
NFSv4 T. Myklebust
Internet-Draft NetApp
Intended status: Standards Track October 17, 2010
Expires: April 20, 2011

 NFS Version 4 Minor Version 2 unstable file creation and attribute
 update improvements
 draft-myklebust-nfsv42-unstable-file-creation-00

Abstract

 This document describes an extension to the NFSv4 protocol to allow
 clients to create and write files with greater efficiency.

 The first proposal allows the server to defer creating the file on
 stable storage when replying to an OPEN call. The aim is to improve
 server efficiency and scalability by reducing the number of required
 disk accesses when writing a file from scratch.

 The second proposal allows the server to share information about the
 implementation of its change attribute with the client. The aim is
 to improve the client’s ability to determine the order in which
 parallel updates to the same file were processed.

Myklebust Expires April 20, 2011 [Page 1]

Internet-Draft NFSv4.2 file creation and updates October 2010

Keywords

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 20, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Myklebust Expires April 20, 2011 [Page 2]

Internet-Draft NFSv4.2 file creation and updates October 2010

Table of Contents

 1. Introduction . 4
 2. Definition of the ’stable_state’ per-file attribute 5
 2.1. Use of the ’stable_state’ attribute for unstable OPEN
 requests . 5
 2.1.1. Client use of the ’stable_state’ attribute 6
 2.1.2. Server response upon receiving an unstable OPEN
 request . 6
 2.1.3. Delegation return and unstable OPEN 6
 2.1.4. Client unstable OPEN recovery in case of a server
 reboot . 7
 2.1.5. Directory cache consistency and unstable files 9
 2.2. Use of the ’stable_state’ attribute in unstable
 SETATTR requests . 10
 2.2.1. Client unstable SETATTR recovery in case of a
 server reboot . 10
 2.2.2. Delegation return and unstable SETATTR 10
 3. Definition of the ’change_attr_type’ per-file system
 attribute . 11
 4. References . 13
 Author’s Address . 14

Myklebust Expires April 20, 2011 [Page 3]

Internet-Draft NFSv4.2 file creation and updates October 2010

1. Introduction

 One of the remaining sources of performance and scalability issues in
 the NFSv4.1 protocol [RFC5661], for workloads that require the
 creation of large numbers of files, is that file creation is still
 required to be synchronous. This limitation means that the minimum
 number of disk accesses in a workload that involves creating a file,
 writing to it and then closing it is 2: one at OPEN time, and one at
 COMMIT. The following proposal allows the client to indicate to the
 server, by means of a new attribute, that it is prepared to take on
 the burden of re-creating the file from scratch if the server should
 reboot before the file has been fully written. The same attribute
 also allows the client to check on the state of the file on the
 server, and thus perhaps to optimise away unnecessary COMMIT
 requests.

 Another frequent source of inefficiencies is due to the lack of
 clarity in the protocol defining the change attribute. While the
 change attribute itself is a mandatory attribute, it is not
 sufficiently well defined to allow the client to conclude which value
 represents the current state of the file, after two COMPOUNDs, both
 containing WRITE and GETATTR requests for the same file, have been
 sent in parallel. In some cases, the only recourse available to the
 client may be to send a third COMPOUND containing a GETATTR after
 receiving the responses to the first two. The solution is to allow
 the server to share details about how the change attribute is
 expected to evolve in this kind of situation.

Myklebust Expires April 20, 2011 [Page 4]

Internet-Draft NFSv4.2 file creation and updates October 2010

2. Definition of the ’stable_state’ per-file attribute

 const NFS4_UNSTABLE_METADATA = 0x00000001;
 const NFS4_UNSTABLE_DATA = 0x00000002;
 const NFS4_UNSTABLE_PNFS = 0x00000004;

 +--------------+----+-----------+-----+
 | Name | Id | Data Type | Acc |
 +--------------+----+-----------+-----+
 | stable_state | XX | uint32_t | R W |
 +--------------+----+-----------+-----+

 The attribute ’stable_state’ is an optional per-file attribute that
 can be used by the client to determine whether or not the server
 believes that all metadata and data has been committed to persistent
 storage. It is expected that clients may wish to poll it as part of
 a post-op attribute request or an attribute refresh.
 o If the server returns a zero value, then the client may assume
 that all metadata and data changes that were made since the server
 last rebooted have been committed to persistent storage.
 o If the server sets the bits NFS4_UNSTABLE_METADATA and/or
 NFS4_UNSTABLE_DATA, then this means that there may be respectively
 metadata, or data that has not been synced to disk. The client
 should be prepared to send a COMMIT request in order to ensure
 persistence of metadata and data.
 o If the server sets the bit NFS4_UNSTABLE_PNFS, then this indicates
 that there are outstanding layouts for write, and thus the state
 of the file may not be fully known to the server.

 A naive server may choose to implement ’stable_state’ in terms of a
 simple flag: it sets NFS4_UNSTABLE_DATA when it receives an unstable
 WRITE request, sets NFS4_UNSTABLE_METADATA when it receives an
 unstable OPEN or SETATTR requests and clears both flags when it
 receives a COMMIT. While such an implementation may not be as useful
 for avoiding unnecessary COMMIT operations, it is sufficient to
 support unstable OPEN and SETATTR.

2.1. Use of the ’stable_state’ attribute for unstable OPEN requests

 We propose a new mode of file creation named "unstable file
 creation". By choosing this mode of creation, the client is
 notifying the server that it may defer syncing to disk the new file’s
 directory entry as well as the new file metadata. In case of a
 server reboot, the client is then responsible for replaying the file
 creation if the reboot occurred before the file metadata was
 committed to disk.

Myklebust Expires April 20, 2011 [Page 5]

Internet-Draft NFSv4.2 file creation and updates October 2010

2.1.1. Client use of the ’stable_state’ attribute

 In order to indicate that the client wishes to have the server use
 unstable file creation, it must set the NFS4_UNSTABLE_METADATA bit in
 the optional attribute ’stable_state’. Upon return of the OPEN call,
 the client then checks that ’stable_state’ was indeed set by
 inspecting the ’attrset’ bitmap in the usual way. It can assume that
 if the ’stable_state’ was not set, then the file has been created in
 persistent storage.

 The client MUST NOT set the ’stable_state’ to any value other than
 NFS4_UNSTABLE_METADATA. The server SHOULD return NFS4ERR_INVAL if it
 receives an invalid value.

 Once the client is done making changes to the file, it may use a
 COMMIT to force the server to flush all data and metadata changes to
 persistent storage.

2.1.2. Server response upon receiving an unstable OPEN request

 Upon receiving an OPEN request that includes a ’stable_state’
 attribute, the server MAY choose to ignore it, and simply apply the
 NFSv4.1 rule that all metadata must be committed to persistent
 storage. If so, it simply omits the ’stable_state’ bit from the
 returned attribute bitmap.

 The server MUST NOT set the ’stable_state’ flag if the file already
 exists.

 If the server does choose to honour the ’stable_state’ attribute,
 then it MUST also return a write delegation to the client. This
 write delegation is needed in order to allow the client to detect the
 recovery edge condition in which a second client attempts to rename
 the file or delete it just prior to a server reboot.

 Once the file has been created in the server cache memory, the server
 is then free to process the remaining elements of the COMPOUND
 without syncing the new file metadata to disk.

2.1.3. Delegation return and unstable OPEN

 If the client returns the write delegation, then it MUST ensure that
 the file metadata is in a stable state. It does so by sending a
 COMMIT operation, unless polling has already established that the
 ’stable_state’ attribute no longer sets the NFS4_UNSTABLE_METADATA
 bit.

2.1.4. Client unstable OPEN recovery in case of a server reboot

Myklebust Expires April 20, 2011 [Page 6]

Internet-Draft NFSv4.2 file creation and updates October 2010

 enum open_claim_type4 {
 /*
 * Not a reclaim.
 */
 CLAIM_NULL = 0,

 CLAIM_PREVIOUS = 1,
 CLAIM_DELEGATE_CUR = 2,
 CLAIM_DELEGATE_PREV = 3,

 /*
 * Not a reclaim.
 *
 * Like CLAIM_NULL, but object identified
 * by the current filehandle.
 */
 CLAIM_FH = 4, /* new to v4.1 */

 /*
 * Like CLAIM_DELEGATE_CUR, but object identified
 * by current filehandle.
 */
 CLAIM_DELEG_CUR_FH = 5, /* new to v4.1 */

 /*
 * Like CLAIM_DELEGATE_PREV, but object identified
 * by current filehandle.
 */
 CLAIM_DELEG_PREV_FH = 6, /* new to v4.1 */

 /*
 * Like CLAIM_PREVIOUS, but object identified
 * by directory filehandle + filename.
 */
 CLAIM_PREVIOUS_UNSTABLE = 7
 };

 union open_claim4 switch (open_claim_type4 claim) {
 /*
 * No special rights to file.
 * Ordinary OPEN of the specified file.
 */
 case CLAIM_NULL:
 /* CURRENT_FH: directory */
 component4 file;

 /*
 * Right to the file established by an

Myklebust Expires April 20, 2011 [Page 7]

Internet-Draft NFSv4.2 file creation and updates October 2010

 * open previous to server reboot. File
 * identified by filehandle obtained at
 * that time rather than by name.
 */
 case CLAIM_PREVIOUS:
 /* CURRENT_FH: file being reclaimed */
 open_delegation_type4 delegate_type;

 /*
 * Right to file based on a delegation
 * granted by the server. File is
 * specified by name.
 */
 case CLAIM_DELEGATE_CUR:
 /* CURRENT_FH: directory */
 open_claim_delegate_cur4 delegate_cur_info;

 /*
 * Right to file based on a delegation
 * granted to a previous boot instance
 * of the client. File is specified by name.
 */
 case CLAIM_DELEGATE_PREV:
 /* CURRENT_FH: directory */
 component4 file_delegate_prev;

 /*
 * Like CLAIM_NULL. No special rights
 * to file. Ordinary OPEN of the
 * specified file by current filehandle.
 */
 case CLAIM_FH: /* new to v4.1 */
 /* CURRENT_FH: regular file to open */
 void;

 /*
 * Like CLAIM_DELEGATE_PREV. Right to file based on a
 * delegation granted to a previous boot
 * instance of the client. File is identified by
 * by filehandle.
 */
 case CLAIM_DELEG_PREV_FH: /* new to v4.1 */
 /* CURRENT_FH: file being opened */
 void;

 /*
 * Like CLAIM_DELEGATE_CUR. Right to file based on
 * a delegation granted by the server.

Myklebust Expires April 20, 2011 [Page 8]

Internet-Draft NFSv4.2 file creation and updates October 2010

 * File is identified by filehandle.
 */
 case CLAIM_DELEG_CUR_FH: /* new to v4.1 */
 /* CURRENT_FH: file being opened */
 stateid4 oc_delegate_stateid;

 /*
 * Right to the file established by an
 * unstable open previous to server reboot.
 * File is specified by name.
 */
 case CLAIM_PREVIOUS_UNSTABLE: /* new to v4.2 */
 /* CURRENT_FH: directory */
 component4 file_previous_unstable;
 };

 A server that supports unstable file creation SHOULD reject all
 CREATE and ordinary file creation attempts during the grace period
 using the error NFS4ERR_GRACE in order to allow clients to recover
 any unstable files that may have been lost.

 In order to recover the file, the client MUST replay the original
 OPEN that was used to create the file, using an open claim type of
 CLAIM_PREVIOUS_UNSTABLE.
 o If the server discovers that the file already exists, it treats
 the OPEN as if it were a CLAIM_PREVIOUS request for a write
 delegation.
 o If the file does not exist, then the server creates the file in
 the usual fashion and returns a valid write delegation.

2.1.5. Directory cache consistency and unstable files

 While the client that created the file can easily recover in case of
 a server reboot, it is not necessarily so easy for other clients to
 do so. While the write delegation does indeed ensure that those
 clients do not hold the file open (neither do they hold any cached
 data), it does not guarantee that they are not caching LOOKUP or
 READDIR data.

 In order to avoid issues with directory cache consistency across
 server reboots, it is therefore RECOMMENDED that servers ensure that
 initial file metadata be committed to persistent storage prior to
 replying to a another client’s LOOKUP of the new file, or READDIR of
 the directory in which the new file was created. This will also
 prevent those clients from seeing filehandles and fileids that might
 change upon server reboot.

Myklebust Expires April 20, 2011 [Page 9]

Internet-Draft NFSv4.2 file creation and updates October 2010

2.2. Use of the ’stable_state’ attribute in unstable SETATTR requests

 If it holds a write delegation, the client may also use the
 ’stable_state’ attribute in a SETATTR request to indicate to the
 server that it is ready to replay this SETATTR in the case of a
 server reboot.

 The procedure is the same as for OPEN. In order to indicate to the
 server that it wants the SETATTR request to be unstable, the client
 sets the ’stable_state’ attribute to the value
 NFS4_UNSTABLE_METADATA.

 Again, the server MAY ignore the ’stable_state’ attribute, in which
 case it MUST immediately commit the attributes to stable storage, and
 MUST clear the ’stable_state’ bit in the returned attribute bitmap.

 If the client does not hold a valid write delegation, then the server
 MUST also ignore the ’stable_state’ attribute.

2.2.1. Client unstable SETATTR recovery in case of a server reboot

 If the server reboots before the client has had a chance to issue a
 COMMIT, then after recovering the write delegation, the client SHOULD
 check the server attributes against its own cached values. If there
 is a mismatch, then it is responsible for correcting this by
 replaying the relevant SETATTR calls.

2.2.2. Delegation return and unstable SETATTR

 If the client returns the write delegation, then it MUST ensure that
 the file metadata is in a stable state. It does so by sending a
 COMMIT operation, unless polling has already established that the
 ’stable_state’ attribute no longer sets the NFS4_UNSTABLE_METADATA
 bit.

Myklebust Expires April 20, 2011 [Page 10]

Internet-Draft NFSv4.2 file creation and updates October 2010

3. Definition of the ’change_attr_type’ per-file system attribute

 enum change_attr_typeinfo = {
 NFS4_CHANGE_TYPE_IS_MONOTONIC_INCR = 0,
 NFS4_CHANGE_TYPE_IS_VERSION_COUNTER = 1,
 NFS4_CHANGE_TYPE_IS_VERSION_COUNTER_NOPNFS = 2,
 NFS4_CHANGE_TYPE_IS_TIME_METADATA = 3,
 NFS4_CHANGE_TYPE_IS_UNDEFINED = 4
 };

 +------------------+----+---------------------------+-----+
 | Name | Id | Data Type | Acc |
 +------------------+----+---------------------------+-----+
 | change_attr_type | XX | enum change_attr_typeinfo | R |
 +------------------+----+---------------------------+-----+

 Although the original NFSv4 protocol [RFC3530] does describe a
 possible implementation of the change attribute in terms of the
 time_metadata attribute, it does little to limit the implementation
 other than to state that the value changes if the file data,
 directory contents or attributes change.

 While this allows for a wide range of implementations, it also leaves
 the client with a conundrum: how does it determine which is the most
 recent value for the change attribute in a case where several RPC
 calls have been issued in parallel?

 The proposed solution is to have the NFS server provide additional
 information about how it expects the change attribute value to
 evolve. To do so, we provide for a new optional attribute,
 ’change_attr_type’, which may take values from enum
 change_attr_typeinfo as follows:
 NFS4_CHANGE_TYPE_IS_MONOTONIC_INCR: The change attribute MUST change
 in a monotonically increasing manner.
 NFS4_CHANGE_TYPE_IS_VERSION_COUNTER: The change attribute MUST
 increment by the value "1" for every atomic change to the file
 data, attributes or directory contents. This property is
 preserved when writing to pNFS data servers.
 NFS4_CHANGE_TYPE_IS_VERSION_COUNTER_NOPNFS: The change attribute
 MUST increment by the value "1" for every atomic change to the
 file data, attributes or directory contents. In the case where
 the client is writing to pNFS data servers, the number of
 increments is not guaranteed to exactly match the number of
 writes.

Myklebust Expires April 20, 2011 [Page 11]

Internet-Draft NFSv4.2 file creation and updates October 2010

 NFS4_CHANGE_TYPE_IS_TIME_METADATA: The change attribute is
 implemented as suggested in the NFSv4 spec [RFC3530] in terms of
 the time_metadata attribute.
 NFS4_CHANGE_TYPE_IS_UNDEFINED: The change attribute does not take
 values that fit into any of these categories.

 If either NFS4_CHANGE_TYPE_IS_MONOTONIC_INCR,
 NFS4_CHANGE_TYPE_IS_VERSION_COUNTER, or
 NFS4_CHANGE_TYPE_IS_TIME_METADATA are set, then the client knows at
 the very least that the change attribute is monotonically increasing,
 which is sufficient to resolve the question of which value is the
 most recent.

 If the client sees the value NFS4_CHANGE_TYPE_IS_TIME_METADATA, then
 by inspecting the value of the ’time_delta’ attribute it additionally
 has the option of detecting rogue server implementations that use
 time_metadata in violation of the spec.

 Finally, if the client sees NFS4_CHANGE_TYPE_IS_VERSION_COUNTER, it
 has the ability to predict what the resulting change attribute value
 should be after a COMPOUND containing a SETATTR, WRITE, or CREATE.
 This again allows it to detect changes made in parallel by another
 client. The value NFS4_CHANGE_TYPE_IS_VERSION_COUNTER_NOPNFS permits
 the same, but only if the client is not doing pNFS WRITEs.

Myklebust Expires April 20, 2011 [Page 12]

Internet-Draft NFSv4.2 file creation and updates October 2010

4. References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119.

 [RFC3530] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File System
 (NFS) version 4 Protocol", RFC 3530.

 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File
 System (NFS) Version 4 Minor Version 1 Protocol",
 RFC 5661.

Myklebust Expires April 20, 2011 [Page 13]

Internet-Draft NFSv4.2 file creation and updates October 2010

Author’s Address

 Trond Myklebust
 NetApp
 3215 Bellflower Ct
 Ann Arbor, MI 48103
 USA

 Phone: +1-734-662-6608
 Email: Trond.Myklebust@netapp.com

Myklebust Expires April 20, 2011 [Page 14]

