NFSv4 M Eisler
I nternet-Draft Net App
I nt ended status: Standards Track Cct ober 18, 2010
Expires: April 21, 2011

St orage De-Duplication Awareness and Sub-File Caching in NFS
draft-eisler-nfsv4-pnfs-dedupe-01.txt

Abstract

This Internet-Draft describes a nmeans to add awareness of de-
duplication storage to NFS in order to save resources on NFS client
and to reduce bandwi dth for servicing READ and WRI TE operations. The
means presented |l eads to a second benefit of providing sub-file,

bl ock- granul ar cachi ng.

Requi renents Language

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in RFC 2119 [1].

Status of this Meno

This Internet-Draft is submitted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups nmay also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on April 21, 2011

Copyright Notice

Copyright (c) 2010 | ETF Trust and the persons identified as the
docunment authors. All rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’s Lega

Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of

Ei sl er Expires April 21, 2011 [Page 1]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis docunment nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction and Mtivation 3
2. Termnology . 5
3. De-Duplication 5
3.1. Scope of De- Dupllcatlon 5
3.2 READ Opti m zation via De- Dupllcatlon and pNFS 6
3.2.1. The Definition of De-Duplication Layouts b
3.2.2. Negotiation 22
3.2.3. Operational Recommendation for Deployment 22
3.3. WRITE Optinization Wien De-Duplication Is Present 23
4. Sub-File Caching . . e23
4.1. Value of the Sub- F|Ie Cachlng Layout Type e e24
4.2. Sub-File Caching Indirect Layouts . . . e 24
4.3. Sub-File Caching Leaf Layouts .
5. Acknow edgenents e e e 25
6. Security Con5|derat|ons 24)
7. | ANA Considerations25
8. Normative References .27
Author’s Addresso 27

Ei sl er Expires April 21, 2011 [Page 2]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

1.

I ntroducti on and Moti vati on

De-duplication is an enmerging trend in the data storage. De-
duplication neans that two files that have comobn content derive that
content froma conmon | ocation on the sane storage device. As a
result, the total storage used is less than the total |length of each
file. De-duplication is also called fol ding.

Sone file systens have the capability to avoid allocation of storage
space when the value of each byte in a contiguous range is zero.
Such a range of a file in such a file systemis called a "hole", and
a file with one or nore holes is called a "sparse" file. Sparse
files represent a trivial formof de-duplication since the value of
every hole of X bytes in length is the conmon.

De-duplication is acconplished in several ways including,

0 Hierarchical de-duplication, where one file is derived from
anot her, usually by one file starting of as copy of another, but
zero, or nearly zero bytes of data are actually copied or noved
Instead, the two files share comon bl ocks of data storage. An
exanple is a snapshot, where a snapshot is nade of a file system
such that the snapshot and active file systemare equal at the
ti me snapshot is taken, and share the same data storage, and thus
are effectively copies that involve zero or near zero novenent of
data. As the source file system changes, the nunber of shared
bl ocks of data storage reduces. A variation of this is a witable
snapshot (aka clone) which is taken of a file system |In this
variation as the source and cloned file systens each change, there
are fewer shared bl ocks.

0 In-line de-duplication, where a storage access protocol initiator
(e.g. an NFS client) creates content via wite operations, and the
target of the storage access protocol checks if the content being
witten is duplicated sone where el se on the target’'s storage. |If
so, the data is not witten, but instead the |ogical content
refers to the duplicate.

o Background de-duplication, where a background task on the storage
access protocol target scans for duplicate bl ocks, and frees al
but one of the duplicates, mapping the pointers to the now free
bl ocks to the renmining duplicate.

The use of de-duplicated storage does not require changes to the NFS

protocol. However if the NFS client is caching content froman NFS
server that provides access to de-duplicated files, w thout changes
to the protocol, inefficient use of the resources |ike nenory and

network bandwidth will result. E.g., two files of length 1024 bytes

Ei sl er Expires April 21, 2011 [Page 3]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

are exactly the sane and are de-duplicated. The client reads, and
caches the first file. A process on the client requests to read the
second file. |If the client were aware the second file was a
duplicate of the first, it would not have read the second file, nor
woul d it have to cache the second file. A classic use case is
hypervi sors, which switch between multiple guest operating systens on
a single physical conmputer. |f each of these guest operating systens
were cloned froma single source, or if each guest was installed from
the sane operating systeminstallation image, then nmuch of the data
of each guest m ght be highly de-duplicated. De-duplication
awareness is consistent with the typical reasons for deploying a
hypervi sor: reducing costs by reducing utilization of nenory,

comput er cycles, and networKk.

Sub-file caching is nost useful when two conditions are net:
o Miltiple NFS clients need to access the sane file.

0 At least one client is nodifying the sanme file, provided this
client updates a relatively small subset of the file.

Under these two conditions nmany situations can occur where whole file
caching, as enabled by NFSv4 del egati ons, at best provides no benefit
and at worst presents a drawback. Exanples include:

0 One client frequently updates range X of a file, and another
client frequently reads range Y of a file where X and Y do not
overlap. Wth whole file del egations, each client enters a cycle
of obtain a delegation, process a recall, performa READ or WRI TE
to the server, with del egations providing no benefit, and thus
resources being unnecessarily consumed on the client and server

0o Two clients randomy read and wite different ranges of the same
file, and for a sufficiently large file, the probability that they

need the to access overlapping ranges is very snmall. Again, with
whol e file delegations, the clients are locked in the same cycle
as above.

Thi s docunment describes a nethod by which NFSv4.1 clients can be
aware of de-duplicated storage for optinzing READ requests. As
proposed, optim zation of READ requests not require a new mnor
version of NFSv4. Instead, it requires several new | ayout types, and
thus uses the pNFS protocol [2]. The approach presented here for de-
duplication awareness is easily extended to support sub-file caching
at arbitrary granularities and for abitrary sets of byte ranges of a
file.

Thi s docunent al so describes a nmethod by which NFSv4.x clients can

Ei sl er Expires April 21, 2011 [Page 4]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

optinize WRITE requests. The nethod does require a minor version of
NFS.

The XDR description is provided in this docunent in a way that nakes
it sinple for the reader to extract into a ready to conpile form
The reader can feed this docunent into the follow ng shell script to
produce the nmachi ne readabl e XDR description of the de-duplication

| ayout :

#!/ bi n/ sh
grep "N */[/]" | sed 's?™ *[[] 2?7 | sed 's? . *[[]]??
l.e. if the above script is stored in a file called "extract.sh", and
this docunment is in a file called "spec.txt”, then the reader can do:
sh extract.sh < spec.txt > dd.x
The effect of the script is to renove |eading white space from each
line of the specification, plus a sentinel sequence of "///".
2. Term nol ogy
o Source file, the file that contains the de-duplicated data.
o Target file, the file the client has opened.

o Block, the smallest unit of de-duplication or caching that the
server is willing to support.

o Slab, a byte range that refers to lists of other byte ranges that
contain de-duplicated data (either in whole, or part). A slab can
refer to a lists of smaller slabs, or lists of blocks.

0 Regular file: An object of file type NFAREG or NF4NAVEDATTR.

3. De-Duplication
3.1. Scope of De-Duplication

Thi s docunment only de-duplicates the data contents of regular files
Everything el se is considered netadata, and de-duplication of
metadata is not considered in this docunment. [[Coment.1: Sone

met adata, including the contents of directories and synbolic |inks,
as well as attributes (e.g. ACLs) are practical to de-duplicate, but
not at the granularity of fixed sized blocks. A future revision of

Ei sl er Expires April 21, 2011 [Page 5]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

3.

3.

2

2

this docunent night address de-duplication of netadata.]]

De-duplicati on awareness of regular file content in NFS has two
aspects:

0 Optimzing READ requests. Here the goal is to avoid reading a
pattern of data the client mght already have cached

0 Optimzing WRITE requests. Here the goal is to avoid witing a
pattern of data the server mght already have el sewhere, such that
the pattern can be de-duplicated

READ Opti mization via De-Duplication and pNFS

Provi di ng awar eness of de-duplication to clients needs to be
practical. |If the data structures the server provides to the client
are not conpact, or require expensive processing and/ or network
bandwi dt h, then de-duplication awareness is not practical. The
approach presented in this docunment uses |eaf bitmaps to indicate
whet her a byte range of a file has been de-duplicated, and if so from
what offset of what file. Since the granularity of de-duplication
will vary by inplenentation, and by file, the NFS server has the
option of providing indirect bitmaps that refer to bitmaps of finer
grained byte ranges. An indirect bitmap can refer to another
indirect bitmap or a | eaf bitmap.

As noted in Section 1, de-duplication can be the result of
hierarchical, inline, or background processes. This docunent
presents an approach to providi ng awareness of de-duplication allows
servers to optimnize for any approach.

NFSv4. 1 introduces pNFS, which allows clients to access data from

mul tiple storage devices. This nmeans that the NFS server is

di stributed across a set of nodes on a network. Such a server m ght
be capabl e of de-duplication anong the server’s nodes. The de-
duplication awareness feature will allow servers to present awareness
of cross-node de-duplication to NFS clients.

1. The Definition of De-Duplication Layouts

3.2.1.1. Nane of De-Duplication Striping Layout Type

There are multiple de-duplication |ayout types, in order to support
multiple levels of indirection plus a |leaf level. Since the maxi mum
sized file in pNFS is 2764 - 1 bytes, a total of 63 |levels of
indirection are provided.

There are two sets of de-duplication |ayout types.

Ei sl er Expires April 21, 2011 [Page 6]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

0o Wthin the first set, the name of the top-level de-duplication
| ayout type is LAYOUT4 _DEDUP_TOP. The nanes of the renaining de-
duplication layout types are in this set LAYOUT4_DEDUP_LEVEL_ <xx>,
where <xx> is a two digit deci mal nunber that ranges between 02
and 64. The server MJST NOT return LAYOUT4 DEDUP_LEVEL <xx> in
the response to a CETATTR request for the fs_ | ayout type
attribute.

0o Wthin the second set, the name of the top-level de-duplication
| ayout type is LAYOUT4 DEDUP_ROC TOP. The nanes of the renmining
de-duplication | ayout types are in this set
LAYOUT4_DEDUP_ROC LEVEL_<xx>, where <xx> is a two digit decinual
nunber that ranges between 02 and 64. The server MJST NOT return
LAYOUT4 _DEDUP_LEVEL <xx> in the response to a CGETATTR request for
the fs_layout_type attribute.

3.2.1.2. Value of De-Duplication Striping Layout Type
See Section 7.

3.2.1.3. Definition of the da_addr_body Field of the device_addr4 Data

Type
/1l %include "nfs4_prot.h"
11
/1l %* Encoded in the da_addr_body field. */
111

/1] union dd_|ayout addr switch (bool ddla_sinple) {
1 case TRUE:

111 mul tipath |ist4 ddla_sinple_addr
11 case FALSE:
111 | ayoutt ype4 ddl a_conpl ex_addr;
I

Figure 1

The device address is only used in leaf |ayouts, and even then, only
when cross server-node de-duplication is in effect. There are two
types of device addresses, a sinple network address, with zero or
nore alternate addresses for nultipathing, or a conplex address which
is the value of another |ayout type. The value of

ddl a_conpl ex_addr. ddl dp_I| t ype MUST NOT be LAYOUT4_DEDUP_TOP or any of
LAYOUT4_DEDUP_LEVEL_<xx>.

Ei sl er Expires April 21, 2011 [Page 7]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

3.2.1.4. Definition of the I oh_body Field of the layouthint4 Data Type

/1l enum dd_| ayout _hint_care4 {

111

111 DD4_CARE_STRIPE_UNIT_SIZE = 0x040,
111 DD4_CARE_STRIPE_UNIT_ALIGN = 0x100
111}

111 %

1l %* Encoded in the |oh_body field of type |ayouthint4: */
Il %
/1] struct dd_layouthint4 {

111 uint32_t ddl h_care;
111 | engt h4 ddl h_stripe_unit_size
111 | engt h4 ddl h_stripe_unit_align
1},

Fi gure 2

The | ayout-type specific content for the LAYOUT4_DEDUP_TOCP | ayout
type is conposed of three fields. The first field, ddlh_care, is a
set of flags indicating which values of the hint the client cares
about. |If DD4_CARE STRIPE UNIT SIZE is set, then the client
indicates in the second field, preferred unit of granularity for de-
duplication in bytes. |If DD4_CARE STRIPE UNIT_ALIGN is set, then the
client indicates in the third field, the preferred nini mum alignnent
de-duplicated units. For exanple, if the client specifies

ddl h_stripe_unit_size as 1024, and ddl h_stripe_unit_align as 128,
then if two files have in common content a string of bytes that is
1024 bytes long, and the string is at offset zero in the first file,
and of fset 1024 + 128 = 1152 in the second file, then the client
woul d Iike the server to de-duplicate the common 1024 byte string.
Note that the leaf |ayouts returned by the server are unable to

i ndi cate byte ranges that are not whole nmultiples of the unit size
the server uses, so if the server accepts a layout hint with

ddl h_stripe_ unit_align less than ddlh_stripe_unit_size, it wll

report units that are equal to ddlh_stripe_unit_align. |If the client
specifies a value in ddlh_stripe_unit_align that is greater than the
val ue of ddl h_stripe_unit_size, the server will ignore the

ddl h_stripe_unit_align hint.

Ei sl er Expires April 21, 2011 [Page 8]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

3.2.1.5. Definition of the Ioc_body Field of the layout_content4 Data
Type

1 %>
/1l %* How the bits of each el enent
[l %* of ddll _blockmap are split up

1l %*/
/1l const DDLL4_BLKMAP_NMASK_ACTI VE = 0x8000000000000000
11

[l %* The renmain bits follow DDLL4 BITS * */

/1l const DDLL4_BLKMAP_MASK_PARTI TI ONED = O0x7FFFFFFFFFFFFFFF;
111

/1l %* These constants index into ddl|_bmap_partition */

/11 const DDLL4 BITS FOR DEVID IDX = 0;
/1l const DDLL4_BITS FOR FH_ I DX = 1;
/1l const DDLL4_BITS_FOR BLK _NUM IDX = 2;
111

/1l struct dd_layout leafd {

111 | engt h4 ddl'| _bl ock_si ze

111

[l %/* ddl| _bl ockmap_partition[0-2] MJST add up to 63 */
111

/11 opaque ddl | _bl ockmap_partition[4];

111 verifierd ddll _fhsuffix;

11 nfs fh4a ddll_fhlist<>;

Iy uint64_t ddll_change_attr<>

111 devi cei d4 ddl| _devlist<>

/11 uint64_t ddl | _bl ockmap<>

A

111

/1l struct dd_layout_indirectd {
Iy | engt h4 ddli _slab_si ze
Iy | ayouttyped4 ddli _next _| evel
111 bi t map4 ddl i _bit map;
A

111

/11 union dd_layout4_u switch (bool ddl_is_leaf) {
111 case TRUE:

Iy dd_l ayout _| eaf 4 ddl _| eaf;

111 case FALSE:

/11 dd_layout indirect4 ddl _indirect;
A B

/1] struct dd_layout4d {

Iy of fset4 ddl _firstoff;

Iy of fset4 ddl | astoff;

/11 dd_layout4 u ddl _u;

A

Ei sl er Expires April 21, 2011 [Page 9]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

Fi gure 3

The first fields further bound the | ayout.

(0]

ddl _firstoff, the first offset in the file that the | ayout has de-
duplication information for. The relationship between the
lo_offset field of the ayout4 data type that envel ops the de-
duplication layout and ddl _firstoff is that ddl _firstoff MJST be
greater than or equal to lo_offset. |If ddl _firstoff is not equa
to lo offset, then this neans that the byte range froml o _offset
through ddl _firstoff - 1 inclusive either has not been de-
duplicated or the server has decided to not provide the
informati on. The value of the field ddl _firstoff MJST be a whole
multiple of ddli_slab_size or ddll _block_size.

ddl _lastoff, the last offset in the file that the |layout has de-
duplication information for. Field ddl_|astoff MJUST be greater
than or equal to ddl _firstoff. Field ddl_lastoff MJST be |ess
than or equal to lo_offset + lo_length - 1. If the difference
between ddl | astoff and lo_offset + lo_length - 1 exceeds zero,
then this nmeans that byte range fromoffset ddl _lastoff + 1
through lo offset + lo length - 1 inclusive either has not be been
de-duplicated or the server has decided to not provide the
informati on. The value of the ddl lastoff + 1 MJST be a whol e
mul tiple of ddli_slab_size or ddll_block_size, even if this nmeans
ddl _lastof f goes beyond the end of file.

The renmai nder of the de-duplication layout is either a |eaf |ayout or
an indirect |ayout.

An indirect |layout consists of,

(0]

Ei sl er

ddli_slab_size is the length, in bytes of each slab represented by
the ddli _bitrmap bitmap array.

ddli _next level is the layout type the NFS client MJST use when
usi ng LAYOUTGET to get finer grained de-duplication information
about the de-duplication of one or nore slabs. This field SHOULD
be one of LAYOUT4_DEDUP_LEVEL <xx>. The use of ddli_next | eve
provides a hint to the server for what slab or block size to use
on the next |evel of de-duplication

ddli _bitmap is a bitmap. If bit Nis set in ddli_bitmap, then
this means that slab N has de-duplicated content. Each bit
respects a byte range (a slab) of size ddli_slab_size, such that
ddl _firstoff is the start of the first slab (slab zero, relative
to ddl _firstoff). Slab N represents the byte range ddl _firstoff +
N * ddli_slab size to ddl _firstoff + (N + 1) * ddli_slab_size - 1,

Expires April 21, 2011 [Page 10]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

>

Ei sl er

inclusive. The field ddli_bitmap is an array of el enments each
consisting of a 32 bit unsigned integer. The nunber of el enents
in ddli_bitmap MJST be greater than or equal to ((((ddl _lastoff -
ddl _firstoff) + 1) / ddli_slab_size) / 32) rounded up to the next
whol e nunber.

eaf layout consists of,

ddl'l _block_size is the length, in bytes of each slab represented
by the ddl | _bl ockmap array.

ddl'l _bl ockmap_partition is an array of bytes, the first three of
whi ch are inspected by the client. This array indicates how each
el ement of ddll _blockmap is partitioned.

ddll _fhlist is an array of zero or nore filehandles. Each el enent
of ddll _bl ockmap can correspond to a filehandle in ddll _fhlist.
Each filehandl e represents a source file that has a de-duplicated
block that it shares with the target file. |If the array is of
zero length, then the source file for all de-duplicated blocks is
the target file.

ddl'l _fhsuffix MJIST be appended to each filehandle in ddll _fhlist
that the client uses for READ or LAYOUTCET operations. This
allows the server to detect if the client is using an invalid

| ayout .

ddll _change attr is an array of zero or nore change attri butes.

If the value of the layout type is between LAYOUT4 DEDUP TOP and
LAYOUT4_DEDUP_LEVEL_64, inclusive, then the length of

ddl | _change_attr MJST be greater than or equal to 1. |If the value
of the layout type is between LAYOUT4_ DEDUP_ROC TOP and
LAYOUT4_CACHE_LEVEL_64, inclusive, then the | ength of

ddl'l _change attr MJST be zero.

If ddll _change_attr is not zero in length, then each el enent
corresponds an elenment in ddll _fhlist with the same position in
the array. 1.e. ddll_change_attr[i] is the change attribute for
the source file identified by ddll_fhlist[i]. |If the array is of
zero length, then for each byte range represented by an el enent of
ddl _bl ockmap that has DDLL4 BLKMAP_MASK ACTI VE set, the server
promises to recall the layout of the byte range before the data on
the range mapped fromthe source file (represented by an el enent
of ddl _fhlist) is changed and before data on range of the target
file changed. If the ddll_fhlist array is of zero length, and the
ddll _change _attr array has one el enent, then ddl| _change_attr[0]
is the change attribute for the source file, which also happens to
be the target file.

Expires April 21, 2011 [Page 11]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

Ei sl er

ddl | _devlist is an array of zero or nore device IDs, for the

pur pose of enabling cross-node de-duplication. Each el enment of

ddl | _bl ockmap can correspond to a device IDin ddll_devlist. Each
device ID represents a device that has a source file with a de-
duplicated block. The device IDis always for a LAYOUT4 DEDUP_TOP
device, and can either map to a network address of an MDS, or a
non- de-duplication layout type. The device IDwll nmap to an MDS
network address if the source file has not been striped.

O herwi se, the device IDw Il be the layout type used for striping
the file. By providing the layout type, the client does not have
to send a CETATTR request on the source file for fs_|layout _type
attribute.

ddl'l _bl ockmap is an array of elenents, each a 64 bit unsigned
integer. Each el enent corresponds to a bl ock of size

ddll _block size. E.g., the first elenent, ddl| _bl ockmap[0]
corresponds to the byte range, ddl _firstoff through ddl _firstoff +
ddl'l _block_size - 1 inclusive.

* |f ddl | _bl ockmap[i] & DDLL4_ BLKMAP_MASK_ACTI VE i s non-zero,
then this el enent corresponds to a block that is de-duplicated.
O herwi se, the el enent does not correspond to a de-duplicated
bl ock, and the rest of the elenment is undefined.

* The mask ddl | _bl ockmap[i] & DDLL4_BLKMAP_NMASK PARTI TI ONED
represents a bit field that is partitioned according to the
content of ddll _blockmap_partition

The el enent ddl | _bl ockmap_partition[DDLL4 Bl TS FOR DEVI D _| DX]

i ndi cates how many bits at the start of the bit field are for
indexing into the ddl|_devlist array. The nunber of elements
in ddll _devlist MJST be |less than or equal to

2°ddl | _bl ockmap_partition[DDLL4_BITS FOR DEVID IDX]. |If

ddl'| _bl ockmap_partition[DDLL4 BITS FOR DEVID IDX] is zero, then
this neans that the bl ocks of the source file come fromthe
sane MDS as the target file.

The el ement ddl | _bl ockmap_partition[DDLL4_BI TS FOR_FH_| DX]

i ndi cates how many bits in the mddle of the bit field are for
indexing into the ddll _fhlist array. The nunber of elenments in
ddi'l _fhlist MIUST ne less than or equal to

27ddl | _bl ockmap_partition[DDLL4_BI TS FOR FH IDX]. |If

ddl | _bl ockmap_partition[DDLL4_BI TS FOR FH IDX] is zero, this
means that the source file is the sane as the target file in
every el enent of ddll _bl ockmap_partition

The el enent ddl | _bl ockmap_partition[DDLL4 Bl TS FOR BLK NUM | DX]
i ndi cates how many bits at the end of the bit field correspond

Expires April 21, 2011 [Page 12]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

to an absolute bl ock nunber into the source file. The absolute
of fset is calculated by conputing the product of

ddl | _bl ock_size and the absolute bl ock nunber. |If

ddl' | _bl ockmap_partition[DDLL4 BITS FOR BLK NUM IDX] is zero,
then this means the absol ute bl ock nunber of the source is the
sane as the absolute bl ock nunber of the target.

The dynami c partitioning of the ddll_bl ockmap el ement all ows
for several optimzations. |f the de-duplication in the range
identified by the layout is due to hierarchical de-duplication
then there is no need for a bl ock number, so

ddl | _bl ockmap_partition[DDLL4_BI TS FOR BLK_ NUM I DX] will be
zero. |If there is no cross node de-duplication in the range
then ddl | _bl ockrmap_partiti on[DDLL4 _BI TS FOR DEVID IDX] will be
zero. If all the de-duplication in the range is confined to
the target file, i.e. the duplicate blocks were only in the
target file and no other file, then

ddl | _bl ockmap_partition[DDLL4_BI TS FOR FH IDX] will be zero.

An outline for an algorithmfor processing a read() systemcall when
the potential for de-duplicated data exists follows. This algorithm
illustrates how the layout is interpreted. 1In this algorithm we
assune that the client always starts with a |layout that spans the
entire file.

Returns a vector call "result" of elements
* containing key / value pairs of ((offset,
* | ength), (status, source_nds, source_fh,

* source_offset)).

*/

dedupe_read(read_offset, read |ength, target fh,
| ayout4 | ogr _layout[]) {

i f (nunmber of elenents in |ogr_layout == zero) {
result[(read_offset, read_length)] =
NO_DEDUP_AVAI LABLE

return result;

}

for i fromthe end of logr_layout to start {
if (logr_layout[i].lo_offset > read_offset) {
conti nue;
}

Ei sl er Expires April 21, 2011 [Page 13]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

/* check for range split across segnments */
if (logr_layout[i].lo_length <
read_Il ength) {

read_offset A
read_l ength_A
read_of fset _B
read_|l ength_B

read_| engt h_

read_of f set;
logr_layout[i].lo_l ength;

| ogr _layout[i+1].1o0_offset;
read_|l ength -

oo

result[(read_offset A read length A)] =
dedupe _read(read_offset A, read |ength A
target _fh, logr_|layout);

result[(read_offset B, read |length_B)] =
dedupe_read(read _offset B, read |l ength_B
target _fh, logr_|ayout);

return result;

}

/*
* | f requested of fset exceeds |ast offset of this |ayout
* segnent, then we have no de-dupe opportunity.
*/
if (read_offset > ddl _lastoff) {

result[(read_offset, read_length)] =

NO_DEDUP_AVAI LABLE
return result;

}

| ast_offset = read_offset + read_length - 1;

if (last_offset > ddl lastoff) {
/* we cannot de-dupe the entire range */

result[(ddl _|astoff + 1, last_offset -
ddl lastoff)] = NO_DEDUP_AVAI LABLE
| ast _offset = ddl | astoff;
}
if (read_offset < ddl _firstoff) {
/* we cannot de-dupe the entire range */

result[(read_offset, ddl _firstoff -
read_offset)] = NO _DEDUP_AVAI LABLE
read_offset = ddl _firstoff;

}

Ei sl er Expires April 21, 2011 [Page 14]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

if (ddl _is_leaf == FALSE) {
/*
* Indirect layout. See if the slabs that correspond
* to the affected range are de-dupli cat ed.
*/

let trunc_read_off = read_offset truncated
to next |lowest multiple of
ddli _sl ab_si ze;

I et round | ast_off = (last_offset rounded
to next highest multiple of
ddli_slab_size) - 1,

first _bit = trunc_read off /
ddli _sl ab_si ze;

last_bit =
(round_last_off + 1) / ddli_slab_size;
for (j =first_bit; j++; | <=last_bit) {
k = | 32
I =j nmod 32;
bit =1 << 1;

if (j ==first_bit) {
read offset A = read_of fset;
read_length_A = trunc_read_off +
ddli _slab_size - read offset;

} else {
read_offset _A = ddl _firstoff + (j *
ddli _slab_size);
read_|l ength_A = ddli_sl ab_si ze;

}

if ((ddli_bitmap[k] & bit) == 1) {
next _l ayout _off =j * ddli_slab_size +
trunc_read_off;

ddli _sl ab_si ze;

next | ayout length =
= ddli _next | evel

next | ayout type
if (client does not have |ayout for
(next _l ayout _off,
next | ayout | ength, and
ddli _next _level) {

send a LAYQUTGET request;

Ei sl er Expires April 21, 2011 [Page 15]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

let logr_layout_ A = |ogr_layout array
of layout for (next_Ilayout_ off,
next | ayout | ength,
next | ayout type);

result[(read_of fset_A, read_length_A)]
= dedupe_read(read_of fset A,
read_| ength_A, target fh,
| ogr | ayout A);

} else {
result[(read_offset A read_|ength_A)]
= NO_DEDUP_AVAI LABLE;

}

} else {
/* process a |leaf layout */

/*
* determ ne the masks for bl ock nunber, filehandle index, and
* device | D index.
*/
let trunc_read_off = read_offset truncated
to next lowest multiple of
ddl | _bl ock_si ze;

l et round | ast_off = (last_offset rounded
to next highest multiple of
ddl | _bl ock_size) - 1;

bits_for_bl knum = ddl | _bl ockmap_partition
[DDLL4_BI TS_FOR_BLK_NUM I DX] ;

mask_f or _bl knum = 0;
for (j =0; j < bits_for_bl knuny j++) {
mask_for_bl knum = (rmask_f or _bl knum
<< 1) | 1;
}

bits_for_fh = ddl | _bl ockmap_partition
[DDLL4A_BI TS FOR FH | DX] ;

"bits_for _fh; j++) {
(mask_for_bl knum <<

for (j =0; j
mask_for _fh
1) | 1

mask for fh =0
<

Ei sl er Expires April 21, 2011 [Page 16]

Internet-Draft

Ei sl er

}

mask for fh = mask _for_fh <<
bits_for bl knum

bits_for_dev = ddl | _bl ockmap_partition
[DDLL4_BI TS FOR DEVI D_I DX] ;

mask _for_dev = O;
for (j =0; j < bits_for_dev; j++) {
mask_for_dev = (mask_for_dev << 1)
| 1

mask for _dev = mask for_dev <<
(bits_for_bl knum + mask_for_fh);

if ((bits_for_blknum+ bits for fh +
bits for _dev) !'= 63) {

result[(read_offset, read_length)] =
CORRUPT_LAYQUT

return result;

}

first _block = trunc_read off /
ddl | _bl ock_si ze;
| ast _block = (round_|ast_off + 1) /
ddl | _bl ock_si ze;
sl opoff = read_offset - trunc_read_off;
sloplen = round_l ast_off - l|ast_offset;

read offset A = trunc_read_off;

for (j = first_block; j++, read offset A +=
ddl | _block_size; j <= last_block) {

if (ddll _blockmap[j] &
DDLL4_BLKMAP_MASK_ACTI VE) {

bl ockmap = ddl | _bl ockmap[j] &
DDLL4_ BLKMAP_MASK PARTI Tl ONED;

source_l ength
sour ce_change
source_dev = 0;

ddl I _bl ock_si ze;
0;

i f (mask_for_bl knum == 0) {

Expires April 21, 2011

NFS De-Duplication and Sub-File Caching

Cct ober 2010

[Page 17]

Internet-Draft

Ei sl er

source_offset = ddl _firstoff + j *
ddl | _bl ock_si ze;
} else {
source_offset = (blockmap &
mask_for bl knum) * ddl | _bl ock_si ze;
}

if (j == first_block) {
source_of fset += sl opoff;
read_offset B = read_of fset;

} else {
read_offset B = read_offset A

}

if (j == last_block) {
source_ |l ength -= sl oplen;

}

if (mask _for_fh == 0) {
source_fh = target fh;

i f (nunber of elenents in
ddl'l _change_attr > 0) {
source_change = ddl| _change_attr[0];

} else {
fhidx = (bl ockmap & mask_for_fh) >>
bits_for bl knum
source_fh = ddll _fhlist[fhidx];
i f (nunmber of elenments in
ddl'l _change_attr > 0) {
source_change =
ddl | _change_attr[fhidx];
}
}

read_source_fh = source_fh concat enat ed
with ddll _fhsuffix;

source_ltype = O;

source_nmds = MDS of target_fh

if (mask for_dev I'= 0) {
devidx = (bl ockmap & mask for_dev) >>

bits for_ bl knum

source_dev = ddl | _devlist[devidx];

if (client does not have device
address for source_dev) {
send a GETDEVI CElI NFO
(LAYOUT4_DEDUP_TOP, source_dev);

Expires April 21, 2011

NFS De-Duplication and Sub-File Caching

Cct ober 2010

[Page 18]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

}

if (ddla_sinple from GETDEVI CEINFO i s
TRUE) ({
| et source_nds be an el enment of
ddl a_si npl e_addr;
} else {
source_|l type = ddl dp_ltype;

if (client does not have | ayout for
(source_nds, source_fh,
source_ | type, source_offset,
source_l ength)) {

send a LAYOUTGET request for
(read_source_fh, source_ltype
source_dev, source_offset,
source length) to target fh's

MDS;
cache LAYOQUTGET result;
}
if (client still does not have

| ayout for (source_nds, source_fh,
source_l type, source_offset,
source_l ength)) {
source_|type = 0;
} else {
| et source_layout = the |ayout
from cache;
}

}
}

if (source_change == 0 || client has
del egation on source_fh) {

if ({source_fh, source_nds
source_offset, source length} in
cache) {

result[(read_of fset B,
source_length)] =

(SATI SFY_READ_FROM CACHE,

source_nds, source_fh,
source_offset;)

Ei sl er Expires April 21, 2011 [Page 19]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

} else {
if (source_ltype == 0) {
if (read_source_fh not yet open)
{
send an OPEN request for
read_source_fh;

}

send a { PUTFH read_source_fh,
READ sour ce_of f set,
source_length } request to
sour ce_nds;

enter results in cache;

} else {
read fromread_source fh,
source_offset, source |ength
according to source_| ayout;

enter results in cache;

result[(read_of fset B,
source_length)] =
(SATI SFY_READ FROM CACHE,
sour ce_nmds, source_fh,
source_of fset);

} else {
if ({source_nds, source_ fh,
source_offset, source_length} in
cache) {

send a { PUTFH source fh, CGETATTR
change } request to source_nds;

if (change attribute ==
sour ce_change) {

result[(read_of fset B,
source_length)] =
(SATI SFY_READ FROM CACHE,
sour ce_nmds, source_fh,
source_of fset);

} else {

result[(read_of fset B,
source_length)] =

Ei sl er Expires April 21, 2011 [Page 20]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

(STALE_DEDUP_LAYQUT
source_nds, source_fh,
source_of fset);

return result;

}

/* should never get here */
result[(read_offset, read_length)] =
CORRUPT_LAYQUT

return result;

Figure 4

There is a trade off between resources (space and tine) used for
provi di ng de-duplication |ayouts (especially leaf |layouts) and
resources for redundant caching of de-duplicated storage. E.g., if a
client has to descend through 52 Il evels of caching to avoid caching a
single 4096 byte block twice, then it is not cost effective for the
server to return a layout. On the other hand, if 99%of a file is
usi ng de-duplicated storage, then having a conplete block map for a
one gigabyte file, or at least the parts of the file the client wants
to cache, is nore effective than redundantly caching nearly one

gi gabyte of storage.

3.2.1.6. Definition of the | ou body Field of the |ayoutupdate4 Data
Type

1 %>
11l %* LAYOUT4_DEDUP_TOP or any of LAYOUT4_DEDUP_LEVEL_<xx>.
/1l %?* Encoded in the |ou_body field of type |ayoutupdate4:

Il %* Not hing. lou_body is a zero length array of octets
Il %*/
Il %

Figure 5

The LAYOUT4 DEDUP_TOP and LAYOUT4 DEDUP_LEVEL <xx> | ayout types have
no content for lou body filed of the |layoutupdate4 data type.

Ei sl er Expires April 21, 2011 [Page 21]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

3.2.1.7. Storage Access Protocols

The LAYOUT4_DEDUP_TOP and LAYOUT4_DEDUP_LEVEL_<xx> | ayout types use
NFSv4. 1 operations (and potentially, operations of higher mnor

versi ons of NFSv4, subject to the definition of a m nor version of
NFSv4) to access de-duplicated data. The de-duplication |ayout types
do not affect access to storage devices. Thus a client nmight be able
to obtain both a de-duplication |ayout type and a non-de-duplication
| ayout type (e.g., LAYOUT4_NFSV4_1 FILES, LAYOUT4_OSD2_OBJECTS, or
LAYOUT4 BLOCK VOLUME) on the sane regular file.

3.2.1.8. Revocation of Layouts
Servers MAY revoke de-duplication layouts. A client using a de-
duplication | ayout SHOULD check if the change attribute of the source
file has changed. The use of the ddl|l _fhsuffix will prevent clients
usi ng revoked de-duplication |layouts fromusing potentially stale
information. Attenpts to use filehandles with the val ue of
ddl'l _fhsuffix appended, will result in NFS4ERR STALE.

3.2.1.9. Recovery

[[Comment.2: it is likely this section will follow that of the files
| ayout type specified in the NFSv4.1 specification.]]

3.2.1.9.1. Failure and Restart of Cient
TBD

3.2.1.9.2. Failure and Restart of Server
TBD

3.2.1.9.3. Failure and Restart of Storage Device
TBD

3.2.2. Negotiation

A pNFS client sends a GETATTR request for the fs_|ayout_type
attribute to see if the LAYOUT4 _DEDUP_TOP | ayout type is supported.

3.2.3. (Qperational Recomendation for Depl oynent

Depl oy the de-duplication | ayouts when it a significant fraction of
data storage is de-dupli cated.

Ei sl er Expires April 21, 2011 [Page 22]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

3.3. WRITE Optinization Wien De-Duplication |Is Present
There are two goal s

0 Avoid a WRITE of a pattern if client knows that server has stored
that pattern sonewhere el se besides the combi nation of target file
and byte range. the server

o Even if the client does not know if the pattern is stored
somewhere, provide a hint to the server that allows it to quickly
deternmine if the pattern is present.

Acconpl i shing the forner nerely requires an operation that refers the
server to a byte of a file it has stored. One way to is to | everage
the proposed COPY operation [3]. Acconmplishing the latter can be
done by the client providing checksuns of byte range it would like to
avoid witing. However, to do so would require that client and
server agree on checksum al gorithm which has the practical problem
that clients and servers with pre-existing de-duplication features
are likely to not agree on the checksumal gorithm For this reason,
this version of the docunent does not pursue the second goal

One caveat using COPY to achieve the first goal (avoiding a WRITE
when the client knows the server has stored the pattern el sewhere) is
that there is a wi ndow between the tine the client has cached a byte
range of the source file and the time the server receives the COPY
request. The use of a de-duplication |ayout that guarantees a recal
before the rel evant byte range of the source file is changed. Note
that this guarantee is only present if ddll _change attr is of zero
length. The client requires a way to force the server to return such
de-duplication | ayouts. Wen the client requests the top |level de-
duplication layout with a type equal to LAYQUT4_DEDUP_TCP
LAYOUT4_DEDUP_RECALL_ON CHANGE. The val ue of

LAYOUT4 DEDUP_RECALL_ON CHANGE is nmask with one bit set:

/1l const LAYOUT4 DEDUP_ RECALL ON CHANGE = 0x40

Figure 6

4. Sub-File Caching

Sub-file caching is built using the concepts and data structures
defined in Section 3.2, which introduces a set of |ayout types that
al l ow custoners to optim ze READ operations when the NFS client and
server support de-duplication. Sub-file caching provides a subset of
the functionality defined by the LAYOUT4 DEDUP_ROC TOP | ayout type
(and | ayout types LAYOUT4 DEDUP _ROC LEVEL 02 through

Ei sl er Expires April 21, 2011 [Page 23]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

LAYOUT4_DEDUP4_ROC LEVEL_64 inclusive). The primary similarity is

that a sub-file cache | eaf l|ayout provides a guarantee that if a

bl ock is mapped in the bitmap, then the server will recall a |ayout
covering that bl ock before allowing the block to be nodified. The

primary difference is that sub-file cache | eaf |ayout does not have
de-duplication references.

4.1. Value of the Sub-File Caching Layout Type
See Section 7.
4.2. Sub-File Caching Indirect Layouts

Indirect layouts for sub-file caching have the same fornmat and data
types as indirect layouts for de-duplication

4.3. Sub-File Caching Leaf Layouts
Leaf |ayouts for sub-file caching have the same format and data types
as indirect layouts for de-duplication. However, there are the

followi ng restrictions:

0 The value of ddll _blockmap partition[DDLL4 BI TS FOR DEVI D | DX]
MUST be zero.

o0 The value of ddll_blockmap_partition[DDLL4_BI TS FOR FH | DX] MJST
be zero.

0 The value of ddll _blockmap _partition[DDLL4 BI TS FOR BLK NUM | DX]
MJUST be 63.

o The length of ddll_fhlist MJST be zero.

o The length of ddll_change_attr MJST be zero.

o The length of ddll _devlist MJST be zero.

The effect of the length of ddll _change_attr being of zero length is
that server will recall the layout of a block before allow ng that
block to be nodified. Except for the restriction that

ddl'l _change attr is of zero length, the effect of the above
restrictions is to disable de-duplication when using the sub-file

caching layout types. |If client wants both sub-file caching and de-
duplication awareness, it can request the LAYOUT4_DEDUP_ROC TOP
| ayout type.

Note that the client can safely cache a block of file only if block’s
corresponding element in the ddll_blockmap array has the

Ei sl er Expires April 21, 2011 [Page 24]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

DDLL4_BLKMAP_MASK_ACTI VE bit set. The rest of the bits of the
el ement of ddll _bl ockmap MJUST be equal to the array index of the
el ement .

5. Acknow edgenents

Thanks to Pranoop Erasani, Arthur Lent, and Dave Noveck for
validating the strategy described in this docunent.

6. Security Considerations

I f an ACCESS operation by the principal on the source file would
fail, then the server has take care when processing requests for de-
duplication layouts of the target file. |If the server is unable to
perform access control at the granularity of the a byte-range, then
the server MJUST NOT allow the principal to read the source file. A
related concern is that if the server can provi de per-byte-range
access, then the server will need to all ow an OPEN operation of the
source file by the principal. The server will need to reject READ
operations for the non-de-duplicated data. The reader shoul d adj ust
the algorithmin Figure 4 accordingly.

7. | ANA Consi derati ons
This specification requires 196 additions to the Layout Types
registry described in Section 22.4 of [2]. Each added entry has five
fields. The first entry is:

1. Name of l|ayout type: LAYOUT4_DEDUP_TOP

2. Value of layout type: TBD1. [[Comment.3: Note to | ANA. Assign
LAYOUT4 DEDUP_TOP a value that is a whole nultiple of 64.]]

3. Standards Track RFC that describes this |layout: RFCTBD65, which
is the RFC of this docunent.

4. How the RFC Introduces the specification: L.
5. Mnor versions of NFSv4 that can use the |ayout type: 1.
The second through 64th additions to the Layout Types registry each

have the following form where <xx> is a decimal nunber between 02
and 64, inclusive:

Ei sl er Expires April 21, 2011 [Page 25]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

4.

5.

The

Name of |ayout type: LAYOUT4_DEDUP_LEVEL_<xx>.

Val ue of layout type: The result of the expression: <xx> - 1 +
LAYQOUT4_DEDUP_TOCP.

St andards Track RFC that describes this layout: RFCTBD65, which
is the RFC of this docunent.

How t he RFC I ntroduces the specification: L.

M nor versions of NFSv4 that can use the |layout type: 1.
65th entry is:

Nane of |ayout type: LAYOUT4 DEDUP_ROC TOP

Val ue of | ayout type: The val ue assigned to LAYOUT4_ DEDUP_TOP
logically ORed with LAYOUT4_DEDUP_RECALL_ON_CHANGE.

Standards Track RFC that describes this |ayout: RFCTBD65, which
is the RFC of this docunent.

How t he RFC I ntroduces the specification: L.
M nor versions of NFSv4 that can use the layout type: 1.

66t h through 128th additions to the Layout Types registry each

have the following form where <xx> is a decinal nunber between 2 and

64,
1.

2.

Ei sl er

i ncl usive:
Name of |ayout type: LAYOUT4_DEDUP_ROC LEVEL_<xx>.

Val ue of layout type: The result of the expression: <xx> - 1 +
LAYOUT4_DEDUP_ROC_TOP.

St andards Track RFC that describes this layout: RFCTBD65, which
is the RFC of this docunent.

How t he RFC I ntroduces the specification: L.

M nor versions of NFSv4 that can use the |layout type: 1.
129th entry is:

Nanme of |ayout type: LAYOQUT4_CACHE TOP

Val ue of | ayout type: The val ue assigned to LAYOUT4 DEDUP _TOP + 2
* LAYOUT4_DEDUP_RECALL_ON CHANGE.

Expires April 21, 2011 [Page 26]

Internet-Draft NFS De-Duplication and Sub-File Caching Cct ober 2010

3. Standards Track RFC that describes this |layout: RFCTBD65, which
is the RFC of this docunent.

4. How the RFC Introduces the specification: L.
5. Mnor versions of NFSv4 that can use the |ayout type: 1.
The 130th through 192nd additions to the Layout Types registry each
have the following form where <xx> is a decinmal nunber between 2 and
64, inclusive:

1. Name of |ayout type: LAYOUT4_CACHE LEVEL_<xx>

2. Value of layout type: The result of the expression: <xx> - 1 +
LAYOUT4_CACHE_TOP

3. Standards Track RFC that describes this |layout: RFCTBD65, which
is the RFC of this docunent.

4. How the RFC Introduces the specification: L.

5. Mnor versions of NFSv4 that can use the |ayout type: 1.

8. Normative References

[1] Bradner, S., "Key words for use in RFCs to |Indicate Requirenent
Level s", RFC 2119, March 1997.

[2] Shepler, S., Eisler, M, and D. Noveck, "NFS Version 4 M nor
Version 1", RFC RFC5661, Jan 2010.

[3] Lentini, J., Eisler, M, and D. Kenchammana, "NFS Version 4
M nor Version 1", draft-lentini-nfsv4-server-side-copy-05.txt
(work in progress), Jul 2010.

Aut hor’' s Address

M ke Eisler

Net App
5765 Chase Point Circle

Col orado Springs, CO 80919
us

Phone: +1-719-599-9026
Email: m ke@i sl er.com

Ei sl er Expires April 21, 2011 [Page 27]

