
NFSv4 Working Group S. Faibish
Internet-Draft EMC Corporation
Intended status: Proposed Standard D. Black
Expires: April 14, 2011 EMC Corporation
Updates: 5661, 5662 M. Eisler
 NetApp
 J. Glasgow
 Google
 October 14, 2010

 pNFS Access Permissions Check
 draft-ietf-nfsv4-pnfs-access-permissions-check-00

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 This Internet-Draft will expire on April 14, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this

Faibish et al. Expires April 14, 2011 [Page 1]

Internet-Draft pNFS Access Permissions Check October 2010

 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

Abstract

 This document extends the pNFS protocol to communicate errors caused
 by inability to access data servers referenced by layouts, including
 checks performed by both clients and the MDS. The extension provides
 means for clients to communicate client-detected access denial errors
 to the MDS, including the case in which a client requests direct NFS
 access via the MDS that the MDS cannot perform.

Table of Contents

 1. Introduction...3
 2. Conventions used in this document..............................5
 3. Changes to Operation 51: LAYOUTRETURN (RFC 5661)...............5
 3.1. ARGUMENT (18.44.1)..5
 3.2. RESULT (18.44.2)..7
 3.3. DESCRIPTION (18.44.3).....................................7
 3.4. IMPLEMENTATION (18.44.4)..................................7
 3.4.1. Storage Device Error Mapping (18.44.4.1, new)........9
 4. Change to NFS4ERR_NXIO Usage..................................10
 5. Security Considerations.......................................10
 6. IANA Considerations...10
 7. Conclusions...10
 8. References..10
 8.1. Normative References.....................................10

Faibish et al. Expires April 14, 2011 [Page 2]

Internet-Draft pNFS Access Permissions Check October 2010

1. Introduction

 Figure 1 shows the overall architecture of a Parallel NFS (pNFS)
 system:

 +-----------+
 |+-----------+ +-----------+
 ||+-----------+ | |
 ||| | NFSv4.1 + pNFS | |
 +|| Clients |<------------------------------>| MDS |
 +| | | |
 +-----------+ | |
 ||| +-----------+
 ||| | | |
 ||| |
 ||| Storage +-----------+ |
 ||| Protocol |+-----------+ |
 ||+----------------||+-----------+ Control |
 |+-----------------||| | Protocol |
 +------------------+|| Storage |------------+
 +| Devices |
 +-----------+

 Figure 1 pNFS Architecture

 In this document, "storage device" is used as a general term for a
 data server and/or storage server for the file, block or object pNFS
 layouts.

 The current pNFS protocol [RFC5661] assumes that a client can access
 every storage device (SD) included in a valid layout sent by the MDS
 server, and provides no means to communicate client access failures
 to the MDS. Access failures can impair pNFS performance scaling and
 allow significant errors to go unreported. If the MDS can access all
 the storage devices involved, but the client doesn’t have sufficient
 access rights to some storage devices, the client may choose to fall
 back to accessing the file system using NFSV4.1 without pNFS support;
 there are environments in which this behavior is undesirable,
 especially if it occurs silently. An important example is addition of
 a new storage device to which a large population of pNFS clients
 (e.g., 1000s) lacks access permission. Layouts granted that use this
 new device, result in client errors, requiring that all I/Os to that
 new storage device be served by the MDS server. This creates a
 performance and scalability bottleneck that may be difficult to
 detect based on I/O behavior because the other storage devices are
 functioning correctly.

Faibish et al. Expires April 14, 2011 [Page 3]

Internet-Draft pNFS Access Permissions Check October 2010

 The preferable approach to this scenario is to report the access
 failures before any client attempts to issue any I/Os that can only
 be serviced by the MDS server. This makes the problem explicit,
 rather than forcing the MDS, or a system administrator, to diagnose
 the performance problem caused by client I/O using NFS instead of
 pNFS. There are limits to this approach because complex mount
 structures may prevent a client from detecting this situation at
 mount time, but at a minimum, access problems involving the root of
 the mount structure can be detected.

 The most suitable time for the client to report inability to access a
 storage device is at mount time, but this is not always possible.
 If the application uses a special tag or a switch to the mount
 command (e.g., -pnfs) and syscall to declare its intention to use
 pNFS, at the client, the client can check for both pNFS support and
 device accessibility.

 This document introduces an error reporting mechanism that is an
 extension to the return of a pNFS layout; a pNFS client MAY use this
 mechanism to inform the MDS that the layout is being returned because
 one or more data servers are not accessible to the client. Error
 reporting at I/O time is not affected because the result of an
 inaccessible data server may not be an I/O error if a subsequent
 retry of the operation via the MDS is successful.

 There is a related problem scenario involving an MDS that cannot
 access some storage devices and hence cannot perform I/Os on behalf
 of a client. In the case of the block layout [RFC5663] if the MDS
 lacks access to a storage device (e.g., LUN), MDS implementations
 generally do not export any filesystem using that storage device. In
 contrast to the block layout, MDSs for the file [RFC5661] and object
 [RFC5664] layouts may be unable to access the storage devices that
 store data for an exported filesystem. This enables a file or object
 layout MDS to provide layouts that contain client-inaccessible
 devices. For the specific case of adding a new storage device to a
 filesystem, MDS issuance of test I/Os to the newly added device
 before using it in layouts avoids this problem scenario, but does not
 cover loss of access to existing storage devices at a later time.

 In addition, [RFC5661] states that a client can write through or read
 from the MDS, even if it has a layout; this assumes that the MDS can
 access all the storage devices. This document makes that assumed
 access an explicit requirement.

Faibish et al. Expires April 14, 2011 [Page 4]

Internet-Draft pNFS Access Permissions Check October 2010

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [RFC2119].

3. Changes to Operation 51: LAYOUTRETURN (RFC 5661)

 The existing LAYOUTRETURN operation is extended by introducing three
 new layout return types that correspond to the existing types:

 o LAYOUT4_RET_REC_FILE_NO_ACCESS at file scope;

 o LAYOUT4_RET_REC_FSID_NO_ACCESS at fsid scope; and

 o LAYOUT4_RET_REC_ALL_NO_ACCESS at client scope.

 The first return type returns the layout for an individual file and
 informs the server that the reason for the return is a storage device
 connectivity problem. The second return type performs that function
 for all layouts held by the client for the filesystem that
 corresponds to the current filehandle used for the LAYOUTRETURN
 operation. The third return type performs that function for all
 layouts held by the client; it is intended for situations in which a
 device is shared across all or most of the filesystems from a server
 for which the client has layouts.

3.1. ARGUMENT (18.44.1)

 The ARGUMENT specification of the LAYOUTRETURN operation in section
 18.44.1 of [RFC5661] is replaced by the following XDR code [XDR]:

 /* Constants used for new LAYOUTRETURN and CB_LAYOUTRECALL */
 const LAYOUT4_RET_REC_FILE = 1;
 const LAYOUT4_RET_REC_FSID = 2;
 const LAYOUT4_RET_REC_ALL = 3;
 const LAYOUT4_RET_REC_FILE_NO_ACCESS = 4;
 const LAYOUT4_RET_REC_FSID_NO_ACESSS = 5;
 const LAYOUT4_RET_REC_ALL_NO_ACCESS = 6;

 enum layoutreturn_type4 {
 LAYOUTRETURN4_FILE = LAYOUT4_RET_REC_FILE,
 LAYOUTRETURN4_FSID = LAYOUT4_RET_REC_FSID,
 LAYOUTRETURN4_ALL = LAYOUT4_RET_REC_ALL,

Faibish et al. Expires April 14, 2011 [Page 5]

Internet-Draft pNFS Access Permissions Check October 2010

 LAYOUTRETURN4_FILE_NO_ACCESS = LAYOUT4_RET_REC_FILE_NO_ACCESS,
 LAYOUTRETURN4_FSID_NO_ACCESS = LAYOUT4_RET_REC_FSID_NO_ACCESS,
 LAYOUTRETURN4_ALL_NO_ACCESS = LAYOUT4_RET_REC_ALL_NO_ACCESS
 };

 struct layoutreturn_file4 {
 offset4 lrf_offset;
 length4 lrf_length;
 stateid4 lrf_stateid;
 /* layouttype4 specific data */
 opaque lrf_body<>;
 };

 struct layoutreturn_device_no_access4 {
 deviceid4 lrdna_deviceid;
 nfsstat4 lrdna_status;
 };

 struct layoutreturn_file_no_access4 {
 offset4 lrfna_offset;
 length4 lrfna_length;
 stateid4 lrfna_stateid;
 deviceid4 lrfna_deviceid;
 nfsstat4 lrfna_status;
 /* layouttype4 specific data */
 opaque lrfna_body<>;
 };

 union layoutreturn4 switch(layoutreturn_type4 lr_returntype) {
 case LAYOUTRETURN4_FILE:
 layoutreturn_file4 lr_layout;
 case LAYOUTRETURN4_FILE_NO_ACCESS:
 layoutreturn_file_no_access4 lr_layout_na;
 case LAYOUTRETURN4_FSID_NO_ACCESS:
 case LAYOUTRETURN4_ALL_NO_ACCESS:
 layoutreturn_device_no_access4 lr_device<>;
 default:
 void;
 };

Faibish et al. Expires April 14, 2011 [Page 6]

Internet-Draft pNFS Access Permissions Check October 2010

3.2. RESULT (18.44.2)

 The RESULT of the LAYOUTRETURN operation is unchanged; see section
 18.44.2 of [RFC5661].

3.3. DESCRIPTION (18.44.3)

 The following text is added to the end of the LAYOUTRETURN operation
 DESCRIPTION in section 18.44.3 of [RFC5661]:

 There are three NO_ACCESS layoutreturn_type4 values that indicate a
 persistent lack of client ability to access storage device(s),
 LAYOUT4_RET_REC_FILE_NO_ACCESS, LAYOUT4_RET_REC_FSID_NO_ACCESS and
 LAYOUT4_RET_REC_ALL_NO_ACCESS. A client uses these return types to
 return a layout (or portion thereof) for a file, return all layouts
 for an FSID or all layouts from that server held by the client, and
 in all cases to inform the server that the reason for the return is
 the client’s inability to access one or more storage devices. The
 same stateid may be used or the client MAY force use of a new stateid
 in order to report a new error.

 An NFS error value (nfsstat4) is included for each device for these
 three NO_ACCESS return types to provide additional information on the
 cause. The allowed NFS errors are those that are valid for an NFS
 READ or WRITE operation, and NFS4ERR_NXIO is also allowed to report
 an inaccessible device. The server SHOULD log the received NFS error
 value, but that error value does not affect server processing of the
 LAYOUTRETURN operation. All uses of the NO_ACCESS layout return types
 that report NFS errors SHOULD be logged by the client.

 The client MAY use the new LAYOUT4_RET_REC_FILE_NO_ACCESS when only
 one file, or a small number of files are affected. If the access
 problem affects multiple devices, the client may use multiple file
 layout return operations; each return operation SHOULD return a
 layout extent obtained from the device for which an error is being
 reported. In contrast, both LAYOUT4_RET_REC_FSID_NO_ACCESS and
 LAYOUT4_RET_REC_ALL_NO_ACCESS include an array of <device, status>
 pairs to enable a single operation to report errors for multiple
 devices in a single operation.

3.4. IMPLEMENTATION (18.44.4)

 The following text is added to the end of the LAYOUTRETURN operation
 IMPLEMENTATION in section 18.4.4 of [RFC5661]:

Faibish et al. Expires April 14, 2011 [Page 7]

Internet-Draft pNFS Access Permissions Check October 2010

 A client that expects to use pNFS for a mounted filesystem SHOULD
 check for pNFS support at mount time. This check SHOULD be performed
 by sending a GETDEVICELIST operation, followed by layout-type-
 specific checks for accessibility of each storage device returned by
 GETDEVICELIST. If the NFS server does not support pNFS, the
 GETDEVICELIST operation will be rejected with an NFS4ERR_NOTSUPP
 error; in this situation it is up to the client to determine whether
 it is acceptable to proceed with NFS-only access.

 Clients are expected to tolerate transient storage device errors, and
 hence clients SHOULD NOT use the NO_ACCESS layout return types for
 device access problems that may be transient. The methods by which a
 client decides whether an access problem is transient vs. persistent
 are implementation-specific, but may include retrying I/Os to a data
 server under appropriate conditions.

 When an I/O fails because a storage device is inaccessible, the
 client SHOULD retry the failed I/O via the MDS. In this situation,
 before retrying the I/O, the client SHOULD return the layout, or
 inaccessible portion thereof, and SHOULD indicate which storage
 device or devices was or were inaccessible. If the client does not do
 this, the MDS may issue a layout recall callback in order to perform
 the retried I/O.

 Backwards compatibility may require a client to perform two layout
 return operations to deal with servers that don’t implement the
 NO_ACCESS layoutreturn_type4 values and hence respond to them with
 NFS4ERR_INVAL. In this situation, the client SHOULD perform an
 ordinary layout return operation and remember that the new layout
 NO_ACCESS return types are not to be used with that server.

 The metadata server (MDS) SHOULD NOT use storage devices in pNFS
 layouts that are not accessible to the MDS. At a minimum, the server
 SHOULD check its own storage device accessibility before exporting a
 filesystem that supports pNFS and when the device configuration for
 such an exported filesystem is changed (e.g., to add a storage
 device).

 If an MDS is aware that a storage device is inaccessible to a client,
 the MDS SHOULD NOT include that storage device in any pNFS layouts
 sent to that client. An MDS SHOULD react to a client return of
 inaccessible layouts by not using the inaccessible storage devices in
 layouts for that client, but the MDS is not required to indefinitely
 retain per-client storage device inaccessibility information. An MDS
 is also not required to automatically reinstate use of a previously
 inaccessible storage device; administrative intervention may be
 required instead.

Faibish et al. Expires April 14, 2011 [Page 8]

Internet-Draft pNFS Access Permissions Check October 2010

 A client MAY perform I/O via the MDS even when the client holds a
 layout that covers the I/O; servers MUST support this client
 behavior, and MAY recall layouts as needed to complete I/Os.

3.4.1. Storage Device Error Mapping (18.44.4.1, new)

 The following text is added as new subsection 18.44.4.1 of [RFC5661]:

 An NFS error value is sent for each device that the client reports as
 inaccessible via a NO_ACCESS layout return type. In general:

 o If the client is unable to access the storage device, NFS4ERR_NXIO
 SHOULD be used.

 o If the client is able to access the storage device, but permission
 is denied, NFS4ERR_ACCESS SHOULD be used.

 Beyond these two rules, error code usage is layout-type specific:

 o For the pNFS file layout, an indicative NFS error from a failed
 read or write operation on the inaccessible device SHOULD be used.

 o For the pNFS block layout, other errors from the Storage Protocol
 SHOULD be mapped to NFS4ERR_IO. In addition, the client SHOULD log
 information about the actual storage protocol error (e.g., SCSI
 status and sense data), but that information is not sent to the
 pNFS server.

 o For the pNFS object layout, occurrences of the object error types
 specified in [RFC5664] SHOULD be mapped to the following NFS
 errors for use in LAYOUTRETURN:

 o PNFS_OSD_ERR_EIO -> NFS4ERR_IO

 o PNFS_OSD_ERR_NOT_FOUND -> NFS4ERR_STALE

 o PNFS_OSD_ERR_NO_SPACE -> NFS4ERR_NOSPC

 o PNFS_OSD_ERR_BAD_CRED -> NFS4ERR_INVAL

 o PNFS_OSD_ERR_NO_ACCESS -> NFS4ERR_ACCESS

 o PNFS_OSD_ERR_UNREACHABLE -> NFS4ERR_NXIO

 o PNFS_OSD_ERR_RESOURCE -> NFS4ERR_SERVERFAULT

Faibish et al. Expires April 14, 2011 [Page 9]

Internet-Draft pNFS Access Permissions Check October 2010

 The LAYOUTRETURN NO_ACCESS return types are used for persistent
 device errors; they do not replace other error reporting mechanisms
 that also apply to transient errors (e.g., as specified for the
 object layout in [RFC5664]).

4. Change to NFS4ERR_NXIO Usage

 This document specifies that the NFS4ERR_NXIO error SHOULD be used to
 report an inaccessible storage device. To enable that usage, this
 document updates [RFC5661] to allow use of the currently obsolete
 NFS4ERR_NXIO error in the ARGUMENT of LAYOUTRETURN; NFS4ERR_NXIO
 remains obsolete for all other uses of NFS errors.

5. Security Considerations

 This document adds a small extension to the NFSv4 LAYOUTRETURN
 operation. The NFS and pNFS security considerations in [RFC5661],
 [RFC5663] and [RFC5664] apply to the extended LAYOUTRETURN operation.

6. IANA Considerations

 There are no additional IANA considerations in this document beyond
 the IANA Considerations covered in [RFC5661].

7. Conclusions

 This draft specifies additions to the pNFS protocol addressing
 inability to access storage devices used in pNFS layouts.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File
 System (NFS) Version 4 Minor Version 1 Protocol",
 http://tools.ietf.org/html/rfc5661, January 2010.

 [RFC5663] Black, D., Glasgow, J., Fridella, S., "Parallel NFS (pNFS)
 Block/Volume Layout", http://tools.ietf.org/html/rfc5663,
 January 2010.

 [RFC5664] Halevy, B., Welch, B., Zelenka, J., "Object-Based Parallel
 NFS (pNFS) Operations", http://tools.ietf.org/html/rfc5664,
 January 2010

Faibish et al. Expires April 14, 2011 [Page 10]

Internet-Draft pNFS Access Permissions Check October 2010

 [XDR] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

Acknowledgments

 This draft includes ideas from discussions with the primary author of
 the pNFS object layout, Benny Halevy, and the Linux kernel pNFS
 maintainers, including Bruce Fields. In addition, we thank the IETF
 nfsv4 WG and the following individuals for their comments on prior
 versions of this draft: Tom Haynes.

 This document was prepared using 2-Word-v2.0.template.dot.

Changes from draft-faibish-nfsv4-pnfs-access-permissions-check-03

 - First nfsv4 WG draft version.
 - Add ALL NO_ACCESS return type, so that there’s a NO_ACCESS
 return type for every current return type.
 - Use NFS4ERR_ACCESS instead of NFS4ERR_PERM, and allow use of
 NFS4ERR_NXIO for an unreachable data server.
 - Simplify recommendation for initial access checks to only discuss
 GETDEVICELIST.
 - Add client guidance on riding through transient errors.
 - State that server does not need to indefinitely retain device
 inaccessibility information, and administrative intervention
 may be required to restore use of a previously inaccessible
 storage device.
 - Remove "MUST" requirement for layout return if retry via MDS
 fails. Add warning that if the layout isn’t returned in advance
 of MDS I/O retry, the MDS may issue a callback to get it.
 - Specify allowed errors (in payload) via reference to errors
 allowed for READ and WRITE, plus allow NFS4ERR_NXIO.
 - Provide information about how to map device errors (especially
 from non-file layout types) to NFS errors.

Faibish et al. Expires April 14, 2011 [Page 11]

Internet-Draft pNFS Access Permissions Check October 2010

 Authors’ Addresses

 Sorin Faibish (editor)
 EMC Corporation
 228 South Street
 Hopkinton, MA 01748
 US

 Phone: +1 (508) 249-5745
 Email: sfaibish@emc.com

 David L. Black
 EMC Corporation
 176 South Street
 Hopkinton, MA 01748
 US

 Phone: +1 (508) 293-7953
 Email: david.black@emc.com

 Michael Eisler
 NetApp
 5765 Chase Point Circle
 Colorado Springs, CO 80919
 US

 Phone: +1 (719) 599-9026
 Email: mike@eisler.com

 Jason Glasgow
 Google
 5 Cambridge Center, Floors 3-6
 Cambridge, MA 02142
 US

 Phone: +1 (617) 575-1599
 Email: jglasgow@google.com

Faibish et al. Expires April 14, 2011 [Page 12]

