
 </rng:oneOrMore>

10.29. The ’length’ Statement

 This statement is handled within the "string" type, see
 Section 10.53.10.

Lhotka Expires April 24, 2011 [Page 50]

Internet-Draft Mapping YANG to DSDL October 2010

10.30. The ’list’ Statement

 This statement is mapped exactly as the ’leaf-list’ statement, see
 Section 10.28. The only difference is that the @nma:leaf-list
 annotation either MUST NOT be present or MUST have the value of
 "false".

 When mapping the substatements of ’list’, the order of children of
 the list element MUST be specified so that list keys, if there are
 any, always appear in the same order as they are defined in the ’key’
 substatement and before other children, see [RFC6020], Section 7.8.5.
 In particular, if a list key is defined in a grouping but the list
 node itself is not a part of the same grouping, and the position of
 the ’uses’ statement would violate the above ordering requirement,
 the grouping MUST be expanded, i.e., the ’uses’ statement replaced by
 the grouping contents.

 For example, consider the following YANG fragment of a module with
 the prefix "yam":

 grouping keygrp {
 leaf clef {
 type uint8;
 }
 }
 list foo {
 key clef;
 leaf bar {
 type string;
 }
 leaf baz {
 type string;
 }
 uses keygrp;
 }

 is mapped to the following RELAX NG fragment:

Lhotka Expires April 24, 2011 [Page 51]

Internet-Draft Mapping YANG to DSDL October 2010

 <rng:zeroOrMore>
 <rng:element name="yam:foo" nma:key="yam:clef">
 <rng:element name="yam:clef">
 <rng:data type="unsignedByte"/>
 </rng:element>
 <rng:interleave>
 <rng:element name="yam:bar">
 <rng:data type="string"/>
 </rng:element>
 <rng:element name="yam:baz">
 <rng:data type="string"/>
 </rng:element>
 </rng:interleave>
 </rng:element>
 </rng:zeroOrMore>

 Note that the "keygrp" grouping is expanded and the definition of
 "yam:clef" is moved before the <rng:interleave> pattern.

10.31. The ’mandatory’ Statement

 This statement may appear as a substatement of ’leaf’, ’choice’ or
 ’anyxml’ statement. If ARGUMENT is "true", the parent data node is
 mapped as mandatory, see Section 9.1.1.

 As a substatement of ’choice’, this statement is also mapped to the
 @nma:mandatory attribute which is added to PARENT. The value of this
 attribute is the argument of the parent ’choice’ statement.

10.32. The ’max-elements’ Statement

 This statement is handled within ’leaf-list’ or ’list’ statements,
 see Section 10.28.

10.33. The ’min-elements’ Statement

 This statement is handled within ’leaf-list’ or ’list’ statements,
 see Section 10.28.

10.34. The ’module’ Statement

 This statement is mapped to an embedded <rng:grammar> pattern having
 the @nma:module attribute with the value of ARGUMENT. In addition, a
 <dc:source> element SHOULD be created as a child of this <rng:
 grammar> element and contain ARGUMENT as a metadata reference to the
 input YANG module. See also Section 10.49.

 Substatements of the ’module’ statement MUST be mapped so that

Lhotka Expires April 24, 2011 [Page 52]

Internet-Draft Mapping YANG to DSDL October 2010

 o statements representing configuration/state data are mapped to
 descendants of the <nma:data> element;

 o statements representing the contents of RPC requests or replies
 are mapped to descendants of the <nma:rpcs> element;

 o statements representing the contents of event notifications are
 mapped to descendants of the <nma:notifications> element.

10.35. The ’must’ Statement

 This statement is mapped to the <nma:must> element. It has one
 mandatory attribute @assert (with no namespace) which contains
 ARGUMENT transformed into a valid XPath expression (see Section 9.3).
 The <nma:must> element may have other subelements resulting from
 mapping the ’error-app-tag’ and ’error-message’ substatements. Other
 substatements of ’must’, i.e., ’description’ and ’reference’, are
 ignored.

 EXAMPLE. YANG statement in the "dhcp" module

 must ’current() <= ../max-lease-time’ {
 error-message
 "The default-lease-time must be less than max-lease-time";
 }

 is mapped to

 <nma:must assert="current()<=../dhcp:max-lease-time">
 <nma:error-message>
 The default-lease-time must be less than max-lease-time
 </nma:error-message>
 </nma:must>

10.36. The ’namespace’ Statement

 This statement is mapped simultaneously in two ways:

 1. To the @xmlns:PREFIX attribute of the root <rng:grammar> element
 where PREFIX is the namespace prefix specified by the sibling
 ’prefix’ statement. ARGUMENT becomes the value of this
 attribute.

 2. To the @ns attribute of PARENT, which is an embedded <rng:
 grammar> pattern. ARGUMENT becomes the value of this attribute.

Lhotka Expires April 24, 2011 [Page 53]

Internet-Draft Mapping YANG to DSDL October 2010

10.37. The ’notification’ Statement

 This statement is mapped to the following subtree of the <nma:
 notifications> element in the hybrid schema (where PREFIX is the
 prefix of the local YANG module):

 <nma:notification>
 <rng:element name="PREFIX:ARGUMENT">
 ...
 </rng:element>
 </nma:notification>

 Substatements of ’notification’ are mapped under <rng:element
 name="PREFIX:ARGUMENT">.

10.38. The ’ordered-by’ Statement

 This statement is mapped to @nma:ordered-by attribute and ARGUMENT
 becomes the value of this attribute. See Section 10.28 for an
 example.

10.39. The ’organization’ Statement

 This statement is ignored by the mapping because the hybrid schema
 may be mapped from multiple YANG modules authored by different
 parties. The hybrid schema SHOULD contain references to all input
 modules in the Dublin Core <dc:source> elements, see Section 10.34.
 The original YANG modules are the authoritative sources of the
 authorship information.

10.40. The ’output’ Statement

 This statement is handled within the ’rpc’ statement, see
 Section 10.50.

10.41. The ’path’ Statement

 This statement is handled within the "leafref" type, see
 Section 10.53.8.

10.42. The ’pattern’ Statement

 This statement is handled within the "string" type, see
 Section 10.53.10.

Lhotka Expires April 24, 2011 [Page 54]

Internet-Draft Mapping YANG to DSDL October 2010

10.43. The ’position’ Statement

 This statement is ignored.

10.44. The ’prefix’ Statement

 This statement is handled within the sibling ’namespace’ statement,
 see Section 10.36, or within the parent ’import’ statement, see
 Section 10.23. As a substatement of ’belongs-to’ (in submodules),
 the ’prefix’ statement is ignored.

10.45. The ’presence’ Statement

 This statement influences the mapping of the parent container
 (Section 10.11): the parent container definition MUST be wrapped in
 <rng:optional>, regardless of its contents. See also Section 9.1.1.

10.46. The ’range’ Statement

 This statement is handled within numeric types, see Section 10.53.9.

10.47. The ’reference’ Statement

 This statement is mapped to <a:documentation> element and its text is
 set to ARGUMENT prefixed with "See: ".

10.48. The ’require-instance’ Statement

 This statement is handled within "instance-identifier" type
 (Section 10.53.7).

10.49. The ’revision’ Statement

 The mapping uses only the most recent instance of the ’revision’
 statement, i.e., one with the latest date in ARGUMENT, which
 specifies the current revision of the input YANG module [RFC6020].
 This date SHOULD be recorded, together with the name of the YANG
 module, in the corresponding Dublin Core <dc:source> element (see
 Section 10.34), for example in this form:

 <dc:source>YANG module ’foo’, revision 2010-03-02</dc:source>

 The ’description’ substatement of ’revision’ is ignored.

10.50. The ’rpc’ Statement

 This statement is mapped to the following subtree in the RELAX NG
 schema (where PREFIX is the prefix of the local YANG module):

Lhotka Expires April 24, 2011 [Page 55]

Internet-Draft Mapping YANG to DSDL October 2010

 <nma:rpc>
 <nma:input>
 <rng:element name="PREFIX:ARGUMENT">
 ... mapped contents of ’input’ ...
 </rng:element>
 </nma:input>
 <nma:output">
 ... mapped contents of ’output’ ...
 </nma:output>
 </nma:rpc>

 As indicated in the schema fragment, contents of the ’input’
 substatement (if any) are mapped under <rng:element name="PREFIX:
 ARGUMENT">. Similarly, contents of the ’output’ substatement are
 mapped under <nma:output>. If there is no ’output’ substatement, the
 <nma:output> element MUST NOT be present.

 The <nma:rpc> element is a child of <nma:rpcs>.

10.51. The ’status’ Statement

 This statement MAY be ignored. Otherwise, it is mapped to @nma:
 status attribute and ARGUMENT becomes its value.

10.52. The ’submodule’ Statement

 This statement is not specifically mapped. Its substatements are
 mapped as if they appeared directly in the module the submodule
 belongs to.

10.53. The ’type’ Statement

 Most YANG built-in datatypes have an equivalent in the XSD datatype
 library [XSD-D] as shown in Table 4.

Lhotka Expires April 24, 2011 [Page 56]

Internet-Draft Mapping YANG to DSDL October 2010

 +-----------+---------------+--------------------------------+
 | YANG type | XSD type | Meaning |
 +-----------+---------------+--------------------------------+
 | int8 | byte | 8-bit integer value |
 | | | |
 | int16 | short | 16-bit integer value |
 | | | |
 | int32 | int | 32-bit integer value |
 | | | |
 | int64 | long | 64-bit integer value |
 | | | |
 | uint8 | unsignedByte | 8-bit unsigned integer value |
 | | | |
 | uint16 | unsignedShort | 16-bit unsigned integer value |
 | | | |
 | uint32 | unsignedInt | 32-bit unsigned integer value |
 | | | |
 | uint64 | unsignedLong | 64-bit unsigned integer value |
 | | | |
 | string | string | character string |
 | | | |
 | binary | base64Binary | binary data in base64 encoding |
 +-----------+---------------+--------------------------------+

 Table 4: YANG built-in datatypes with equivalents in the W3C XML
 Schema Type Library

 Two important datatypes of the XSD datatype library - "dateTime" and
 "anyURI" - are not built-in types in YANG but instead are defined as
 derived types in the standard modules [RFC6021]: "date-and-time" in
 the "ietf-yang-types" module and "uri" in the "ietf-inet-types"
 module. However, the formal restrictions in the YANG type
 definitions are rather weak. Therefore, implementations of the YANG-
 to-DSDL mapping SHOULD detect these derived types in source YANG
 modules and map them to "dateType" and "anyURI", respectively.

 Details about the mapping of individual YANG built-in types are given
 in the following subsections.

10.53.1. The "empty" Type

 This type is mapped to <rng:empty/>.

10.53.2. The "boolean" Type

 This built-in type does not allow any restrictions and is mapped to
 the following XML fragment:

Lhotka Expires April 24, 2011 [Page 57]

Internet-Draft Mapping YANG to DSDL October 2010

 <rng:choice>
 <rng:value>true</rng:value>
 <rng:value>false</rng:value>
 </rng:choice>

 Note that the XSD "boolean" type cannot be used here because it
 allows, unlike YANG, an alternative numeric representation of boolean
 values: 0 for "false" and 1 for "true".

10.53.3. The "binary" Type

 This built-in type does not allow any restrictions and is mapped
 simply by inserting <rng:data> element whose @type attribute value is
 set to "base64Binary" (see also Table 4).

10.53.4. The "bits" Type

 This type is mapped to <rng:list> and for each ’bit’ substatement the
 following XML fragment is inserted as a child of <rng:list>:

 <rng:optional>
 <rng:value>bit_name</rng:value>
 </rng:optional>

 where bit_name is the name of the bit as found in the argument of a
 ’bit’ substatement.

10.53.5. The "enumeration" and "union" Types

 These types are mapped to the <rng:choice> element.

10.53.6. The "identityref" Type

 This type is mapped to the following named pattern reference:

 <rng:ref name="__PREFIX_BASE"/>

 where PREFIX:BASE is the qualified name of the identity appearing in
 the argument of the ’base’ substatement.

 For example, assume that module "des" in Section 10.21 contains the
 following leaf definition:

 leaf foo {
 type identityref {
 base crypto:crypto-alg;
 }
 }

Lhotka Expires April 24, 2011 [Page 58]

Internet-Draft Mapping YANG to DSDL October 2010

 This leaf would then be mapped to the following element pattern:

 <element name="des:foo">
 <ref name="__crypto_crypto-alg"/>
 </element>

10.53.7. The "instance-identifier" Type

 This type is mapped to <rng:data> element with @type attribute set to
 "string". In addition, an empty <nma:instance-identifier> element
 MUST be inserted as a child of PARENT.

 The argument of the ’require-instance’ substatement, if it exists,
 becomes the value of the @require-instance attribute of the <nma:
 instance-identifier> element.

10.53.8. The "leafref" Type

 This type is mapped exactly as the type of the leaf given in the
 argument of ’path’ substatement. However, if the type of the
 referred leaf defines a default value, this default value MUST be
 ignored by the mapping.

 In addition, @nma:leafref attribute MUST be added to PARENT. The
 argument of the ’path’ substatement, translated according to
 Section 9.3, is set as the value of this attribute.

10.53.9. The Numeric Types

 YANG built-in numeric types are "int8", "int16", "int32", "int64",
 "uint8", "uint16", "uint32", "uint64" and "decimal64". They are
 mapped to <rng:data> element with @type attribute set to ARGUMENT
 translated according to Table 4 above.

 An exception is the "decimal64" type, which is mapped to the
 "decimal" type of the XSD datatype library. Its precision and number
 of fractional digits are controlled with the following facets, which
 MUST always be present:

 o "totalDigits" facet set to the value of 19.

 o "fractionDigits" facet set to the argument of the ’fraction-
 digits’ substatement.

 The fixed value of "totalDigits" corresponds to the maximum of 19
 decimal digits for 64-bit integers.

 For example, the statement

Lhotka Expires April 24, 2011 [Page 59]

Internet-Draft Mapping YANG to DSDL October 2010

 type decimal64 {
 fraction-digits 2;
 }

 is mapped to the following RELAX NG datatype:

 <rng:data type="decimal">
 <rng:param name="totalDigits">19</rng:param>
 <rng:param name="fractionDigits">2</rng:param>
 </rng:data>

 All numeric types support the ’range’ restriction, which is mapped as
 follows:

 If the range expression consists of just a single range LO..HI, then
 it is mapped to a pair of datatype facets

 <rng:param name="minInclusive">LO</rng:param>

 and

 <rng:param name="maxInclusive">HI</rng:param>

 If the range consists of a single number, the values of both facets
 are set to this value. If LO is equal to the string "min", the
 "minInclusive" facet is omitted. If HI is equal to the string "max",
 the "maxInclusive" facet is omitted.

 If the range expression has multiple parts separated by "|", then the
 parent <rng:data> element must be repeated once for every range part
 and all such <rng:data> elements are wrapped in <rng:choice> element.
 Each <rng:data> element contains the "minInclusive" and
 "maxInclusive" facets for one part of the range expression as
 described in the previous paragraph.

 For the "decimal64" type, the "totalDigits" and "fractionDigits" must
 be repeated inside each of the <rng:data> elements.

 For example,

 type int32 {
 range "-6378..0|42|100..max";
 }

 is mapped to the following RELAX NG fragment:

Lhotka Expires April 24, 2011 [Page 60]

Internet-Draft Mapping YANG to DSDL October 2010

 <rng:choice>
 <rng:data type="int">
 <rng:param name="minInclusive">-6378</rng:param>
 <rng:param name="maxInclusive">0</rng:param>
 </rng:data>
 <rng:data type="int">
 <rng:param name="minInclusive">42</rng:param>
 <rng:param name="maxInclusive">42</rng:param>
 </rng:data>
 <rng:data type="int">
 <rng:param name="minInclusive">100</rng:param>
 </rng:data>
 </rng:choice>

 See Section 9.2.2 for further details on mapping the restrictions.

10.53.10. The "string" Type

 This type is mapped to <rng:data> element with the @type attribute
 set to "string".

 The ’length’ restriction is handled analogically to the ’range’
 restriction for the numeric types (Section 10.53.9):

 If the length expression has just a single range, then

 o if the length range consists of a single number LENGTH, the
 following datatype facet is inserted:

 <rng:param name="length">LENGTH</rng:param>.

 o Otherwise the length range is of the form LO..HI, i.e., it
 consists of both the lower and upper bound. The following two
 datatype facets are then inserted:

 <rng:param name="minLength">LO</rng:param>

 and

 <rng:param name="maxLength">HI</rng:param>

 If LO is equal to the string "min", the "minLength" facet is
 omitted. If HI is equal to the string "max", the "maxLength"
 facet is omitted.

 If the length expression has of multiple parts separated by "|", then
 the parent <rng:data> element must be repeated once for every range
 part and all such <rng:data> elements are wrapped in <rng:choice>

Lhotka Expires April 24, 2011 [Page 61]

Internet-Draft Mapping YANG to DSDL October 2010

 element. Each <rng:data> element contains the "length" or
 "minLength" and "maxLength" facets for one part of the length
 expression as described in the previous paragraph.

 Every ’pattern’ restriction of the "string" datatype is mapped to the
 "pattern" facet

 <rng:param name="pattern">...</rng:param>

 with text equal to the argument of the ’pattern’ statement. All such
 "pattern" facets must be repeated inside each copy of the <rng:data>
 element, i.e., once for each length range.

 For example,

 type string {
 length "1|3..8";
 pattern "[A-Z][a-z]*";
 }

 is mapped to the following RELAX NG fragment:

 <rng:choice>
 <rng:data type="string">
 <rng:param name="length">1</rng:param>
 <rng:param name="pattern">[A-Z][a-z]*</rng:param>
 </rng:data>
 <rng:data type="string">
 <rng:param name="minLength">3</rng:param>
 <rng:param name="maxLength">8</rng:param>
 <rng:param name="pattern">[A-Z][a-z]*</rng:param>
 </rng:data>
 </rng:choice>

10.53.11. Derived Types

 If the ’type’ statement refers to a derived type, it is mapped in one
 of the following ways depending on whether it contains any
 restrictions as its substatements:

 1. Without restrictions, the ’type’ statement is mapped simply to
 the <rng:ref> element, i.e., a reference to a named pattern. If
 the RELAX NG definition of this named pattern has not been added
 to the hybrid schema yet, the corresponding type definition MUST
 be found and its mapping installed as a subelement of either the
 root or an embedded <rng:grammar> element, see Section 10.54.
 Even if a given derived type is used more than once in the input
 YANG modules, the mapping of the corresponding ’typedef’ MUST be

Lhotka Expires April 24, 2011 [Page 62]

Internet-Draft Mapping YANG to DSDL October 2010

 installed only once.

 2. If any restrictions are present, the ancestor built-in type for
 the given derived type must be determined and the mapping of this
 base type MUST be used. Restrictions appearing at all stages of
 the type derivation chain MUST be taken into account and their
 conjunction added to the <rng:data> element which defines the
 basic type.

 See Section 9.2.2 for more details and an example.

10.54. The ’typedef’ Statement

 This statement is mapped to a RELAX NG named pattern definition <rng:
 define>, but only if the type defined by this statement is used
 without restrictions in at least one of the input modules. In this
 case, the named pattern definition becomes a child of either the root
 or an embedded <rng:grammar> element, depending on whether the
 ’typedef’ statement appears at the top level of a YANG module or not.
 The name of this named pattern definition is set to ARGUMENT mangled
 according to the rules specified in Section 9.2.

 Whenever a derived type is used with additional restrictions, the
 ancestor built-in type for the derived type is used instead with
 restrictions (facets) that are a combination of all restrictions
 specified along the type derivation chain. See Section 10.53.11 for
 further details and an example.

 An implementation MAY offer the option of recording all ’typedef’
 statements as named patterns in the output RELAX NG schema even if
 they are not referenced. This is useful for mapping YANG "library"
 modules containing only ’typedef’ and/or ’grouping’ statements.

10.55. The ’unique’ Statement

 This statement is mapped to @nma:unique attribute. ARGUMENT MUST be
 translated so that every node identifier in each of its components is
 prefixed with the namespace prefix of the local module, unless the
 prefix is already present. The result of this translation then
 becomes the value of the @nma:unique attribute.

 For example, assuming that the local module prefix is "ex",

 unique "foo ex:bar/baz"

 is mapped to the following attribute/value pair:

 nma:unique="ex:foo ex:bar/ex:baz"

Lhotka Expires April 24, 2011 [Page 63]

Internet-Draft Mapping YANG to DSDL October 2010

10.56. The ’units’ Statement

 This statement is mapped to @nma:units attribute and ARGUMENT becomes
 its value.

10.57. The ’uses’ Statement

 If this statement has neither ’refine’ nor ’augment’ substatements,
 it is mapped to <rng:ref> element, i.e., a reference to a named
 pattern, and the value of its @name attribute is set to ARGUMENT
 mangled according to Section 9.2. If the RELAX NG definition of the
 referenced named pattern has not been added to the hybrid schema yet,
 the corresponding grouping MUST be found and its mapping installed as
 a subelement of <rng:grammar>, see Section 10.20.

 Otherwise, if the ’uses’ statement has any ’refine’ or ’augment’
 substatements, the corresponding grouping must be looked up and its
 contents inserted under PARENT. See Section 9.2.1 for further
 details and an example.

10.58. The ’value’ Statement

 This statement is ignored.

10.59. The ’when’ Statement

 This statement is mapped to @nma:when attribute and ARGUMENT,
 translated according to Section 9.3, becomes it value.

10.60. The ’yang-version’ Statement

 This statement is not mapped to the output schema. However, an
 implementation SHOULD check that it is compatible with the YANG
 version declared by the statement (currently version 1). In the case
 of a mismatch, the implementation SHOULD report an error and
 terminate.

10.61. The ’yin-element’ Statement

 This statement is not mapped to the output schema, but see the rules
 for extension handling in Section 9.4.

Lhotka Expires April 24, 2011 [Page 64]

Internet-Draft Mapping YANG to DSDL October 2010

11. Mapping the Hybrid Schema to DSDL

 As explained in Section 6, the second step of the YANG-to-DSDL
 mapping takes the hybrid schema and transforms it to various DSDL
 schemas capable of validating instance XML documents. As an input
 parameter, this step takes, in the simplest case, just a
 specification of the NETCONF XML document type that is to be
 validated. These document types can be, for example, the contents of
 a datastore, a reply to <nc:get> or <nc:get-config>, contents of
 other RPC requests/replies and event notifications, and so on.

 The second mapping step has to accomplish the following three general
 tasks:

 1. Extract the parts of the hybrid schema that are appropriate for
 the requested document type. For example, if a <nc:get> reply is
 to be validated, the subtree under <nma:data> has to be selected.

 2. The schema must be adapted to the specific encapsulating XML
 elements mandated by the RPC layer. These are, for example, <nc:
 rpc> and <nc:data> elements in the case of a <nc:get> reply or
 <en:notification> for a notification.

 3. Finally, NETMOD-specific annotations that are relevant for the
 schema language of the generated schema must be mapped to the
 corresponding patterns or rules.

 These three tasks are together much simpler than the first mapping
 step and can be effectively implemented using XSL transformations
 [XSLT].

 The following subsections describe the details of the second mapping
 step for the individual DSDL schema languages. Section 12 then
 contains a detailed specification for the mapping of all NETMOD-
 specific annotations.

11.1. Generating RELAX NG Schemas for Various Document Types

 With one minor exception, obtaining a validating RELAX NG schema from
 the hybrid schema only means taking appropriate parts of the hybrid
 schema and assembling them in a new RELAX NG grammar, perhaps after
 removing all unwanted annotations.

 The structure of the resulting RELAX NG schema is similar to that of
 the hybrid schema: The root grammar contains embedded grammars, one
 for each input YANG module. However, as explained in Section 8.2,
 global named pattern definitions (children of the root <rng:grammar>
 element) MUST be moved to a separate schema file.

Lhotka Expires April 24, 2011 [Page 65]

Internet-Draft Mapping YANG to DSDL October 2010

 Depending on the XML document type that is the target for validation,
 such as <nc:get>/<nc:get-config> reply, RPC operations or
 notifications, patterns defining corresponding top-level information
 items MUST be added, such as <nc:rpc-reply> with the @message-id
 attribute and so on.

 In order to avoid copying common named pattern definitions for common
 NETCONF elements and attributes to every single output RELAX NG file,
 such schema-independent definitions SHOULD be collected in a library
 file which is then included by the validating RELAX NG schemas.
 Appendix B has the listing of such a library file.

 The minor exception mentioned above is the annotation @nma:config,
 which must be observed if the target document type is a reply to <nc:
 get-config>. In this case, each element definition that has this
 attribute with the value of "false" MUST be removed from the schema
 together with its descendants. See Section 12.1 for more details.

11.2. Mapping Semantic Constraints to Schematron

 Schematron schemas tend to be much flatter and more uniform compared
 to RELAX NG. They have exactly four levels of XML hierarchy: <sch:
 schema>, <sch:pattern>, <sch:rule> and <sch:assert> or <sch:report>.

 In a Schematron schema generated by the second mapping step, the
 basic unit of organization is a rule represented by the <sch:rule>
 element. The following NETMOD-specific annotations from the hybrid
 schema (henceforth called "semantic annotations") are mapped to
 corresponding Schematron rules: <nma:must>, @nma:key, @nma:unique,
 @nma:max-elements, @nma:min-elements, @nma:when, @nma:leafref, @nma:
 leaf-list, and also @nma:mandatory appearing as an attribute of <rng:
 choice> (see Section 11.2.1).

 Each input YANG module is mapped to a Schematron pattern whose @id
 attribute is set to the module name. Every <rng:element> pattern
 containing at least one of the above-mentioned semantic annotations
 is then mapped to a Schematron rule:

 <sch:rule context="XELEM">
 ...
 </sch:rule>

 The value of the mandatory @context attribute of <sch:rule> (denoted
 as XELEM) MUST be set to the absolute path of the context element in
 the data tree. The <sch:rule> element contains the mappings of all
 contained semantic annotations in the form of Schematron asserts or
 reports.

Lhotka Expires April 24, 2011 [Page 66]

Internet-Draft Mapping YANG to DSDL October 2010

 Semantic annotations appearing inside a named pattern definition
 (i.e., having <rng:define> among its ancestors) require special
 treatment because they may be potentially used in different contexts.
 This is accomplished by using Schematron abstract patterns that use
 the "$pref" variable in place of the local namespace prefix. The
 value of the @id attribute of such an abstract pattern MUST be set to
 the name of the named pattern definition which is being mapped (i.e.,
 the mangled name of the original YANG grouping).

 When the abstract pattern is instantiated, the values of the
 following two parameters MUST be provided:

 o pref: the actual namespace prefix,

 o start: XPath expression defining the context in which the grouping
 is used.

 EXAMPLE. Consider the following YANG module:

 module example4 {
 namespace "http://example.com/ns/example4";
 prefix ex4;
 uses sorted-leaf-list;
 grouping sorted-leaf-list {
 leaf-list sorted-entry {
 must "not(preceding-sibling::sorted-entry > .)" {
 error-message "Entries must appear in ascending order.";
 }
 type uint8;
 }
 }
 }

 The resulting Schematron schema for a reply to <nc:get> is then as
 follows:

Lhotka Expires April 24, 2011 [Page 67]

Internet-Draft Mapping YANG to DSDL October 2010

 <?xml version="1.0" encoding="utf-8"?>
 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
 <sch:ns uri="http://example.com/ns/example4" prefix="ex4"/>
 <sch:ns uri="urn:ietf:params:xml:ns:netconf:base:1.0"
 prefix="nc"/>
 <sch:pattern abstract="true"
 id="_example4__sorted-leaf-list">
 <sch:rule context="$start/$pref:sorted-entry">
 <sch:report
 test=". = preceding-sibling::$pref:sorted-entry">
 Duplicate leaf-list entry "<sch:value-of select="."/>".
 </sch:report>
 <sch:assert
 test="not(preceding-sibling::$pref:sorted-entry > .)">
 Entries must appear in ascending order.
 </sch:assert>
 </sch:rule>
 </sch:pattern>
 <sch:pattern id="example4"/>
 <sch:pattern id="id2573371" is-a="_example4__sorted-leaf-list">
 <sch:param name="start" value="/nc:rpc-reply/nc:data"/>
 <sch:param name="pref" value="ex4"/>
 </sch:pattern>
 </sch:schema>

 The "sorted-leaf-list" grouping from the input module is mapped to an
 abstract pattern with an @id value of "_example4__sorted-leaf-list"
 in which the ’must’ statement corresponds to the <sch:assert>
 element. The abstract pattern is the instantiated by the pattern
 with an @id value of "id2802112" which sets the "start" and "pref"
 parameters to appropriate values.

 Note that another Schematron element, <sch:report>, was automatically
 added, checking for duplicate leaf-list entries.

 The mapping from the hybrid schema to Schematron proceeds in the
 following steps:

 1. First, the active subtree(s) of the hybrid schema must be
 selected depending on the requested target document type. This
 procedure is identical to the RELAX NG case, including the
 handling of @nma:config if the target document type is <nc:get-
 config> reply.

 2. Namespaces of all input YANG modules, together with the
 namespaces of base NETCONF ("nc" prefix) or notifications ("en"
 prefix) MUST be declared using the <sch:ns> element, for example

Lhotka Expires April 24, 2011 [Page 68]

Internet-Draft Mapping YANG to DSDL October 2010

 <sch:ns uri="http://example.com/ns/example4" prefix="ex4"/>

 3. One pattern is created for every input module. In addition, an
 abstract pattern is created for every named pattern definition
 containing one or more semantic annotations.

 4. A <sch:rule> element is created for each element pattern
 containing semantic annotations.

 5. Every such annotation is then mapped to an <sch:assert> or <sch:
 report> element which is installed as a child of the <sch:rule>
 element.

11.2.1. Constraints on Mandatory Choice

 In order to fully represent the semantics of YANG’s ’choice’
 statement with the "mandatory true;" substatement, the RELAX NG
 grammar has to be combined with a special Schematron rule.

 EXAMPLE. Consider the following module:

 module example5 {
 namespace "http://example.com/ns/example5";
 prefix ex5;
 choice foobar {
 mandatory true;
 case foo {
 leaf foo1 {
 type uint8;
 }
 leaf foo2 {
 type uint8;
 }
 }
 leaf bar {
 type uint8;
 }
 }
 }

 In this module, all three leaf nodes in both case branches are
 optional but because of the "mandatory true;" statement, at least one
 of them must be present in a valid configuration. The ’choice’
 statement from this module is mapped to the following fragment of the
 RELAX NG schema:

Lhotka Expires April 24, 2011 [Page 69]

Internet-Draft Mapping YANG to DSDL October 2010

 <rng:choice>
 <rng:interleave>
 <rng:optional>
 <rng:element name="ex5:foo1">
 <rng:data type="unsignedByte"/>
 </rng:element>
 </rng:optional>
 <rng:optional>
 <rng:element name="ex5:foo2">
 <rng:data type="unsignedByte"/>
 </rng:element>
 </rng:optional>
 </rng:interleave>
 <rng:element name="ex5:bar">
 <rng:data type="unsignedByte"/>
 </rng:element>
 </rng:choice>

 In the second case branch, the "ex5:bar" element is defined as
 mandatory so that this element must be present in a valid
 configuration if this branch is selected. However, the two elements
 in the first branch "foo" cannot be both declared as mandatory since
 each of them alone suffices for a valid configuration. As a result,
 the above RELAX NG fragment would successfully validate
 configurations where none of the three leaf elements are present.

 Therefore, mandatory choices, which can be recognized in the hybrid
 schema as <rng:choice> elements with the @nma:mandatory annotation,
 have to be handled in a special way: For each mandatory choice where
 at least one of the cases contains more than one node, a Schematron
 rule MUST be added enforcing the presence of at least one element
 from any of the cases. (RELAX NG schema guarantees that elements
 from different cases cannot be mixed together, that all mandatory
 nodes are present etc.).

 For the example module above, the Schematron rule will be as follows:

 <sch:rule context="/nc:rpc-reply/nc:data">
 <sch:assert test="ex5:foo1 or ex5:foo2 or ex5:bar">
 Node(s) from at least one case of choice "foobar" must exist.
 </sch:assert>
 </sch:rule>

11.3. Mapping Default Values to DSRL

 DSRL is the only component of DSDL which is allowed to change the
 information set of the validated XML document. While DSRL also has
 other functions, YANG-to-DSDL mapping uses it only for specifying and

Lhotka Expires April 24, 2011 [Page 70]

Internet-Draft Mapping YANG to DSDL October 2010

 applying default contents. For XML instance documents based on YANG
 data models, insertion of default contents may potentially take place
 for all implicit nodes identified by the rules in Section 9.1.2.

 In DSRL, the default contents of an element are specified using the
 <dsrl:default-content> element, which is a child of <dsrl:element-
 map>. Two sibling elements of <dsrl:default-content> determine the
 context for the application of the default contents, see [DSRL]:

 o <dsrl:parent> element contains an XSLT pattern specifying the
 parent element; the default contents are applied only if the
 parent element exists in the instance document.

 o <dsrl:name> contains the XML name of the element which, if missing
 or empty, is inserted together with the contents of <dsrl:default-
 content>.

 The <dsrl:parent> element is optional in a general DSRL schema but,
 for the purpose of the YANG-to-DSDL mapping, this element MUST be
 always present, in order to guarantee a proper application of default
 contents.

 DSRL mapping only deals with <rng:element> patterns in the hybrid
 schema that define implicit nodes (see Section 9.1.2). Such element
 patterns are distinguished by having NETMOD-specific annotation
 attributes @nma:default or @nma:implicit, i.e., either

 <rng:element name="ELEM" nma:default="DEFVALUE">
 ...
 </rng:element>

 or

 <rng:element name="ELEM" nma:implicit="true">
 ...
 </rng:element>

 The former case applies to leaf nodes having the ’default’
 substatement, but also to leaf nodes that obtain their default value
 from a typedef, if this typedef is expanded according to the rules in
 Section 9.2.2 so that the @nma:default annotation is attached
 directly to the leaf’s element pattern.

 The latter case is used for all implicit containers (see Section 9.1)
 and for leafs that obtain the default value from a typedef and don’t
 have the @nma:default annotation.

 In the simplest case, both element patterns are mapped to the

Lhotka Expires April 24, 2011 [Page 71]

Internet-Draft Mapping YANG to DSDL October 2010

 following DSRL element map:

 <dsrl:element-map>
 <dsrl:parent>XPARENT</dsrl:parent>
 <dsrl:name>ELEM</dsrl:name>
 <dsrl:default-content>DEFCONT</dsrl:default-content>
 </dsrl:element-map>

 where XPARENT is the absolute XPath of ELEM’s parent element in the
 data tree and DEFCONT is constructed as follows:

 o If the implicit node ELEM is a leaf and has the @nma:default
 attribute, DEFCONT is set to the value of this attribute (denoted
 above as DEFVALUE).

 o If the implicit node ELEM is a leaf and has the @nma:implicit
 attribute with the value of "true", the default value has to be
 determined from the @nma:default attribute of the definition of
 ELEM’s type (perhaps recursively) and used in place of DEFCONT in
 the above DSRL element map. See also Section 9.2.2.

 o Otherwise, the implicit node ELEM is a container and DEFCONT is
 constructed as an XML fragment containing all descendant elements
 of ELEM that have either @nma:implicit or @nma:default attribute.

 In addition, when mapping the default case of a choice, it has to be
 guaranteed that the default contents are not applied if any node from
 any non-default case is present. This is accomplished by setting
 <dsrl:parent> in a special way:

 <dsrl:parent>XPARENT[not (ELEM1|ELEM2|...|ELEMn)]</dsrl:parent>

 where ELEM1, ELEM2, ... ELEMn are the names of all top-level nodes
 from all non-default cases. The rest of the element map is exactly
 as before.

 EXAMPLE. Consider the following YANG module:

Lhotka Expires April 24, 2011 [Page 72]

Internet-Draft Mapping YANG to DSDL October 2010

 module example6 {
 namespace "http://example.com/ns/example6";
 prefix ex6;
 container outer {
 leaf leaf1 {
 type uint8;
 default 1;
 }
 choice one-or-two {
 default "one";
 container one {
 leaf leaf2 {
 type uint8;
 default 2;
 }
 }
 leaf leaf3 {
 type uint8;
 default 3;
 }
 }
 }
 }

 The DSRL schema generated for the "get-reply" target document type
 will be:

Lhotka Expires April 24, 2011 [Page 73]

Internet-Draft Mapping YANG to DSDL October 2010

 <?xml version="1.0" encoding="utf-8"?>
 <dsrl:maps xmlns:dsrl="http://purl.oclc.org/dsdl/dsrl"
 xmlns:ex6="http://example.com/ns/example6"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <dsrl:element-map>
 <dsrl:parent>/nc:rpc-reply/nc:data</dsrl:parent>
 <dsrl:name>ex6:outer</dsrl:name>
 <dsrl:default-content>
 <ex6:leaf1>1</ex6:leaf1>
 <ex6:one>
 <ex6:leaf2>2</ex6:leaf2>
 </ex6:one>
 </dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>/nc:rpc-reply/nc:data/ex6:outer</dsrl:parent>
 <dsrl:name>ex6:leaf1</dsrl:name>
 <dsrl:default-content>1</dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>
 /nc:rpc-reply/nc:data/ex6:outer[not(ex6:leaf3)]
 </dsrl:parent>
 <dsrl:name>ex6:one</dsrl:name>
 <dsrl:default-content>
 <ex6:leaf2>2</ex6:leaf2>
 </dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>
 /nc:rpc-reply/nc:data/ex6:outer/ex6:one
 </dsrl:parent>
 <dsrl:name>ex6:leaf2</dsrl:name>
 <dsrl:default-content>2</dsrl:default-content>
 </dsrl:element-map>
 </dsrl:maps>

 Note that the default value for "leaf3" defined in the YANG module is
 ignored because "leaf3" represents a non-default alternative of a
 choice and as such never becomes an implicit element.

Lhotka Expires April 24, 2011 [Page 74]

Internet-Draft Mapping YANG to DSDL October 2010

12. Mapping NETMOD-specific Annotations to DSDL Schema Languages

 This section contains the mapping specification for the individual
 NETMOD-specific annotations. In each case, the result of the mapping
 must be inserted into an appropriate context of the target DSDL
 schema as described in Section 11. The context is determined by the
 element pattern in the hybrid schema to which the annotation is
 attached. In the rest of this section, CONTELEM will denote the name
 of this context element properly qualified with its namespace prefix.

12.1. The @nma:config Annotation

 If this annotation is present with the value of "false", the
 following rules MUST be observed for DSDL schemas of <nc:get-config>
 reply:

 o When generating RELAX NG, the contents of the CONTELEM definition
 MUST be changed to <rng:notAllowed>.

 o When generating Schematron or DSRL, the CONTELEM definition and
 all its descendants in the hybrid schema MUST be ignored.

12.2. The @nma:default Annotation

 This annotation is used for generating the DSRL schema as described
 in Section 11.3.

12.3. The <nma:error-app-tag> Annotation

 This annotation currently has no mapping defined.

12.4. The <nma:error-message> Annotation

 This annotation is handled within <nma:must>, see Section 12.13.

12.5. The @if-feature Annotation

 The information about available features MAY be supplied as an input
 parameter to an implementation. In this case, the following changes
 MUST be performed for all features that are considered unavailable:

 o When generating RELAX NG, the contents of the CONTELEM definition
 MUST be changed to <rng:notAllowed>.

 o When generating Schematron or DSRL, the CONTELEM definition and
 all its descendants in the hybrid schema MUST be ignored.

Lhotka Expires April 24, 2011 [Page 75]

Internet-Draft Mapping YANG to DSDL October 2010

12.6. The @nma:implicit Annotation

 This annotation is used for generating the DSRL schema as described
 in Section 11.3.

12.7. The <nma:instance-identifier> Annotation

 If this annotation element has the @require-instance attribute with
 the value of "false", it is ignored. Otherwise it is mapped to the
 following Schematron assert:

 <sch:assert test="nmf:evaluate(.)">
 The element pointed to by "CONTELEM" must exist.
 </sch:assert>

 The nmf:evaluate() function is an XSLT extension function (see
 Extension Functions in [XSLT]) that evaluates an XPath expression at
 run time. Such an extension function is available in Extended XSLT
 (EXSLT) or provided as a proprietary extension by some XSLT
 processors, for example Saxon.

12.8. The @nma:key Annotation

 Assume this annotation attribute contains "k_1 k_2 ... k_n", i.e.,
 specifies n children of CONTELEM as list keys. The annotation is
 then mapped to the following Schematron report:

 <sch:report test="CONDITION">
 Duplicate key of list "CONTELEM"
 </sch:report>

 where CONDITION has this form:
 preceding-sibling::CONTELEM[C_1 and C_2 and ... and C_n]

 Each sub-expression C_i, for i=1,2,...,n, specifies the condition for
 violated uniqueness of the key k_i, namely

 k_i=current()/k_i

12.9. The @nma:leaf-list Annotation

 This annotation is mapped to the following Schematron rule which
 detects duplicate entries of a leaf-list:

 <sch:report
 test=". = preceding-sibling::PREFIX:sorted-entry">
 Duplicate leaf-list entry "<sch:value-of select="."/>".
 </sch:report>

Lhotka Expires April 24, 2011 [Page 76]

Internet-Draft Mapping YANG to DSDL October 2010

 See Section 11.2 for a complete example.

12.10. The @nma:leafref Annotation

 This annotation is mapped to the following assert:

 <sch:assert test="PATH=.">
 Leaf "PATH" does not exist for leafref value "VALUE"
 </sch:assert>

 where PATH is the value of @nma:leafref and VALUE is the value of the
 context element in the instance document for which the referred leaf
 doesn’t exist.

12.11. The @nma:min-elements Annotation

 This annotation is mapped to the following Schematron assert:

 <sch:assert test="count(../CONTELEM)>=MIN">
 List "CONTELEM" - item count must be at least MIN
 </sch:assert>

 where MIN is the value of @nma:min-elements.

12.12. The @nma:max-elements Annotation

 This annotation is mapped to the following Schematron assert:

<sch:assert
 test="count(../CONTELEM)<=MAX or preceding-sibling::../CONTELEM">
 Number of list items must be at most MAX
</sch:assert>

 where MAX is the value of @nma:min-elements.

12.13. The <nma:must> Annotation

 This annotation is mapped to the following Schematron assert:

 <sch:assert test="EXPRESSION">
 MESSAGE
 </sch:assert>

 where EXPRESSION is the value of the mandatory @assert attribute of
 <nma:must>. If the <nma:error-message> subelement exists, MESSAGE is
 set to its contents, otherwise it is set to the default message
 "Condition EXPRESSION must be true".

Lhotka Expires April 24, 2011 [Page 77]

Internet-Draft Mapping YANG to DSDL October 2010

12.14. The <nma:ordered-by> Annotation

 This annotation currently has no mapping defined.

12.15. The <nma:status> Annotation

 This annotation currently has no mapping defined.

12.16. The @nma:unique Annotation

 The mapping of this annotation is almost identical as for @nma:key,
 see Section 12.8, with two small differences:

 o The value of @nma:unique is a list of descendant schema node
 identifiers rather than simple leaf names. However, the XPath
 expressions specified in Section 12.8 work without any
 modifications if the descendant schema node identifiers are
 substituted for k_1, k_2, ..., k_n.

 o The message appearing as the text of <sch:report> is different:
 "Violated uniqueness for list CONTELEM".

12.17. The @nma:when Annotation

 This annotation is mapped to the following Schematron assert:

 <sch:assert test="EXPRESSION">
 Node "CONTELEM" is only valid when "EXPRESSION" is true.
 </sch:assert>

 where EXPRESSION is the value of @nma:when.

Lhotka Expires April 24, 2011 [Page 78]

Internet-Draft Mapping YANG to DSDL October 2010

13. IANA Considerations

 This document requests the following two registrations of namespace
 URIs in the IETF XML registry [RFC3688]:

 URI: urn:ietf:params:xml:ns:netmod:dsdl-annotations:1

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:netmod:xpath-extensions:1

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

Lhotka Expires April 24, 2011 [Page 79]

Internet-Draft Mapping YANG to DSDL October 2010

14. Security Considerations

 This document defines a procedure that maps data models expressed in
 the YANG language to a coordinated set of DSDL schemas. The
 procedure itself has no security impact on the Internet.

 DSDL schemas obtained by the mapping procedure may be used for
 validating the contents of NETCONF messages or entire datastores and
 thus provide additional validity checks above those performed by
 NETCONF server and client implementations supporting YANG data
 models. The strictness of this validation is directly derived from
 the source YANG modules that the validated XML data adhere to.

Lhotka Expires April 24, 2011 [Page 80]

Internet-Draft Mapping YANG to DSDL October 2010

15. Contributors

 The following people contributed significantly to the initial version
 of this document:

 o Rohan Mahy

 o Sharon Chisholm (Ciena)

Lhotka Expires April 24, 2011 [Page 81]

Internet-Draft Mapping YANG to DSDL October 2010

16. Acknowledgments

 The editor wishes to thank the following individuals who provided
 helpful suggestions and/or comments on various versions of this
 document: Andy Bierman, Martin Bjorklund, Jirka Kosek, Juergen
 Schoenwaelder and Phil Shafer.

Lhotka Expires April 24, 2011 [Page 82]

Internet-Draft Mapping YANG to DSDL October 2010

17. References

17.1. Normative References

 [DSDL] ISO/IEC, "Document Schema Definition Languages (DSDL) -
 Part 1: Overview", ISO/IEC 19757-1, November 2004.

 [DSRL] ISO/IEC, "Information Technology - Document Schema
 Definition Languages (DSDL) - Part 8: Document Semantics
 Renaming Language - DSRL", ISO/IEC 19757-8:2008(E),
 December 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 Network Configuration Protocol (NETCONF)", RFC 6020,
 September 2010.

 [RFC6021] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6021, September 2010.

 [RNG] ISO/IEC, "Information Technology - Document Schema
 Definition Languages (DSDL) - Part 2: Regular-Grammar-
 Based Validation - RELAX NG. Second Edition.", ISO/
 IEC 19757-2:2008(E), December 2008.

 [RNG-CS] ISO/IEC, "Information Technology - Document Schema
 Definition Languages (DSDL) - Part 2: Regular-Grammar-
 Based Validation - RELAX NG. AMENDMENT 1: Compact Syntax",
 ISO/IEC 19757-2:2003/Amd. 1:2006(E), January 2006.

 [RNG-DTD] Clark, J., Ed. and M. Murata, Ed., "RELAX NG DTD
 Compatibility", OASIS Committee Specification 3 December
 2001, December 2001.

 [Schematron]
 ISO/IEC, "Information Technology - Document Schema
 Definition Languages (DSDL) - Part 3: Rule-Based
 Validation - Schematron", ISO/IEC 19757-3:2006(E),
 June 2006.

Lhotka Expires April 24, 2011 [Page 83]

Internet-Draft Mapping YANG to DSDL October 2010

 [XML] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2006/REC-xml-20060816>.

 [XML-INFOSET]
 Tobin, R. and J. Cowan, "XML Information Set (Second
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-infoset-20040204, February 2004,
 <http://www.w3.org/TR/2004/REC-xml-infoset-20040204>.

 [XPath] Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium
 Recommendation REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

 [XSD-D] Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-2-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

 [XSLT] Clark, J., "XSL Transformations (XSLT) Version 1.0", World
 Wide Web Consortium Recommendation REC-xslt-19991116,
 November 1999.

17.2. Informative References

 [DHCPtut] Bjorklund, M., "DHCP Tutorial", November 2007, <http://
 www.yang-central.org/twiki/bin/view/Main/DhcpTutorial>.

 [RFC1157] Case, J., Fedor, M., Schoffstall, M., and J. Davin,
 "Simple Network Management Protocol (SNMP)", STD 15,
 RFC 1157, May 1990.

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC5013] Kunze, J., "The Dublin Core Metadata Element Set",
 RFC 5013, August 2007.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, July 2008.

 [Trang] Clark, J., "Trang: Multiformat schema converter based on
 RELAX NG", 2008,
 <http://www.thaiopensource.com/relaxng/trang.html>.

Lhotka Expires April 24, 2011 [Page 84]

Internet-Draft Mapping YANG to DSDL October 2010

 [Vli04] van der Vlist, E., "RELAX NG", O’Reilly , 2004.

 [XSD] Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn,
 "XML Schema Part 1: Structures Second Edition", World Wide
 Web Consortium Recommendation REC-xmlschema-1-20041028,
 October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-1-20041028>.

 [pyang] Bjorklund, M. and L. Lhotka, "pyang: An extensible YANG
 validator and converter in Python", 2010,
 <http://code.google.com/p/pyang/>.

Lhotka Expires April 24, 2011 [Page 85]

Internet-Draft Mapping YANG to DSDL October 2010

Appendix A. RELAX NG Schema for NETMOD-Specific Annotations

 This appendix defines the content model for all NETMOD-specific
 annotations in the form of RELAX NG named pattern definitions.

 <CODE BEGINS> file "nmannot.rng"

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <define name="config-attribute">
 <attribute name="nma:config">
 <data type="boolean"/>
 </attribute>
 </define>

 <define name="data-element">
 <element name="nma:data">
 <ref name="__anyxml__"/>
 </element>
 </define>

 <define name="default-attribute">
 <attribute name="nma:default">
 <data type="string"/>
 </attribute>
 </define>

 <define name="error-app-tag-element">
 <element name="nma:error-app-tag">
 <text/>
 </element>
 </define>

 <define name="error-message-element">
 <element name="nma:error-message">
 <text/>
 </element>
 </define>

 <define name="if-feature-attribute">
 <attribute name="nma:if-feature">
 <list>
 <data type="QName"/>
 </list>
 </attribute>

Lhotka Expires April 24, 2011 [Page 86]

Internet-Draft Mapping YANG to DSDL October 2010

 </define>

 <define name="implicit-attribute">
 <attribute name="nma:implicit">
 <data type="boolean"/>
 </attribute>
 </define>

 <define name="instance-identifier-element">
 <element name="nma:instance-identifier">
 <optional>
 <attribute name="nma:require-instance">
 <data type="boolean"/>
 </attribute>
 </optional>
 </element>
 </define>

 <define name="key-attribute">
 <attribute name="nma:key">
 <list>
 <data type="QName"/>
 </list>
 </attribute>
 </define>

 <define name="leaf-list-attribute">
 <attribute name="nma:leaf-list">
 <data type="boolean"/>
 </attribute>
 </define>

 <define name="leafref-attribute">
 <attribute name="nma:leafref">
 <data type="string"/>
 </attribute>
 </define>

 <define name="mandatory-attribute">
 <attribute name="nma:mandatory">
 <data type="Name"/>
 </attribute>
 </define>

 <define name="max-elements-attribute">
 <attribute name="nma:max-elements">
 <data type="nonNegativeInteger"/>
 </attribute>

Lhotka Expires April 24, 2011 [Page 87]

Internet-Draft Mapping YANG to DSDL October 2010

 </define>

 <define name="min-elements-attribute">
 <attribute name="nma:min-elements">
 <data type="nonNegativeInteger"/>
 </attribute>
 </define>

 <define name="module-attribute">
 <attribute name="nma:module">
 <data type="Name"/>
 </attribute>
 </define>

 <define name="must-element">
 <element name="nma:must">
 <attribute name="assert">
 <data type="string"/>
 </attribute>
 <interleave>
 <optional>
 <ref name="error-app-tag-element"/>
 </optional>
 <optional>
 <ref name="error-message-element"/>
 </optional>
 </interleave>
 </element>
 </define>

 <define name="notifications-element">
 <element name="nma:notifications">
 <zeroOrMore>
 <element name="nma:notification">
 <ref name="__anyxml__"/>
 </element>
 </zeroOrMore>
 </element>
 </define>

 <define name="rpcs-element">
 <element name="nma:rpcs">
 <zeroOrMore>
 <element name="nma:rpc">
 <interleave>
 <element name="nma:input">
 <ref name="__anyxml__"/>
 </element>

Lhotka Expires April 24, 2011 [Page 88]

Internet-Draft Mapping YANG to DSDL October 2010

 <optional>
 <element name="nma:output">
 <ref name="__anyxml__"/>
 </element>
 </optional>
 </interleave>
 </element>
 </zeroOrMore>
 </element>
 </define>

 <define name="ordered-by-attribute">
 <attribute name="nma:ordered-by">
 <choice>
 <value>user</value>
 <value>system</value>
 </choice>
 </attribute>
 </define>

 <define name="status-attribute">
 <optional>
 <attribute name="nma:status">
 <choice>
 <value>current</value>
 <value>deprecated</value>
 <value>obsolete</value>
 </choice>
 </attribute>
 </optional>
 </define>

 <define name="unique-attribute">
 <optional>
 <attribute name="nma:unique">
 <list>
 <data type="token"/>
 </list>
 </attribute>
 </optional>
 </define>

 <define name="units-attribute">
 <optional>
 <attribute name="nma:units">
 <data type="string"/>
 </attribute>
 </optional>

Lhotka Expires April 24, 2011 [Page 89]

Internet-Draft Mapping YANG to DSDL October 2010

 </define>

 <define name="when-attribute">
 <optional>
 <attribute name="nma:when">
 <data type="string"/>
 </attribute>
 </optional>
 </define>

 <define name="__anyxml__">
 <zeroOrMore>
 <choice>
 <attribute>
 <anyName/>
 </attribute>
 <element>
 <anyName/>
 <ref name="__anyxml__"/>
 </element>
 <text/>
 </choice>
 </zeroOrMore>
 </define>

 </grammar>

 <CODE ENDS>

Lhotka Expires April 24, 2011 [Page 90]

Internet-Draft Mapping YANG to DSDL October 2010

Appendix B. Schema-Independent Library

 In order to avoid copying the common named pattern definitions to
 every RELAX NG schema generated in the second mapping step, the
 definitions are collected in a library file - schema-independent
 library - which is included by the validating schemas under the file
 name "relaxng-lib.rng" (XML syntax) and "relaxng-lib.rnc" (compact
 syntax). The included definitions cover patterns for common elements
 from base NETCONF [RFC4741] and event notifications [RFC5277].

 <CODE BEGINS> file "relaxng-lib.rng"

 <?xml version="1.0" encoding="UTF-8"?>

 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:en="urn:ietf:params:xml:ns:netconf:notification:1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <define name="message-id-attribute">
 <attribute name="message-id">
 <data type="string">
 <param name="maxLength">4095</param>
 </data>
 </attribute>
 </define>

 <define name="ok-element">
 <element name="nc:ok">
 <empty/>
 </element>
 </define>

 <define name="eventTime-element">
 <element name="en:eventTime">
 <data type="dateTime"/>
 </element>
 </define>
 </grammar>

 <CODE ENDS>

Lhotka Expires April 24, 2011 [Page 91]

Internet-Draft Mapping YANG to DSDL October 2010

Appendix C. Mapping DHCP Data Model - A Complete Example

 This appendix demonstrates both steps of the YANG-to-DSDL mapping
 applied to the "canonical" DHCP tutorial [DHCPtut] data model. The
 input YANG module is shown in Appendix C.1 and the output schemas in
 the following two subsections.

 The hybrid schema was obtained by the "dsdl" plugin of the pyang tool
 [pyang] and the validating DSDL schemas were obtained by XSLT
 stylesheets that are also part of pyang distribution.

 Due to the limit of 72 characters per line, a few long strings
 required manual editing, in particular the regular expression
 patterns for IP addresses etc. These were replaced by the
 placeholder string "... regex pattern ...". Also, line breaks were
 added to several documentation strings and Schematron messages.
 Other than that, the results of the automatic translations were not
 changed.

C.1. Input YANG Module

 module dhcp {
 namespace "http://example.com/ns/dhcp";
 prefix dhcp;

 import ietf-yang-types { prefix yang; }
 import ietf-inet-types { prefix inet; }

 organization
 "yang-central.org";
 description
 "Partial data model for DHCP, based on the config of
 the ISC DHCP reference implementation.";

 container dhcp {
 description
 "configuration and operational parameters for a DHCP server.";

 leaf max-lease-time {
 type uint32;
 units seconds;
 default 7200;
 }

 leaf default-lease-time {
 type uint32;
 units seconds;
 must ’. <= ../max-lease-time’ {

Lhotka Expires April 24, 2011 [Page 92]

Internet-Draft Mapping YANG to DSDL October 2010

 error-message
 "The default-lease-time must be less than max-lease-time";
 }
 default 600;
 }

 uses subnet-list;

 container shared-networks {
 list shared-network {
 key name;

 leaf name {
 type string;
 }
 uses subnet-list;
 }
 }

 container status {
 config false;
 list leases {
 key address;

 leaf address {
 type inet:ip-address;
 }
 leaf starts {
 type yang:date-and-time;
 }
 leaf ends {
 type yang:date-and-time;
 }
 container hardware {
 leaf type {
 type enumeration {
 enum "ethernet";
 enum "token-ring";
 enum "fddi";
 }
 }
 leaf address {
 type yang:phys-address;
 }
 }
 }
 }
 }

Lhotka Expires April 24, 2011 [Page 93]

Internet-Draft Mapping YANG to DSDL October 2010

 grouping subnet-list {
 description "A reusable list of subnets";
 list subnet {
 key net;
 leaf net {
 type inet:ip-prefix;
 }
 container range {
 presence "enables dynamic address assignment";
 leaf dynamic-bootp {
 type empty;
 description
 "Allows BOOTP clients to get addresses in this range";
 }
 leaf low {
 type inet:ip-address;
 mandatory true;
 }
 leaf high {
 type inet:ip-address;
 mandatory true;
 }
 }

 container dhcp-options {
 description "Options in the DHCP protocol";
 leaf-list router {
 type inet:host;
 ordered-by user;
 reference "RFC 2132, sec. 3.8";
 }
 leaf domain-name {
 type inet:domain-name;
 reference "RFC 2132, sec. 3.17";
 }
 }

 leaf max-lease-time {
 type uint32;
 units seconds;
 default 7200;
 }
 }
 }
 }

C.2. Hybrid Schema

Lhotka Expires April 24, 2011 [Page 94]

Internet-Draft Mapping YANG to DSDL October 2010

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
 xmlns:dc="http://purl.org/dc/terms"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dhcp="http://example.com/ns/dhcp"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <dc:creator>Pyang 1.0a, DSDL plugin</dc:creator>
 <dc:date>2010-06-17</dc:date>
 <start>
 <grammar nma:module="dhcp" ns="http://example.com/ns/dhcp">
 <dc:source>YANG module ’dhcp’</dc:source>
 <start>
 <nma:data>
 <optional>
 <element nma:implicit="true" name="dhcp:dhcp">
 <interleave>
 <a:documentation>
 configuration and operational parameters for a DHCP server.
 </a:documentation>
 <optional>
 <element nma:default="7200"
 name="dhcp:max-lease-time"
 nma:units="seconds">
 <data type="unsignedInt"/>
 </element>
 </optional>
 <optional>
 <element nma:default="600"
 name="dhcp:default-lease-time"
 nma:units="seconds">
 <data type="unsignedInt"/>
 <nma:must assert=". <= ../dhcp:max-lease-time">
 <nma:error-message>
 The default-lease-time must be less than max-lease-time
 </nma:error-message>
 </nma:must>
 </element>
 </optional>
 <ref name="_dhcp__subnet-list"/>
 <optional>
 <element name="dhcp:shared-networks">
 <zeroOrMore>
 <element nma:key="dhcp:name"
 name="dhcp:shared-network">
 <element name="dhcp:name">
 <data type="string"/>

Lhotka Expires April 24, 2011 [Page 95]

Internet-Draft Mapping YANG to DSDL October 2010

 </element>
 <ref name="_dhcp__subnet-list"/>
 </element>
 </zeroOrMore>
 </element>
 </optional>
 <optional>
 <element name="dhcp:status" nma:config="false">
 <zeroOrMore>
 <element nma:key="dhcp:address"
 name="dhcp:leases">
 <element name="dhcp:address">
 <ref name="ietf-inet-types__ip-address"/>
 </element>
 <interleave>
 <optional>
 <element name="dhcp:starts">
 <ref name="ietf-yang-types__date-and-time"/>
 </element>
 </optional>
 <optional>
 <element name="dhcp:ends">
 <ref name="ietf-yang-types__date-and-time"/>
 </element>
 </optional>
 <optional>
 <element name="dhcp:hardware">
 <interleave>
 <optional>
 <element name="dhcp:type">
 <choice>
 <value>ethernet</value>
 <value>token-ring</value>
 <value>fddi</value>
 </choice>
 </element>
 </optional>
 <optional>
 <element name="dhcp:address">
 <ref name="ietf-yang-types__phys-address"/>
 </element>
 </optional>
 </interleave>
 </element>
 </optional>
 </interleave>
 </element>
 </zeroOrMore>

Lhotka Expires April 24, 2011 [Page 96]

Internet-Draft Mapping YANG to DSDL October 2010

 </element>
 </optional>
 </interleave>
 </element>
 </optional>
 </nma:data>
 <nma:rpcs/>
 <nma:notifications/>
 </start>
 </grammar>
 </start>
 <define name="ietf-yang-types__phys-address">
 <data type="string">
 <param name="pattern">([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv6-address">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ip-prefix">
 <choice>
 <ref name="ietf-inet-types__ipv4-prefix"/>
 <ref name="ietf-inet-types__ipv6-prefix"/>
 </choice>
 </define>
 <define name="ietf-inet-types__host">
 <choice>
 <ref name="ietf-inet-types__ip-address"/>
 <ref name="ietf-inet-types__domain-name"/>
 </choice>
 </define>
 <define name="ietf-yang-types__date-and-time">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="_dhcp__subnet-list">
 <a:documentation>A reusable list of subnets</a:documentation>
 <zeroOrMore>
 <element nma:key="net" name="subnet">
 <element name="net">
 <ref name="ietf-inet-types__ip-prefix"/>
 </element>
 <interleave>
 <optional>

Lhotka Expires April 24, 2011 [Page 97]

Internet-Draft Mapping YANG to DSDL October 2010

 <element name="range">
 <interleave>
 <optional>
 <element name="dynamic-bootp">
 <a:documentation>
 Allows BOOTP clients to get addresses in this range
 </a:documentation>
 <empty/>
 </element>
 </optional>
 <element name="low">
 <ref name="ietf-inet-types__ip-address"/>
 </element>
 <element name="high">
 <ref name="ietf-inet-types__ip-address"/>
 </element>
 </interleave>
 </element>
 </optional>
 <optional>
 <element name="dhcp-options">
 <interleave>
 <a:documentation>
 Options in the DHCP protocol
 </a:documentation>
 <zeroOrMore>
 <element nma:leaf-list="true" name="router"
 nma:ordered-by="user">
 <a:documentation>
 See: RFC 2132, sec. 3.8
 </a:documentation>
 <ref name="ietf-inet-types__host"/>
 </element>
 </zeroOrMore>
 <optional>
 <element name="domain-name">
 <a:documentation>
 See: RFC 2132, sec. 3.17
 </a:documentation>
 <ref name="ietf-inet-types__domain-name"/>
 </element>
 </optional>
 </interleave>
 </element>
 </optional>
 <optional>
 <element nma:default="7200" name="max-lease-time"
 nma:units="seconds">

Lhotka Expires April 24, 2011 [Page 98]

Internet-Draft Mapping YANG to DSDL October 2010

 <data type="unsignedInt"/>
 </element>
 </optional>
 </interleave>
 </element>
 </zeroOrMore>
 </define>
 <define name="ietf-inet-types__domain-name">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 <param name="minLength">1</param>
 <param name="maxLength">253</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv4-prefix">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv4-address">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv6-prefix">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ip-address">
 <choice>
 <ref name="ietf-inet-types__ipv4-address"/>
 <ref name="ietf-inet-types__ipv6-address"/>
 </choice>
 </define>
 </grammar>

C.3. Final DSDL Schemas

 This appendix contains DSDL schemas that were obtained from the
 hybrid schema in Appendix C.2 by XSL transformations. These schemas
 can be directly used for validating a reply to unfiltered <nc:get>
 with the contents corresponding to the DHCP data model.

 The RELAX NG schema (in two parts, as explained in Section 8.2) also
 includes the schema-independent library from Appendix B.

Lhotka Expires April 24, 2011 [Page 99]

Internet-Draft Mapping YANG to DSDL October 2010

C.3.1. Main RELAX NG Schema for <nc:get> Reply

 <?xml version="1.0" encoding="utf-8"?>
 <grammar
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
 xmlns:dhcp="http://example.com/ns/dhcp"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
 ns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <include href="relaxng-lib.rng"/>
 <start>
 <element name="rpc-reply">
 <ref name="message-id-attribute"/>
 <element name="data">
 <interleave>
 <grammar ns="http://example.com/ns/dhcp">
 <include href="dhcp-gdefs.rng"/>
 <start>
 <optional>
 <element name="dhcp:dhcp">
 <interleave>
 <optional>
 <element name="dhcp:max-lease-time">
 <data type="unsignedInt"/>
 </element>
 </optional>
 <optional>
 <element name="dhcp:default-lease-time">
 <data type="unsignedInt"/>
 </element>
 </optional>
 <ref name="_dhcp__subnet-list"/>
 <optional>
 <element name="dhcp:shared-networks">
 <zeroOrMore>
 <element name="dhcp:shared-network">
 <element name="dhcp:name">
 <data type="string"/>
 </element>
 <ref name="_dhcp__subnet-list"/>
 </element>
 </zeroOrMore>
 </element>
 </optional>
 <optional>
 <element name="dhcp:status">
 <zeroOrMore>
 <element name="dhcp:leases">

Lhotka Expires April 24, 2011 [Page 100]

Internet-Draft Mapping YANG to DSDL October 2010

 <element name="dhcp:address">
 <ref name="ietf-inet-types__ip-address"/>
 </element>
 <interleave>
 <optional>
 <element name="dhcp:starts">
 <ref name="ietf-yang-types__date-and-time"/>
 </element>
 </optional>
 <optional>
 <element name="dhcp:ends">
 <ref name="ietf-yang-types__date-and-time"/>
 </element>
 </optional>
 <optional>
 <element name="dhcp:hardware">
 <interleave>
 <optional>
 <element name="dhcp:type">
 <choice>
 <value>ethernet</value>
 <value>token-ring</value>
 <value>fddi</value>
 </choice>
 </element>
 </optional>
 <optional>
 <element name="dhcp:address">
 <ref name="ietf-yang-types__phys-address"/>
 </element>
 </optional>
 </interleave>
 </element>
 </optional>
 </interleave>
 </element>
 </zeroOrMore>
 </element>
 </optional>
 </interleave>
 </element>
 </optional>
 </start>
 </grammar>
 </interleave>
 </element>
 </element>
 </start>

Lhotka Expires April 24, 2011 [Page 101]

Internet-Draft Mapping YANG to DSDL October 2010

 </grammar>

C.3.2. RELAX NG Schema - Global Named Pattern Definitions

 <?xml version="1.0" encoding="utf-8"?>
 <grammar
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
 xmlns:dhcp="http://example.com/ns/dhcp"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <define name="ietf-yang-types__phys-address">
 <data type="string">
 <param name="pattern">
 ([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?
 </param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv6-address">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ip-prefix">
 <choice>
 <ref name="ietf-inet-types__ipv4-prefix"/>
 <ref name="ietf-inet-types__ipv6-prefix"/>
 </choice>
 </define>
 <define name="ietf-inet-types__host">
 <choice>
 <ref name="ietf-inet-types__ip-address"/>
 <ref name="ietf-inet-types__domain-name"/>
 </choice>
 </define>
 <define name="ietf-yang-types__date-and-time">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="_dhcp__subnet-list">
 <zeroOrMore>
 <element name="subnet">
 <element name="net">
 <ref name="ietf-inet-types__ip-prefix"/>
 </element>
 <interleave>
 <optional>
 <element name="range">

Lhotka Expires April 24, 2011 [Page 102]

Internet-Draft Mapping YANG to DSDL October 2010

 <interleave>
 <optional>
 <element name="dynamic-bootp">
 <empty/>
 </element>
 </optional>
 <element name="low">
 <ref name="ietf-inet-types__ip-address"/>
 </element>
 <element name="high">
 <ref name="ietf-inet-types__ip-address"/>
 </element>
 </interleave>
 </element>
 </optional>
 <optional>
 <element name="dhcp-options">
 <interleave>
 <zeroOrMore>
 <element name="router">
 <ref name="ietf-inet-types__host"/>
 </element>
 </zeroOrMore>
 <optional>
 <element name="domain-name">
 <ref name="ietf-inet-types__domain-name"/>
 </element>
 </optional>
 </interleave>
 </element>
 </optional>
 <optional>
 <element name="max-lease-time">
 <data type="unsignedInt"/>
 </element>
 </optional>
 </interleave>
 </element>
 </zeroOrMore>
 </define>
 <define name="ietf-inet-types__domain-name">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 <param name="minLength">1</param>
 <param name="maxLength">253</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv4-prefix">

Lhotka Expires April 24, 2011 [Page 103]

Internet-Draft Mapping YANG to DSDL October 2010

 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv4-address">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv6-prefix">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ip-address">
 <choice>
 <ref name="ietf-inet-types__ipv4-address"/>
 <ref name="ietf-inet-types__ipv6-address"/>
 </choice>
 </define>
 </grammar>

C.3.3. Schematron Schema for <nc:get> Reply

 <?xml version="1.0" encoding="utf-8"?>
 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
 <sch:ns uri="http://example.com/ns/dhcp" prefix="dhcp"/>
 <sch:ns uri="urn:ietf:params:xml:ns:netconf:base:1.0" prefix="nc"/>
 <sch:pattern abstract="true" id="_dhcp__subnet-list">
 <sch:rule context="$start/$pref:subnet">
 <sch:report test="preceding-sibling::$pref:subnet
 [$pref:net=current()/$pref:net]">
 Duplicate key "net"
 </sch:report>
 </sch:rule>
 <sch:rule
 context="$start/$pref:subnet/$pref:dhcp-options/$pref:router">
 <sch:report test=".=preceding-sibling::router">
 Duplicate leaf-list value "<sch:value-of select="."/>"
 </sch:report>
 </sch:rule>
 </sch:pattern>
 <sch:pattern id="dhcp">
 <sch:rule
 context="/nc:rpc-reply/nc:data/dhcp:dhcp/dhcp:default-lease-time">
 <sch:assert test=". <= ../dhcp:max-lease-time">
 The default-lease-time must be less than max-lease-time

Lhotka Expires April 24, 2011 [Page 104]

Internet-Draft Mapping YANG to DSDL October 2010

 </sch:assert>
 </sch:rule>
 <sch:rule context="/nc:rpc-reply/nc:data/dhcp:dhcp/
 dhcp:shared-networks/dhcp:shared-network">
 <sch:report test="preceding-sibling::dhcp:shared-network
 [dhcp:name=current()/dhcp:name]">
 Duplicate key "dhcp:name"
 </sch:report>
 </sch:rule>
 <sch:rule context="/nc:rpc-reply/nc:data/dhcp:dhcp/
 dhcp:status/dhcp:leases">
 <sch:report test="preceding-sibling::dhcp:leases
 [dhcp:address=current()/dhcp:address]">
 Duplicate key "dhcp:address"
 </sch:report>
 </sch:rule>
 </sch:pattern>
 <sch:pattern id="id2768196" is-a="_dhcp__subnet-list">
 <sch:param name="start" value="/nc:rpc-reply/nc:data/dhcp:dhcp"/>
 <sch:param name="pref" value="dhcp"/>
 </sch:pattern>
 <sch:pattern id="id2768215" is-a="_dhcp__subnet-list">
 <sch:param name="start"
 value="/nc:rpc-reply/nc:data/dhcp:dhcp/
 dhcp:shared-networks/dhcp:shared-network"/>
 <sch:param name="pref" value="dhcp"/>
 </sch:pattern>
 </sch:schema>

Lhotka Expires April 24, 2011 [Page 105]

Internet-Draft Mapping YANG to DSDL October 2010

C.3.4. DSRL Schema for <nc:get> Reply

 <?xml version="1.0" encoding="utf-8"?>
 <dsrl:maps
 xmlns:dsrl="http://purl.oclc.org/dsdl/dsrl"
 xmlns:dhcp="http://example.com/ns/dhcp"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <dsrl:element-map>
 <dsrl:parent>/nc:rpc-reply/nc:data</dsrl:parent>
 <dsrl:name>dhcp:dhcp</dsrl:name>
 <dsrl:default-content>
 <dhcp:max-lease-time>7200</dhcp:max-lease-time>
 <dhcp:default-lease-time>600</dhcp:default-lease-time>
 </dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>/nc:rpc-reply/nc:data/dhcp:dhcp</dsrl:parent>
 <dsrl:name>dhcp:max-lease-time</dsrl:name>
 <dsrl:default-content>7200</dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>/nc:rpc-reply/nc:data/dhcp:dhcp</dsrl:parent>
 <dsrl:name>dhcp:default-lease-time</dsrl:name>
 <dsrl:default-content>600</dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>
 /nc:rpc-reply/nc:data/dhcp:dhcp/dhcp:subnet
 </dsrl:parent>
 <dsrl:name>dhcp:max-lease-time</dsrl:name>
 <dsrl:default-content>7200</dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>
 /nc:rpc-reply/nc:data/dhcp:dhcp/dhcp:shared-networks/
 dhcp:shared-network/dhcp:subnet
 </dsrl:parent>
 <dsrl:name>dhcp:max-lease-time</dsrl:name>
 <dsrl:default-content>7200</dsrl:default-content>
 </dsrl:element-map>
 </dsrl:maps>

Lhotka Expires April 24, 2011 [Page 106]

Internet-Draft Mapping YANG to DSDL October 2010

Appendix D. Change Log

 RFC Editor: remove this section upon publication as an RFC.

D.1. Changes Between Versions -07 and -08

 o Edits based on Gen-ART review.

 o Added formal templates in Section 13.

 o Created the "Contributors" section and moved the former co-authors
 there.

 o Indicated the location of both global and local named pattern
 definitions in the example hybrid schema in Section 8.1.

 o Added reference to EXSLT "evaluate" function.

D.2. Changes Between Versions -06 and -07

 o Mapping of ’description’, ’reference’ and ’units’ to the hybrid
 schema is now mandatory.

 o Improvements and fixes of the text based on the AD review

D.3. Changes Between Versions -05 and -06

 o Terminology change: "conceptual tree schema" -> "hybrid schema".

 o Changed sectioning markers in the hybrid schema into plain NETMOD-
 specific annotations. Hence the former "nmt" namespace is not
 used at all.

 o Added the following NETMOD-specific annotations: @nma:if-feature,
 @nma:leaf-list, @nma:mandatory, @nma:module, removed @nma:
 presence.

 o Changed the structure of RELAX NG schemas by using embedded
 grammars and declaration of namespaces via @ns. This was
 necessary for enabling the "chameleon" behavior of global
 definitions.

 o Schematron validation phases are not used.

 o If an XPath expression appears inside a top-level grouping, the
 local prefix must be represented using the variable $pref. (This
 is related to the previous item.)

Lhotka Expires April 24, 2011 [Page 107]

Internet-Draft Mapping YANG to DSDL October 2010

 o DHCP example: All RNG schemas are only in the XML syntax. Added
 RNG with global definitions.

 o Added [XML-INFOSET] to normative references.

 o Listed the terms that are defined in other documents.

 o The schema for NETMOD-specific annotation is now given only as RNG
 named pattern definitions, no more in NVDL.

D.4. Changes Between Versions -04 and -05

 o Leafs that take their default value from a typedef and are not
 annotated with @nma:default must have @nma:implicit="true".

 o Changed code markers CODE BEGINS/ENDS to the form agreed by the
 WG.

 o Derived types "date-and-time" and "uri" SHOULD be mapped to XSD
 "dateTime" and "anyURI" types, respectively.

 o Clarified the notion of implicit nodes under under ’case’ in
 Section 9.1.2.

 o Moved draft-ietf-netmod-yang-types-06 to normative references.

 o An extra <rng:group> is no more required for the default case of a
 choice in the shorthand notation.

D.5. Changes Between Versions -03 and -04

 o Implemented ordering rules for list children - keys must go first
 and appear in the same order as in the input YANG module.

 o The ’case’ statement is now mapped to either <rng:group> (inside
 RPC operations) or <rng:interleave> (otherwise).

 o A nma:default annotation coming from a datatype which the mapping
 expands is attached to the <rng:element> pattern where the
 expansion occurs. Added an example.

 o Documentation statements (’description’, ’reference’, ’status’)
 MAY be ignored.

 o Single-valued numeric or length range parts are mapped to <rng:
 value> pattern or "length" facet.

Lhotka Expires April 24, 2011 [Page 108]

Internet-Draft Mapping YANG to DSDL October 2010

 o Example for "string" datatype was added.

 o Appendix A now uses NVDL for defining NETMOD-specific annotations.

 o Added CODE BEGINS/ENDS markers.

 o Separated normative and informative references.

 o Added URL for XPath extensions namespace.

 o Added Section 2 (Terminology and Notation).

 o Added Section 14 (Security Considerations).

 o Added Section 16 (Acknowledgments).

 o Removed compact syntax schema from Appendix B.

 o Editorial changes: symbolic citation labels.

D.6. Changes Between Versions -02 and -03

 o Changed @nma:default-case to @nma:implicit.

 o Changed nma:leafref annotation from element to attribute.

 o Added skeleton rule to Section 11.2.

 o Reworked Section 11.3, added skeleton element maps,corrected the
 example.

 o Added section on ’feature’ and ’deviation’.

 o New Section 9.1 integrating discussion of both optional/mandatory
 (was in -02) and implicit nodes (new).

 o Reflected that key argument and schema node identifiers are no
 more XPath (should be in yang-07).

 o Element patterns for implicit containers now must have @nma:
 implicit attribute.

 o Removed "float32" and "float64" types and added mapping of
 "decimal64" with example.

 o Removed mapping of ’require-instance’ for "leafref" type.

Lhotka Expires April 24, 2011 [Page 109]

Internet-Draft Mapping YANG to DSDL October 2010

 o Updated RELAX NG schema for NETMOD-specific annotations.

 o Updated the DHCP example.

D.7. Changes Between Versions -01 and -02

 o Moved Section 7 "NETCONF Content Validation" after Section 6.

 o New text about mapping defaults to DSRL, especially in Section 7
 and Section 11.3.

 o Finished the DHCP example by adding the DSRL schema to Appendix C.

 o New @nma:presence annotation was added - it is needed for proper
 handling of default contents.

 o Section 11.2.1 "Constraints on Mandatory Choice" was added because
 these constraints require a combination of RELAX NG and
 Schematron.

 o Fixed the schema for NETMOD-specific annotations by adding
 explicit prefix to all defined elements and attributes.
 Previously, the attributes had no namespace.

 o Handling of ’feature’, ’if-feature’ and ’deviation’ added.

 o Handling of nma:instance-identifier via XSLT extension function.

D.8. Changes Between Versions -00 and -01

 o Attributes @nma:min-elements and @nma:max-elements are attached to
 <rng:element> (list entry) and not to <rng:zeroOrMore> or <rng:
 oneOrMore>.

 o Keys and all node identifiers in ’key’ and ’unique’ statements are
 prefixed.

 o Fixed the mapping of ’rpc’ and ’notification’.

 o Removed previous sec. 7.5 "RPC Signatures and Notifications" - the
 same information is now contained in Section 10.50 and
 Section 10.37.

 o Added initial "_" to mangled names of groupings.

 o Mandated the use of @xmlns:xxx as the only method for declaring
 the target namespace.

Lhotka Expires April 24, 2011 [Page 110]

Internet-Draft Mapping YANG to DSDL October 2010

 o Added section "Handling of XML Namespaces" to explain the previous
 item.

 o Completed DHCP example in Appendix C.

 o Almost all text about the second mapping step is new.

Lhotka Expires April 24, 2011 [Page 111]

Internet-Draft Mapping YANG to DSDL October 2010

Author’s Address

 Ladislav Lhotka (editor)
 CESNET

 Email: lhotka@cesnet.cz

Lhotka Expires April 24, 2011 [Page 112]

