NFSv4 T. Haynes, Ed.

I nternet-Draft Primary Data
bsol etes: 3530 (if approved) D. Noveck, Ed.
I nt ended status: Standards Track Del

Expires: June 7, 2015 Decenber 04, 2014

Network File System (NFS) Version 4 Protoco
draft-ietf-nfsv4-rfc3530bis-35.txt

Abst ract

The Network File System (NFS) version 4 is a distributed file system
prot ocol which builds on the heritage of NFS protocol version 2, RFC
1094, and version 3, RFC 1813. Unlike earlier versions, the NFS
version 4 protocol supports traditional file access while integrating
support for file locking and the nmount protocol. In addition

support for strong security (and its negotiation), conpound
operations, client caching, and internationalization have been added.
O course, attention has been applied to making NFS version 4 operate
well in an Internet environnent.

Thi s docunent, together with the conpani on XDR descri ption docunent,
RFCNFSv4XDR, obsol etes RFC 3530 as the definition of the NFS version
4 protocol

Requi rement s Language

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in RFC 2119 [RFC2119]
except where "REQU RED' and "RECOVMMENDED' are used as qualifiers to
di stinguish classes of attributes as described in Section 1.3.3.2 and
Section 5.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft docunents valid for a nmaxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any

Haynes & Noveck Expi res June 7, 2015 [Page 1]

Internet-Draft NFSv4 Decenber

time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on June 7, 2015.
Copyright Notice

Copyright (c) 2014 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents

2014

carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of

the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Thi s docunment may contain material from | ETF Docunents or |ETF

Contri butions published or nmade publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sone of this

material may not have granted the IETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate license fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
outside the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornat
it for publication as an RFC or to translate it into | anguages other

t han Engli sh.
Tabl e of Contents

1. Introduction . .
1.1. NFS Version 4 Gbals
1.2. Definitions in the conpanlon docunent NFS Vér5|on 4
Protocol are Authoritative

1.3. Overview of NFSv4 Features
1.3.1. RPC and Security .
1.3.2. Procedure and Cperatlon Structure
1.3.3. Filesystem Model
1.3.4. OPEN and CLCSE
1.3.5. File Locking . . .
1.3.6. dient Caching and Delegatlon.
1.4. General Definitions . .
1.5. Changes since RFC 3530 . . .
1.6. Changes between RFC 3010 and RFC3530

~N~

© © 00

10

12
12
13
15
16

Haynes & Noveck Expi res June 7, 2015 [Page 2]

Internet-Draft NFSv4 Decenber 2014

>

oo

Haynes

WhhEEENERPTOWWWWWNWE

agoooaoaoaoao

.1
. 2.

Prot ocol Data Types . 17
Basi ¢ Data Types . 17
Structured Data Types . 19

RPC and Security Fl avor 23
Ports and Transports . 23

1.1. dient Retransm ssion BehaV|or 24
Security Flavors . e 25
2.1. Security nechanlsns for NFSv4 . 25
Security Negotiation 26
3.1. SECINFO . 27
3.2. Security Error . . . 27
3.3. Callback RPC Authent|cat|on . 27
il ehandl es . . 28
bt ai ni ng the Flrst Fllehandle 28
1.1. Root Filehandle . . - 29
1.2. Public Filehandle . 29
Fi | ehandl e Types 29
2.1. Ceneral Properties of a Fllehandle 30
2.2. Persistent Filehandle . 30
2.3. Volatile Filehandl e . . 31
2.4. One Method of Cbnstructlng a Vblatlle F|Iehandle 32
Client Recovery from Filehandl e Expiration . 33

Attributes . . . 33

1. REQUI RED Attrlbutes . 35

2. RECOMMVENDED Attri butes 35

3. Naned Attributes 35

4. Cdassification of Attrlbutes . 37

5. Set-Only and Get-Only Attributes . 38

6. REQU RED Attributes - List and Def|n|t|on References . . 38

7. RECOMMENDED Attributes - List and Definition References . 39

8. Attribute Definitions . . 41

5.8.1. Definitions of RECUIRED Attrlbutes .41

5.8.2. Definitions of Uncategorized RECCNNENDED Attrlbutes . 43

9. Interpreting owner and owner_group e 49

10. Character Case Attributes . 52

Access Control Attributes . 52

1. ®oals . . . 52

2. File Attrlbutes D scussi on 53

6.2.1. Attribute 12: acl 53

6.2.2. Attribute 33: node 68

3. Common Met hods . 68

6.3.1. Interpreting an ACL . 68

6.3.2. Conputing a Mde Attrlbutefroman ACL 69

4. Requirenents . 70

6.4.1. Setting the nDde and/or ACL Attrlbutes . 71

6.4.2. Retrieving the node and/or ACL Attributes . 72

6.4.3. Creating New bjects e 72

NFS Server Nane Space . 74

& Noveck Expi res June 7, 2015 [Page 3]

Internet-Draft NFSv4

Haynes

NNNNNNANN

ZENOTRONE

® @ 0

Lovooo ¢
CONOCOOITELWNOOOOOOOOOOORTO®O®ONOUI®OE0OWNE

©woo©o

Server Exports

Br owsi ng Exports

Server Pseudo Fil esyst em

Mul tipl e Roots .

Fil ehandl e Vol atili ty .

Exported Root

Mount Poi nt Crossi ng . .
Security Policy and Nane Space Present at| on .

I ti-Server Namespace

Location Attributes . .
File System Presence or Absence .
Getting Attributes for an Absent F|Ie System

.1. CGETATTR Wthin an Absent File System
.2. READDIR and Absent File Systens . .

Uses of Location Information

.1. File System Replication .
.2. File SystemMgration .
.3. Referrals .

Location Entries and Server iden'.ti'.ty.
Additional dient-Side Considerations .
Effecting File System Referrals .

.1. Referral Exanple (LOOKUP)
.2. Referral Exanpl e (READDI R)

The Attribute fs_|ocations

| e Locking and Share Reservations .

(o) ep)

PRPEPRREERRERER

QJens and Byt e- Range Locks

Client ID. - -
Server Rel ease of CI i ent ID.

Use of Seqgids . . .

Stateid Definition

| ock- owner .

Use of the St at ei d and Lock| ng
Sequenci ng of Lock Requests .
Recovery from Repl ayed Requests .
Interactions of nultiple sequence val ues
10. Rel easing state-owner State .

11. Use of Open Confirmation

Lock Ranges
Upgr adi ng and Dovvngradr ng Locks .

Bl ocki ng Locks

Lease Renewal

Crash Recovery

CoNogrwWNE

.1. dient Failure and Recovery .
.2. Server Failure and Recovery . .
.3. Network Partitions and Recovery .

Recovery from a Lock Request Tineout or Abort
Server Revocation of Locks
Share Reservations

Noveck Expi res June 7, 2015

Decenber 2014

74
75
75
76
76
76
76
77
78
78
78
79
80
81
81
82
83
83
84
85
86
86
90
92
94
95
95
98
99
100
106
107
109
110
110
111
112
113
113
114
115
116
116
116
118
126
126
128

[Page 4]

Internet-Draft NFSv4 Decenber 2014

9.10. OPEN CLOSE Operations . .
9.10.1. dose and Retention of Statelnforrmtlon.

© O O

.11. Open Upgrade and Downgrade
.12. Short and Long Leases . e e e e
.13. d ocks, Propagation Delay, and Cal cul ating Lease

Expi ration

9.14. Mgration, Replication and State
9.14.1. Mgration and State .
9.14. 2. Repl ication and State .
9.14.3. Notification of Mgrated Lease . .
9.14.4. Mgration and the | ease_tine Attrlbute.
10. dient-Side Caching .

10. 1.

10. 2.
10.
10. 3.
10.
10.
10.
10.
10. 4.
10.
10.
10.
10.
10.
10.
10.
10. 5.
10.
10. 6.
10. 7.
10. 8.
10. 9.

N

5.

APArAMBRAS
NoghrwNE

Per f or mance Chal | enges for CI i ent Sl de Cachl ng .
Del egati on and Cal | backs .

1. Delegation Recovery

Data Caching

1. Data Caching and OPENs

2. Data Caching and File Locking . .

3. Data Caching and Mandatory File LOCkI ng

4. Data Caching and File Identity .

QJen Del egati on .

Open Del egati on and Data Cach| ng .

Open Del egation and File Locks .

Handl i ng of CB GETATTR .

Recal | of Open Del egation . .

OPEN Del egation Race with CB_ RECALL .
Clients that Fail to Honor Del egati on Recal I S
Del egati on Revocati on

Data Cachi ng and Revocation .
1. Revocation Recovery for Wi te Open Del egat| on
Attribute Caching . . .
Data and Met adata Cachi ng and l\/bm)ry l\/apped F| I es
Nanme Caching . . .
Directory Caching

11. M nor Versioning
12. Internationalization

12. 1.
12. 2.

12.
12.
12.
12.
12.
12.

N AW

I nt roduction .

Limtations on inter natl onal i Zatl on- rel at ed pl’ ocessi ng

in the NFSv4 cont ext .

Sunmary of Server Behavi or Types .

String Encodi ng

Nor mal i zati on .
Types with Processi ng Defl ned by Gher I nternet Areas
UTF-8 Rel ated Errors . .

Servers that accept file conponent names that are not
valid UTF-8 strings

13. Error Val ues

13. 1.

Error Deflnltlons

128
129
130
130

131
131
132
133
133
134
135
135
136
138
142
143
144
145
146
147
149
151
151
154
156
157
158
158
159
159
161
163
164
165
166
166

168
168
169
170
171
172

173
174
174

Haynes & Noveck Expi res June 7, 2015 [Page 5]

Internet-Draft NFSv4

Decenber 2014

13.1.1. Ceneral Errors . 175
13.1.2. Filehandle Errors . 177
13.1.3. Compound Structure Errors 178
13.1.4. File SystemErrors . 179
13.1.5. State Managenent Errors 181
13.1.6. Security Errors 182
13.1.7. Nane Errors 183
13.1.8. Locking Errors . 183
13.1.9. ReclaimErrors . . 185
13.1.10. dient Managenent Errors . 186
13.1.11. Attribute Handling Errors 186
13.1.12. M scellaneous Errors . 187
13.2. Qperations and their valid errors . 187
13.3. Call back operations and their valid errors . 194
13.4. FErrors and the operations that use them 195
14. NFSv4 Requests . . 200
14.1. Conpound Pr ocedure . 201
14.2. Evaluation of a Conpound Request 202
14.3. Synchronous Modifying Oper ations . 202
14. 4. C(Operation Val ues . 203
15. NFSv4 Procedures . 203
15.1. Procedure O: NULL - No Operatr on .o 203
15.2. Procedure 1: COVPOUND - Conpound Operatl ons 203
15.3. Operation 3: ACCESS - Check Access Rights 207
15.4. QOperation 4: CLOSE - Close File . . . 210
15.5. Operation 5: COM T - Conmit Cached Data 2 I
15.6. Operation 6: CREATE - Create a Non-Regular File Object . 213
15.7. Operation 7: DELEGPURGE - Purge Del egations Awaiting
Recovery 216
15.8. Operation 8: DELEGREI’URN - Ret ur n DeI egatr on . 217
15.9. Operation 9: CETATTR - Get Attributes . . . 218
15.10. Operation 10: GETFH - Get Current Fil ehandl e . 220
15.11. COperation 11: LINK - Create Link to a File . 220
15.12. QOperation 12: LOCK - Create Lock . . 222
15. 13. Operation 13: LOCKT - Test For Lock 226
15.14. Operation 14: LOCKU - Unlock File . . . 228
15.15. Operation 15: LOOKUP - Lookup Filenane . . . 229
15.16. Operation 16: LOOKUPP - Lookup Parent Direct ory . . 231
15.17. Operation 17: NVERIFY - Verify Difference in Attribut es 232
15.18. Operation 18: OPEN - Open a Regular File 233
15.19. Operation 19: OPENATTR - Open Naned Attribute D| rect ory 243
15.20. Operation 20: OPEN_CONFIRM - Confirm Open . . . 244
15.21. Operation 21: OPEN_DOMNGRADE - Reduce Open File Access . 246
15.22. Operation 22: PUTFH - Set Current Filehandle . . . 248
15.23. Operation 23: PUTPUBFH - Set Public Filehandle . 248
15.24. Operation 24: PUTROOTFH - Set Root Fil ehandl e 250
15.25. Operation 25: READ - Read fromFile . 251
15.26. Operation 26: READDIR - Read Directory . 253
Haynes & Noveck Expi res June 7, 2015 [Page 6]

Internet-Draft NFSv4 Decenber 2014

1.

1.

15.27. Operation 27: READLINK - Read Symbolic Link 257
15.28. Operation 28: REMOVE - Renmpbve Fil esystem Ghject 258
15.29. Operation 29: RENAME - Renane Directory Entry 260
15.30. Operation 30: RENEW- Renew a Lease 262
15.31. Operation 31: RESTOREFH - Restore Saved F|Iehandle . . . 263
15.32. Operation 32: SAVEFH - Save Current Filehandle 264
15.33. Operation 33: SECINFO - (btain Available Security . . . 265
15.34. Operation 34: SETATTR - Set Attributes 268
15.35. Operation 35: SETCLIENTID - Negotiate Client ID 271
15.36. Operation 36: SETCLIENTID CONFIRM - ConfirmdCient ID . 275
15.37. Operation 37: VERIFY - Verify Sane Attributes 278
15.38. Operation 38 WRITE - Wite to File 280
15.39. Operation 39: RELEASE LOCKOMER - Rel ease Lockomner
State . g <
15. 40. Cperatlon 10044: ILLEGAL - Illegal operation 285
16. NFSv4 Cal |l back Procedures . . . e 286
16.1. Procedure 0: CB NULL - hb Cperatlon .o 286
16.2. Procedure 1: CB _COVPOUND - Conpound Cperatlons 286
16.2.6. Operation 3: CB_GETATTR - Cet Attributes 288
16.2.7. Operation 4: CB RECALL - Recall an Open Delegatlon . 289
16.2.8. Operation 10044: CB ILLEGAL - Illegal Callback
Qperation e e e e oo 290
17. Security Considerations29
18. | ANA Considerations . . . At K
18.1. Naned Attribute Deflnltlons A oK
18.1.1. Initial Registry 29
18.1.2. Updating Registrations 294
19. References . . . e
19.1. Normative References A e
19.2. Informative References 29
Appendi x A. Acknow edgrents 299
Appendix B. RFC Editor Notes 300
Authors’ Addresses . 300

I ntroduction
1. NFS Version 4 Goals

The Network Filesystemversion 4 (NFSv4) protocol is a further
revision of the NFS protocol defined already by versions 2 [RFC1094]
and 3 [RFC1813]. It retains the essential characteristics of

previ ous versions: design for easy recovery, independent of transport
protocol s, operating systens and file systens, sinplicity, and good
performance. The NFSv4 revision has the foll ow ng goal s:

o |Inproved access and good perfornmance on the Internet.

Haynes & Noveck Expi res June 7, 2015 [Page 7]

Internet-Draft NFSv4 Decenber 2014

The protocol is designed to transit firewalls easily, perform well
where latency is high and bandwidth is low, and scale to very
| arge numbers of clients per server

0 Strong security with negotiation built into the protocol

The protocol builds on the work of the Open Network Conputing
(ONC) Rempte Procedure Call (RPC) working group in supporting the
RPCSEC _GSS protocol (see both [RFC2203] and [RFC5403]).
Additionally, the NFS version 4 protocol provides a nechanismto
allow clients and servers the ability to negotiate security and
require clients and servers to support a mninmal set of security
schenes.

0 Good cross-platforminteroperability.

The protocol features a file system nodel that provides a useful
conmmon set of features that does not unduly favor one file system
or operating system over another

0 Designed for protocol extensions.

The protocol is designed to accept standard extensions that do not
conprom se backward conpatibility.

Thi s docunment, together with the conpani on XDR descripti on docunent
[RFCNFSv4XDR], obsol etes [RFC3530] as the authoritative docunent
describing NFSv4. It does not introduce any over-the-wire protoco
changes, in the sense that previously valid requests renain valid.

1.2. Definitions in the conmpani on document NFS Version 4 Protocol are
Aut horitative

[RFCNFSV4XDR], "Network File System (NFS) Version 4 External Data
Representation Standard (XDR) Description", contains the definitions
in XDR description | anguage of the constructs used by the protocol

I nside this docunent, several of the constructs are reproduced for
pur poses of explanation. The reader is warned of the possibility of
errors in the reproduced constructs outside of [RFCNFSv4XDR]. For
any part of the docunent that is inconsistent with [RFCNFSv4XDR],

[RFCNFSV4XDR] is to be considered authoritative.

1.3. Overview of NFSv4 Features
To provide a reasonabl e context for the reader, the major features of
NFSv4 protocol will be reviewed in brief. This will be done to

provi de an appropriate context for both the reader who is fanliar
with the previous versions of the NFS protocol and the reader who is

Haynes & Noveck Expi res June 7, 2015 [Page 8]

Internet-Draft NFSv4 Decenber 2014

new to the NFS protocols. For the reader new to the NFS protocols,
some fundamental know edge is still expected. The reader should be
famliar with the XDR and RPC protocols as described in [RFC5531] and
[RFC4A506]. A basic knowl edge of file systens and distributed file
systens is expected as well.

1.3.1. RPC and Security

As with previous versions of NFS, the External Data Representation
(XDR) and RPC nechani sns used for the NFSv4 protocol are those
defined in [RFC5531] and [RFC4506]. To neet end to end security
requi renents, the RPCSEC GSS framework (both version 1 in [RFC2203]
and version 2 in [RFC5403]) will be used to extend the basic RPC
security. Wth the use of RPCSEC GSS, various mechani sms can be
provided to offer authentication, integrity, and privacy to the NFS
version 4 protocol. Kerberos V5 will be used as described in

[RFC4121] to provide one security framework. Wth the use of
RPCSEC GSS, ot her nechani sns nmay al so be specified and used for NFS
version 4 security.

To enabl e in-band security negotiation, the NFSv4 protocol has added
a new operation which provides the client with a nethod of querying
the server about its policies regarding which security nechanisns
must be used for access to the server's file systemresources. Wth
this, the client can securely match the security mechani smthat neets
the policies specified at both the client and server.

1.3.2. Procedure and QOperation Structure

A significant departure fromthe previous versions of the NFS
protocol is the introduction of the COMPOUND procedure. For the
NFSv4 protocol, there are two RPC procedures, NULL and COVPOUND. The
COVPOUND procedure is defined in terns of operations and these
operations correspond nore closely to the traditional NFS procedures.

Wth the use of the COVPOUND procedure, the client is able to build
simple or conplex requests. These COVWOUND requests allow for a
reduction in the nunber of RPCs needed for logical file system
operations. For exanple, w thout previous contact with a server a
client will be able to read data froma file in one request by
conbi ni ng LOOKUP, OPEN, and READ operations in a single COVMPOUND RPC
Wth previous versions of the NFS protocol, this type of single
request was not possible.

The nmodel used for COMPOUND is very sinmple. There is no |logical OR

or ANDi ng of operations. The operations conbined within a COVPOUND
request are evaluated in order by the server. Once an operation

Haynes & Noveck Expi res June 7, 2015 [Page 9]

Internet-Draft NFSv4 Decenber 2014

returns a failing result, the evaluation ends and the results of al
eval uated operations are returned to the client.

The NFSv4 protocol continues to have the client refer to a file or
directory at the server by a "filehandle". The COWOUND procedure
has a nethod of passing a filehandl e fromone operation to another
within the sequence of operations. There is a concept of a "current
filehandl e" and "saved fil ehandl e". Mst operations use the "current
filehandl e" as the file system object to operate upon. The "saved
filehandl e" is used as tenporary filehandl e storage within a COVPOUND
procedure as well as an additional operand for certain operations.

1.3.3. Filesystem Model

The general file system nodel used for the NFSv4 protocol is the same
as previous versions. The server file systemis hierarchical wth
the regular files contained within being treated as opaque byte
streams. In a slight departure, file and directory nanes are encoded
with UTF-8 to deal with the basics of internationalization

The NFSv4 protocol does not require a separate protocol to provide
for the initial mapping between path nane and fil ehandle. |Instead of
usi ng the ol der MOUNT protocol for this mapping, the server provides
a ROOT filehandl e that represents the logical root or top of the file
systemtree provided by the server. The server provides nmultiple
file systenms by gluing themtogether with pseudo file systenms. These
pseudo file systens provide for potential gaps in the path nanes
between real file systens.

1.3.3.1. Filehandl e Types

In previous versions of the NFS protocol, the filehandl e provi ded by
the server was guaranteed to be valid or persistent for the lifetine
of the file systemobject to which it referred. For sone server

i npl ementations, this persistence requirenent has been difficult to
meet. For the NFSv4 protocol, this requirenent has been rel axed by
i ntroduci ng another type of filehandle, volatile. Wth persistent
and volatile filehandl e types, the server inplenmentation can match
the abilities of the file systemat the server along with the
operating environnent. The client will have know edge of the type of
filehandl e bei ng provided by the server and can be prepared to dea
with the semantics of each.

1.3.3.2. Attribute Types
The NFSv4 protocol has a rich and extensible file object attribute

structure, which is divided into REQU RED, RECOMMENDED, and naned
attributes (see Section 5).

Haynes & Noveck Expi res June 7, 2015 [Page 10]

Internet-Draft NFSv4 Decenber 2014

Several (but not all) of the REQU RED attributes are derived fromthe
attributes of NFSv3 (see definition of the fattr3 data type in

[RFC1813]). An exanple of a REQU RED attribute is the file object’s
type (Section 5.8.1.2) so that regular files can be distinguished
fromdirectories (also known as folders in sone operating

envi ronnents) and ot her types of objects. REQU RED attributes are

di scussed in Section 5.1

An exanpl e of the RECOMMENDED attributes is an acl (Section 6.2.1).
This attribute defines an Access Control List (ACL) on a file object.
An ACL provides file access control beyond the nodel used in NFSv3.
The ACL definition allows for specification of specific sets of

perm ssions for individual users and groups. |In addition, ACL

i nheritance all ows propagation of access pernissions and restriction
down a directory tree as file system objects are created.
RECOMVENDED attri butes are discussed in Section 5. 2.

A named attribute is an opaque byte streamthat is associated with a
directory or file and referred to by a string nane. Naned attributes
are neant to be used by client applications as a nethod to associate
application-specific data with a regular file or directory. NFSv4.1
nodi fies naned attributes relative to NFSv4.0 by tightening the

al | oned operations in order to prevent the devel opnent of non-

i nteroperable inplenentations. Named attributes are discussed in
Section 5. 3.

1.3.3.3. Milti-server Nanespace

A singl e-server nanespace is the file systemhierarchy that the
server presents for renpte access. It is a proper subset of all the
file systenms available locally. NFSv4 contains a nunber of features
to allow inplenentati on of nanespaces that cross server boundaries
and that allow and facilitate a non-disruptive transfer of support
for individual file systens between servers. They are all based upon
attributes that allow one file systemto specify alternative or new
locations for that file system |.e., just as a client m ght
traverse across local file systenms on a single server, it can now
traverse to a renote file systemon a different server.

These attributes may be used together with the concept of absent file
systens, which provide specifications for additional |ocations but no
actual file systemcontent. This allows a nunmber of inportant
facilities:

0 Location attributes may be used with absent file systens to
i npl ement referrals whereby one server may direct the client to a
file system provided by anot her server. This allows extensive
mul ti-server nanespaces to be constructed

Haynes & Noveck Expi res June 7, 2015 [Page 11]

Internet-Draft NFSv4 Decenber 2014

0 Location attributes may be provided for present file systens to
provide the |locations of alternative file systeminstances or
replicas to be used in the event that the current file system
i nstance becones unavail abl e.

0 Location attributes may be provided when a previously present file
system becones absent. This allows non-disruptive nigration of
file systems to alternative servers

1.3.4. OPEN and CLCSE

The NFSv4 protocol introduces OPEN and CLOSE operations. The OPEN
operation provides a single point where file | ookup, creation, and
share semantics (see Section 9.9) can be conbined. The CLOSE
operation also provides for the rel ease of state accunul ated by OPEN

1.3.5. File Locking

Wth the NFSv4 protocol, the support for byte range file locking is
part of the NFS protocol. The file lIocking support is structured so
that an RPC cal | back nechanismis not required. This is a departure
fromthe previous versions of the NFS file | ocking protocol, Network
Lock Manager (NLM [RFC1813]. The state associated with file |ocks
is maintained at the server under a | ease-based nodel. The server
defines a single | ease period for all state held by a NFS client. |If
the client does not renewits | ease within the defined period, al
state associated with the client’s | ease may be rel eased by the
server. The client may renew its |lease with use of the RENEW
operation or inplicitly by use of other operations (primarily READ).

1.3.6. dient Caching and Del egation

The file, attribute, and directory caching for the NFSv4 protocol is
simlar to previous versions. Attributes and directory infornation
are cached for a duration deternmined by the client. At the end of a
predefined timeout, the client will query the server to see if the
related file system obj ect has been updat ed.

For file data, the client checks its cache validity when the file is
opened. A query is sent to the server to deternmine if the file has
been changed. Based on this information, the client determines if
the data cache for the file should kept or released. Al so, when the
file is closed, any nodified data is witten to the server

If an application wants to serialize access to file data, file
| ocking of the file data ranges in question should be used.

Haynes & Noveck Expi res June 7, 2015 [Page 12]

Internet-Draft NFSv4 Decenber 2014

The major addition to NFSv4 in the area of caching is the ability of
the server to delegate certain responsibilities to the client. Wen
the server grants a delegation for a file to a client, the client is
guaranteed certain semantics with respect to the sharing of that file
with other clients. At OPEN, the server nmay provide the client
either a read (OPEN _DELEGATE READ) or a wite (OPEN DELEGATE WRI TE)
del egation for the file (see Section 10.4). |If the client is granted
a OPEN _DELEGATE READ del egation, it is assured that no other client
has the ability to wite to the file for the duration of the

del egation. |If the client is granted a OPEN DELEGATE WRI TE

del egation, the client is assured that no other client has read or
wite access to the file.

Del egations can be recalled by the server. |[If another client
requests access to the file in such a way that the access conflicts
with the granted del egation, the server is able to notify the initial
client and recall the delegation. This requires that a call back path
exi st between the server and client. |If this callback path does not
exi st, then del egations cannot be granted. The essence of a

del egation is that it allows the client to locally service operations
such as OPEN, CLOSE, LOCK, LOCKU, READ, or WRITE without imedi ate
interaction with the server

1.4. General Definitions

The followi ng definitions are provided for the purpose of providing
an appropriate context for the reader

Anonynmous Stateid: Special |ocking object defined in
Section 9.1.4. 3.

Absent File System A file systemis "absent" when a nanespace
component does not have a backing file system

Byte: In this docunent, a byte is an octet, i.e., a datumexactly 8
bits in I ength.

Client: The client is the entity that accesses the NFS server’s
resources. The client may be an application that contains the
logic to access the NFS server directly. The client may al so be
the traditional operating systemclient that provides renote file
system services for a set of applications.

Wth reference to byte-range |locking, the client is also the
entity that maintains a set of |ocks on behalf of one or nore
applications. This client is responsible for crash or failure
recovery for those |locks it nanages.

Haynes & Noveck Expi res June 7, 2015 [Page 13]

Internet-Draft NFSv4 Decenber 2014

Note that nultiple clients may share the sanme transport and
connection and multiple clients may exist on the sanme network
node.

Client ID: A 64-bit quantity used as a uni que, short-hand reference
to a client supplied Verifier and ID. The server is responsible
for supplying the dient |ID.

File System The file systemis the collection of objects on a
server that share the sane fsid attribute (see Section 5.8.1.9).

Lease: An interval of time defined by the server for which the
client is irrevocably granted a lock. At the end of a |ease
period the |lock may be revoked if the | ease has not been extended.
The | ock nmust be revoked if a conflicting | ock has been granted
after the | ease interval

Al'l leases granted by a server have the same fixed duration. Note
that the fixed interval duration was chosen to alleviate the
expense a server would have in maintaining state about variable

I ength | eases across server failures.

Lock: The term"lock" is used to refer to both record (byte-range)
| ocks as well as share reservations unless specifically stated
ot herw se.

Lock-Omer: Each byte-range lock is associated with a specific |ock-
owner and an open-owner. The | ock-owner consists of a dient ID
and an opaque owner string. The client presents this to the
server to establish the ownership of the byte-range | ock as
needed.

Open-Onner: Each open file is associated with a specific open-owner
whi ch consists of a dient ID and an opaque owner string. The
client presents this to the server to establish the ownership of
t he open as needed.

READ Bypass Stateid: Special |ocking object defined in
Section 9.1.4.3.

Server: The "Server" is the entity responsible for coordinating
client access to a set of file systens.

Stable Storage: NFSv4 servers nust be able to recover without data
loss fromnultiple power failures (including cascadi ng power
failures, that is, several power failures in quick succession),
operating systemfailures, and hardware failure of conponents

Haynes & Noveck Expi res June 7, 2015 [Page 14]

Internet-Draft NFSv4 Decenber 2014

other than the storage mediumitself (for exanple, disk
nonvol atil e RAM .

Sone exanples of stable storage that are allowable for an NFS
server include:

(1) Media commit of data, that is, the nodified data has been
successfully witten to the disk nmedia, for exanple, the disk
platter.

(2) An imediate reply disk drive with battery-backed on-drive
i ntermedi ate storage or uninterruptible power system (UPS)

(3) Server commit of data with battery-backed internediate
storage and recovery software.

(4) Cache commit with uninterruptible power system (UPS) and
recovery software

Stateid: A stateid is a 128-bit quantity returned by a server that

uniquely identifies the open and | ocking states provided by the
server for a specific open-owner or | ock-owner/open-owner pair for
a specific file and type of | ock.

Verifier: A 64-bit quantity generated by the client that the server

1.5.

can use to determine if the client has restarted and | ost all
previ ous | ock state.

Changes since RFC 3530

The mai n changes from RFC 3530 [RFC3530] are:

(0]

The XDR definition has been noved to a conpani on docunent
[RFCNFSVv4XDR] .

The I ETF intellectual property statenents were updated to the
| at est version.

There is a restructured and nore conpl ete explanation of nmulti-
server nanespace features

The handling of domain nanes were updated to reflect
Internationalized Domain Names in Applications (IDNA) [RFC5891].

The previously required LI PKEY and SPKM 3 security mechani sms have
been renoved.

Haynes & Noveck Expi res June 7, 2015 [Page 15]

Internet-Draft NFSv4 Decenber 2014

1.

6

o Some clarification on a client re-establishing call back
information to the new server if state has been mi grat ed.

0o Athird edge case was added for Courtesy |ocks and network
partitions.

0 The definition of stateid was strengthened.
Changes between RFC 3010 and RFC3530

The definition of the NFSv4 protocol in [RFC3530] replaced and

obsol eted the definition present in [RFC3010]. Wile portions of the
two docunments renmi ned the sane, there were substantive changes in
others. The changes nmade between [RFC3010] and [RFC3530] reflect

i mpl ement ati on experi ence and further review of the protocol

The following list is not all inclusive of all changes but presents
some of the nobst notabl e changes or additions nade:

o0 The state nodel has added an open_owner4 identifier. This was
done to accommodat e Posi x based clients and the nodel they use for
file locking. For Posix clients, an open_owner4 woul d correspond
to a file descriptor potentially shared anongst a set of processes
and the |l ock _owner4 identifier would correspond to a process that
is locking a file.

o Cdarifications and error conditions were added for the handling of
the owner and group attributes. Since these attributes are string
based (as opposed to the nuneric uid/gid of previous versions of
NFS), translations may not be avail abl e and hence t he changes
made.

o Carifications for the ACL and node attri butes to address
eval uation and partial support.

o For identifiers that are defined as XDR opaque, linmts were set on
their size.

0 Added the nmounted on fileid attribute to allow Posix clients to
correctly construct |ocal nounts.

0o Modified the SETCLI ENTI DY SETCLI ENTI D_CONFI RM oper ations to dea
correctly with confirmation details along with adding the ability
to specify new client callback information. Al so added
clarification of the callback information itself.

0 Added a new operati on RELEASE LOCKOMNNER to enabl e notifying the
server that a |ock_owner4 will no |onger be used by the client.

Haynes & Noveck Expi res June 7, 2015 [Page 16]

Internet-Draft NFSv4 Decenber 2014

0 RENEW operation changes to identify the client correctly and all ow
for additional error returns.

o Verify error return possibilities for all operations.

0 Renove use of the pathnaned4 data type from LOOKUP and OPEN in
favor of having the client construct a sequence of LOOKUP
operations to achieve the sanme effect.

2. Protocol Data Types

The syntax and semantics to describe the data types of the NFS
version 4 protocol are defined in the XDR [RFC4506] and RPC [RFC5531]
docunents. The next sections build upon the XDR data types to define
types and structures specific to this protocol. As a rem nder, the
size constants and definitive definitions can be found in

[RFCNFSVv4XDR] .

2.1. Basic Data Types

These are the base NFSv4 data types.

int32_t typedef int int32_t;

Mode attribute data type.
typedef uint64_t nfs_cookie4;
Opaque cooki e val ue for READD R

nfs_cooki e4

I I I
| uint32_t | typedef unsigned int uint32_t; |
| int64_t | typedef hyper int64_t; [
| uint64_t | typedef unsigned hyper uint64 t; |
| attrlist4 | typedef opaque attrlistd4<>; |
[| Used for file/directory attributes. |
| bitnmap4 | typedef uint32_t bitmapd<>; |
| | Used in attribute array encodi ng. |
| changei d4 | typedef uint64_t changei d4; [
| | Used in the definition of change_i nfo4. |
| clientid4 | typedef uint64_t clientid4; [
[| Shorthand reference to client identification. [
| count4 | typedef uint32_t count4; |
| | Various count paraneters (READ, WRITE, COWM T). |
| length4 | typedef uint64_t |ength4; [
| | Describes LOCK | engths. |
| noded | typedef uint32_t node4,; |
I I I
| | |
| nfs_fh4 | typedef opaque nfs_fh4<NFS4_FHSI ZE>; [
| | Filehandl e definition. |
| nfs_ftype4d | enum nfs_ftype4,; [

Haynes & Noveck Expi res June 7, 2015 [Page 17]

Internet-Draft NFSv4 Decenber 2014

Various defined file types.
enum nf sst at 4;

Return val ue for operations.
typedef uint32_t nfs_ | ease4;
Duration of a |ease in seconds.

nf sstat 4

nfs | ease4d

of fset4 typedef uint64_t offsetd4;
Various of fset designations (READ, WRI TE, LOCK
COWMT).
gop4 typedef uint32_t qop4;
Quality of protection designation in SECI NFO
sec_oi d4 typedef opaque sec_oi d4<>
Security Object ldentifier. The sec_oid4 data
type is not really opaque. Instead it contains
an ASN. 1 OBJECT | DENTI FI ER as used by GSS- API
in the nech_type argunment to
GSS Init_sec_context. See [RFC2743] for
detail s.
seqi d4 typedef uint32_t seqi d4;
Sequence identifier used for file |ocking.
utf8string typedef opaque utf8string<>

UTF-8 encodi ng for strings.

typedef utf8string utf8str_cis;

Case insensitive UTF-8 string

typedef utf8string utf8str_cs;

Case sensitive UTF-8 string

typedef utf8string utf8str_ni xed;

UTF-8 strings with a case sensitive prefix and
a case insensitive suffix.

typedef utf8str_cs conponent4;

Repr esent s pat hnane conponents.

typedef opaque |inktext4<>;

Synmbolic link contents ("synbolic link" is
defined in an Open G oup [openg_sym i nk]

st andard).

typedef utf8string ascii_REQU RED4;

String is sent as ASCI|I and thus is
automatically UTF-8.

typedef conponent4 pat hname4<>

Represents path nane for fs_|ocations

typedef uint64_t nfs_| ockid4;

typedef opaque verifierd4[NFS4_VERI FI ER _SI ZE] ;
Verifier used for various operations (COW T,
CREATE, OPEN, READDI R, WRI TE)
NFS4_VERI FI ER_SI ZE i s defined as 8.

utf8str _cis
utf8str_cs

ut f8str_m xed

conponent 4

| i nkt ext 4

asci i _REQUI RED4

pat hnane4

nfs | ocki d4
verifier4d

End of Base Data Types

Haynes & Noveck Expi res June 7, 2015 [Page 18]

Internet-Draft NFSv4 Decenber 2014

Table 1
2.2. Structured Data Types
2.2.1. nfstinme4d
struct nfstinme4d {
int64 t seconds;
uint32_t nseconds;

b

The nfstinme4 structure gives the nunber of seconds and nanoseconds
since mdnight or O hour January 1, 1970 Coordinated Universal Tine
(UTC). Values greater than zero for the seconds field denote dates
after the 0 hour January 1, 1970. Values less than zero for the
seconds field denote dates before the 0 hour January 1, 1970. In
both cases, the nseconds field is to be added to the seconds field
for the final time representation. For exanple, if the time to be
represented is one-half second before 0O hour January 1, 1970, the
seconds field would have a val ue of negative one (-1) and the
nseconds fields would have a val ue of one-half second (500000000).
Val ues greater than 999, 999,999 for nseconds are considered invalid.

This data type is used to pass tinme and date information. A server
converts to and fromits |local representation of tinme when processing
time val ues, preserving as nuch accuracy as possible. |[If the
precision of tinestanps stored for a file systemobject is | ess than
defined, |oss of precision can occur. An adjunct tinme naintenance
protocol is recommended to reduce client and server tine skew.

2.2.2. tinme_hows

enum ti me_howd {
SET_TO_SERVER_TI ME4
SET_TO_CLI ENT_TI ME4

I
=

b
2.2.3. settinmed
union settine4 switch (tinme_how4 set it) {
case SET_TO CLI ENT_TI ME4:
nf sti me4 tine;

defaul t:
voi d;
b

Haynes & Noveck Expi res June 7, 2015 [Page 19]

Internet-Draft NFSv4 Decenber 2014

The above definitions are used as the attribute definitions to set
time values. If set it is SET _TO SERVER Tl ME4, then the server uses
its local representation of tine for the tine val ue.

2.2.4. specdatad

struct specdatad {

uint32_t specdatal; /* major device nunber */
uint32_t specdata2; /* mnor device nunber */

};

This data type represents additional information for the device file
types NF4CHR and NF4BLK

2.2.5. fsid4

struct fsid4 {

ui nt 64 _t maj or ;

ui nt 64_t m nor ;
}
This type is the file systemidentifier that is used as a REQU RED
attribute.

2.2.6. fs_locationd

struct fs_locationd {
utf8str _cis server <>
pat hnane4 r oot pat h;

b
2.2.7. fs_locations4

struct fs_|ocations4d {
pat hnane4 fs root;
fs |l ocation4d | ocati ons<>

H

The fs_locationd4 and fs_| ocations4 data types are used for the
fs | ocati ons RECOMVENDED attribute which is used for nigration and
replication support.

2.2.8. fattr4

struct fattr4 {
bi t map4 at t r mask
attrlist4 attr_vals;

H

Haynes & Noveck Expi res June 7, 2015 [Page 20]

Internet-Draft NFSv4 Decenber 2014
The fattr4 structure is used to represent file and directory
attributes.

The bitmap is a counted array of 32 bit integers used to contain bit
val ues. The position of the integer in the array that contains bit n

can be conputed fromthe expression (n/ 32) and its bit within that
integer is (n nod 32).

2.2.9. change_info4

struct change_info4 {

bool at oni c;
changei d4 bef or e;
changei d4 after

H

This structure is used with the CREATE, LINK, REMOVE, RENAME
operations to let the client know the value of the change attribute
for the directory in which the target file system object resides.

2.2.10. clientaddr4

struct clientaddr4 {
/* see struct rpcb in RFC 1833 */
string r_netid<>; /* network id */
string r_addr<>; /* universal address */

H

The clientaddr4 structure is used as part of the SETCLIENTID
operation to either specify the address of the client that is using a
client 1D or as part of the callback registration. The r_netid and
r_addr fields respectively contain a network id and universa

address. The network id and universal address concepts together with
formats for TCP over IPv4 and TCP over |Pv6 are defined in [RFC5665],
specifically Tables 2 and 3 and Sections 5.2.3.3 and 5. 2. 3. 4.

2.2.11. cb_client4
struct cb_client4 {

unsi gned i nt cb_program
clientaddr4 cb_location

H

Haynes & Noveck Expi res June 7, 2015 [Page 21]

Internet-Draft NFSv4 Decenber 2014

This structure is used by the client to informthe server of its cal
back address; includes the program nunber and client address.

2.2.12. nfs_client_id4

struct nfs client _id4 {

verifier4d verifier;

opaque i d<NFS4_OPAQUE LI M T>;
b

This structure is part of the argunents to the SETCLI ENTI D operation
2.2.13. open_owner4
struct open_owner4 {
clientid4 clientid;

opaque owner <NFS4_OPAQUE LI M T>;
b

This structure is used to identify the owner of open state.
2.2.14. |ock_owner4
struct | ock_owner4 {
clientid4 clientid;
opaque owner <NFS4_OPAQUE LI M T>;
b
This structure is used to identify the owner of file |ocking state.

2.2.15. open_to_l ock_owner4

struct open_to_Il ock_owner4 {

seqi d4 open_seqi d;

statei d4 open_statei d;

seqi d4 | ock_seqi d;

| ock_owner 4 | ock_owner;
b
This structure is used for the first LOCK operation done for an
open_owner4. It provides both the open_stateid and | ock_owner such

that the transition is made froma valid open_stateid sequence to
that of the new | ock_stateid sequence. Using this mechani sm avoids
the confirmation of the | ock _owner/lock _seqid pair since it is tied
to established state in the formof the open_stateid/ open_seqid.

Haynes & Noveck Expi res June 7, 2015 [Page 22]

Internet-Draft NFSv4 Decenber 2014

2.2.16. stateid4

struct stateid4 {

uint32_t seqi d;

opaque ot her [NFS4_OTHER_SI ZE] ;
b

This structure is used for the various state sharing nechani sns
between the client and server. For the client, this data structure
is read-only. The server is required to increnent the seqid field
nmonotonically at each transition of the stateid. This is inportant
since the client will inspect the seqid in OPEN stateids to deternine
the order of OPEN processi ng done by the server

3. RPC and Security Fl avor

The NFSv4 protocol is a RPC application that uses RPC version 2 and
the XDR as defined in [RFC5531] and [RFC4506]. The RPCSEC GSS
security flavors as defined in version 1 ([RFC2203]) and version 2
([RFC5403]) MUST be inplenented as the mechanismto deliver stronger
security for the NFSv4 protocol. However, deploynment of RPCSEC GSS
i s optional

3.1. Ports and Transports

Hi storically, NFSv2 and NFSv3 servers have resided on port 2049. The
regi stered port 2049 [RFC3232] for the NFS protocol SHOULD be the
default configuration. Using the registered port for NFS services
means the NFS client will not need to use the RPC binding protocols
as described in [RFC1833]; this will allow NFS to transit firewalls.

Where an NFSv4 inplementation supports operation over the | P network
protocol, the supported transport |ayer between NFS and | P MJST be an
| ETF standardi zed transport protocol that is specified to avoid

net wor k congestion; such transports include TCP and Stream Contro
Transm ssion Protocol (SCTP). To enhance the possibilities for
interoperability, an NFSv4 inplenentati on MJST support operation over
the TCP transport protocol

If TCP is used as the transport, the client and server SHOULD use
persi stent connections. This will prevent the weakening of TCP' s
congestion control via short |ived connections and will inprove
performance for the Wde Area Network (WAN) environment by
elimnating the need for SYN handshakes.

As noted in Section 17, the authentication nodel for NFSv4 has noved

from machi ne-based to principal -based. However, this nodification of
the aut hentication nodel does not inply a technical requirenment to

Haynes & Noveck Expi res June 7, 2015 [Page 23]

Internet-Draft NFSv4 Decenber 2014

move the TCP connection managenent nodel from whol e machi ne-based to
one based on a per user nodel. |In particular, NFS over TCP client

i npl ementations have traditionally nmultiplexed traffic for nultiple
users over a common TCP connection between an NFS client and server
This has been true, regardl ess of whether the NFS client is using
AUTH_SYS, AUTH DH, RPCSEC GSS or any other flavor. Simlarly, NFS
over TCP server inplenmentations have assumed such a nodel and thus
scale the inplementation of TCP connection nmanagenment in proportion
to the nunmber of expected client machines. It is intended that NFSv4
will not nodify this connection nanagenent nodel. NFSv4 clients that
violate this assunpti on can expect scaling issues on the server and
hence reduced servi ce.

3.1.1. dient Retransm ssi on Behavi or

When processing a NFSv4 request received over a reliable transport
such as TCP, the NFSv4 server MJUST NOT silently drop the request,
except if the established transport connection has been broken

G ven such a contract between NFSv4 clients and servers, clients MJST
NOT retry a request unless one or both of the follow ng are true:

0 The transport connection has been broken
0 The procedure being retried is the NULL procedure

Since reliable transports, such as TCP, do not always synchronously

i nform a peer when the other peer has broken the connection (for
exanpl e, when an NFS server reboots), the NFSv4 client may want to
actively "probe" the connection to see if has been broken. Use of
the NULL procedure is one recommended way to do so. So, when a
client experiences a renpte procedure call tineout (of some arbitrary
i mpl ement ati on specific anount), rather than retrying the renote
procedure call, it could instead issue a NULL procedure call to the
server. |If the server has died, the transport connection break wll
eventually be indicated to the NFSv4 client. The client can then
reconnect, and then retry the original request. |f the NULL
procedure call gets a response, the connection has not broken. The
client can decide to wait longer for the original request’s response,
or it can break the transport connection and reconnect before re-
sendi ng the original request.

For call backs fromthe server to the client, the sanme rules apply,

but the server doing the callback becones the client, and the client
recei ving the call back becones the server.

Haynes & Noveck Expi res June 7, 2015 [Page 24]

Internet-Draft NFSv4 Decenber 2014

3.2. Security Flavors

Tradi tional RPC inplenentations have included AUTH NONE, AUTH_SYS,
AUTH DH, and AUTH KRB4 as security flavors. Wth [RFC2203] an
additional security flavor of RPCSEC GSS has been introduced which
uses the functionality of GSS-API [RFC2743]. This allows for the use
of various security nmechanisns by the RPC | ayer without the

addi tional inplenmentation overhead of adding RPC security flavors.

For NFSv4, the RPCSEC GSS security flavor MJST be used to enable the
mandatory to inplenment security nechanism Oher flavors, such as,
AUTH _NONE, AUTH SYS, and AUTH DH MAY be inpl enented as well.

3.2.1. Security mechanisms for NFSv4

RPCSEC GSS, via GSS-APlI, supports nultiple mechanisms that provide
security services. For interoperability, NFSv4 clients and servers
MUST support the Kerberos V5 security mechani sm

The use of RPCSEC _GSS requires selection of mechanism quality of
protection (QOP), and service (authentication, integrity, privacy).
For the mandated security nechani sns, NFSv4 specifies that a QOP of
zero is used, leaving it up to the nechanismor the nechanisnis
configuration to nap QOP zero to an appropriate |evel of protection
Each mandat ed mechani sm specifies a m ni num set of cryptographic
algorithms for inplementing integrity and privacy. NFSv4 clients and
servers MJST be inplenented on operating environnents that conply
with the required cryptographic algorithns of each required
nmechani sm

3.2.1.1. Kerberos V5 as a Security Triple
The Kerberos V5 GSS-API nechani sm as described in [RFC4121] MJST be
i mpl emented with the RPCSEC GSS services as specified in Table 2
Both client and server MJUST support each of the pseudo flavors.

Mappi ng pseudo flavor to service

| 390003 | krb5 | 1.2.840.113554.1.2.2 | rpc_gss_svc_none |
| 390004 | krbbi | 1.2.840.113554.1.2.2 | rpc_gss_svc_integrity |
| 390005 | krb5p | 1.2.840.113554.1.2.2 | rpc_gss_svc_privacy

Tabl e 2

Haynes & Noveck Expi res June 7, 2015 [Page 25]

Internet-Draft NFSv4 Decenber 2014

Note that the pseudo flavor is presented here as a mapping aid to the
i mpl ementer. Because this NFS protocol includes a method to
negotiate security and it understands the GSS-API mechani sm the
pseudo flavor is not needed. The pseudo flavor is needed for NFSv3
since the security negotiation is done via the MOUNT protocol as
described in [RFC2623].

At the time this docunent was specified, the Advanced Encryption
Standard (AES) with HVAC- SHA1 was a required al gorithmset for
Kerberos V5. |In contrast, when NFSv4.0 was first specified in

[RFC3530], weaker algorithm sets were REQU RED for Kerberos V5, and
were REQUI RED in the NFSv4.0 specification, because the Kerberos V5
specification at the time did not specify stronger algorithns. The
NFSv4 specification does not specify required algorithns for Kerberos
V5, and instead, the inplenmenter is expected to track the evolution
of the Kerberos V5 standard if and when stronger algorithns are
speci fi ed.

3.2.1.1.1. Security Considerations for Cryptographic Algorithns in
Ker beros V5

When depl oyi ng NFSv4, the strength of the security achi eved depends
on the existing Kerberos V5 infrastructure. The algorithns of
Kerberos V5 are not directly exposed to or selectable by the client
or server, so there is sone due diligence required by the user of
NFSv4 to ensure that security is acceptable where needed. Cuidance
is provided in [RFC6649] as to why weak al gorithms shoul d be disabled
by default.

3.3. Security Negotiation

Wth the NFSv4 server potentially offering nmultiple security

mechani sms, the client needs a nethod to determ ne or negotiate which
mechanismis to be used for its comunication with the server. The
NFS server can have multiple points within its file system nane space
that are available for use by NFS clients. In turn the NFS server
can be configured such that each of these entry points can have
different or multiple security mechani snms in use.

The security negotiation between client and server SHOULD be done
with a secure channel to elinmnate the possibility of a third party
intercepting the negotiation sequence and forcing the client and
server to choose a lower |evel of security than required or desired
See Section 17 for further discussion

Haynes & Noveck Expi res June 7, 2015 [Page 26]

Internet-Draft NFSv4 Decenber 2014

3.3.1. SECINFO

The SECI NFO operation will allow the client to determ ne, on a per
filehandl e basis, what security triple (see [RFC2743]) is to be used
for server access. |In general, the client will not have to use the
SECI NFO operation except during initial comunication with the server
or when the client encounters a new security policy as the client
navi gates the name space. Either condition will force the client to
negoti ate a new security triple.

3.3.2. Security Error

Based on the assunption that each NFSv4 client and server MJST
support a mninum set of security (i.e., Kerberos-V5 under

RPCSEC GSS), the NFS client will start its conmmunication with the
server with one of the mninmal security triples. During

comuni cation with the server, the client can receive an NFS error of
NFS4ERR_WRONGSEC. This error allows the server to notify the client
that the security triple currently being used is not appropriate for
access to the server’'s file systemresources. The client is then
responsi ble for determ ning what security triples are available at
the server and choose one which is appropriate for the client. See
Section 15.33 for further discussion of howthe client will respond
to the NFS4ERR WRONGSEC error and use SECI NFO

3.3.3. Callback RPC Authentication
Except as noted el sewhere in this section, the callback RPC
(described later) MJUST nutually authenticate the NFS server to the
principal that acquired the client ID (al so described |ater), using
the security flavor of the original SETCLIENTID operation used.
For AUTH _NONE, there are no principals, so this is a non-issue.
AUTH_SYS has no notions of nutual authentication or a server
principal, so the callback fromthe server sinply uses the AUTH SYS
credential that the user used when he set up the del egation

For AUTH DH, one commonly used convention is that the server uses the
credential corresponding to this AUTH DH pri nci pal

uni x. host @ormai n
where host and dommin are variables corresponding to the name of

server host and directory services domain in which it lives such as a
Net work I nformation System donain or a DNS donai n.

Haynes & Noveck Expi res June 7, 2015 [Page 27]

Internet-Draft NFSv4 Decenber 2014

Regardl ess of what security mechani sm under RPCSEC GSS is being used,
the NFS server MJST identify itself in GSS-API via a
GSS_C_NT_HOSTBASED_SERVI CE nane type. GSS_C NT_HOSTBASED SERVI CE
names are of the form

servi ce@ost nane
For NFS, the "service" elenent is
nfs

I mpl ement ati ons of security nechanisns will convert nfs@ostnanme to
various different forns. For Kerberos V5, the following formis
RECOMVENDED:

nf s/ host nane

For Kerberos V5, nfs/hostname woul d be a server principal in the
Kerberos Key Distribution Center database. This is the sane
principal the client acquired a GSS-API context for when it issued
the SETCLI ENTID operation, therefore, the real mnane for the server
principal nust be the sane for the callback as it was for the
SETCLI ENTI D

4. Fil ehandl es

The filehandle in the NFS protocol is a per server unique identifier
for a file systemobject. The contents of the filehandl e are opaque
to the client. Therefore, the server is responsible for translating
the filehandle to an internal representation of the file system

obj ect.

4.1. (Obtaining the First Filehandle

The operations of the NFS protocol are defined in terns of one or
more filehandles. Therefore, the client needs a filehandle to
initiate comunication with the server. Wth the NFSv2 protoco

[RFC1094] and the NFSv3 protocol [RFC1813], there exists an ancillary
protocol to obtain this first filehandle. The MOUNT protocol, RPC
program nunber 100005, provides the nechanismof translating a string
based file systempath nane to a fil ehandl e which can then be used by
the NFS protocols.

The MOUNT protocol has deficiencies in the area of security and use
via firewalls. This is one reason that the use of the public
filehandl e was introduced in [RFC2054] and [RFC2055]. Wth the use
of the public filehandle in conbination with the LOOKUP operation in
the NFSv2 and NFSv3 protocols, it has been denpbnstrated that the

Haynes & Noveck Expi res June 7, 2015 [Page 28]

Internet-Draft NFSv4 Decenber 2014

MOUNT protocol is unnecessary for viable interaction between NFS
client and server.

Therefore, the NFSv4 protocol will not use an ancillary protocol for
translation fromstring based path nanes to a filehandle. Two
special filehandles will be used as starting points for the NFS
client.

4.1.1. Root Fil ehandl e

The first of the special filehandles is the ROOT filehandle. The
ROOT filehandle is the "conceptual" root of the file system nane
space at the NFS server. The client uses or starts with the ROOT
filehandl e by enpl oyi ng the PUTROOTFH operation. The PUTROOTFH
operation instructs the server to set the "current” filehandle to the
ROOT of the server’'s file tree. Once this PUTROOTFH operation is
used, the client can then traverse the entirety of the server’'s file
tree with the LOOKUP operation. A conplete discussion of the server
nane space is in Section 7.

4.1. 2. Public Fil ehandl e

The second special filehandle is the PUBLIC filehandle. Unlike the
ROOT fil ehandl e, the PUBLIC fil ehandl e nay be bound or represent an
arbitrary file systemobject at the server. The server is
responsible for this binding. It may be that the PUBLIC fil ehandl e
and the ROOT filehandle refer to the sane file system object.

However, it is up to the adnministrative software at the server and
the policies of the server admi nistrator to define the binding of the
PUBLI C fil ehandl e and server file system object. The client may not
make any assunptions about this binding. The client uses the PUBLIC
filehandl e via the PUTPUBFH operati on.

4.2. Filehandl e Types

In the NFSv2 and NFSv3 protocols, there was one type of filehandle
with a single set of semantics, of which the primary one was that it
was persistent across a server reboot. As such, this type of
filehandle is termed "persistent” in NFS Version 4. The semantics of
a persistent filehandle remain the sanme as before. A new type of
filehandl e introduced in NFS Version 4 is the "volatile" filehandl e,
which attenpts to accommpdate certain server environnments.

The volatile filehandl e type was introduced to address server
functionality or inplenmentation issues which nake correct

i mpl ementation of a persistent filehandle infeasible. Sone server
environnments do not provide a file systemlevel invariant that can be
used to construct a persistent filehandle. The underlying server

Haynes & Noveck Expi res June 7, 2015 [Page 29]

Internet-Draft NFSv4 Decenber 2014

file systemmay not provide the invariant or the server’s file system
programm ng interfaces may not provide access to the needed

invariant. Volatile filehandl es may ease the inplenentation of

server functionality such as hierarchical storage nmanagenent or file
systemreorgani zation or mgration. However, the volatile filehandle
i ncreases the inplenentation burden for the client.

Since the client will need to handl e persistent and volatile
filehandl es differently, a file attribute is defined which may be
used by the client to determine the filehandle types being returned
by the server.

4.2.1. Ceneral Properties of a Filehandle

The filehandl e contains all the information the server needs to

di stinguish an individual file. To the client, the filehandle is
opaque. The client stores filehandles for use in a later request and
can conpare two filehandles fromthe sane server for equality by
doi ng a byte-by-byte conparison. However, the client MJST NOT
otherwi se interpret the contents of filehandles. |If two filehandles
fromthe sane server are equal, they MIST refer to the sanme file
However, it is not required that two different filehandles refer to
different file systemobjects. Servers SHOULD try to maintain a one-
t o-one correspondence between filehandl es and file system objects but
there may be situations in which the napping is not one-to-one.
Clients MJST use filehandl e conparisons only to inprove perfornance,
not for correct behavior. All clients need to be prepared for
situations in which it cannot be determ ned whether two different
filehandl es denote the same object and in such cases, avoid assuning
that objects denoted are different, as this m ght cause incorrect
behavi or. Further discussion of filehandle and attribute conparison
in the context of data caching is presented in Section 10. 3. 4.

As an exanple, in the case that two different path nanes when
traversed at the server terninate at the sanme file system object, the
server SHOULD return the sane filehandle for each path. This can
occur if a hard link is used to create two file nanes which refer to
the sane underlying file object and associated data. For exanmple, if
paths /a/b/c and /a/d/c refer to the same file, the server SHOULD
return the sanme filehandl e for both path names traversals.

4.2.2. Persistent Filehandl e

A persistent filehandl e is defined as having a fixed value for the
lifetime of the file systemobject to which it refers. Once the

server creates the filehandle for a file system object, the server
MUST accept the sane filehandle for the object for the lifetine of
the object. |If the server restarts or reboots the NFS server nust

Haynes & Noveck Expi res June 7, 2015 [Page 30]

Internet-Draft NFSv4 Decenber 2014

honor the sane filehandle value as it did in the server’s previous
instantiation. Simlarly, if the file systemis nigrated, the new
NFS server mnust honor the sane filehandl e as the old NFS server

The persistent filehandle will be becone stale or invalid when the
file systemobject is renmoved. Wien the server is presented with a
persistent filehandle that refers to a deleted object, it MJST return
an error of NFSAERR STALE. A filehandl e may beconme stal e when the
file systemcontaining the object is no |onger available. The file
system may become unavailable if it exists on renovabl e nedia and the
media is no longer available at the server or the file systemin
whol e has been destroyed or the file systemhas sinply been renoved
fromthe server’s nanme space (i.e., unmounted in a UN X environnent).

4.2.3. Volatile Filehandle

A volatile filehandl e does not share the sane | ongevity
characteristics of a persistent filehandle. The server may determ ne
that a volatile filehandle is no longer valid at nany different
points in tine. |If the server can definitively determne that a
volatile filehandl e refers to an object that has been renoved, the
server should return NFS4ERR STALE to the client (as is the case for
persistent filehandles). 1In all other cases where the server
determines that a volatile filehandl e can no | onger be used, it
should return an error of NFS4ERR_FHEXPI RED

The REQUIRED attribute "fh_expire_type" is used by the client to
determ ne what type of filehandle the server is providing for a
particular file system This attribute is a bitmask with the
foll owi ng val ues:

FH4A PERSI STENT: The val ue of FH4_PERSI STENT is used to indicate a
persistent filehandl e, which is valid until the object is renoved
fromthe file system The server will not return
NFSAERR FHEXPI RED for this filehandle. FH4_PERSI STENT is defined
as a value in which none of the bits specified below are set.

FHA_VOLATI LE _ANY: The filehandl e nay expire at any time, except as
specifically excluded (i.e., FH4_NOEXPI RE_W TH_OPEN)

FHA NOEXPI RE WTH OPEN: May only be set when FH4 _VOLATI LE ANY is

set. If this bit is set, then the meaning of FH4_VOLATILE _ANY is
qualified to exclude any expiration of the filehandle when it is
open.

FHA VOL_M GRATION: The filehandle will expire as a result of
mgration. |If FH4A_VOLATILE ANY is set, FH4 VOL M GRATION i s
r edundant .

Haynes & Noveck Expi res June 7, 2015 [Page 31]

Internet-Draft NFSv4 Decenber 2014

FH4_VOL_RENAME: The filehandle will expire during rename. This
includes a renane by the requesting client or a rename by any
other client. |If FH4_VOLATILE ANY is set, FH4 VOL_RENAME i s
redundant .

Servers which provide volatile filehandles that may expire while open
(i.e., if FHA_VOL_M GRATION or FH4_VOL_RENAME is set or if

FHA_VOLATI LE _ANY is set and FH4_NCEXPI RE_W TH OPEN not set), should
deny a RENAME or REMOVE that would affect an OPEN file of any of the
conmponents leading to the OPEN file. 1In addition, the server SHOULD
deny all RENAME or REMOVE requests during the grace period upon
server restart.

Note that the bits FH4 VOL_M GRATI ON and FH4_VOL RENAME al | ow t he
client to determ ne that expiration has occurred whenever a specific
event occurs, without an explicit filehandl e expiration error from
the server. FH4_VOLATILE ANY does not provide this form of
information. |In situations where the server will expire many, but
not all filehandl es upon nmigration (e.g., all but those that are
open), FH4_VOLATILE ANY (in this case with FH4A_NOEXPI RE WTH OPEN) is
a better choice since the client may not assune that all filehandles
will expire when migration occurs, and it is likely that additional
expirations will occur (as a result of file CLOSE) that are separated
intime fromthe nmigration event itself.

4.2.4. One Method of Constructing a Volatile Filehandle
A volatile filehandle, while opaque to the client, could contain:
[volatile bit =1 | server boot time | slot | generation nunber]
o slot is an index in the server volatile filehandle table

0 generation nunber is the generation nunber for the table entry/
sl ot

Wien the client presents a volatile filehandl e, the server nmakes the
foll owi ng checks, which assunme that the check for the volatile bit
has passed. |If the server boot time is less than the current server
boot tine, return NFS4ERR FHEXPIRED. If slot is out of range, return
NFSAERR BADHANDLE. |f the generation nunber does not match, return
NFS4ERR_FHEXPI RED.

When the server reboots, the table is gone (it is volatile).

If volatile bit is 0, then it is a persistent filehandle with a
different structure following it.

Haynes & Noveck Expi res June 7, 2015 [Page 32]

Internet-Draft NFSv4 Decenber 2014

4.3. Cient Recovery fromFil ehandl e Expiration

If possible, the client should recover fromthe receipt of an
NFSAERR FHEXPI RED error. The client nust take on additiona
responsibility so that it nmay prepare itself to recover fromthe

expiration of a volatile filehandle. |If the server returns
persistent filehandles, the client does not need these additiona
st eps.

For volatile filehandles, nbst comobnly the client will need to store
the conponent nanes leading up to and including the file system
object in question. Wth these nanes, the client should be able to
recover by finding a filehandle in the nane space that is stil

avail able or by starting at the root of the server’s file system name
space.

If the expired filehandle refers to an object that has been renoved
fromthe file system obviously the client will not be able to
recover fromthe expired fil ehandle.

It is also possible that the expired filehandle refers to a file that
has been renanmed. |If the file was renanmed by another client, again
it is possible that the original client will not be able to recover
However, in the case that the client itself is renaming the file and
the file is open, it is possible that the client may be able to
recover. The client can determ ne the new path name based on the
processing of the rename request. The client can then regenerate the
new fil ehandl e based on the new path nanme. The client could al so use
t he conpound operation nechanismto construct a set of operations
I'ike:

RENAME A B
LOOKUP B
GETFH

Not e that the COVPOUND procedure does not provide atomicity. This
exanpl e only reduces the overhead of recovering froman expired
filehandl e.

5. Attributes

To neet the requirenents of extensibility and increased
interoperability with non-UNI X platforms, attributes need to be
handled in a flexible manner. The NFSv3 fattr3 structure contains a
fixed list of attributes that not all clients and servers are able to
support or care about. The fattr3 structure cannot be extended as
new needs arise and it provides no way to indicate non-support. Wth
the NFSv4.0 protocol, the client is able to query what attributes the

Haynes & Noveck Expi res June 7, 2015 [Page 33]

Internet-Draft NFSv4 Decenber 2014

server supports and construct requests with only those supported
attributes (or a subset thereof).

To this end, attributes are divided into three groups: REQU RED,
RECOMVENDED, and naned. Both REQUI RED and RECOVMENDED attri butes are
supported in the NFSv4.0 protocol by a specific and well-defined
encoding and are identified by number. They are requested by setting
a bit inthe bit vector sent in the GETATTR request; the server
response includes a bit vector to list what attributes were returned
in the response. New REQUI RED or RECOVMENDED attributes nay be added
to the NFSv4 protocol as part of a new minor version by publishing a
St andards Track RFC which allocates a new attribute nunber val ue and
defines the encoding for the attribute. See Section 11 for further

di scussi on.

Naned attributes are accessed by the OPENATTR operation, which
accesses a hidden directory of attributes associated with a file
system object. OPENATTR takes a filehandl e for the object and
returns the filehandle for the attribute hierarchy. The filehandle
for the named attributes is a directory object accessible by LOOKUP
or READDI R and contains files whose nanes represent the naned
attributes and whose data bytes are the value of the attribute. For

exanpl e:

[R R o m e e e e e e e e e eme— oo - +
| LOOKUP | "foo" | ; look up file |
| GETATTR | attrbits | |
| OPENATTR | | ; access foo's named attributes

| LOOKUP | "x1licon" | ; look up specific attribute |
| READ | 0,4096 | ; read stream of bytes |
[R R o m e e e e e e e e e eme— oo - +

Nanmed attributes are intended for data needed by applications rather
than by an NFS client inplenentation. NFS inplenenters are strongly
encouraged to define their new attributes as RECOMVENDED attri butes

by bringing themto the | ETF Standards Track process.

The set of attributes that are classified as REQURED is deliberately
smal | since servers need to do whatever it takes to support them A
server should support as nany of the RECOMMVENDED attri butes as
possi bl e but, by their definition, the server is not required to
support all of them Attributes are deened REQU RED if the data is
bot h needed by a | arge nunber of clients and is not otherw se
reasonably computable by the client when support is not provided on
the server.

Note that the hidden directory returned by OPENATTR i s a conveni ence
for protocol processing. The client should not nake any assunptions

Haynes & Noveck Expi res June 7, 2015 [Page 34]

Internet-Draft NFSv4 Decenber 2014

about the server’s inplenmentation of named attributes and whether or
not the underlying file systemat the server has a nanmed attribute
directory. Therefore, operations such as SETATTR and GETATTR on the
naned attribute directory are undefi ned.

5.1. REQUI RED Attributes

These MUST be supported by every NFSv4.0 client and server in order
to ensure a mininumlevel of interoperability. The server MJST store
and return these attributes, and the client MJUST be able to function
with an attribute set linmted to these attributes. Wth just the
REQUI RED attributes sonme client functionality can be inpaired or
limted in some ways. A client can ask for any of these attributes
to be returned by setting a bit in the GETATTR request. For each
such bit set, the server MJST return the corresponding attribute

val ue.

5.2. RECOMVENDED Attri butes

These attributes are understood well enough to warrant support in the
NFSv4. 0 protocol. However, they may not be supported on all clients
and servers. A client MAY ask for any of these attributes to be
returned by setting a bit in the GETATTR request but MJST handl e the
case where the server does not return them A client MAY ask for the
set of attributes the server supports and SHOULD NOT request
attributes the server does not support. A server should be tol erant
of requests for unsupported attributes and sinply not return them

rat her than considering the request an error. It is expected that
servers will support all attributes they confortably can and only
fail to support attributes that are difficult to support in their
operating environnents. A server should provide attributes whenever
they don’t have to "tell lies" to the client. For exanple, a file
nmodi fication tinme should be either an accurate tinme or should not be
supported by the server. At tines this will be difficult for

clients, but a client is better positioned to deci de whet her and how
to fabricate or construct an attribute or whether to do w thout the
attribute.

5. 3. Named Attri butes

These attributes are not supported by direct encoding in the NFSv4
protocol but are accessed by string nanes rather than nunbers and
correspond to an uninterpreted streamof bytes that are stored with
the file systemobject. The name space for these attributes may be
accessed by using the OPENATTR operation. The OPENATTR operation
returns a filehandle for a virtual "naned attribute directory", and
further perusal and nodification of the nane space nmay be done using
operations that work on nore typical directories. |In particular

Haynes & Noveck Expi res June 7, 2015 [Page 35]

Internet-Draft NFSv4 Decenber 2014

READDI R may be used to get a list of such naned attributes, and
LOOKUP and OPEN may select a particular attribute. Creation of a new
naned attribute may be the result of an OPEN specifying file
creation.

Once an OPEN is done, naned attributes nmay be exam ned and changed by
normal READ and WRI TE operations using the filehandl es and stateids
returned by OPEN

Naned attributes and the named attribute directory nay have their own
(non-naned) attributes. Each of these objects nust have all of the
REQUI RED attri butes and nay have additi onal RECOMMENDED attri butes.
However, the set of attributes for named attributes and the naned
attribute directory need not be, and typically will not be, as large
as that for other objects in that file system

Naned attributes might be the target of delegations. However, since
granting of delegations is at the server’s discretion, a server need
not support del egations on named attributes.

It is RECOWENDED that servers support arbitrary named attributes. A
client should not depend on the ability to store any naned attributes
in the server’'s file system |If a server does support naned
attributes, a client that is also able to handl e them should be able
to copy a file's data and netadata with conplete transparency from
one location to another; this would inply that names allowed for
regular directory entries are valid for nanmed attribute nanmes as
wel | .

In NFSv4.0, the structure of naned attribute directories is
restricted in a number of ways, in order to prevent the devel opnent
of non-interoperable inplenmentations in which sone servers support a
fully general hierarchical directory structure for named attributes
whil e others support a linmted but adequate structure for naned
attributes. |In such an environnment, clients or applications m ght
come to depend on non-portabl e extensions. The restrictions are:

0 CREATE is not allowed in a naned attribute directory. Thus, such
objects as synbolic links and special files are not allowed to be
naned attributes. Further, directories nmay not be created in a
naned attribute directory, so no hierarchical structure of naned
attributes for a single object is allowed.

o |f OPENATTR is done on a naned attribute directory or on a naned
attribute, the server MJST return an error.

Haynes & Noveck Expi res June 7, 2015 [Page 36]

Internet-Draft NFSv4 Decenber 2014

o Doing a RENAME of a named attribute to a different named attribute
directory or to an ordinary (i.e., non-naned-attribute) directory
is not allowed.

0 Creating hard |inks between nanmed attribute directories or between
named attribute directories and ordinary directories is not
al | oned.

Nanmes of attributes will not be controlled by this docunent or other
| ETF Standards Track docunents. See Section 18 for further
di scussi on.

5.4. Cdassification of Attributes

Each of attributes accessed using SETATTR and CETATTR (i.e., REQUI RED
an RECOMMENDED attri butes) can be classified in one of three
cat egori es:

1. per server attributes for which the value of the attribute wll
be the same for all file objects that share the sanme server.

2. per file systemattributes for which the value of the attribute
will be the sanme for sone or all file objects that share the sane
server and fsid attribute (Section 5.8.1.9). See bel ow for
details regardi ng when such sharing is in effect.

3. per file systemobject attributes

The handling of per file systemattributes depends on the particul ar
attribute and the setting of the honbgeneous (Section 5.8.2.12)
attribute. The followi ng rules apply:

1. The values of the attribute supported_attrs, fsid, honobgeneous,
| ink_support, and symink_support are always common to all object
within the given file system

2. For other attributes, different values may be returned for
different file systemobjects if the attribute honpbgeneous is
supported within the file systemin question and has the val ue
fal se.

The classification of attributes is as follows. Note that the
attributes tinme_access_set and tinme_nodify_set are not listed in this
section because they are wite-only attributes corresponding to
time_access and tinme_nodify, and are used in a special instance of
SETATTR.

0 The per-server attribute is:

Haynes & Noveck Expi res June 7, 2015 [Page 37]

Internet-Draft NFSv4 Decenber 2014

| ease_tinme
0 The per-file systemattributes are:

supported_attrs, fh_expire_type, link support, symink support,
uni que_handl es, acl support, cansettine, case_insensitive,

case_preserving, chown_restricted, files_avail, files_free,
files_total, fs_locations, honogeneous, naxfil esize, naxnane,
maxread, maxwite, no_trunc, space_avail, space_free,

space_total, tinme_delta,
o0 The per-file systemobject attributes are:

type, change, size, named_attr, fsid, rdattr_error, filehandl e,
acl, archive, fileid, hidden, nmaxlink, mnmetype, node

nunm i nks, owner, owner_group, rawdev, space_used, system
time_access, tinme_backup, tinme_create, tine_netadata,
time_nodify, nounted_on_fileid

For quota_avail _hard, quota_avail_soft, and quota_used, see their
definitions below for the appropriate classification

5.5. Set-Only and Get-Only Attributes

Some REQUI RED and RECOMMENDED attributes are set-only; i.e., they can
be set via SETATTR but not retrieved via GETATTR Sinilarly, sone
REQUI RED and RECOMVENDED attributes are get-only; i.e., they can be
retrieved via CETATTR but not set via SETATTR If a client attenpts
to set a get-only attribute or get a set-only attribute, the server
MJST return NFS4ERR | NVAL.

5.6. REQUIRED Attributes - List and Definition References

The list of REQU RED attributes appears in Table 3. The neani ng of
the colums of the table are:

o Nanme: The name of attribute

o |d: The nunber assigned to the attribute. 1In the event of
conflicts between the assigned nunber and [RFCNFSv4XDR], the
latter is authoritative, but in such an event, it should be
resolved with Errata to this docunent and/or [RFCNFSvV4XDR]. See
[ESG ERRATA] for the Errata process.

o Data Type: The XDR data type of the attribute.

0 Acc: Access allowed to the attribute. R neans read-only (GETATTR
may retrieve, SETATTR may not set). Wneans wite-only (SETATTR

Haynes & Noveck Expi res June 7, 2015 [Page 38]

Internet-Draft NFSv4 Decenber 2014

may set, GETATTR may not retrieve). R Wneans read/wite (GETATTR
may retrieve, SETATTR may set).

o Defined in: The section of this specification that describes the

attribute.
REQUI RED attri butes

e e e e e oo - Fomm e e e e oo - H-- - - - B +
| Nane | 1d | Data Type | Acc | Defined in [
o e e e e o - Fom e e e e oo +--- o= e e e e o n +
| supported attrs | O | bitnmap4 | R | Section 5.8.1.1 |
| type | 1 | nfs_ftyped | R | Section 5.8.1.2 |
| fh_expire_type | 2 | uint32_t | R | Section 5.8.1.3

| change | 3 | changeid4 | R | Section 5.8.1.4 |
| size | 4 | uint64_t | RW]| Section 5.8.1.5 [
| l'ink_support | 5 | bool | R | Section 5.8.1.6 |
| symink support | 6 | bool | R | Section 5.8.1.7 |
| naned_attr | 7 | bool | R | Section 5.8.1.8

| fsid | 8 | fsid4d | R | Section 5.8.1.9 |
| unique_handles | 9 | bool | R | Section 5.8.1.10

| lease_tine | 10 | nfs_lease4d | R | Section 5.8.1.11 |
| rdattr_error | 11 | nfsstat4 | R | Section 5.8.1.12

| filehandle | 19 | nfs_fh4 | R | Section 5.8.1.13 |
o e e e e oo - T +--- - - Fom e e e e oo +

Table 3
5.7. RECOMVENDED Attributes - List and Definition References
The RECOMMENDED attributes are defined in Table 4. The neani ngs of
the colum headers are the sane as Table 3; see Section 5.6 for the

meani ngs.

RECOVMVENDED attri butes

Haynes & Noveck Expi res June 7, 2015 [Page 39]

Internet-Draft

acl

acl support
archive
cansettinme
case_insensitive
case_preserving
chown_restricted
fileid
files_avail
files_free

files total
fs_locations

hi dden
honbgeneous
maxfil esi ze
max| i nk

maxnane

maxr ead

maxwrite

m net ype

node

mounted _on fileid

no_trunc
num i nks

owner

owner _group
quot a_avail _hard
quot a_avail _soft
quot a_used
rawdev
space_avai
space_free
space_t ot al
space_used
system

ti me_access

ti me_access_set
ti me_backup
time_create
tine_delta

ti me_met adat a
tinme_nodify
tinme_nodify set

Haynes & Noveck

Expi res June 7, 2015

NFSv4

nf sace4<>
uint32_t

bool

bool

bool

bool

bool

ui nt 64 _t

ui nt 64 _t

ui nt 64_t

uint 64 _t
fs_locations4
bool

bool

ui nt 64 _t

ui nt32_t
uint32_t

ui nt 64 _t

ui nt64_t
ascii _

REQUI RED4<>
node4

ui nt 64 _t

bool

uint32_t

ut f 8str_nmi xed
ut f 8str_nmi xed
ui nt 64_t

ui nt 64 _t

ui nt 64 _t
specdat a4

ui nt 64 _t

ui nt 64 _t

ui nt 64_t

ui nt 64 _t

bool
nfsti
setti
nfsti
nfsti
nfsti
nfsti
nf sti me4
settinme4d

me4
me4
me4
me4
me4
me4

Decenber 2014
.................. +
Defined in: |
__________________ +
Section 6.2.1 [
Section 6.2.1.2 |
Section 5.8.2.1 |
Section 5.8.2.2 |
Section 5.8.2.3 |
Section 5.8.2.4 |
Section 5.8.2.5 |
Section 5.8.2.6 |
Section 5.8.2.7 |
Section 5.8.2.8 |
Section 5.8.2.9 |
Section 5.8.2.10 |
Section 5.8.2.11 |
Section 5.8.2.12 |
Section 5.8.2.13 |
Section 5.8.2.14 |
Section 5.8.2.15 |
Section 5.8.2.16 |
Section 5.8.2.17 |
Section 5.8.2.18 |
I

Section 6.2.2 |
Section 5.8.2.19 |
Section 5.8.2.20 |
Section 5.8.2.21 |
Section 5.8.2.22 |
Section 5.8.2.23 |
Section 5.8.2.24 |
Section 5.8.2.25 |
Section 5.8.2.26 |
Section 5.8.2.27 |
Section 5.8.2.28 |
Section 5.8.2.29 |
Section 5.8.2.30 |
Section 5.8.2.31 |
Section 5.8.2.32 |
Section 5.8.2.33 |
Section 5.8.2.34 |
Section 5.8.2.35 |
Section 5.8.2.36 |
Section 5.8.2.37 |
Section 5.8.2.38 |
Section 5.8.2.39 |
Section 5.8.2.40 |
__________________ +
[Page 40]

Internet-Draft NFSv4 Decenber 2014

Tabl e 4
5.8. Attribute Definitions
5.8.1. Definitions of REQUI RED Attributes
5.8.1.1. Attribute 0: supported_attrs
The bit vector that would retrieve all REQU RED and RECOMVENDED
attributes that are supported for this object. The scope of this
attribute applies to all objects with a matching fsid.

5.8.1.2. Attribute 1: type

Desi gnates the type of an object in terns of one of a number of
speci al constants:

0 NF4REG designates a regular file.

0 NF4DI R designates a directory.

0 NF4BLK designates a bl ock device special file.

0 NF4CHR designates a character device special file.
0 NF4LNK designates a synbolic |ink

0 NF4SOCK desi gnates a naned socket special file.

0 NF4FI FO designates a fifo special file.

0 NF4ATTRDI R designates a nanmed attribute directory.
0 NF4NAMEDATTR designates a naned attribute

Wthin the explanatory text and operation descriptions, the follow ng
phrases will be used with the neani ngs given bel ow

0 The phrase "is a directory”
is NF4DI R or NF4ATTRDI R

means that the object’s type attribute

0 The phrase "is a special file" means that the object’s type
attribute is NF4BLK, NF4CHR, NF4SOCK, or NF4FI FO

o0 The phrase "is a regular file" nmeans that the object’s type
attribute is NFAREG or NF4NAMEDATTR.

Haynes & Noveck Expi res June 7, 2015 [Page 41]

Internet-Draft NFSv4 Decenber 2014
0 The phrase "is a synbolic link" neans that the object’s type
attribute is NF4LNK
5.8.1.3. Attribute 2: fh_expire_type

Server uses this to specify filehandl e expiration behavior to the
client. See Section 4 for additional description

5.8.1.4. Attribute 3: change
A value created by the server that the client can use to deternine if
file data, directory contents, or attributes of the object have been
nmodi fi ed. The server MAY return the object’s time_netadata attribute
for this attribute’s value but only if the file system object cannot
be updated nore frequently than the resolution of tine_netadata.
5.8.1.5. Attribute 4: size
The size of the object in bytes.
5.8.1.6. Attribute 5: link_support
TRUE, if the object’s file system supports hard |inks.
5.8.1.7. Attribute 6: synmink_support
TRUE, if the object’s file system supports synbolic |inks.
5.8.1.8. Attribute 7: naned_ attr

TRUE, if this object has nanmed attributes. |In other words, object
has a non-enpty nanmed attribute directory.

5.8.1.9. Attribute 8: fsid
Unique file systemidentifier for the file systemholding this
object. The fsid attribute has major and m nor conponents, each of
which are of data type uint64_t.

5.8.1.10. Attribute 9: unique_handl es

TRUE, if two distinct filehandl es are guaranteed to refer to two
different file system objects.

Haynes & Noveck Expi res June 7, 2015 [Page 42]

Internet-Draft NFSv4 Decenber 2014

5.8.1.11. Attribute 10: lease_tine
Duration of the | ease at server in seconds.
5.8.1.12. Attribute 11: rdattr_error

Error returned froman attenpt to retrieve attributes during a
READDI R oper at i on.

5.8.1.13. Attribute 19: filehandle
The filehandl e of this object (primarily for READDI R requests).
5.8.2. Definitions of Uncategorized RECOMVENDED Attri butes
The definitions of nost of the RECOMMVENDED attributes follow.
Col l ections that share a common category are defined in other
secti ons.

5.8.2.1. Attribute 14: archive

TRUE, if this file has been archived since the tine of |ast
nmodi fication (deprecated in favor of tinme_backup).

5.8.2.2. Attribute 15: cansettine

TRUE, if the server is able to change the tinmes for a file system
obj ect as specified in a SETATTR operation

5.8.2.3. Attribute 16: case_insensitive

TRUE, if file nane conparisons on this file systemare case
insensitive. This refers only to conparisons, and not to the case in
which file names are stored

5.8.2.4. Attribute 17: case_preserving

TRUE, if file nane case on this file systemis preserved. This
refers only to how file names are stored, and not to how they are
conpared. File nanes stored in mxed case m ght be conpared using
ei ther case-insensitive or case-sensitive conparisons.

5.8.2.5. Attribute 18: chown_restricted
If TRUE, the server will reject any request to change either the
owner or the group associated with a file if the caller is not a

privileged user (for exanple, "root" in UN X operating environnents
or in Wndows 2000, the "Take Omnership" privilege).

Haynes & Noveck Expi res June 7, 2015 [Page 43]

Internet-Draft NFSv4 Decenber 2014

5.8.2.6. Attribute 20: fileid
A nunber uniquely identifying the file within the file system
5.8.2.7. Attribute 21: files_avail

File slots available to this user on the file systemcontaining this
object -- this should be the snallest relevant linit.

5.8.2.8. Attribute 22: files free

Free file slots on the file systemcontaining this object - this
shoul d be the smallest relevant linit.

5.8.2.9. Attribute 23: files_total
Total file slots on the file systemcontaining this object.
5.8.2.10. Attribute 24: fs_locations

Locations where this file systemmy be found. |If the server returns
NFSAERR MOVED as an error, this attribute MIUST be support ed.

The server specifies the root path for a given server by returning a
pat h consi sting of zero path conponents.

5.8.2.11. Attribute 25: hidden

TRUE, if the file is considered hidden with respect to the Wndows
API .

5.8.2.12. Attribute 26: honobgeneous
TRUE, if this object’s file systemis honbgeneous, i.e., all objects
inthe file system (all objects on the server with the same fsid)
have common val ues for all per-file-systemattributes.

5.8.2.13. Attribute 27: maxfil esize
Maxi mum supported file size for the file systemof this object.

5.8.2.14. Attribute 28: maxlink

Maxi mum nunber of hard links for this object.

Haynes & Noveck Expi res June 7, 2015 [Page 44]

Internet-Draft NFSv4 Decenber 2014

5.8.2.15. Attribute 29: maxnane
Maxi mum fil e name size supported for this object.
5.8.2.16. Attribute 30: naxread

Maxi mum anmount of data the READ operation will return for this
obj ect .

5.8.2.17. Attribute 31: maxwite

Maxi mum anmount of data the WRI TE operation will accept for this
object. This attribute SHOULD be supported if the file is witable.
Lack of this attribute can lead to the client either wasting

bandwi dth or not receiving the best performance.

5.8.2.18. Attribute 32: ninetype
M ME nedi a type/ subtype of this object.
5.8.2.19. Attribute 55: nmounted on fileid

Like fileid, but if the target filehandle is the root of a file
system this attribute represents the fileid of the underlying
directory.

UNI X- based operating environments connect a file systeminto the
nanespace by connecting (nounting) the file systemonto the existing
file object (the nmount point, usually a directory) of an existing
file system Wen the nount point’s parent directory is read via an
APl like readdir(), the return results are directory entries, each
with a conmponent nane and a fileid. The fileid of the nount point’s
directory entry will be different fromthe fileid that the stat()
systemcall returns. The stat() systemcall is returning the fileid
of the root of the nounted file system whereas readdir() is
returning the fileid that stat() would have returned before any file
systenms were nmounted on the nount point.

Unli ke NFSv3, NFSv4.0 allows a client’s LOOKUP request to cross other
file systems. The client detects the file system crossing whenever
the filehandl e argunent of LOOKUP has an fsid attribute different
fromthat of the filehandl e returned by LOOKUP. A UNI X-based client
will consider this a "mount point crossing". UN X has a | egacy
schene for allowing a process to deternine its current working
directory. This relies on readdir() of a nount point’s parent and
stat() of the nount point returning fileids as previously described.
The nmounted_on fileid attribute corresponds to the fileid that
readdir() would have returned as described previously.

Haynes & Noveck Expi res June 7, 2015 [Page 45]

Internet-Draft NFSv4 Decenber 2014

While the NFSv4.0 client could sinply fabricate a fileid
corresponding to what nounted_on_fileid provides (and if the server
does not support nounted_on_fileid, the client has no choice), there
is arisk that the client will generate a fileid that conflicts with
one that is already assigned to another object in the file system
Instead, if the server can provide the nounted on fileid, the
potential for client operational problenms in this area is elimnated.

If the server detects that there is no nounted point at the target
file object, then the value for nounted on fileid that it returns is
the same as that of the fileid attribute

The mounted_on fileid attribute is RECOWENDED, so the server SHOULD
provide it if possible, and for a UN X-based server, this is
straightforward. Usually, nounted_on_fileid will be requested during
a READDI R operation, in which case it is trivial (at |east for UN X-
based servers) to return nounted on fileid since it is equal to the
fileid of a directory entry returned by readdir(). If
mounted_on_fileid is requested in a GETATTR operation, the server
shoul d obey an invariant that has it returning a value that is equa
to the file object’s entry in the object’s parent directory, i.e.
what readdir() would have returned. Sone operating environnents
allow a series of two or nore file systens to be nounted onto a
single mount point. In this case, for the server to obey the

af orenmentioned invariant, it will need to find the base nount point,
and not the internediate nount points.

5.8.2.20. Attribute 34: no_trunc
If this attribute is TRUE, then if the client uses a file nane | onger
than name_max, an error will be returned instead of the name being
truncat ed.

5.8.2.21. Attribute 35: numinks
Nunber of hard links to this object.

5.8.2.22. Attribute 36: owner
The string nane of the owner of this object.

5.8.2.23. Attribute 37: owner_group

The string name of the group ownership of this object.

Haynes & Noveck Expi res June 7, 2015 [Page 46]

Internet-Draft NFSv4 Decenber 2014

5.8.2.24. Attribute 38: quota_avail _hard

The value in bytes that represents the anmount of additional disk
space beyond the current allocation that can be allocated to this
file or directory before further allocations will be refused. It is
understood that this space nmay be consuned by allocations to other
files or directories.

5.8.2.25. Attribute 39: quota_avail _soft

The value in bytes that represents the anount of additional disk
space that can be allocated to this file or directory before the user
may reasonably be warned. It is understood that this space may be
consunmed by allocations to other files or directories though there
may exi st server side rules as to which other files or directories.

5.8.2.26. Attribute 40: quota_used

The value in bytes that represents the anpunt of di sk space used by
this file or directory and possibly a nunber of other simlar files
or directories, where the set of "simlar" neets at |east the
criterion that allocating space to any file or directory in the set
will reduce the "quota_avail _hard" of every other file or directory
in the set.

Note that there may be a number of distinct but overl apping sets of
files or directories for which a quota_used value is maintained,

e.g., "all files with a given owner", "all files with a given group
owner", etc. The server is at liberty to choose any of those sets
when providing the content of the quota_used attribute, but should do
so in a repeatable way. The rule nmay be configured per file system
or may be "choose the set with the smallest quota".

5.8.2.27. Attribute 41: rawdev
Raw devi ce nunber of file of type NF4BLK or NF4CHR The device
number is split into major and minor nunbers. |If the file's type
attribute is not NF4BLK or NF4CHR, this attribute SHOULD NOT be
returned, and any value returned SHOULD NOT be consi dered useful
5.8.2.28. Attribute 42: space_avai

Di sk space in bytes available to this user on the file system
containing this object -- this should be the smallest relevant limt.

Haynes & Noveck Expi res June 7, 2015 [Page 47]

Internet-Draft NFSv4 Decenber 2014

5.8.2.29. Attribute 43: space_free

Free di sk space in bytes on the file systemcontaining this object --
this should be the smallest relevant limt.

5.8.2.30. Attribute 44: space_tota

Total disk space in bytes on the file system containing this object.
5.8.2.31. Attribute 45: space_used

Nunber of file systembytes allocated to this object.
5.8.2.32. Attribute 46: system

This attribute is TRUEif this file is a "systen! file with respect
to the Wndows operating environnent.

5.8.2.33. Attribute 47: tine_access

The tinme_access attribute represents the time of |ast access to the
obj ect by a READ operation sent to the server. The notion of what is
an "access" depends on the server’'s operating environnment and/or the
server’'s file systemsemantics. For exanple, for servers obeying
Portabl e Operating SystemInterface (POSI X) semantics, tine_access
woul d be updated only by the READ and READDI R operations and not any
of the operations that nodify the content of the object [16], [17],
[read _api], [readdir_api], [wite_ api]. O course, setting the
corresponding tinme_access_set attribute is another way to nodify the
time_access attribute.

Whenever the file object resides on a witable file system the
server should nake its best efforts to record tinme_access into stable
storage. However, to nitigate the performance effects of doing so,
and nost especially whenever the server is satisfying the read of the
object’s content fromits cache, the server MAY cache access tine
updates and lazily wite themto stable storage. It is also
acceptable to give administrators of the server the option to disable
ti me_access updates.

5.8.2.34. Attribute 48: tine_access_set

Sets the tine of |last access to the object. SETATTR use only.

Haynes & Noveck Expi res June 7, 2015 [Page 48]

Internet-Draft NFSv4 Decenber 2014

5.8.2.35. Attribute 49: tine_backup
The tinme of |ast backup of the object.
5.8.2.36. Attribute 50: tine _create

The tine of creation of the object. This attribute does not have any
relation to the traditional UNIX file attribute "ctine" or "change
time".

5.8.2.37. Attribute 51: tine_delta
Smal | est useful server time granularity.
5.8.2.38. Attribute 52: tinme_netadata
The tine of |ast nmetadata nodification of the object.
5.8.2.39. Attribute 53: time_nodify
The tinme of last nodification to the object.
5.8.2.40. Attribute 54: tine_nodify_ set
Sets the tine of last nodification to the object. SETATTR use only.
5.9. Interpreting owner and owner_group

The RECOVMENDED attributes "owner" and "owner _group" (and al so users
and groups used as val ues of the "who" field wthin nfsdace
structures used in the acl attribute) are represented in the form of
UTF-8 strings. This format avoids use of a representation that is
tied to a particular underlying inplenentation at the client or
server. Note that section 6.1 of [RFC2624] provides additiona
rationale. It is expected that the client and server will have their
own | ocal representation of owners and groups that is used for |oca
storage or presentation to the application via API’s that expect such
a representation. Therefore, the protocol requires that when these
attributes are transferred between the client and server, the |oca
representation is translated to a string of the form

"identifier@ns domain". This allows clients and servers that do not
use the same local representation to effectively interoperate since
they both use a common syntax that can be interpreted by both.

Simlarly, security principals may be represented in different ways
by different security nechanisns. Servers nornally translate these
representations into a comon format, generally that used by |oca

storage, to serve as a neans of identifying the users corresponding

Haynes & Noveck Expi res June 7, 2015 [Page 49]

Internet-Draft NFSv4 Decenber 2014

to these security principals. Wen these local identifiers are
translated to the formof the owner attribute, associated with files
created by such principals, they identify, in a common format, the
users associated with each correspondi ng set of security principals.

The translation used to interpret owner and group strings is not
specified as part of the protocol. This allows various solutions to
be enpl oyed. For example, a local translation table rmay be consulted
that maps a nuneric identifier to the user@ns_donmain syntax. A name
service may al so be used to acconplish the translation. A server may
provide a nore general service, not limted by any particul ar
translation (which would only translate a limted set of possible
strings) by storing the owner and owner_group attributes in |oca
storage without any translation or it may augnent a translation

met hod by storing the entire string for attributes for which no
translation is available while using the |local representation for
those cases in which a translation is avail abl e.

Servers that do not provide support for all possible values of user
and group strings SHOULD return an error (NFS4ERR BADOMNNER) when a
string is presented that has no translation, as the value to be set
for a SETATTR of the owner or owner _group attributes or as part of
the value of the acl attribute When a server does accept a user or
group string as valid on a SETATTR, it is promising to return that
same string (for which see below) when a corresponding GETATTR i s
done, as long as there has been no further change in the
corresponding attribute before the GETATTR For sone

i nternationalization-related exceptions where this is not possible,
see below. Configuration changes (including changes fromthe mapping
of the string to the local representation) and ill-constructed name
transl ations (those that contain aliasing) may nake that prom se

i mpossible to honor. Servers should nmake appropriate efforts to
avoid a situation in which these attributes have their val ues changed
when no real change to either ownership or acls has occurred

The "dns_domai n" portion of the owner string is nmeant to be a DNS
domai n nane. For exanple, "user@xanple.org". Servers should accept
as valid a set of users for at |east one domain. A server may treat
ot her domains as having no valid translations. A nore genera
service is provided when a server is capable of accepting users for
mul tiple donmains, or for all donmains, subject to security
constraints.

As an inplenentation guide, both clients and servers nay provide a
means to configure the "dns_domai n" portion of the owner string. For
exanpl e, the DNS domain nane of the host running the NFS server night
be "l ab. exanpl e.org", but the user nanes are defined in
"exanple.org". |In the absence of such a configuration, or as a

Haynes & Noveck Expi res June 7, 2015 [Page 50]

Internet-Draft NFSv4 Decenber 2014

default, the current DNS domai n nane of the server should be the
val ue used for the "dns_donai n".

As nentioned above, it is desirable that a server when accepting a
string of the form "user @onai n" or "group@onain” in an attribute,
return this same string when that corresponding attribute is fetched.
Internationalization issues nake this inpossible under certain
circunstances and the client needs to take note of these. See
Section 12 for a detail ed discussion of these issues.

In the case where there is no translation available to the client or
server, the attribute value will be constructed without the "@.
Therefore, the absence of the "@ fromthe owner or owner_group
attribute signifies that no translati on was avail abl e at the sender
and that the receiver of the attribute should not use that string as
a basis for translation into its ow internal format. Even though
the attribute value cannot be translated, it nmay still be useful. In
the case of a client, the attribute string may be used for |oca

di spl ay of ownership.

To provide a greater degree of conpatibility with NFSv3, which
identified users and groups by 32-bit unsigned user identifiers and
group identifiers, owner and group strings that consist of ASCII-
encoded deci mal nuneric values with no | eading zeros can be given a
special interpretation by clients and servers that choose to provide
such support. The receiver may treat such a user or group string as
representing the sanme user as would be represented by an NFSv3 uid or
gi d having the correspondi ng nuneric val ue.

A server SHOULD reject such a nunmeric value if the security mechani sm
is using Kerberos. 1l.e., in such a scenario, the client will already
need to form "user @omai n" strings. For any other security
mechani sm the server SHOULD accept such nuneric values. As an

i npl ementation note, the server could nmake such an acceptance be
configurable. |If the server does not support nuneric values or if it
is configured off, then it MJUST return an NFS4ERR BADOMER error. |If
the security nmechanismis using Kerberos and the client attenpts to
use the special form then the server SHOULD return an

NFS4ERR BADOWNER error when there is a valid translation for the user
or owner designated in this way. |In that case, the client nust use
the appropriate user @onain string and not the special formfor
conpatibility.

The client MJST al ways accept nuneric values if the security
mechanismis not RPCSEC GSS. A client can deternmine if a server
supports nuneric identifiers by first attenpting to provide a nuneric
identifier. |If this attenpt rejected with an NFS4ERR BADOMER err or

Haynes & Noveck Expi res June 7, 2015 [Page 51]

Internet-Draft NFSv4 Decenber 2014

then the client should only use naned identifiers of the form
"user @ins_donai n".

The owner string "nobody" may be used to designate an anonynous user
which will be associated with a file created by a security principa
that cannot be mapped t hrough nornmal neans to the owner attribute.

5.10. Character Case Attributes

Wth respect to the case_insensitive and case_preserving attributes,
case insensitive conparisons of Unicode characters SHOULD use Uni code
Default Case Fol ding as defined in Chapter 3 of the Unicode Standard
[UNI CODE], and MAY override that behavior for specific selected
characters with the case folding defined in the Special Casing.txt

[SPECI ALCASING file in section 3.13 of the Unicode Standard.

The Special Casing.txt file replaces the Default Case Folding with

| ocal e and cont ext-dependent case folding for specific situations.

An exanpl e of | ocale and context-dependent case folding is that LATIN
CAPI TAL LETTER I ("I", U+0049) is default case folded to LATIN SMALL
LETTER I ("i", W+0069); however, several |anguages (e.g. Turkish)
treat an "1" character with a dot as a different letter than an "I"
character without a dot, therefore in such | anguages, unless an | is
before a dot_above, the "I" (U+0049) character should be case fol ded
to a different character, LATIN SMALL LETTER DOTLESS | (U+0131).

The [UNI CODE] and [SPECI ALCASING references in this RFC are for
version 6.3.0 of the Unicode standard, as that was the |latest version
of Uni code when this RFC was published. |nplenentations SHOULD

al ways use the | atest version of Unicode (http://ww. uni code. org/
versions/latest/).

[RFC Editor: please check that 6.3.0 is the latest version before
publication of this docunent as an RFC.]

6. Access Control Attributes
Access Control Lists (ACLs) are file attributes that specify fine
grai ned access control. This chapter covers the "acl", "acl support™”,
"nmode", file attributes, and their interactions. Note that file
attributes may apply to any file system object.

6.1. Coals
ACLs and nodes represent two well established nodels for specifying

perm ssions. This chapter specifies requirenents that attenpt to
meet the follow ng goals:

Haynes & Noveck Expi res June 7, 2015 [Page 52]

Internet-Draft NFSv4 Decenber 2014

6

6

o |If a server supports the node attribute, it should provide
reasonabl e semantics to clients that only set and retrieve the
nmode attri bute.

o |If a server supports ACL attributes, it should provide reasonable
semantics to clients that only set and retrieve those attributes.

0 On servers that support the node attribute, if ACL attributes have
never been set on an object, via inheritance or explicitly, the
behavi or should be traditional UN X-1ike behavi or

0 On servers that support the node attribute, if the ACL attributes
have been previously set on an object, either explicitly or via
i nheritance:

* Setting only the node attribute should effectively control the
traditional UNI X-1ike perm ssions of read, wite, and execute
on owner, owner_group, and other

* Setting only the node attribute should provide reasonabl e
security. For exanple, setting a node of 000 should be enough
to ensure that future opens for read or wite by any principa
fail, regardl ess of a previously existing or inherited ACL.

0 When a node attribute is set on an object, the ACL attributes may
need to be nodified so as to not conflict with the new node. In
such cases, it is desirable that the ACL keep as mnuch information
as possible. This includes information about inheritance, AUD T
and ALARM ACEs, and permni ssions granted and deni ed that do not
conflict with the new node

2. File Attributes Discussion

Support for each of the ACL attributes is RECOVWENDED and not
required, since file systens accessed using NFSV4 ni ght not support
ACL’ s.

2.1. Attribute 12: acl

The NFSv4.0 ACL attribute contains an array of access control entries
(ACEs) that are associated with the file system object. Although the
client can read and wite the acl attribute, the server is

responsi ble for using the ACL to perform access control. The client
can use the OPEN or ACCESS operations to check access w thout

nmodi fyi ng or readi ng data or netadat a.

The NFS ACE structure is defined as foll ows:

Haynes & Noveck Expi res June 7, 2015 [Page 53]

Internet-Draft NFSv4 Decenber 2014

typedef uint32_t acet ype4;

typedef uint32_t acef | ag4;

typedef uint32_t acemask4;

struct nfsaced {
acet yped type
acef | ag4 flag;
acemask4 access_nask
ut f 8str_nmi xed who;

H

To determine if a request succeeds, the server processes each nfsace4
entry in order. Only ACEs which have a "who" that matches the
requester are considered. Each ACE is processed until all of the
bits of the requester’s access have been ALLONED. Once a bit (see
bel ow) has been ALLOAED by an ACCESS ALLOWED ACE, it is no |onger
considered in the processing of later ACEs. |f an ACCESS_DEN ED ACE
i s encountered where the requester’s access still has unALLOAED bits
in common with the "access_mask" of the ACE, the request is denied.
When the ACL is fully processed, if there are bits in the requester’s
mask that have not been ALLOAED or DENI ED, access is denied

Unli ke the ALLOW and DENY ACE types, the ALARM and AUDI T ACE types do
not affect a requester’s access, and instead are for triggering
events as a result of a requester’s access attenpt. Therefore, AUD T
and ALARM ACEs are processed only after processing ALLOVN and DENY
ACEs.

The NFSv4.0 ACL nodel is quite rich. Sonme server platforms nmay
provi de access control functionality that goes beyond the UNI X-style
nmode attribute, but which is not as rich as the NFS ACL nodel. So
that users can take advantage of this nore limted functionality, the
server may support the acl attributes by mapping between its ACL
nodel and the NFSv4.0 ACL nodel. Servers nust ensure that the ACL
they actually store or enforce is at |least as strict as the NFSv4 ACL
that was set. It is tenpting to acconplish this by rejecting any ACL
that falls outside the small set that can be represented accurately.
However, such an approach can render ACLs unusabl e w thout specia
client-side know edge of the server’s napping, which defeats the

pur pose of having a comobn NFSv4 ACL protocol. Therefore servers
shoul d accept every ACL that they can wi thout conpronising security.
To hel p accomplish this, servers may nake a special exception, in the
case of unsupported perm ssion bits, to the rule that bits not
ALLONED or DENI ED by an ACL nust be denied. For exanple, a UN X-
style server might choose to silently allow read attribute

perm ssions even though an ACL does not explicitly allow those

Haynes & Noveck Expi res June 7, 2015 [Page 54]

Internet-Draft NFSv4 Decenber 2014

perm ssions. (An ACL that explicitly denies pernission to read
attributes should still result in a denial.)

The situation is conplicated by the fact that a server may have

mul tiple nodul es that enforce ACLs. For exanple, the enforcenent for
NFSv4. 0 access may be different from but not weaker than, the
enforcenment for |ocal access, and both may be different fromthe
enforcement for access through other protocols such as Server Message
Block (SMB) [M5>-SMB]. So it may be useful for a server to accept an
ACL even if not all of its nodules are able to support it.

The guiding principle with regard to NFSv4 access is that the server
must not accept ACLs that give an appearance of nore restricted
access to a file than what is actually enforced.

6.2.1.1. ACE Type

The constants used for the type field (acetyped4) are as foll ows:

const ACE4_ACCESS_ALLOWED ACE_TYPE = 0x00000000;
const ACE4_ACCESS_DEN ED ACE_TYPE = 0x00000001;
const ACE4_SYSTEM AUDI T_ACE_TYPE = 0x00000002;
const ACE4_SYSTEM ALARM ACE_TYPE = 0x00000003;

Al four bit types are pernmitted in the acl attribute.

Haynes & Noveck Expi res June 7, 2015 [Page 55]

Internet-Draft NFSv4 Decenber 2014

ACE4_ACCESS_ALLOWNED_ACE_TYPE Explicitly grants
t he access defined
in acemask4 to the
file or directory.
Explicitly denies
the access defined
in acemask4 to the
file or directory.
LOG (in a system
dependent way) any
access attenpt to a
file or directory

I I

I I

| |
ACE4 ACCESS DENI ED ACE TYPE | |
I I
I I
I I
I I
I I
I I
I I
| which uses any of [
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

ACE4_SYSTEM AUDI T_ACE_TYPE AUDI T

t he access net hods
specified in
acemask4.

Generate a system
ALARM (system
dependent) when any
access attenpt is
made to a file or
directory for the
access net hods
specified in
acemask4.

ACE4_SYSTEM ALARM ACE_TYPE ALARM

The "Abbreviation" colum denotes how the types will be referred to
t hroughout the rest of this chapter.

6.2.1.2. Attribute 13: acl support

A server need not support all of the above ACE types. This attribute
i ndi cates which ACE types are supported for the current file system
The bitmask constants used to represent the above definitions wthin
the acl support attribute are as foll ows:

const ACL4_SUPPORT_ALLOW ACL = 0x00000001
const ACL4_SUPPCRT_DENY_ACL = 0x00000002
const ACL4_SUPPORT_AUDI T_ACL = 0x00000004;
const ACL4_SUPPORT_ALARM ACL = 0x00000008

Servers which support either the ALLOWor DENY ACE type SHOULD
support both ALLOW and DENY ACE types.

Haynes & Noveck Expi res June 7, 2015 [Page 56]

Internet-Draft NFSv4 Decenber 2014

Clients should not attenpt to set an ACE unl ess the server clains
support for that ACE type. |If the server receives a request to set
an ACE that it cannot store, it MJST reject the request with
NFSAERR ATTRNOTSUPP. | f the server receives a request to set an ACE
that it can store but cannot enforce, the server SHOULD reject the
request with NFSAERR ATTRNOTSUPP.

6.2.1.3. ACE Access Mask

The bitmask constants used for the access nask field are as foll ows:

const ACE4_READ DATA = 0x00000001;
const ACE4_LI| ST_DI RECTORY = 0x00000001;
const ACE4_W\RI TE_DATA = 0x00000002;
const ACE4_ADD FI LE = 0x00000002;
const ACE4_APPEND_DATA = 0x00000004;
const ACE4_ADD_SUBDI RECTORY = 0x00000004;
const ACE4_READ NAMED_ATTRS = 0x00000008;
const ACE4_WRI TE_NAMED ATTRS = 0x00000010;
const ACE4_EXECUTE = 0x00000020;
const ACE4_DELETE _CHI LD = 0x00000040;
const ACE4_READ ATTRI BUTES = 0x00000080;
const ACE4_WRI TE_ATTRI BUTES = 0x00000100;
const ACE4_DELETE = 0x00010000;
const ACE4_READ ACL = 0x00020000;
const ACE4_WRI TE_ACL = 0x00040000;
const ACE4_WRI TE_OMNER = 0x00080000;
const ACE4_SYNCHRONI ZE = 0x00100000;

Not e that sone masks have coinci dent val ues, for exanple,
ACE4 READ DATA and ACE4 LI ST DI RECTORY. The mask entries
ACE4_LI ST_DI RECTORY, ACE4_ADD FI LE, and ACE4_ADD SUBDI RECTORY are
intended to be used with directory objects, while ACE4 READ DATA,
ACE4 VWRI TE _DATA, and ACE4_APPEND DATA are intended to be used with
non-di rectory obj ects.
6.2.1.3.1. Discussion of Mask Attributes
ACE4_READ_DATA
Operation(s) affected:
READ
OPEN

Di scussi on:

Haynes & Noveck Expi res June 7, 2015 [Page 57]

Internet-Draft NFSv4 Decenber 2014

Perm ssion to read the data of the file.

Servers SHOULD all ow a user the ability to read the data of the
file when only the ACE4 EXECUTE access mask bit is set.

ACE4 LI ST_DI RECTORY
Operation(s) affected:
READDI R
Di scussi on:
Permission to list the contents of a directory.
ACE4_V\RI TE_DATA
Operation(s) affected:
VWRI TE
OPEN
SETATTR of si ze
Di scussi on:
Perm ssion to nodify a file' s data.
ACE4_ADD FI LE
Operation(s) affected:
CREATE
LI NK
OPEN
RENAME
Di scussi on:
Permission to add a new file in a directory. The CREATE
operation is affected when nfs_ftyped is NF4LNK, NF4BLK,

NFACHR, NF4SOCK, or NF4FIFO (NF4DIR is not |isted because it
is covered by ACE4 _ADD SUBDI RECTCORY.) OPEN is affected when

Haynes & Noveck Expi res June 7, 2015 [Page 58]

Internet-Draft NFSv4 Decenber 2014
used to create a regular file. LINK and RENAME are al ways
af f ect ed.
ACE4_APPEND_DATA
Operation(s) affected:
VWRI TE
OPEN
SETATTR of size
Di scussi on
The ability to nodify a file's data, but only starting at EOCF
This allows for the notion of append-only files, by allow ng
ACE4_APPEND _DATA and denyi ng ACE4A_WRI TE_DATA to the same user
or group. If a file has an ACL such as the one described above
and a WRI TE request is made for sonmewhere other than EOF, the
server SHOULD return NFS4ERR_ACCESS.
ACE4_ADD_SUBDI RECTORY
Operation(s) affected:
CREATE
RENAVE
Di scussi on
Permi ssion to create a subdirectory in a directory. The CREATE
operation is affected when nfs _ftyped4 is NFADIR The RENAME
operation is always affected.
ACE4 _READ NAMED ATTRS
Operation(s) affected:
OPENATTR
Di scussi on
Permi ssion to read the naned attributes of a file or to | ookup

the naned attributes directory. OPENATTR is affected when it
is not used to create a nanmed attribute directory. This is

Haynes & Noveck Expi res June 7, 2015 [Page 59]

Internet-Draft NFSv4 Decenber 2014

when 1.) createdir is TRUE, but a naned attribute directory
al ready exists, or 2.) createdir is FALSE

ACE4_W\RI TE_NAMED_ATTRS
Operation(s) affected:

OPENATTR

Di scussi on

Permission to wite the naned attributes of a file or to create
a naned attribute directory. OPENATTR is affected when it is
used to create a naned attribute directory. This is when
createdir is TRUE and no naned attribute directory exists. The
ability to check whether or not a naned attribute directory

exi sts depends on the ability to ook it up, therefore, users
al so need the ACE4_READ NAMED ATTRS permission in order to
create a naned attribute directory.

ACE4_EXECUTE
Operation(s) affected:
READ
Di scussi on
Permi ssion to execute a file.

Servers SHOULD allow a user the ability to read the data of the
file when only the ACE4 EXECUTE access mask bit is set. This
is because there is no way to execute a file wi thout reading
the contents. Though a server may treat ACE4_EXECUTE and
ACE4_READ DATA bits identically when deciding to pernmit a READ
operation, it SHOULD still allowthe two bits to be set

i ndependently in ACLs, and MJST di stingui sh between t hem when
replying to ACCESS operations. |n particular, servers SHOULD
NOT silently turn on one of the two bits when the other is set,
as that would nake it inpossible for the client to correctly
enforce the distinction between read and execute perni ssions.

As an example, follow ng a SETATTR of the follow ng ACL:

nf suser: ACE4_ EXECUTE: ALLOW

Haynes & Noveck Expi res June 7, 2015 [Page 60]

Internet-Draft NFSv4 Decenber 2014

A subsequent GETATTR of ACL for that file SHOULD return:
nf suser: ACE4_ EXECUTE: ALLOW
Rat her than:
nf suser: ACE4_EXECUTE/ ACE4_READ DATA: ALLOW
ACE4_EXECUTE
Operation(s) affected:
LOOKUP
OPEN
REMOVE
RENAME
LI NK
CREATE
Di scussi on:
Permi ssion to traverse/search a directory.
ACE4_DELETE_CHI LD
Operation(s) affected:
REMOVE
RENAME
Di scussi on:
Permi ssion to delete a file or directory within a directory.
See Section 6.2.1.3.2 for informati on on how ACE4_ DELETE and
ACE4 DELETE CHI LD interact.
ACE4_READ_ATTRI BUTES
Operation(s) affected:

GETATTR of file system object attributes

Haynes & Noveck Expi res June 7, 2015 [Page 61]

Internet-Draft NFSv4 Decenber 2014

VERI FY
NVERI FY
READDI R
Di scussi on:
The ability to read basic attributes (non-ACLs) of a file. On
a UNI X system basic attributes can be thought of as the stat
| evel attributes. A lowing this access mask bit would nean the
entity can execute "lIs -1" and stat. |f a READDI R operation
requests attributes, this mask nust be allowed for the READDI R
to succeed.
ACE4_W\RI TE_ATTRI BUTES
Operation(s) affected:
SETATTR of time_access_set, tine_backup,
time_create, tine_nodify set, minetype, hidden, system
Di scussi on:
Perni ssion to change the times associated with a file or
directory to an arbitrary value. Al so permi ssion to change the
m netype, hidden and system attributes. A user having
ACE4_\\RI TE_DATA or ACE4_WRI TE_ATTRIBUTES wi Il be allowed to set
the times associated with a file to the current server tine.
ACE4_DELETE
Operation(s) affected:
REMOVE
Di scussi on:
Perm ssion to delete the file or directory. See
Section 6.2.1.3.2 for informati on on ACE4_DELETE and
ACE4 DELETE CHI LD interact.
ACE4_READ ACL
Operation(s) affected:

GETATTR of acl

Haynes & Noveck Expi res June 7, 2015 [Page 62]

Internet-Draft NFSv4 Decenber 2014

NVERI FY
VERI FY
Di scussi on
Permi ssion to read the ACL.
ACE4_WRI TE_ACL
Operation(s) affected:
SETATTR of acl and node
Di scussi on
Permission to wite the acl and node attri butes.
ACE4_WRI TE_OWNER
Operation(s) affected:
SETATTR of owner and owner _group
Di scussi on

Perm ssion to wite the owner and owner_group attributes. On
UNI X systens, this is the ability to execute chown() and

chgrp().
ACE4_SYNCHRONI ZE
Operation(s) affected:
NONE
Di scussi on

Permi ssion to use the file object as a synchronization
primtive for interprocess communication. This permissionis
not enforced or interpreted by the NFSv4.0 server on behal f of
the client.

Typically, the ACE4_SYNCHRON ZE pernission is only meani ngfu
on local file systens, i.e., file systems not accessed via
NFSv4.0. The reason that the permission bit exists is that
some operating environnents, such as Wndows, use
ACE4_SYNCHRONI ZE

Haynes & Noveck Expi res June 7, 2015 [Page 63]

Internet-Draft NFSv4 Decenber 2014

For exanple, if a client copies a file that has
ACE4_SYNCHRONI ZE set froma local file systemto an NFSv4.0
server, and then later copies the file fromthe NFSv4.0 server
to alocal file system it is likely that if ACE4_SYNCHRON ZE
was set in the original file, the client will want it set in
the second copy. The first copy will not have the permi ssion
set unless the NFSv4.0 server has the neans to set the
ACE4_SYNCHRONI ZE bit. The second copy will not have the

perm ssion set unless the NFSv4.0 server has the neans to
retrieve the ACE4 SYNCHRONI ZE bi t.

Server inplenentations need not provide the granularity of contro
that is inplied by this list of masks. For exanple, PGCSI X-based
systens m ght not distinguish ACE4_APPEND DATA (the ability to append
to a file) fromACE4A_WRI TE DATA (the ability to nodify existing
contents); both masks would be tied to a single "wite" pernission
When such a server returns attributes to the client, it would show
bot h ACE4_APPEND DATA and ACE4_WRI TE_DATA if and only if the wite
perm ssion is enabl ed.

If a server receives a SETATTR request that it cannot accurately
implenment, it should err in the direction of nore restricted access,
except in the previously discussed cases of execute and read. For
exanpl e, suppose a server cannot distinguish overwiting data from
appendi ng new data, as described in the previous paragraph. |If a
client submts an ALLOW ACE where ACE4 APPEND DATA is set but
ACE4_VWRI TE DATA is not (or vice versa), the server should either turn
of f ACE4_APPEND DATA or reject the request with NFS4AERR ATTRNOTSUPP

6.2.1.3.2. ACE4_DELETE vs. ACE4_DELETE_CHILD

Two access nmask bits govern the ability to delete a directory entry:
ACE4_DELETE on the object itself (the "target"), and
ACE4 DELETE CHI LD on the containing directory (the "parent").

Many systens al so take the "sticky bit" (MODE4 _SVTX) on a directory
to allow unlink only to a user that owns either the target or the
parent; on some such systens the decision al so depends on whet her the
target is witable.

Servers SHOULD allow unlink if either ACE4 DELETE is permitted on the
target, or ACE4 DELETE CHILD is permtted on the parent. (Note that
this is true even if the parent or target explicitly denies the other
of these pernissions.)

If the ACLs in question neither explicitly ALLON nor DENY either of

the above, and if MODE4 _SVTX is not set on the parent, then the
server SHOULD allow the renoval if and only if ACE4_ADD FILE is

Haynes & Noveck Expi res June 7, 2015 [Page 64]

Internet-Draft NFSv4 Decenber 2014

permitted. In the case where MODE4_SVTX is set, the server may al so
require the renmover to own either the parent or the target, or may
require the target to be witable.

This allows servers to support sonething close to traditional UN X-
like semantics, with ACE4_ADD FI LE taking the place of the wite bit.

6.2.1.4. ACE flag

The bitnmask constants used for the flag field are as foll ows:

const ACE4_FI LE_| NHERI T_ACE = 0x00000001
const ACE4_DI RECTCORY_I NHERI T_ACE = 0x00000002
const ACE4_NO PROPAGATE_| NHERI T_ACE = 0x00000004;
const ACE4_| NHERI T_ONLY_ACE = 0x00000008
const ACE4_SUCCESSFUL_ACCESS_ACE_FLAG = 0x00000010;
const ACE4_FAI LED ACCESS_ACE_FLAG = 0x00000020;
const ACE4_| DENTI FI ER_GROUP = 0x00000040
A server need not support any of these flags. |If the server supports

flags that are simlar to, but not exactly the same as, these flags,
the inplenentation nay define a nappi ng between the protocol -defined
flags and the inpl enentation-defined flags.

For exanple, suppose a client tries to set an ACE with
ACE4_FI LE_I NHERI T_ACE set but not ACE4_DI RECTORY_I NHERI T_ACE. |If the
server does not support any formof ACL inheritance, the server
shoul d reject the request with NFS4ERR ATTRNOTSUPP. |f the server
supports a single "inherit ACE'" flag that applies to both files and
directories, the server may reject the request (i.e., requiring the
client to set both the file and directory inheritance flags). The
server may al so accept the request and silently turn on the

ACE4_Dl RECTORY_| NHERI T_ACE f | ag.

6.2.1.4.1. Discussion of Flag Bits

ACE4_FI LE_| NHERI T_ACE
Any non-directory file in any sub-directory will get this ACE
i nherited.

ACE4_Dl RECTORY_| NHERI T_ACE
Can be placed on a directory and indicates that this ACE shoul d be
added to each new directory created.
If this flag is set in an ACEin an ACL attribute to be set on a
non-directory file systemobject, the operation attenpting to set
the ACL SHOULD fail with NFS4ERR_ATTRNOTSUPP.

ACE4_| NHERI T_ONLY_ACE

Haynes & Noveck Expi res June 7, 2015 [Page 65]

Internet-Draft NFSv4 Decenber 2014

Can be placed on a directory but does not apply to the directory;
ALLOW and DENY ACEs with this bit set do not affect access to the
directory, and AUDIT and ALARM ACEs with this bit set do not
trigger log or alarmevents. Such ACEs only take effect once they
are applied (with this bit cleared) to newy created files and
directories as specified by the above two fl ags.

If this flag is present on an ACE, but neither

ACE4_DI RECTORY_| NHERI T_ACE nor ACE4_FI LE_ I NHERI T_ACE i s present,
then an operation attenpting to set such an attribute SHOULD f ai l
wi t h NFS4ERR_ATTRNOTSUPP.

ACE4_NO _PROPAGATE | NHERI T_ACE
Can be placed on a directory. This flag tells the server that
i nheritance of this ACE should stop at newy created child
directories.

ACE4_SUCCESSFUL_ACCESS_ACE_FLAG

ACE4_FAl LED _ACCESS_ACE_FLAG
The ACE4_SUCCESSFUL_ACCESS_ACE_FLAG (SUCCESS) and
ACE4 _FAI LED ACCESS ACE FLAG (FAILED) flag bits may be set only on
ACE4_SYSTEM AUDI T_ACE_TYPE (AUDI T) and ACE4_SYSTEM ALARM ACE_TYPE
(ALARM ACE types. If during the processing of the file' s ACL,
the server encounters an AUDIT or ALARM ACE that natches the
principal attenpting the OPEN, the server notes that fact, and the
presence, if any, of the SUCCESS and FAILED flags encountered in
the AUDIT or ALARM ACE. Once the server conpletes the ACL
processing, it then notes if the operation succeeded or failed.
If the operation succeeded, and if the SUCCESS flag was set for a
mat chi ng AUDI T or ALARM ACE, then the appropriate AUDI T or ALARM
event occurs. |If the operation failed, and if the FAILED fl ag was
set for the matching AUDIT or ALARM ACE, then the appropriate
AUDI T or ALARM event occurs. Either or both of the SUCCESS or
FAI LED can be set, but if neither is set, the AUDI T or ALARM ACE
is not useful.

The previously described processing applies to ACCESS operations
even when they return NFS4_OK. For the purposes of AUDIT and
ALARM we consider an ACCESS operation to be a "failure" if it
fails to return a bit that was requested and support ed.

ACE4_| DENTI FI ER_GROUP
Indicates that the "who" refers to a GROUP as defined under UN X
or a GROUP ACCOUNT as defined under Wndows. Cients and servers
MUST i gnore the ACE4 | DENTI FI ER_ GROUP flag on ACEs with a who
val ue equal to one of the special identifiers outlined in
Section 6.2.1.5.

Haynes & Noveck Expi res June 7, 2015 [Page 66]

Internet-Draft NFSv4 Decenber 2014

6.2.1.5. ACE Wo

The "who" field of an ACE is an identifier that specifies the
principal or principals to whomthe ACE applies. It may refer to a
user or a group, with the flag bit ACE4_| DENTI FI ER GROUP speci fying
whi ch.

There are several special identifiers which need to be understood
universally, rather than in the context of a particular DNS domai n.
Sorme of these identifiers cannot be understood when an NFS client
accesses the server, but have neaning when a | ocal process accesses
the file. The ability to display and nodify these permnissions is
pernmitted over NFS, even if none of the access nmethods on the server
understands the identifiers.

Fom e e e oo o s m m e oo +
| Who | Description |
. TS +

OMNNER The owner of the file.

GROUP The group associated with the file.

EVERYONE The world, including the owner and owni ng group.

| NTERACTI VE Accessed froman interactive termnal.

I I I
I I I
| | |
I I I
| NETWORK | Accessed via the network. |
I I I
I I I
I I I
| | |
I I I

DI ALUP Accessed as a dialup user to the server.
BATCH Accessed from a batch job.
ANONYMOUS Accessed wit hout any aut henticati on.
AUTHENTI CATED | Any aut henticated user (opposite of ANONYMOUS).
SERVI CE Access froma system servi ce.
o e oo o o m e me e eeao o +

Table 5

To avoid conflict, these special identifiers are distinguished by an
appended "@ and should appear in the form"xxxx@ (wth no domain
nane after the "@). For exanple: ANONYMOUS@

The ACE4_| DENTI FI ER_CGROUP flag MJST be ignored on entries with these
special identifiers. Wen encoding entries with these speci al
identifiers, the ACE4_I|I DENTI FI ER_ GROUP flag SHOULD be set to zero.

6.2.1.5.1. Discussion of EVERYONE@
It is inmportant to note that "EVERYONE@ is not equivalent to the
UNI X "other" entity. This is because, by definition, UN X "other"

does not include the owner or owning group of a file. "EVERYONE@
means literally everyone, including the owner or owning group.

Haynes & Noveck Expi res June 7, 2015 [Page 67]

Internet-Draft NFSv4 Decenber 2014

6.

6.

6.

6.

2.2. Attribute 33: npde

The NFSv4.0 npde attribute is based on the UNl X node bits. The
followi ng bits are defi ned:

const MODE4_SUI D
const MODE4_SGE D
const MODE4_ SVTX
const MODE4_RUSR
const MODE4_WUSR
const MODE4_XUSR
const MODE4_RCRP
const MODE4_WCRP
const MODE4_XCGRP
const MODE4_ROTH
const MODE4_WOTH
const MODE4_XOTH

0x800; /* set user id on execution */
0x400; /* set group id on execution */
0x200; /* save text even after use */
0x100; /* read perm ssion: owner */
0x080; /* wite perm ssion: owner */
0x040; /* execute perm ssion: owner */
0x020; /* read perm ssion: group */
0x010; /* wite pernission: group */
0x008; /* execute perm ssion: group */
0x004; /* read perm ssion: other */
0x002; /* wite perm ssion: other */
0x001; /* execute perm ssion: other */

Bits MODE4_RUSR, MODE4_WUSR, and MODE4_XUSR apply to the principal
identified in the owner attribute. Bits MODE4 RGRP, MODE4 WERP, and
MODE4_XGRP apply to principals identified in the owner_group
attribute but who are not identified in the owner attribute. Bits
MODE4 _ROTH, MODE4 WOTH, MODE4 XOTH apply to any principal that does
not match that in the owner attribute, and does not have a group

mat chi ng that of the owner_group attribute.

Bits within the node other than those specified above are not defined
by this protocol. A server MJUST NOT return bits other than those
defined above in a GETATTR or READDI R operation, and it MJST return
NFSAERR_INVAL if bits other than those defined above are set in a
SETATTR, CREATE, OPEN, VERI FY or NVERI FY operati on.

3. Common Met hods

The requirenents in this section will be referred to in future
sections, especially Section 6.4.

3.1. Interpreting an ACL

3.1.1. Server Considerations

The server uses the algorithmdescribed in Section 6.2.1 to determine
whet her an ACL all ows access to an object. However, the ACL may not

be the sole determ ner of access. For exanple:

0 In the case of a file systemexported as read-only, the server may
deny wite perm ssions even though an object’s ACL grants it.

Haynes & Noveck Expi res June 7, 2015 [Page 68]

Internet-Draft NFSv4 Decenber 2014

0 Server inplenmentations MAY grant ACE4_WRI TE_ACL and ACE4_READ ACL
perm ssions to prevent a situation fromarising in which there is
no valid way to ever nodify the ACL.

o Al servers will allow a user the ability to read the data of the
file when only the execute permission is granted (i.e., If the ACL
deni es the user the ACE4_READ DATA access and all ows the user
ACE4 EXECUTE, the server will allow the user to read the data of
the file).

o Many servers have the notion of owner-override in which the owner
of the object is allowed to override accesses that are denied by
the ACL. This may be hel pful, for exanple, to allow users
continued access to open files on which the perm ssions have
changed.

o0 Many servers have the notion of a "superuser" that has privileges
beyond an ordinary user. The superuser may be able to read or
wite data or netadata in ways that would not be permitted by the
ACL.

6.3.1.2. dient Considerations

Clients SHOULD NOT do their own access checks based on their
interpretation the ACL, but rather use the OPEN and ACCESS operations
to do access checks. This allows the client to act on the results of
havi ng the server deternm ne whether or not access should be granted
based on its interpretation of the ACL.

Clients nmust be aware of situations in which an object’s ACL will
define a certain access even though the server will not have adequate
information to enforce it. For exanple, the server has no way of
determ ning whether a particular OPEN reflects a user’s open for read
access, or is done as part of executing the file in question. In
such situations, the client needs to do its part in the enforcenent
of access as defined by the ACL. To do this, the client will send

t he appropriate ACCESS operation (or use a cached previous

determ nation) prior to servicing the request of the user or
application in order to determ ne whether the user or application
shoul d be granted the access requested. For exanples in which the
ACL may define accesses that the server does not enforce see

Section 6.3.1.1.

6.3.2. Conputing a Mbde Attribute froman ACL

The follow ng nmethod can be used to cal culate the MODE4_R*, MODE4 W
and MODE4_X* bits of a node attribute, based upon an ACL.

Haynes & Noveck Expi res June 7, 2015 [Page 69]

Internet-Draft NFSv4 Decenber 2014

First, for each of the special identifiers OMNER@ GROUP@ and
EVERYONE@ evaluate the ACL in order, considering only ALLOW and DENY
ACEs for the identifier EVERYONE@ and for the identifier under
consideration. The result of the evaluation will be an NFSv4 ACL
mask showi ng exactly which bits are pernitted to that identifier.

Then transl ate the cal cul ated mask for OMER@ GROUP@ and EVERYONE@
into node bits for, respectively, the user, group, and other, as
fol | ows:

1. Set the read bit (MODE4_RUSR, MODE4 RGRP, or MODE4 ROTH) if and
only if ACE4_READ DATA is set in the correspondi ng mask.

2. Set the wite bit (MODE4_WJSR, MODE4_WCERP, or MODE4_WOTH) if and
only if ACE4A_WRI TE_DATA and ACE4_APPEND DATA are both set in the
correspondi ng nmask.

3. Set the execute bit (MODE4_XUSR, MODE4 XGRP, or MODE4 XOTH), if
and only if ACE4_EXECUTE is set in the correspondi ng nmask.

6.3.2.1. Di scussi on

Sone server inplenentations also add bits pernmitted to nanmed users
and groups to the group bits (MODE4_RGRP, MODE4 WGRP, and
MODE4_XCRP) .

| mpl enent ati ons are discouraged fromdoing this, because it has been
found to cause confusion for users who see nenbers of a file's group
deni ed access that the node bits appear to allow. (The presence of
DENY ACEs may al so | ead to such behavior, but DENY ACEs are expected
to be nore rarely used.)

The sane user confusion seen when fetching the node also results if
setting the node does not effectively control perm ssions for the
owner, group, and other users; this notivates sone of the
requirenents that follow

6.4. Requirements

The server that supports both node and ACL nust take care to
synchroni ze the MODE4_*USR, MODE4 *GRP, and MODE4 _*OTH bits with the
ACEs whi ch have respective who fields of "OMER@, "CROUP@, and
"EVERYONE@ so that the client can see semantically equival ent access
perm ssions exi st whether the client asks for owner, owner_group and
nmode attributes, or for just the ACL.

Many requirenments refer to Section 6.3.2, but note that the nethods
have behaviors specified with "SHOULD'. This is intentional, to

Haynes & Noveck Expi res June 7, 2015 [Page 70]

Internet-Draft NFSv4 Decenber 2014

avoid invalidating existing inplenentations that conpute the node
according to the withdrawn PCSI X ACL draft ([P1003.1e]), rather than
by actual perm ssions on owner, group, and other.

6.4.1. Setting the nbpde and/or ACL Attributes
6.4.1.1. Setting node and not ACL

When any of the nine | oworder node bits are changed because the node
attribute was set, and no ACL attribute is explicitly set, the acl
attribute nust be nodified in accordance with the updated val ue of
those bits. This nust happen even if the value of the |loworder bits
is the same after the node is set as before.

Note that any AUDI T or ALARM ACEs are unaffected by changes to the
node.

In cases in which the permissions bits are subject to change, the acl
attribute MJST be nodified such that the node conputed via the nethod
in Section 6.3.2 yields the | oworder nine bits (MODE4_R*, MODE4_ W,
MODE4_X*) of the node attribute as nodified by the attribute change.
The ACL attributes SHOULD al so be nodified such that:

1. |If MODE4 RGRP is not set, entities explicitly listed in the ACL
ot her than OAMNER@ and EVERYONE@ SHOULD NOT be granted
ACE4_READ DATA.

2. |If MODE4 WERP is not set, entities explicitly listed in the ACL
ot her than OAMNER@ and EVERYONE@ SHOULD NOT be granted
ACE4 V\RI TE_DATA or ACE4_APPEND DATA.

3. If MODE4_XGRP is not set, entities explicitly listed in the ACL
ot her than OANER@ and EVERYONE@ SHOULD NOT be granted
ACE4_EXECUTE.

Access mask bits other than those |isted above, appearing in ALLOW
ACEs, MAY al so be disabl ed.

Note that ACEs with the flag ACE4_ I NHERI T_ONLY_ACE set do not affect
the pernissions of the ACL itself, nor do ACEs of the type AUDIT and
ALARM As such, it is desirable to | eave these ACEs unnodified when
nodi fying the ACL attri butes.

Al so note that the requirement may be met by discarding the acl in
favor of an ACL that represents the node and only the node. This is
permtted, but it is preferable for a server to preserve as nmuch of
the ACL as possible wthout violating the above requirenents.

Haynes & Noveck Expi res June 7, 2015 [Page 71]

Internet-Draft NFSv4 Decenber 2014

Di scarding the ACL makes it effectively inpossible for a file created
with a node attribute to inherit an ACL (see Section 6.4.3).

6.4.1.2. Setting ACL and not node

When setting the acl and not setting the node attribute, the

permi ssion bits of the node need to be derived fromthe ACL. In this
case, the ACL attribute SHOULD be set as given. The nine | ow order
bits of the node attribute (MODE4_R*, MODE4 W, MODE4 X*) MJIST be
nodified to match the result of the method Section 6.3.2. The three
hi gh-order bits of the nbde (MODE4_SU D, MODE4 _SA D, MODE4_SVTX)
SHOULD remai n unchanged.

6.4.1.3. Setting both ACL and node

When setting both the node and the acl attribute in the sane
operation, the attributes MJST be applied in this order: node, then
ACL. The node-related attribute is set as given, then the ACL
attribute is set as given, possibly changing the final node, as
descri bed above in Section 6.4.1. 2.

6.4.2. Retrieving the node and/or ACL Attributes

This section applies only to servers that support both the node and
ACL attri butes.

Sone server inplenentations may have a concept of "objects w thout
ACLs", neaning that all pernissions are granted and deni ed accordi ng
to the node attribute, and that no ACL attribute is stored for that
object. If an ACL attribute is requested of such a server, the
server SHOULD return an ACL that does not conflict with the node;
that is to say, the ACL returned SHOULD represent the nine | ow order
bits of the node attribute (MODE4_R*, MODE4 W, MODE4 X*) as
described in Section 6. 3. 2.

For other server inplenmentations, the ACL attribute is always present
for every object. Such servers SHOULD store at |east the three high-
order bits of the node attribute (MODE4_SU D, MODE4_SA D,
MODE4_SVTX). The server SHOULD return a node attribute if one is
requested, and the |l oworder nine bits of the node (MODE4_R*,

MODE4 W, MODE4 X*) MUST match the result of applying the nmethod in
Section 6.3.2 to the ACL attribute.

6.4.3. Creating New bjects
If a server supports any ACL attributes, it nay use the ACL

attributes on the parent directory to conpute an initial ACL
attribute for a newy created object. This will be referred to as

Haynes & Noveck Expi res June 7, 2015 [Page 72]

Internet-Draft NFSv4 Decenber 2014

the inherited ACL within this section. The act of adding one or nore
ACEs to the inherited ACL that are based upon ACEs in the parent
directory’s ACL will be referred to as inheriting an ACE within this
section.

In the presence or absence of the node and ACL attributes, the
behavi or of CREATE and OPEN SHOULD be:

1. If just the node is given in the call
In this case, inheritance SHOULD take place, but the node MJST be

applied to the inherited ACL as described in Section 6.4.1.1
t hereby nodifying the ACL.

2. If just the ACL is given in the call
In this case, inheritance SHOULD NOT take place, and the ACL as

defined in the CREATE or OPEN will be set w thout nodification
and the node nodified as in Section 6.4.1.2

3. If both node and ACL are given in the call:

In this case, inheritance SHOULD NOT take pl ace, and both
attributes will be set as described in Section 6.4.1.3.

4. 1f neither node nor ACL are given in the call:

In the case where an object is being created without any initial

attributes at all, e.g., an OPEN operation with an opentype4 of
OPEN4_CREATE and a creat ennde4 of EXCLUSI VE4, inheritance SHOULD
NOT take place. Instead, the server SHOULD set permi ssions to
deny all access to the newly created object. It is expected that

the appropriate client will set the desired attributes in a
subsequent SETATTR operation, and the server SHOULD al | ow t hat
operation to succeed, regardl ess of what pernissions the object
is created with. For exanple, an enpty ACL denies al

per m ssions, but the server should allow the owner’s SETATTR to
succeed even though WRITE_ACL is inplicitly denied.

In other cases, inheritance SHOULD take place, and no

nodi fi cations to the ACL will happen. The node attribute, if
supported, MJIST be as conputed in Section 6.3.2, with the

Haynes & Noveck Expi res June 7, 2015 [Page 73]

Internet-Draft NFSv4 Decenber 2014

MODE4_SUI D, MODE4_SGA D and MODE4_SVTX bits clear. [If no
i nheritable ACEs exist on the parent directory, the rules for
creating acl attributes are inplenentation defined.

6.4.3.1. The Inherited ACL

7

7

If the object being created is not a directory, the inherited ACL
SHOULD NOT inherit ACEs fromthe parent directory ACL unless the
ACE4_FI LE_I NHERI T_FLAG i s set.

If the object being created is a directory, the inherited ACL shoul d
inherit all inheritable ACEs fromthe parent directory, those that
have ACE4_FI LE_| NHERI T_ACE or ACE4_DI RECTORY_I NHERI T_ACE fl ag set.

If the inheritable ACE has ACE4_FILE | NHERI T_ACE set, but

ACE4 DI RECTORY_INHERI T _ACE is clear, the inherited ACE on the newy
created directory MJST have the ACE4 INHERI T_ONLY _ACE flag set to
prevent the directory frombeing affected by ACEs neant for non-
directories.

When a new directory is created, the server MAY split any inherited
ACE which is both inheritable and effective (in other words, which
has neither ACE4 | NHERI T_ONLY_ACE nor ACE4 NO PROPAGATE_ | NHERI T_ACE
set), into two ACEs, one with no inheritance flags, and one with
ACE4 | NHERI T_ONLY_ACE set. This makes it sinpler to nodify the
effective perm ssions on the directory w thout nodifying the ACE
which is to be inherited to the new directory’s children

NFS Server Nane Space
1. Server Exports

On a UNI X server the nane space describes all the files reachabl e by
pat hnanes under the root directory or "/". On a Wndows server the
name space constitutes all the files on disks naned by mapped di sk
letters. NFS server administrators rarely nake the entire server’s
file system nane space available to NFS clients. Mre often portions
of the nane space are nade avail able via an "export" feature. In
previ ous versions of the NFS protocol, the root filehandle for each
export is obtained through the MOUNT protocol; the client sends a
string that identifies an object in the exported nane space and the
server returns the root filehandle for it. The MOUNT protoco
supports an EXPORTS procedure that will enunerate the server’s
exports.

Haynes & Noveck Expi res June 7, 2015 [Page 74]

Internet-Draft NFSv4 Decenber 2014

7.2. Browsing Exports

The NFSv4 protocol provides a root filehandle that clients can use to
obtain filehandles for these exports via a nulti-conponent LOOKUP. A
conmon user experience is to use a graphical user interface (perhaps
afile "Open" dialog window) to find a file via progressive browsing
through a directory tree. The client nmust be able to nove from one
export to another export via single-conponent, progressive LOOKUP
oper ati ons.

This style of browsing is not well supported by the NFSv2 and NFSv3
protocols. The client expects all LOOKUP operations to remain within
a single server file system For exanple, the device attribute wll
not change. This prevents a client fromtaking name space paths that
span exports

An autonounter on the client can obtain a snapshot of the server’s
nane space using the EXPORTS procedure of the MOUNT protocol. If it
under stands the server’s pathnane syntax, it can create an i mage of
the server’s nanme space on the client. The parts of the name space
that are not exported by the server are filled in with a "pseudo file
systent that allows the user to browse fromone nounted file system
to another. There is a drawback to this representation of the
server’s nane space on the client: it is static. |If the server

adm ni strator adds a new export the client will be unaware of it.

7.3. Server Pseudo Filesystem

NFSv4 servers avoid this name space inconsistency by presenting all
the exports within the framework of a single server name space. An
NFSv4 client uses LOOKUP and READDI R operations to browse seaml essly
fromone export to another. Portions of the server name space that
are not exported are bridged via a "pseudo file systent that provides
a view of exported directories only. A pseudo file systemhas a

uni que fsid and behaves like a normal, read only file system

Based on the construction of the server’s nane space, it is possible
that multiple pseudo file systems may exist. For exanpl e,

/a pseudo file system
/alb real file system
[alblc pseudo file system

lalblcld real file system

Each of the pseudo file systens are considered separate entities and
therefore will have a unique fsid.

Haynes & Noveck Expi res June 7, 2015 [Page 75]

Internet-Draft NFSv4 Decenber 2014

7.4. Miltiple Roots

The DOS and W ndows operating environnents are soneti nmes described as
having "nmultiple roots". Filesystens are commonly represented as
disk letters. MacCS represents file systens as top | evel nanes.
NFSv4 servers for these platforns can construct a pseudo file system
above these root names so that disk letters or volume nanmes are
simply directory nanes in the pseudo root.

7.5. Filehandle Volatility

The nature of the server’s pseudo file systemis that it is a |ogica
representation of file systen(s) available fromthe server

Therefore, the pseudo file systemis nost |likely constructed

dynami cal ly when the server is first instantiated. It is expected
that the pseudo file system nmay not have an on disk counterpart from
whi ch persistent filehandl es could be constructed. Even though it is
preferabl e that the server provide persistent filehandles for the
pseudo file system the NFS client should expect that pseudo file
system fil ehandl es are volatile. This can be confirmed by checking
the associated "fh_expire_type" attribute for those filehandles in
question. |If the filehandles are volatile, the NFS client nust be
prepared to recover a filehandle value (e.g., with a rmulti-conmponent
LOOKUP) when receiving an error of NFS4ERR_FHEXPI RED.

7.6. Exported Root

If the server’s root file systemis exported, one night conclude that
a pseudo file systemis not needed. This would be wong. Assune the
following file systens on a server

/ di skl (exported)

la di sk2 (not exported)
/alb di sk3 (exported)

Because disk2 is not exported, disk3 cannot be reached with sinple
LOOKUPs. The server nust bridge the gap with a pseudo file system

7.7. Mount Point Crossing
The server file systemenvironnment nay be constructed in such a way
that one file systemcontains a directory which is 'covered or
mount ed upon by a second file system For exanple:

/alb (file system 1)
lalblcld (file system 2)

Haynes & Noveck Expi res June 7, 2015 [Page 76]

Internet-Draft NFSv4 Decenber 2014

The pseudo file systemfor this server may be constructed to | ook

I'ike:

/ (pl ace hol der/ not exported)

/alb (file system 1)

lalblcld (file system 2)
It is the server’s responsibility to present the pseudo file system
that is conplete to the client. |If the client sends a | ookup request
for the path "/al/b/c/d", the server’'s response is the filehandle of
the file system"/a/b/c/d". In previous versions of the NFS

protocol, the server would respond with the filehandl e of directory "
lalb/c/d" within the file system"/a/b".

The NFS client will be able to determne if it crosses a server nount
poi nt by a change in the value of the "fsid" attribute.

7.8. Security Policy and Nane Space Presentation

Because NFSv4 clients possess the ability to change the security
mechani sms used, after determining what is allowed, by using SECI NFO
the server SHOULD NOT present a different view of the nanmespace based
on the security mechani smbeing used by a client. Instead, it should
present a consistent view and return NFS4ERR WRONGSEC i f an attenpt
is made to access data with an inappropriate security nechani sm

If security considerations make it necessary to hide the existence of
a particular file system as opposed to all of the data within it,
the server can apply the security policy of a shared resource in the
server’s nanmespace to conponents of the resource’'s ancestors. For

exanpl e:
/ (pl ace hol der/ not export ed)
/alb (file system 1)

[al bl MySecr et Proj ect (file system 2)

The /al/b/ MySecret Project directory is areal file systemand is the
shared resource. Suppose the security policy for /alb/
MySecretProject is Kerberos with integrity and it is desired to limt
know edge of the existence of this file system In this case, the
server should apply the sane security policy to /a/b. This allows
for know edge of the existence of a file systemto be secured when
desi rabl e.

For the case of the use of multiple, disjoint security nechanisns in
the server’s resources, applying that sort of policy would result in
the higher-level file system not being accessible using any security
flavor. Therefore, that sort of configuration is not conpatible with

Haynes & Noveck Expi res June 7, 2015 [Page 77]

Internet-Draft NFSv4 Decenber 2014

hi di ng the existence (as opposed to the contents) fromclients using
multiple disjoint sets of security flavors.

In other circunstances, a desirable policy is for the security of a
particul ar object in the server’'s nanespace to include the union of
all security nmechanisns of all direct descendants. A conmmon and
conveni ent practice, unless strong security requirenents dictate
otherwise, is to nake the entire pseudo file system accessi ble by al
of the valid security nechanisns.

Where there is concern about the security of data on the network,
clients should use strong security nechanisns to access the pseudo
file systemin order to prevent man-in-the-niddle attacks.

8. Milti-Server Nanespace

NFSv4 supports attributes that allow a nanespace to extend beyond the
boundaries of a single server. It is RECOWENDED that clients and
servers support construction of such nulti-server nanmespaces. Use of
such multi-server namespaces is optional, however, and for many

pur poses, single-server nanmespaces are perfectly acceptable. Use of
mul ti-server nanespaces can provi de nany advantages, however, by
separating a file system s |ogical position in a nanespace fromthe
(possi bly changing) |ogistical and administrative considerations that
result in particular file systens being | ocated on particul ar

servers.

8.1. Location Attributes

NFSv4 contai ns RECOMVENDED attributes that allow file systems on one
server to be associated with one or nore instances of that file
system on ot her servers. These attributes specify such file system

i nstances by specifying a server address target (either as a DNS nane
representing one or nore | P addresses or as a literal |IP address)
together with the path of that file systemw thin the associated

si ngl e-server nanespace.

The fs_locati ons RECOWENDED attribute allows specification of the
file system |l ocations where the data corresponding to a given file
system may be found.

8.2. File System Presence or Absence

A given location in an NFSv4 nanespace (typically but not necessarily
a multi-server nanespace) can have a nunber of file systeminstance

| ocations associated with it via the fs locations attribute. There
may al so be an actual current file systemat that | ocation

accessi bl e via normal nanmespace operations (e.g., LOOKUP). In this

Haynes & Noveck Expi res June 7, 2015 [Page 78]

Internet-Draft NFSv4 Decenber 2014

case, the file systemis said to be "present" at that position in the
nanespace, and clients will typically use it, reserving use of
additional |ocations specified via the location-related attributes to
situations in which the principal location is no | onger avail able.

When there is no actual file systemat the nanespace location in
question, the file systemis said to be "absent". An absent file
system contains no files or directories other than the root. Any
reference to it, except to access a small set of attributes useful in
determning alternative locations, will result in an error

NFSAERR MOVED. Note that if the server ever returns the error
NFSAERR MOVED, it MUST support the fs locations attribute.

Whil e the error name suggests that we have a case of a file system
that once was present, and has only beconme absent later, this is only
one possibility. A position in the nanespace nay be pernmanently
absent with the set of file systen(s) designated by the |ocation
attributes being the only realization. The name NFS4ERR MOVED
reflects an earlier, nore linited conception of its function, but
this error will be returned whenever the referenced file systemis
absent, whether it has noved or sinply never existed.

Except in the case of GETATTR-type operations (to be discussed
later), when the current filehandle at the start of an operation is
within an absent file system that operation is not perforned and the
error NFS4ERR MOVED is returned, to indicate that the file systemis
absent on the current server.

Because a GETFH cannot succeed if the current filehandle is within an
absent file system filehandles within an absent file system cannot
be transferred to the client. Wen a client does have fil ehandl es
within an absent file system it is the result of obtaining them when
the file systemwas present, and having the file system becone absent
subsequent | y.

It should be noted that because the check for the current filehandle
being within an absent file system happens at the start of every
operation, operations that change the current filehandle so that it
is wthin an absent file systemw Il not result in an error. This
al | ows such conbinations as PUTFH GETATTR and LOOKUP- GETATTR to be
used to get attribute information, particularly location attribute

i nformation, as discussed bel ow.

8.3. Cetting Attributes for an Absent File System
When a file systemis absent, nobst attributes are not avail able, but

it is necessary to allowthe client access to the small set of
attributes that are available, and nmost particularly that which gives

Haynes & Noveck Expi res June 7, 2015 [Page 79]

Internet-Draft NFSv4 Decenber 2014

i nformati on about the correct current locations for this file system
fs_locations.

8.3.1. CETATTR Wthin an Absent File System

As nentioned above, an exception is nmade for GETATTR in that
attributes may be obtained for a filehandle within an absent file
system This exception only applies if the attribute mask contains
at least the fs |locations attribute bit, which indicates the client
is interested in a result regarding an absent file system If it is
not requested, GETATTR will result in an NFS4ERR MOVED error

When a GETATTR is done on an absent file system the set of supported
attributes is very limted. Many attributes, including those that
are normally REQU RED, will not be available on an absent file
system In addition to the fs |locations attribute, the follow ng
attributes SHOULD be avail abl e on absent file systens. |In the case
of RECOMMENDED attributes, they should be available at |least to the
same degree that they are available on present file systens.

fsid: This attribute should be provided so that the client can
determne file system boundaries, including, in particular, the
boundary between present and absent file systens. This val ue nust
be different fromany other fsid on the current server and need
have no particular relationship to fsids on any particul ar
destination to which the client m ght be directed.

mounted _on fileid: For objects at the top of an absent file system
this attribute needs to be available. Since the fileidis within
the present parent file system there should be no need to
reference the absent file systemto provide this information.

O her attributes SHOULD NOT be made avail able for absent file
systens, even when it is possible to provide them The server should
not assune that nore information is always better and should avoid
gratuitously providing additional information.

When a GETATTR operation includes a bit mask for the attribute

fs locations, but where the bit mask includes attributes that are not
supported, GETATTR will not return an error, but will return the nmask
of the actual attributes supported with the results.

Handl i ng of VERIFY/NVERIFY is sinmlar to GETATTR in that if the
attribute mask does not include fs |ocations the error NFS4ERR MOVED

will result. It differs in that any appearance in the attribute mask
of an attribute not supported for an absent file system (and note
that this will include sonme normally REQUI RED attributes) will also

cause an NFS4ERR MOVED result.

Haynes & Noveck Expi res June 7, 2015 [Page 80]

I nt

8. 3.

8. 4.

Hay

ernet-Draft NFSv4 Decenber 2014

2. READDIR and Absent File Systens

A READDI R perforned when the current filehandle is within an absent
file systemw Il result in an NFS4ERR MOVED error, since, unlike the
case of CETATTR, no such exception is nade for READD R

Attributes for an absent file systemnay be fetched via a READDIR for
a directory in a present file system when that directory contains
the root directories of one or nore absent file systens. In this
case, the handling is as follows:

o |If the attribute set requested includes fs_|ocations, then
fetching of attributes proceeds normally and no NFS4ERR_MOVED
indication is returned, even when the rdattr_error attribute is
request ed.

o |If the attribute set requested does not include fs_|ocations, then
if the rdattr_error attribute is requested, each directory entry
for the root of an absent file systemw || report NFS4ERR_MOVED as
the value of the rdattr_error attribute.

o If the attribute set requested does not include either of the
attributes fs locations or rdattr_error then the occurrence of the
root of an absent file systemwithin the directory will result in
the READDIR failing with an NFS4ERR_MOVED error.

0 The unavailability of an attribute because of a file systens
absence, even one that is ordinarily REQU RED, does not result in
any error indication. The set of attributes returned for the root
directory of the absent file systemin that case is sinply
restricted to those actually avail abl e.

Uses of Location Information

The | ocation-bearing attribute of fs |ocations provides, together
with the possibility of absent file systens, a nunber of inportant
facilities in providing reliable, manageabl e, and scal abl e data
access.

When a file systemis present, these attributes can provide
alternative locations, to be used to access the sane data, in the
event of server failures, communications problens, or other
difficulties that make continued access to the current file system

i mpossi bl e or otherwi se inpractical. Under sone circunstances,
multiple alternative | ocations may be used sinultaneously to provide
hi gher - performance access to the file systemin question. Provision
of such alternative locations is referred to as "replication"

al though there are cases in which replicated sets of data are not in

nes & Noveck Expi res June 7, 2015 [Page 81]

Internet-Draft NFSv4 Decenber 2014

fact present, and the replicas are instead different paths to the
same dat a.

When a file systemis present and subsequently becones absent,
clients can be given the opportunity to have continued access to
their data, at an alternative location. Transfer of the file system
contents to the new location is referred to as "mgration". See
Section 8.4.2 for details.

Al ternative |l ocations may be be physical replicas of the file system
data or alternative conmunication paths to the sane server or, in the
case of various forms of server clustering, another server providing
access to the same physical file system The client’s
responsibilities in dealing with this transition depend on the
specific nature of the new access path as well as how and whet her
data was in fact nmigrated. These issues will be discussed in detail
bel ow

Where a file systemwas not previously present, specification of file
system | ocation provides a neans by which file systens | ocated on one
server can be associated with a nanespace defined by another server
thus allowing a general nulti-server nanmespace facility. A
designation of such a location, in place of an absent file system is
called a "referral "

Because client support for location-related attributes is OPTIONAL, a
server may (but is not required to) take action to hide migration and
referral events fromsuch clients, by acting as a proxy, for exanple.

8.4.1. File System Replication

The fs_locations attribute provides alternative | ocations, to be used
to access data in place of or in addition to the current file system
instance. On first access to a file system the client should obtain
the value of the set of alternative locations by interrogating the
fs_locations attribute.

In the event that server failures, communications problens, or other
difficulties make continued access to the current file system

i mpossi bl e or otherw se inpractical, the client can use the
alternative locations as a way to get continued access to its data.
Mul tiple locations may be used simnultaneously, to provide higher
performance through the exploitation of rmultiple paths between client
and target file system

Mul tiple server addresses, whether they are derived froma single
entry with a DNS nane representing a set of | P addresses or from

Haynes & Noveck Expi res June 7, 2015 [Page 82]

Internet-Draft NFSv4 Decenber 2014

multiple entries each with its own server address, may correspond to
the sane actual server.

8.4.2. File System Mgration

Wien a file systemis present and beconmes absent, clients can be

gi ven the opportunity to have continued access to their data, at an
alternative location, as specified by the fs_locations attribute.
Typically, a client will be accessing the file systemin question
get an NFS4ERR MOVED error, and then use the fs locations attribute
to determine the new | ocation of the data.

Such migration can be hel pful in providing | oad bal ancing or genera
resource reallocation. The protocol does not specify howthe file
systemw || be noved between servers. It is anticipated that a
nunber of different server-to-server transfer nechanisns night be
used with the choice left to the server inplenenter. The NFSv4
protocol specifies the nethod used to comunicate the mgration event
bet ween client and server.

When an alternative location is designated as the target for
mgration, it nust designate the sane data. Were file systens are
witable, a change nade on the original file systemnust be visible
on all migration targets. Were a file systemis not witable but
represents a read-only copy (possibly periodically updated) of a
witable file system simlar requirenents apply to the propagation
of updates. Any change visible in the original file system nust

al ready be effected on all migration targets, to avoid any
possibility that a client, in effecting a transition to the mgration
target, will see any reversion in file systemstate.

8.4.3. Referral s

Referrals provide a way of placing a file systemin a location within
t he nanespace essentially without respect to its physical |ocation on
a given server. This allows a single server or a set of servers to
present a nulti-server nanespace that enconpasses file systens

| ocated on multiple servers. Sone likely uses of this include

est abli shnent of site-w de or organization-w de nanespaces, or even
knitting such together into a truly gl obal nanespace.

Referrals occur when a client determines, upon first referencing a
position in the current namespace, that it is part of a new file
systemand that the file systemis absent. Wen this occurs,
typically by receiving the error NFS4ERR MOVED, the actual |ocation
or locations of the file system can be deternined by fetching the
fs locations attribute.

Haynes & Noveck Expi res June 7, 2015 [Page 83]

Internet-Draft NFSv4 Decenber 2014

The | ocations-related attribute nay designate a single file system
location or nultiple file system |l ocations, to be sel ected based on
the needs of the client.

Use of multi-server nanespaces is enabled by NFSv4 but is not
required. The use of nmulti-server nanmespaces and their scope wll
depend on the applications used and system adm ni stration

pr ef er ences.

Mul ti-server nanespaces can be established by a single server
providing a |large set of referrals to all of the included file
systens. Alternatively, a single nmulti-server nanmespace nmay be

adm nistratively segnented with separate referral file systens (on
separate servers) for each separately adm nistered portion of the
nanespace. The top-level referral file systemor any segnent may use
replicated referral file systens for higher availability.

Generally, multi-server namespaces are for the nost part uniform in
that the sane data nade available to one client at a given | ocation
in the namespace is nade available to all clients at that |ocation

8.5. Location Entries and Server ldentity

As nentioned above, a single |ocation entry may have a server address
target in the formof a DNS nanme that may represent nmultiple IP
addresses, while nultiple location entries nay have their own server
address targets that reference the sane server.

When multiple addresses for the sane server exist, the client may
assunme that for each file systemin the nanespace of a given server
networ k address, there exist file systenms at correspondi ng nanespace
| ocations for each of the other server network addresses. It may do
this even in the absence of explicit listing in fs_locations. Such
corresponding file systemlocations can be used as alternative

| ocations, just as those explicitly specified via the fs_|ocations
attribute.

If a single location entry designates multiple server |IP addresses,
the client should choose a single one to use. When two server
addresses are designated by a single location entry and they
correspond to different servers, this normally indicates sone sort of
nmi sconfiguration, and so the client should avoid using such |ocation
entries when alternatives are available. Wen they are not, clients
shoul d pick one of I P addresses and use it, w thout using others that
are not directed to the sanme server.

Haynes & Noveck Expi res June 7, 2015 [Page 84]

Internet-Draft NFSv4 Decenber 2014

8.6. Additional dient-Side Considerations

When clients make use of servers that inplenment referrals,
replication, and migration, care should be taken that a user who
mounts a given file systemthat includes a referral or a relocated
file systemcontinues to see a coherent picture of that user-side
file systemdespite the fact that it contains a nunber of server-side
file systenms that may be on different servers

One inportant issue is upward navigation fromthe root of a server-
side file systemto its parent (specified as ".." in UNNX), in the
case in which it transitions to that file systemas a result of
referral, migration, or a transition as a result of replication
When the client is at such a point, and it needs to ascend to the
parent, it nust go back to the parent as seen within the nulti-server
nanespace rather than sending a LOOKUPP operation to the server
which would result in the parent within that server’s single-server
namespace. In order to do this, the client needs to renenber the
filehandl es that represent such file systemroots and use these

i nstead of issuing a LOOKUPP operation to the current server. This
will allowthe client to present to applications a consistent
nanespace, where upward navi gati on and downward navi gati on are
consi stent.

Anot her issue concerns refresh of referral locations. Wen referrals
are used extensively, they may change as server configurations
change. It is expected that clients will cache information rel ated
to traversing referrals so that future client-side requests are

resol ved locally without server communication. This is usually
rooted in client-side nanme | ook up caching. dients should
periodically purge this data for referral points in order to detect
changes in location information

A potential problemexists if a client were to allow an open-owner to
have state on multiple file systens on server, in that it is unclear
how t he sequence nunbers associ ated with open-owners are to be dealt
with, in the event of transparent state migration. A client can
avoid such a situation, if it ensures that any use of an open-owner
is confined to a single file system

A server MAY decline to mgrate state associated with open-owners
that span multiple file systens. In cases in which the server
chooses not to migrate such state, the server MJST return
NFS4ERR _BAD STATEI D when the client uses those stateids on the new
server.

Haynes & Noveck Expi res June 7, 2015 [Page 85]

Internet-Draft NFSv4 Decenber 2014

The server MJST return NFSAERR STALE STATEI D when the client uses
those stateids on the old server, regardless of whether mgration has
occurred or not.

8.7. Effecting File System Referral s

Referrals are effected when an absent file systemis encountered, and
one or nore alternative |locations are nade avail able by the

fs locations attribute. The client will typically get an

NFSAERR MOVED error, fetch the appropriate |location informtion, and
proceed to access the file systemon a different server, even though
it retains its logical position within the original namespace
Referrals differ frommigration events in that they happen only when
the client has not previously referenced the file systemin question
(so there is nothing to transition). Referrals can only cone into

ef fect when an absent file systemis encountered at its root.

The exanples given in the sections below are somewhat artificial in
that an actual client will not typically do a multi-conmponent | ook
up, but will have cached information regarding the upper |evels of
the nane hierarchy. However, these exanple are chosen to nake the
requi red behavior clear and easy to put within the scope of a snal
nunber of requests, without getting unduly into details of how
specific clients m ght choose to cache things.

8.7.1. Referral Exanple (LOOKUP)
Let us suppose that the following COWPOUND is sent in an environnent
in which /this/is/the/path is absent fromthe target server. This
may be for a nunber of reasons. It nay be the case that the file
system has noved, or it may be the case that the target server is
functioning mainly, or solely, to refer clients to the servers on
whi ch various file systens are | ocated.
o PUTROOTFH
0o LOOKUP "t his"
o0 LOOKUP "is"
0 LOOKUP "the"
0 LOOKUP "path"
o GETFH

0 CETATTR(fsid,fileid,size, tinme_nodify)

Haynes & Noveck Expi res June 7, 2015 [Page 86]

Internet-Draft NFSv4 Decenber 2014

Under the given circunstances, the following will be the result.

0 PUTROOTFH --> NFS OK. The current fh is now the root of the
pseudo-fs.

0 LOOKUP "this" --> NFS OK. The current fhis for /this and is
wi thin the pseudo-fs.

0 LOOKUP "is" --> NFS K. The current fhis for /this/is and is
within the pseudo-fs.

0 LOOKUP "the" --> NFS K. The current fh is for /this/is/the and
is within the pseudo-fs.

0 LOOKUP "path" --> NFS OK. The current fhis for /this/is/the/path
and is within a new, absent file system but ... the client wll
never see the value of that fh.

0 CETFH --> NFS4ERR MOVED. Fails because current fh is in an absent
file systemat the start of the operation, and the specification
makes no exception for GETFH

o0 CETATTR(fsid,fileid,size, tine_nodify) Not executed because the
failure of the GETFH stops processing of the COVPOUND.

Gven the failure of the GETFH, the client has the job of determ ning
the root of the absent file systemand where to find that file
system i.e., the server and path relative to that server’s root fh.
Note here that in this exanple, the client did not obtain filehandles
and attribute information (e.g., fsid) for the internediate
directories, so that it would not be sure where the absent file
systemstarts. It could be the case, for exanple, that /this/is/the
is the root of the noved file systemand that the reason that the

| ook up of "path" succeeded is that the file system was not absent on
that operation but was noved between the |ast LOOKUP and the GETFH
(since COWOUND is not atomic). Even if we had the fsids for all of
the internmediate directories, we could have no way of know ng that /
this/is/the/path was the root of a new file system since we don't
yet have its fsid.

In order to get the necessary information, let us re-send the chain
of LOOKUPs with CGETFHs and GETATTRs to at |least get the fsids so we
can be sure where the appropriate file system boundaries are. The
client could choose to get fs_locations at the same tinme but in nost
cases the client will have a good guess as to where file system
boundari es are (because of where NFS4ERR MOVED was, and was not,
recei ved) naking fetching of fs_|ocations unnecessary.

Haynes & Noveck Expi res June 7, 2015 [Page 87]

Internet-Draft NFSv4 Decenber 2014

OP01: PUTROOTFH --> NFS_OK

- Current fh is root of pseudo-fs.

OP02: GETATTR(fsid) --> NFS_K

- Just for conpleteness. Nornally, clients will know the fsid of
the pseudo-fs as soon as they establish conmunication with a
server.

OP03: LOOKUP "this" --> NFS_CK

OP04: GETATTR(fsid) --> NFS_K

- Cet current fsid to see where file system boundaries are. The
fsid will be that for the pseudo-fs in this exanple, so no
boundary.

OP05: GETFH --> NFS_ K

- Current fhis for /this and is within pseudo-fs.

OP06: LOCOKUP "is" --> NFS_ K

- Current fhis for /this/is and is within pseudo-fs.

OP07: GETATTR(fsid) --> NFS_K

- Get current fsid to see where file system boundaries are. The
fsid will be that for the pseudo-fs in this exanple, so no
boundary.

OP08: GETFH --> NFS_ K

- Current fhis for /this/is and is within pseudo-fs.

OP09: LOOKUP "the" --> NFS_K

- Current fhis for /this/is/the and is w thin pseudo-fs.

OP10: GETATTR(fsid) --> NFS_K

- Cet current fsid to see where file system boundaries are. The
fsid will be that for the pseudo-fs in this exanple, so no

boundary.

OP11: GETFH --> NFS K

Haynes & Noveck Expi res June 7, 2015 [Page 88]

Internet-Draft NFSv4 Decenber 2014

- Current fhis for /this/is/the and is wthin pseudo-fs.
OP12: LOCOKUP "path" --> NFS_ K

- Current fhis for /this/is/the/path and is within a new, absent
file system but

- The client will never see the value of that fh.
OP13: CGETATTR(fsid, fs_ locations) --> NFS K

- W are getting the fsid to know where the file system boundaries
are. In this operation, the fsid will be different than that of
the parent directory (which in turn was retrieved in OP10). Note
that the fsid we are given will not necessarily be preserved at
the new |l ocation. That fsid mght be different, and in fact the
fsid we have for this file systemmght be a valid fsid of a
different file systemon that new server

- In this particular case, we are pretty sure anyway that what has
moved is /this/is/the/path rather than /this/is/the since we have
the fsid of the latter and it is that of the pseudo-fs, which
presunmably cannot nove. However, in other exanples, we m ght not
have this kind of information to rely on (e.g., /this/is/the m ght
be a non-pseudo file system separate from/this/is/the/path), so
we need to have other reliable source information on the boundary
of the file systemthat is noved. |If, for exanple, the file
system/this/is had noved, we would have a case of mgration
rather than referral, and once the boundaries of the nmigrated file
system was clear we could fetch fs_|ocations.

- W are fetching fs_locations because the fact that we got an
NFSAERR _MOVED at this point nmeans that it is nost likely that this
is areferral and we need the destination. Even if it is the case
that /this/is/the is a file systemthat has migrated, we wll
still need the location information for that file system

OP14: GETFH --> NFS4ERR _MOVED

- Fails because current fh is in an absent file systemat the start
of the operation, and the specification nmakes no exception for
GETFH. Note that this neans the server will never send the client
a filehandle fromw thin an absent file system

G ven the above, the client knows where the root of the absent file
systemis (/this/is/the/path) by noting where the change of fsid
occurred (between "the" and "path"). The fs |locations attribute al so
gives the client the actual |ocation of the absent file system so

Haynes & Noveck Expi res June 7, 2015 [Page 89]

Internet-Draft NFSv4 Decenber 2014

that the referral can proceed. The server gives the client the bare
m ni mum of information about the absent file systemso that there
will be very little scope for problens of conflict between
informati on sent by the referring server and information of the file
systenis hone. No filehandles and very few attributes are present on
the referring server, and the client can treat those it receives as
transient information with the function of enabling the referral

8.7.2. Referral Exanple (READD R
Anot her context in which a client may encounter referrals is when it
does a READDIR on a directory in which some of the sub-directories
are the roots of absent file systens.
Suppose such a directory is read as foll ows:
o PUTROOTFH
0o LOOKUP "t his"
o0 LOOKUP "is"
0 LOCOKUP "the"
0o READDIR (fsid, size, tinme_nodify, mounted_on_fileid)
In this case, because rdattr_error is not requested, fs_locations is
not requested, and some of the attributes cannot be provided, the
result will be an NFS4ERR MOVED error on the READDIR, with the

detailed results as foll ows:

0 PUTROOTFH --> NFS OK. The current fh is at the root of the
pseudo-fs.

0 LOOKUP "this" --> NFS OK. The current fhis for /this and is
wi thin the pseudo-fs.

0 LOOKUP "is" --> NFS K. The current fhis for /this/is and is
within the pseudo-fs.

0 LOOKUP "the" --> NFS K. The current fh is for /this/is/the and
is within the pseudo-fs.

0o READDIR (fsid, size, time_nodify, mounted_on_fileid) -->
NFS4ERR_MOVED. Note that the sane error would have been returned
if /this/is/the had mgrated, but it is returned because the
directory contains the root of an absent file system

Haynes & Noveck Expi res June 7, 2015 [Page 90]

Internet-Draft NFSv4 Decenber 2014

So now suppose that we re-send with rdattr_error:

(0]

(0]

(0]

(0]

(0]

PUTROOTFH
LOOKUP "t hi s"
LOOKUP "i s"
LOOKUP "t he"

READDI R (rdattr_error, fsid, size, time_nodify, nounted on fileid)

The results will be:

(0]

PUTROOTFH --> NFS OK. The current fh is at the root of the
pseudo-fs.

LOOKUP "this" --> NFS_OK. The current fhis for /this and is
wi thin the pseudo-fs.

LOOKUP "is" --> NFS K. The current fhis for /this/is and is
within the pseudo-fs.

LOOKUP "the" --> NFS_OK. The current fh is for /this/is/the and
is within the pseudo-fs.

READDI R (rdattr_error, fsid, size, time_nodify, nmounted_on_fileid)
--> NFS_ K. The attributes for directory entry with the conponent
naned "path" will only contain rdattr_error with the val ue
NFS4ERR_MOVED, together with an fsid value and a val ue for

nmount ed_on_fil ei d.

So suppose we do another READDIR to get fs_locations (although we
could have used a GETATTR directly, as in Section 8.7.1).

(0]

0

PUTROOTFH
LOOKUP "t hi s"
LOOKUP "i s"
LOOKUP "t he"

READDI R (rdattr_error, fs_locations, mounted_on_fileid, fsid,
size, time_nodify)

The results woul d be:

Haynes & Noveck Expi res June 7, 2015 [Page 91]

Internet-Draft NFSv4 Decenber 2014

0 PUTROOTFH --> NFS_ K. The current fh is at the root of the
pseudo-fs.

0 LOOKUP "this" --> NFS OK. The current fhis for /this and is
within the pseudo-fs.

0 LOOKUP "is" --> NFS_OK. The current fhis for /this/is and is
wi thin the pseudo-fs.

0 LOOKUP "the" --> NFS K. The current fh is for /this/is/the and
is within the pseudo-fs.

0 READDIR (rdattr_error, fs_locations, nounted_on_fileid, fsid,
size, time_nodify) --> NFS_ OK The attributes will be as shown
bel ow.

The attributes for the directory entry with the conponent naned
"path" will only contain:

o rdattr_error (value: NFS_OK)
o fs_ locations

o mounted on fileid (value: unique fileid within referring file
system

o fsid (value: unique value within referring server)

The attributes for entry "path" will not contain size or tinme_nodify
because these attributes are not available within an absent file
system

8.8. The Attribute fs_|ocations

The fs_locations attribute is defined by both fs_|ocation4

(Section 2.2.6) and fs_ locations4 (Section 2.2.7). It is used to
represent the location of a file system by providing a server nanme
and the path to the root of the file systemw thin that server’s
nanespace. Wen a set of servers have corresponding file systens at
the sane path within their nanespaces, an array of server names nmay
be provided. An entry in the server array is a UTF-8 string and
represents one of a traditional DNS host nane, |Pv4 address, |Pv6
address, or a zero-length string. A zero-length string SHOULD be
used to indicate the current address being used for the RPC call. It
is not a requirement that all servers that share the same rootpath be
listed in one fs locationd4 instance. The array of server names is
provi ded for convenience. Servers that share the same rootpath nmay

Haynes & Noveck Expi res June 7, 2015 [Page 92]

Internet-Draft NFSv4 Decenber 2014

also be listed in separate fs_location4 entries in the fs_|ocations
attribute

The fs_locations4 data type and fs_|locations attribute contain an
array of such locations. Since the nanespace of each server may be
constructed differently, the "fs_root" field is provided. The path
represented by fs_root represents the location of the file systemin
the current server’s nanespace, i.e., that of the server from which
the fs_locations attribute was obtained. The fs_root path is meant
to aid the client by clearly referencing the root of the file system
whose | ocations are being reported, no matter what object within the
current file systemthe current filehandl e designates. The fs_root
is sinply the pathname the client used to reach the object on the
current server (i.e., the object to which the fs_locations attribute

applies).

When the fs _|ocations attribute is interrogated and there are no
alternative file systemlocations, the server SHOULD return a zero-
length array of fs_location4 structures, together with a valid
fs_root.

As an exanpl e, suppose there is a replicated file systemlocated at
two servers (servA and servB). At servA the file systemis |ocated
at path /a/b/c. At, servBthe file systemis located at path /x/y/z.
If the client were to obtain the fs_locations value for the directory
at /a/b/c/d, it mght not necessarily know that the file systenis
root is located in servA's namespace at /a/b/c. Wen the client
switches to servB, it will need to determine that the directory it
first referenced at servA is now represented by the path /x/y/z/d on
servB. To facilitate this, the fs |ocations attribute provided by
servA woul d have an fs_root value of /a/b/c and two entries in

fs locations. One entry in fs_locations will be for itself (servA)
and the other will be for servBwith a path of /x/y/z. Wth this
information, the client is able to substitute /x/y/z for the /alb/c
at the beginning of its access path and construct /x/y/z/d to use for
t he new server.

Note that: there is no requirenent that the number of conponents in
each rootpath be the same; there is no relation between the nunber of
conponents in rootpath or fs root, and none of the conponents in each

rootpath and fs_root have to be the sane. In the above exanple, we
could have had a third elenent in the locations array, with server
equal to "servC', and rootpath equal to "/I/11", and a fourth el ement

in locations with server equal to "servD' and rootpath equal to "/
al eph/ bet h/ gi el / dal et h/ he"

Haynes & Noveck Expi res June 7, 2015 [Page 93]

Internet-Draft NFSv4 Decenber 2014

The rel ati onship between fs_root to a rootpath is that the client
repl aces the pathnane indicated in fs_root for the current server for
the substitute indicated in rootpath for the new server

For an exanple of a referred or mgrated file system suppose there
is afile systemlocated at servl. At servl, the file systemis

| ocated at /az/buky/vedi/glagoli. The client finds that object at
glagoli has nmigrated (or is a referral). The client gets the

fs locations attribute, which contains an fs_root of /az/buky/vedi/

gl agoli, and one elenent in the locations array, with server equal to
serv2, and rootpath equal to /izhitsa/fita. The client replaces /az/
buky/vedi/glagoli with /izhitsa/fita, and uses the |atter pathnane on
serv2.

Thus, the server MJST return an fs_root that is equal to the path the
client used to reach the object to which the fs |locations attribute
applies. Oherwise, the client cannot determ ne the new path to use
on the new server.

9. File Locking and Share Reservations

Integrating locking into the NFS protocol necessarily causes it to be
stateful. Wth the inclusion of share reservations the protoco
becones substantially nore dependent on state than the traditiona
conbi nati on of NFS and NLM (Network Lock Manager) [xnfs]. There are
three conponents to maeking this state manageabl e:

o clear division between client and server

o ability to reliably detect inconsistency in state between client
and server

o sinple and robust recovery nechani sns

In this nodel, the server owns the state information. The client
requests changes in locks and the server responds with the changes
made. Non-client-initiated changes in |ocking state are infrequent.
The client receives pronpt notification of such changes and can
adjust its view of the locking state to reflect the server’s changes

I ndi vi dual pieces of state created by the server and passed to the
client at its request are represented by 128-bit stateids. These
stateids nay represent a particular open file, a set of byte-range
| ocks held by a particular owner, or a recallable del egation of
privileges to access a file in particular ways or at a particul ar

| ocati on.

Haynes & Noveck Expi res June 7, 2015 [Page 94]

Internet-Draft NFSv4 Decenber 2014

In all cases, there is a transition fromthe nost general infornmation
that represents a client as a whole to the eventual |ightweight
stateid used for nost client and server |ocking interactions. The
details of this transition will vary with the type of object but it

al ways starts with a client ID

To support Wn32 share reservations it is necessary to atonmically
OPEN or CREATE files and apply the appropriate |locks in the same
operation. Having a separate share/unshare operation would not allow
correct inplenentation of the Wn32 QpenFile API. In order to
correctly inplement share semantics, the previous NFS protoco
nmechani snms used when a file is opened or created (LOOKUP, CREATE
ACCESS) need to be replaced. The NFSv4 protocol has an OPEN
operation that subsumes the NFSv3 net hodol ogy of LOOKUP, CREATE, and
ACCESS. However, because many operations require a filehandle, the
traditional LOOKUP is preserved to map a file name to fil ehandle

wi t hout establishing state on the server. The policy of granting
access or nodifying files is managed by the server based on the
client’s state. These mechani snms can inplement policy ranging from
advisory only locking to full mandatory | ocking.

9.1. Opens and Byte-Range Locks

It is assuned that mani pulating a byte-range lock is rare when
conmpared to READ and WRI TE operations. It is also assuned that
server restarts and network partitions are relatively rare.

Therefore it is inmportant that the READ and WRI TE operati ons have a

I i ghtwei ght nmechanismto indicate if they possess a held lock. A

byt e-range | ock request contains the heavywei ght infornmation required
to establish a |l ock and uni quely define the owner of the |ock

The follow ng sections describe the transition fromthe heavy wei ght
information to the eventual stateid used for nost client and server
| ocking and | ease interactions.

9.1.1. dient ID

For each LOCK request, the client nust identify itself to the server.
This is done in such a way as to allow for correct |ock
identification and crash recovery. A sequence of a SETCLI ENTID
operation followed by a SETCLI ENTI D CONFI RM operation is required to
establish the identification onto the server. Establishment of
identification by a new incarnation of the client also has the effect
of inmedi ately breaking any | eased state that a previous incarnation
of the client m ght have had on the server, as opposed to forcing the
new client incarnation to wait for the | eases to expire. Breaking
the | ease state anmpbunts to the server renoving all |ock, share
reservation, and, where the server is not supporting the

Haynes & Noveck Expi res June 7, 2015 [Page 95]

Internet-Draft NFSv4 Decenber 2014

CLAI M DELEGATE_PREV cl ai mtype, all del egation state associated with
same client with the same identity. For discussion of del egation
state recovery, see Section 10.2.1

Owners of opens and owners of byte-range | ocks are separate entities
and remain separate even if the same opaque arrays are used to

desi gnate owners of each. The protocol distinguishes between open-
owners (represented by open_owner4 structures) and | ock-owners
(represented by | ock_owner4 structures).

Both sorts of owners consist of a clientid and an opaque owner
string. For each client, the set of distinct owner values used with
that client constitutes the set of owners of that type, for the given
client.

Each open is associated with a specific open-owner while each byte-
range lock is associated with a | ock-owner and an open-owner, the

| atter being the open-owner associated with the open file under which
the LOCK operation was done.

Client identification is encapsulated in the follow ng structure:

struct nfs client _id4 {

verifier4d verifier;

opaque i d<NFS4_OPAQUE LI M T>;
}

The first field, verifier, is a client incarnation verifier that is
used to detect client reboots. Only if the verifier is different
fromthat which the server has previously recorded for the client (as
identified by the second field of the structure, id) does the server
start the process of canceling the client’s | eased state.

The second field, id, is a variable length string that uniquely
defines the client.

There are several considerations for how the client generates the id
string:

0 The string should be unique so that nultiple clients do not
present the sane string. The consequences of two clients
presenting the sane string range fromone client getting an error
to one client having its | eased state abruptly and unexpectedly
cancel ed.

0 The string should be selected so the subsequent incarnations

(e.g., reboots) of the sane client cause the client to present the
same string. The inplenmenter is cautioned agai nst an approach

Haynes & Noveck Expi res June 7, 2015 [Page 96]

Internet-Draft NFSv4 Decenber 2014

that requires the string to be recorded in a |local file because
this precludes the use of the inplementation in an environnent
where there is no local disk and all file access is froman NFSv4
server.

The string should be different for each server network address
that the client accesses, rather than common to all server network
addresses. The reason is that it may not be possible for the
client to tell if the same server is listening on nmultiple network
addresses. |If the client issues SETCLIENTID with the sanme id
string to each network address of such a server, the server wll
think it is the same client, and each successive SETCLIENTID wi ||
cause the server to begin the process of renobving the client’s
previ ous | eased state.

The algorithmfor generating the string should not assune that the
client’s network address won't change. This includes changes
between client incarnations and even changes while the client is
stilling running in its current incarnation. This neans that if
the client includes just the client’s and server’s network address
inthe id string, there is a real risk, after the client gives up
the network address, that another client, using a simlar
algorithmfor generating the id string, will generate a
conflicting id string.

G ven the above considerations, an exanple of a well generated id
string is one that includes:

(0]

(0]

The server’s networ k address.
The client’s network address.

For a user level NFSv4 client, it should contain additiona
information to distinguish the client from other user |eve
clients running on the sane host, such as an universally unique
identifier (UU D).

Addi tional information that tends to be uni que, such as one or
nore of:

* The client nmachine’'s serial nunber (for privacy reasons, it is
best to performsonme one way function on the serial nunber).

* A MAC address (for privacy reasons, it is best to perform sone
one way function on the MAC address).

* The timestanp of when the NFSv4 software was first installed on
the client (though this is subject to the previously nmentioned

Haynes & Noveck Expi res June 7, 2015 [Page 97]

Internet-Draft NFSv4 Decenber 2014

caution about using information that is stored in a file,
because the file mght only be accessible over NFSv4).

* A true random nunber. However since this nunber ought to be
the sane between client incarnations, this shares the sane
problem as that of the using the tinmestanp of the software
installation.

As a security neasure, the server MJST NOT cancel a client’s |eased
state if the principal that established the state for a given id
string is not the same as the principal issuing the SETCLI ENTI D.

Note that SETCLIENTID (Section 15.35) and SETCLI ENTI D_CONFI RM
(Section 15.36) have a secondary purpose of establishing the
informati on the server needs to nmake call backs to the client for the
pur pose of supporting delegations. It is permtted to change this

i nformati on via SETCLI ENTI D and SETCLI ENTI D_CONFI RM wi t hin the same
incarnation of the client without renoving the client’s | eased state.

Once a SETCLI ENTI D and SETCLI ENTI D_CONFI RM sequence has successfully
compl eted, the client uses the shorthand client identifier, of type
clientid4, instead of the longer and | ess conpact nfs client _id4
structure. This shorthand client identifier (a client ID) is
assigned by the server and should be chosen so that it will not
conflict with a client ID previously assigned by the server. This
appl i es across server restarts or reboots. Wen a client IDis
presented to a server and that client IDis not recognized, as woul d
happen after a server reboot, the server will reject the request wth
the error NFS4ERR STALE CLIENTID. Wen this happens, the client nust
obtain a new client I D by use of the SETCLI ENTI D operation and then
proceed to any other necessary recovery for the server reboot case
(See Section 9.6.2).

The client nust also enploy the SETCLI ENTI D operation when it

recei ves a NFSA4ERR STALE STATEID error using a stateid derived from
its current client ID since this also indicates a server reboot

whi ch has invalidated the existing client ID (see Section 9.6.2 for
details).

See the detail ed descriptions of SETCLI ENTID (Section 15.35.4) and
SETCLI ENTI D_CONFI RM (Section 15.36.4) for a conplete specification of
t he operations.

9.1.2. Server Release of Cient ID
If the server determnes that the client holds no associated state

for its client ID, the server may choose to release the client ID
The server may make this choice for an inactive client so that

Haynes & Noveck Expi res June 7, 2015 [Page 98]

Internet-Draft NFSv4 Decenber 2014

9.

resources are not consuned by those internmittently active clients.

If the client contacts the server after this rel ease, the server nust
ensure the client receives the appropriate error so that it will use
the SETCLI ENTI Y SETCLI ENTI D_CONFI RM sequence to establish a new
identity. It should be clear that the server nust be very hesitant
to release a client ID since the resulting work on the client to
recover fromsuch an event will be the sane burden as if the server
had failed and restarted. Typically a server would not rel ease a
client 1D unless there had been no activity fromthat client for many
m nut es.

Note that if the id string in a SETCLIENTID request is properly
constructed, and if the client takes care to use the sane principa
for each successive use of SETCLI ENTID, then, barring an active
deni al of service attack, NFS4ERR CLI D I NUSE shoul d never be
returned.

However, client bugs, server bugs, or perhaps a deliberate change of
the principal owner of the id string (such as the case of a client
that changes security flavors, and under the new flavor, there is no
mapping to the previous owner) will in rare cases result in
NFS4ERR_CLI D_| NUSE

In that event, when the server gets a SETCLIENTID for a client ID
that currently has no state, or it has state, but the | ease has
expired, rather than returning NFS4ERR CLI D | NUSE, the server MJST
all ow the SETCLIENTID, and confirmthe newclient IDif foll owed by
t he appropriate SETCLI ENTI D_CONFI RM

1.3. Use of Seqids
In several contexts, 32-bit sequence values, called "seqids" are used
as part of managing | ocking state. Such values are used:

0 To provide an ordering of |ocking-related operations associated
with a particular |ock-owner or open-owner. See Section 9.1.7 for
a detail ed expl anati on.

0 To define an ordered set of instances of a set of |ocks sharing a
particul ar set of ownership characteristics. See Section 9.1.4.2
for a detail ed explanati on.

Successi ve seqid values for the same object are normally arrived at
by incrementing the current value by one. This pattern continues
until the seqid is incremented past NFS4_U NT32_MAX, in which case
one (rather than zero) is to be the next seqid val ue.

Haynes & Noveck Expi res June 7, 2015 [Page 99]

Internet-Draft NFSv4 Decenber 2014

When two seqid values are to be conpared to determnine which of the
two is later, the possibility of waparound needs to be considered.
In many cases, the values are such that sinple nuneric conparisons
can be used. For exanple, if the seqid values to be conpared are
both I ess than one nmillion, the higher value can be considered the
later. On the other hand, if one of the values is at or near
NFS_UI NT32_MAX and the other is less than one million, then

i npl ement ati ons can reasonably deci de that the | ower value has had
one nore waparound and is thus, while nunerically |ower, actually
| ater.

| mpl enent ati ons can conpare seqgids in the presence of potenti al

wr apar ound by adopting the reasonabl e assunption that the chain of
increments fromone to the other is shorter than 2**31. So, if the
di fference between the two seqids is less than 2**31, then the | ower
seqid is to be treated as earlier. |f, however, the difference
between the two seqids is greater than or equal to 2**31, then it can
be assuned that the | ower seqid has encountered one nore w aparound
and can be treated as later.

9.1.4. Stateid Definition

When the server grants a | ock of any type (including opens, byte-
range | ocks, and delegations), it responds with a unique stateid that
represents a set of locks (often a single |l ock) for the sane file, of
the sane type, and sharing the sanme ownership characteristics. Thus,
opens of the same file by different open-owners each have an
identifying stateid. Sinmlarly, each set of byte-range |ocks on a
file owned by a specific | ock-owner has its own identifying stateid.
Del egations al so have associ ated stateids by which they nmay be
referenced. The stateid is used as a shorthand reference to a | ock
or set of locks, and given a stateid, the server can determ ne the
associ ated state-owner or state-owners (in the case of an open-owner/
| ock-owner pair) and the associated filehandle. Wen stateids are
used, the current filehandl e nust be the one associated with that
statei d.

Al'l stateids associated with a given client ID are associated with a
common | ease that represents the claimof those stateids and the

obj ects they represent to be maintained by the server. See

Section 9.5 for a discussion of the |ease.

Each stateid nust be unique to the server. Mny operations take a

stateid as an argunment but not a clientid, so the server nust be able
to infer the client fromthe stateid.

Haynes & Noveck Expi res June 7, 2015 [Page 100]

Internet-Draft NFSv4 Decenber 2014

9.1.4.1. Stateid Types

Wth the exception of special stateids (see Section 9.1.4.3), each
stateid represents | ocking objects of one of a set of types defined
by the NFSv4 protocol. Note that in all these cases, where we speak
of a guarantee, it is understood there are situations such as a
client restart, or lock revocation, that allow the guarantee to be
voi ded.

0 Stateids may represent opens of files.

Each stateid in this case represents the OPEN state for a given
client 1D/ open-owner/filehandle triple. Such stateids are subject
to change (wi th consequent increnenting of the stateid s seqid) in
response to OPENs that result in upgrade and OPEN_DOANGRADE
operations.

0o Stateids may represent sets of byte-range | ocks.

Al'l locks held on a particular file by a particular owner and all
gotten under the aegis of a particular open file are associ ated
with a single stateid with the seqid being increnented whenever
LOCK and LOCKU operations affect that set of |ocks.

o0 Stateids may represent file del egations, which are recallable
guarantees by the server to the client that other clients will not
reference, or will not nodify, a particular file until the
del egation is returned.

A stateid represents a single delegation held by a client for a
particul ar fil ehandl e.

9.1.4.2. Stateid Structure

Stateids are divided into two fields, a 96-bit "other" field
identifying the specific set of locks and a 32-bit "seqid" sequence
value. Except in the case of special stateids (see Section 9.1.4.3),
a particular value of the "other" field denotes a set of |ocks of the
same type (for exanple, byte-range |ocks, opens, or delegations), for
a specific file or directory, and sharing the sane ownership
characteristics. The seqid designates a specific instance of such a
set of locks, and is increnented to indicate changes in such a set of
| ocks, either by the addition or deletion of |ocks fromthe set, a
change in the byte-range they apply to, or an upgrade or downgrade in
the type of one or nore | ocks.

When such a set of locks is first created, the server returns a
stateid with seqid value of one. On subsequent operations that

Haynes & Noveck Expi res June 7, 2015 [Page 101]

Internet-Draft NFSv4 Decenber 2014

nodi fy the set of |ocks, the server is required to advance the
"seqid" field by one whenever it returns a stateid for the sane
state-owner/file/type conbination and the operation is one that night
make sone change in the set of |ocks actually designated. In this
case, the server will return a stateid with an "other" field the sanme
as previously used for that state-owner/file/type conbination, with
an increnmented "seqid" field.

Seqids will be conpared, by both the client and the server. The
client uses such conparisons to determ ne the order of operations
while the server uses themto determ ne whether the

NFSA4ERR_OLD STATEID error is to be returned. |In all cases, the
possibility of seqid waparound needs to be taken into account, as
di scussed in Section 9.1.3

9.1.4.3. Special Stateids

Stateid val ues whose "other" field is either all zeros or all ones
are reserved. They MJST NOT be assigned by the server but have
speci al neani ngs defined by the protocol. The particular meaning
depends on whether the "other"” field is all zeros or all ones and the
specific value of the "seqid" field.

The foll owi ng conbi nati ons of "other" and "seqid" are defined in
NFSv4:

Anonyrmous Stateid: Wen "other"” and "seqid* are both zero, the
stateid is treated as a special anonynous stateid, which can be
used in READ, WRITE, and SETATTR requests to indicate the absence
of any open state associated with the request. Wen an anonynous
stateid value is used, and an existing open denies the form of
access requested, then access will be denied to the request.

READ Bypass Stateid: Wen "other" and "seqid" are both all ones, the
stateid is a special READ bypass stateid. Wen this value is used
in WRITE or SETATTR, it is treated |like the anonynous val ue. Wen
used in READ, the server MAY grant access, even if access woul d
normal |y be denied to READ requests.

If a stateid value is used which has all zero or all ones in the
"other" field, but does not match one of the cases above, the server
MUST return the error NFSAERR BAD STATEI D.

Speci al stateids, unlike other stateids, are not associated with

individual client IDs or filehandl es and can be used with all valid
client 1Ds and fil ehandl es.

Haynes & Noveck Expi res June 7, 2015 [Page 102]

Internet-Draft NFSv4 Decenber 2014

9.1.4.4. Stateid Lifetinme and Validation

Stateids nmust remain valid until either a client restart or a server
restart or until the client returns all of the |ocks associated with
the stateid by neans of an operation such as CLOSE or DELEGRETURN.

If the locks are |l ost due to revocation as long as the client IDis
valid, the stateid remains a valid designation of that revoked state.
Statei ds associated with byte-range | ocks are an exception. They
remain valid even if a LOCKU frees all remaining | ocks, so |ong as
the open file with which they are associ ated renmai ns open

It should be noted that there are situations in which the client’s

| ocks becone invalid, without the client requesting they be returned.
These include | ease expiration and a nunmber of forns of |ock
revocation within the lease period. It is inportant to note that in
these situations, the stateid remains valid and the client can use it
to determne the disposition of the associated |ost | ocks.

An "ot her" val ue must never be reused for a different purpose (i.e.
different filehandl e, owner, or type of |locks) within the context of
a single client ID. A server may retain the "other" value for the
same purpose beyond the point where it nmay otherwi se be freed but if
it does so, it nust nmaintain "seqid" continuity with previous val ues.
One nechani smthat may be used to satisfy the requirenent that the
server recognize invalid and out-of-date stateids is for the server
to divide the "other"” field of the stateid into two fields.

0 An index into a table of |ocking-state structures.

0 A generation nunber which is incremented on each allocation of a
table entry for a particul ar use.

And then store in each table entry,
0o The client IDwith which the stateid is associ at ed.

o The current generation nunmber for the (at nost one) valid stateid
sharing this index val ue.

o The filehandl e of the file on which the | ocks are taken

0 An indication of the type of stateid (open, byte-range |lock, file
del egati on).

o0 The last "seqid" value returned corresponding to the current
"ot her" val ue.

Haynes & Noveck Expi res June 7, 2015 [Page 103]

Internet-Draft NFSv4 Decenber 2014

0 An indication of the current status of the |ocks associated with
this stateid. |In particular, whether these have been revoked and
if so, for what reason.

Wth this information, an incomng stateid can be validated and the
appropriate error returned when necessary. Special and non-speci al
stateids are handl ed separately. (See Section 9.1.4.3 for a

di scussi on of special stateids.)

When a stateid is being tested, and the "other" field is all zeros or
all ones, a check that the "other" and "seqid" fields match a defined
combi nation for a special stateid is done and the results determ ned
as foll ows:

o If the "other" and "seqid" fields do not match a defined
conbi nation associated with a special stateid, the error
NFSAERR BAD STATEI D i s returned.

o If the conbination is valid in general but is not appropriate to
the context in which the stateid is used (e.g., an all-zero
stateid is used when an open stateid is required in a LOCK
operation), the error NFS4ERR BAD STATEID is al so returned

0 Oherwise, the check is conpleted and the special stateid is
accepted as valid.

When a stateid is being tested, and the "other"” field is neither al
zeros or all ones, the follow ng procedure could be used to validate
an incomng stateid and return an appropriate error, when necessary,
assuning that the "other" field would be divided into a table index
and an entry generation. Note that the terns "earlier" and "later"
used in connection with seqid conparison are to be understood as
expl ained in Section 9.1.3.

o If the table index field is outside the range of the associated
tabl e, return NFS4AERR BAD STATEI D.

o If the selected table entry is of a different generation than that
specified in the incomng stateid, return NFS4ERR BAD STATEI D.

o |If the selected table entry does not match the current filehandl e,
return NFS4ERR _BAD_STATEI D.

o If the stateid represents revoked state or state lost as a result

of |l ease expiration, then return NFS4ERR_EXPI RED,
NFSAERR BAD STATEI D, or NFS4ERR _ADM N REVCKED, as appropri ate.

Haynes & Noveck Expi res June 7, 2015 [Page 104]

Internet-Draft NFSv4 Decenber 2014

o If the stateid type is not valid for the context in which the
stateid appears, return NFS4AERR BAD STATEID. Note that a stateid
may be valid in general, but be invalid for a particul ar
operation, as, for exanple, when a stateid which doesn't represent
byte-range | ocks is passed to the non-from open case of LOCK or to
LOCKU, or when a stateid which does not represent an open is
passed to CLOSE or OPEN DOMNGRADE. In such cases, the server MJST
return NFS4ERR _BAD STATEI D.

o If the "seqid" fieldis not zero, and it is later than the current
sequence val ue corresponding to the current "other" field, return
NFS4ERR_BAD_STATEI D.

o If the "seqid" field is earlier than the current sequence val ue
corresponding to the current "other"” field, return
NFS4ERR_OLD_STATEI D

0 Oherwise, the stateid is valid and the table entry should contain
any additional information about the type of stateid and
i nformati on associated with that particular type of stateid, such
as the associated set of |ocks, such as open-owner and | ock-owner
information, as well as information on the specific |ocks, such as
open nodes and byte ranges.

9.1.4.5. Stateid Use for |I/0O Operations

Clients performng Input/Qutput (I1/O operations need to select an
appropriate stateid based on the | ocks (including opens and

del egations) held by the client and the various types of state-owners
sending the 1/O requests. SETATTR operations that change the file
size are treated like I/O operations in this regard.

The following rules, applied in order of decreasing priority, govern
the selection of the appropriate stateid. 1In follow ng these rules,
the client will only consider |ocks of which it has actually received
notification by an appropriate operation response or call back

o If the client holds a delegation for the file in question, the
del egation stateid SHOULD be used.

0 Oherwise, if the entity corresponding to the | ock-owner (e.g., a
process) sending the 1/0O has a byte-range | ock stateid for the
associ ated open file, then the byte-range |l ock stateid for that
| ock- owner and open file SHOULD be used.

o If there is no byte-range |lock stateid, then the OPEN stateid for

the current open-owner, i.e., the OPEN stateid for the open file
i n question, SHOULD be used.

Haynes & Noveck Expi res June 7, 2015 [Page 105]

Internet-Draft NFSv4 Decenber 2014

o Finally, if none of the above apply, then a special stateid SHOULD
be used.

Ignoring these rules nay result in situations in which the server
does not have information necessary to properly process the request.
For exanpl e, when nandatory byte-range |ocks are in effect, if the
stateid does not indicate the proper |ock-owner, via a |lock stateid,
a request mght be avoi dably rejected.

The server however should not try to enforce these ordering rules and
shoul d use whatever infornation is available to properly process |1/0
requests. In particular, when a client has a delegation for a given
file, it SHOULD take note of this fact in processing a request, even
if it is sent with a special stateid.

9.1.4.6. Stateid Use for SETATTR Qperations

In the case of SETATTR operations, a stateid is present. |In cases
other than those that set the file size, the client may send either a
special stateid or, when a delegation is held for the file in
question, a delegation stateid. Wile the server SHOULD val i date the
stateid and nmay use the stateid to optinize the determnation as to
whet her a del egation is held, it SHOULD note the presence of a

del egati on even when a special stateid is sent, and MJST accept a

val id del egation stateid when sent.

9.1.5. | ock-owner
When requesting a lock, the client nust present to the server the
client 1D and an identifier for the owner of the requested | ock
These two fields are referred to as the | ock-owner and the definition
of those fields are:

o Aclient IDreturned by the server as part of the client’s use of
the SETCLI ENTI D operation

o A variable length opaque array used to uni quely define the owner
of a |l ock managed by the client.

This may be a thread id, process id, or other unique val ue.
When the server grants the lock, it responds with a uni que stateid.

The stateid is used as a shorthand reference to the | ock-owner, since
the server will be maintaining the correspondence between them

Haynes & Noveck Expi res June 7, 2015 [Page 106]

Internet-Draft NFSv4 Decenber 2014

9.1.6. Use of the Stateid and Locking

Al'l READ, WRI TE and SETATTR operations contain a stateid. For the
pur poses of this section, SETATTR operations which change the size
attribute of a file are treated as if they are witing the area

bet ween the old and new size (i.e., the range truncated or added to
the file by means of the SETATTR), even where SETATTR i s not
explicitly mentioned in the text. The stateid passed to one of these
operations nmust be one that represents an OPEN (e.g., via the open-
owner), a set of byte-range | ocks, or a delegation, or it may be a
special stateid representing anonynous access or the READ bypass

st atei d.

If the state-owner perfornms a READ or WRITE in a situation in which
it has established a | ock or share reservation on the server (any
OPEN constitutes a share reservation) the stateid (previously
returned by the server) nust be used to indicate what | ocks,

i ncludi ng both byte-range | ocks and share reservations, are held by
the state-owner. |If no state is established by the client, either
byte-range | ock or share reservation, the anonynmous stateid is used.
Regar dl ess whet her an anonynous stateid or a stateid returned by the
server is used, if there is a conflicting share reservation or
mandat ory byte-range | ock held on the file, the server MJST refuse to
service the READ or WRI TE operati on.

Share reservations are established by OPEN operations and by their
nature are mandatory in that when the OPEN deni es READ or WRI TE
operations, that denial results in such operations being rejected
with error NFSAERR LOCKED. Byte-range |ocks nay be inpl enented by
the server as either mandatory or advisory, or the choice of

mandat ory or advi sory behavior may be determ ned by the server on the
basis of the file being accessed (for exanple, sone UN X-based
servers support a "mandatory lock bit" on the node attribute such
that if set, byte-range locks are required on the file before I/Ois
possi ble). Wen byte-range | ocks are advisory, they only prevent the
granting of conflicting |ock requests and have no effect on READs or
VWRI TEs. Mandatory byte-range | ocks, however, prevent conflicting 1/0O
operations. Wen they are attenpted, they are rejected with

NFSAERR LOCKED. When the client gets NFSAERR LOCKED on a file it
knows it has the proper share reservation for, it will need to issue
a LOCK request on the region of the file that includes the region the
I/Owas to be perforned on, with an appropriate |ocktype (i.e.

READ* LT for a READ operation, WRITE*_LT for a WRI TE operation).

Wth NFSv3, there was no notion of a stateid so there was no way to

tell if the application process of the client sending the READ or
WRI TE operation had al so acquired the appropriate byte-range | ock on

Haynes & Noveck Expi res June 7, 2015 [Page 107]

Internet-Draft NFSv4 Decenber 2014

the file. Thus there was no way to inplenent mandatory | ocking.
Wth the stateid construct, this barrier has been renoved.

Note that for UNI X environnents that support mandatory file | ocking,

the distinction between advisory and nandatory |ocking is subtle. In
fact, advisory and nandatory byte-range | ocks are exactly the sanme in
so far as the APls and requirenents on inplenentation. If the

mandatory lock attribute is set on the file, the server checks to see
if the | ock-owner has an appropriate shared (read) or exclusive
(wite) byte-range lock on the region it wishes to read or wite to.
If there is no appropriate |ock, the server checks if there is a
conflicting lock (which can be done by attenpting to acquire the
conflicting lock on the behalf of the |ock-owner, and if successful
rel ease the lock after the READ or WRITE is done), and if there is,
the server returns NFS4ERR _LOCKED.

For Wndows environments, there are no advisory byte-range |ocks, so
the server always checks for byte-range |ocks during I/O requests.

Thus, the NFSv4 LOCK operation does not need to distinguish between
advi sory and mandatory byte-range locks. It is the NFS version 4
server’'s processing of the READ and WRI TE operations that introduces
the distinction.

Every stateid other than the special stateid values noted in this
section, whether returned by an OPEN-type operation (i.e., OPEN
OPEN_DOANGRADE) , or by a LOCK-type operation (i.e., LOCK or LOCKU)
defines an access node for the file (i.e., READ, WRITE, or READ
WRI TE) as established by the original OPEN which began the stateid
sequence, and as nodified by subsequent OPENs and OPEN_ DOANGRADES
within that stateid sequence. Wen a READ, WRI TE, or SETATTR whi ch
specifies the size attribute, is done, the operation is subject to
checki ng agai nst the access node to verify that the operation is
appropriate given the OPEN with which the operation is associ at ed.

In the case of WRI TE-type operations (i.e., WRITEs and SETATTRs whi ch
set size), the server nust verify that the access node allows witing
and return an NFS4ERR OPENMODE error if it does not. |In the case, of
READ, the server may performthe correspondi ng check on the access
node, or it may choose to all ow READ on opens for WRITE only, to
acconmodat e clients whose wite inplenentation nay unavoi dably do
reads (e.g., due to buffer cache constraints). However, even if
READs are allowed in these circunstances, the server MJST still check
for locks that conflict with the READ (e.g., another open specifying
deni al of READs). Note that a server which does enforce the access
node check on READs need not explicitly check for conflicting share
reservations since the existence of OPEN for read access guarantees
that no conflicting share reservation can exist.

Haynes & Noveck Expi res June 7, 2015 [Page 108]

Internet-Draft NFSv4 Decenber 2014

A READ bypass stateid MAY al |l ow READ operations to bypass | ocking
checks at the server. However, WRI TE operations with a READ bypass
stateid MUST NOT bypass | ocking checks and are treated exactly the
same as if an anonynous stateid were used.

A lock may not be granted while a READ or WRI TE operation using one
of the special stateids is being performed and the range of the | ock
request conflicts with the range of the READ or WRI TE operation. For
the purposes of this paragraph, a conflict occurs when a shared | ock
is requested and a WRI TE operation is being perforned, or an
exclusive lock is requested and either a READ or a WRI TE operation is
being performed. A SETATTR that sets size is treated sinilarly to a
VWRI TE as di scussed above.

9.1.7. Sequencing of Lock Requests

Locking is different than nost NFS operations as it requires "at-
nost - one" senmantics that are not provided by ONC RPC. ONC RPC over a
reliable transport is not sufficient because a sequence of | ocking
requests may span nultiple TCP connections. |In the face of

retransm ssion or reordering, |ock or unlock requests nust have a
wel | defined and consistent behavior. To acconplish this, each |ock
request contains a sequence nunber that is a consecutively increasing
integer. Different state-owners have different sequences. The
server maintains the |ast sequence nunber (L) received and the
response that was returned. The server SHOULD assign a seqid val ue
of one for the first request issued for any given state-owner
Subsequent val ues are arrived at by increnenting the seqid val ue,

subj ect to waparound as described in Section 9.1.3.

Note that for requests that contain a sequence number, for each
state-owner, there should be no nore than one outstandi ng request.

When a request is received, its sequence nunber (r) is conpared to
that of the last one received (L). Only if it has the correct next
sequence, norrmally L + 1, is the request processed beyond the point
of seqid checking. G ven a properly-functioning client, the response
to (r) must have been received before the | ast request (L) was sent.
If a duplicate of |last request (r == L) is received, the stored
response is returned. |If the sequence value received is any other
value, it is rejected with the return of error NFS4ERR BAD SEQ D.
Sequence history is reinitialized whenever the SETCLI ENTI Y
SETCLI ENTI D_CONFI RM sequence changes the client verifier.

It is critical the server maintain the | ast response sent to the
client to provide a nore reliable cache of duplicate non-idenpotent
requests than that of the traditional cache described in [Chet]. The
tradi tional duplicate request cache uses a |l east recently used

Haynes & Noveck Expi res June 7, 2015 [Page 109]

Internet-Draft NFSv4 Decenber 2014

al gorithm for renoving unneeded requests. However, the |last |ock
request and response on a given state-owner nust be cached as |ong as
the | ock state exists on the server

The client MJUST advance the sequence nunmber for the CLOSE, LOCK
LOCKU, OPEN, OPEN CONFI RM and OPEN DOANGRADE operations. This is
true even in the event that the previous operation that used the
sequence nunmber received an error. The only exception to this rule
is if the previous operation received one of the following errors:
NFS4ERR_STALE_CLI ENTI D, NFS4ERR_STALE_STATEI D, NFS4ERR_BAD_STATEI D,
NFS4ERR_BAD_SEQ D, NFS4ERR BADXDR, NFS4ERR RESOURCE,

NFS4ERR_NOFI LEHANDLE, or NFS4ERR_MOVED.

9.1.8. Recovery from Repl ayed Requests

As described above, the sequence nunber is per state-owner. As |long
as the server nmaintains the | ast sequence nunber received and foll ows
the met hods described above, there are no risks of a Byzantine router
re-sending old requests. The server need only nmaintain the (state-
owner, sequence nunber) state as long as there are open files or
closed files with | ocks outstanding.

LOCK, LOCKU, OPEN, OPEN DOANGRADE, and CLOSE each contain a sequence
nunber and therefore the risk of the replay of these operations
resulting in undesired effects is non-existent while the server

mai ntai ns the state-owner state.

9.1.9. Interactions of nultiple sequence val ues

Sone QOperations may have nultiple sources of data for request
sequence checking and retransm ssion determination. Some Operations
have nul ti pl e sequence val ues associated with nultiple types of
state-owners. In addition, such Operations nmay al so have a stateid
with its own seqid value, that will be checked for validity.

As noted above, there may be nultiple sequence values to check. The
followi ng rules should be foll owed by the server in processing these
mul ti pl e sequence values within a single operation

0 \When a sequence val ue associated with a state-owner is unavail abl e
for checking because the state-owner is unknown to the server, it
takes no part in the conparison.

0 \When any of the state-owner sequence val ues are invalid,
NFSAERR BAD SEQ D is returned. Wen a stateid sequence is
checked, NFS4ERR BAD STATEI D, or NFS4ERR _OLD STATEID is returned
as appropriate, but NFS4ERR BAD SEQ D has priority

Haynes & Noveck Expi res June 7, 2015 [Page 110]

Internet-Draft NFSv4 Decenber 2014

o \When any one of the sequence val ues matches a previ ous request,
for a state-owner, it is treated as a retransni ssion and not re-
executed. When the type of the operation does not match that
originally used, NFS4ERR BAD SEQ D is returned. Wen the server
can determine that the request differs fromthe original it may
return NFS4ERR_BAD SEQ D.

o When multiple of the sequence val ues match previ ous operations,
but the operations are not the sane, NFS4ERR BAD SEQ D is
returned.

0 When there are no avail abl e sequence val ues avail able for
compari son and the operation is an OPEN, the server indicates to
the client that an OPEN CONFIRMis required, unless it can
conclusively determne that confirmation is not required (e.g., by
knowi ng that no open-owner state has ever been released for the
current clientid).

9.1.10. Releasing state-owner State

When a particul ar state-owner no | onger holds open or file | ocking
state at the server, the server may choose to rel ease the sequence
nunber state associated with the state-owner. The server nmay nake
this choice based on | ease expiration, for the reclamtion of server
menory, or other inplenmentation specific details. Note that when
this is done, a retransmtted request, nornmally identified by a

mat chi ng st at e- owner sequence may not be correctly recognized, so
that the client will not receive the original response that it would
have if the state-owner state was not rel eased

If the server were able to be sure that a given state-owner would
never again be used by a client, such an issue could not arise. Even
when the state-owner state is released and the client subsequently
uses that state-owner, retransmtted requests will be detected as
invalid and the request not executed, although the client nmay have a
recovery path that is nore conplicated than sinply getting the
original response back transparently.

In any event, the server is able to safely rel ease state-owner state
(in the sense that retransmtted requests will not be erroneously
acted upon) when the state-owner is not currently being utilized by
the client (i.e., there are no open files associated with an open-
owner and no | ock stateids associated with a | ock-owner). The server
may choose to hold the state-owner state in order to sinplify the
recovery path, in the case in which retransm ssions of currently
active requests are received. However, the period for which it
chooses to hold this state is inplenentation specific.

Haynes & Noveck Expi res June 7, 2015 [Page 111]

Internet-Draft NFSv4 Decenber 2014

In the case that a LOCK, LOCKU, OPEN DOANGRADE, or CLCSE is
retransmtted after the server has previously rel eased the state-
owner state, the server will find that the state-owner has no files
open and an error will be returned to the client. |If the state-owner
does have a file open, the stateid will not match and again an error
is returned to the client.

9.1.11. Use of Open Confirmation

In the case that an OPEN is retransnitted and the open-owner is being
used for the first tinme or the open-owner state has been previously
rel eased by the server, the use of the OPEN_CONFI RM operation will
prevent incorrect behavior. Wen the server observes the use of the
open-owner for the first tine, it will direct the client to perform
the OPEN_CONFIRM for the corresponding OPEN. This sequence
establ i shes the use of a open-owner and associ ated sequence nunber.
Si nce the OPEN_CONFI RM sequence connects a new open-owner on the
server with an existing open-owner on a client, the sequence numnber
may have any valid (i.e., non-zero) value. The OPEN_CONFI RM step
assures the server that the value received is the correct one. (see
Section 15.20 for further details.)

There are a nunber of situations in which the requirenent to confirm
an OPEN woul d pose difficulties for the client and server, in that
they would be prevented fromacting in a tinely fashion on

i nformati on recei ved, because that information would be provisional
subject to deletion upon non-confirmation. Fortunately, these are
situations in which the server can avoid the need for confirmation
when respondi ng to open requests. The two constraints are:

0 The server nust not bestow a del egation for any open which woul d
require confirmtion

0 The server MJUST NOT require confirmation on a reclai mtype open
(i.e., one specifying claimtype CLAI M PREVI QUS or
CLAI M _DELEGATE_PREV) .

These constraints are related in that reclai mtype opens are the only
ones in which the server may be required to send a del egation. For
CLAI M NULL, sending the delegation is optional while for

CLAI M DELEGATE _CUR, no del egation is sent.

Del egati ons being sent with an open requiring confirmation are

troubl esonme because recovering from non-confirmati on adds undue
complexity to the protocol while requiring confirmation on reclaim
type opens poses difficulties in that the inability to resolve the
status of the reclaimuntil |ease expiration may nake it difficult to

Haynes & Noveck Expi res June 7, 2015 [Page 112]

Internet-Draft NFSv4 Decenber 2014

have tinely determ nation of the set of |ocks being reclainmed (since
the grace period may expire).

Requiring open confirmation on reclai mtype opens is avoi dabl e
because of the nature of the environnents in which such opens are
done. For CLAIM PREVI QUS opens, this is imediately after server
reboot, so there should be no tinme for open-owners to be created,
found to be unused, and recycled. For CLAI M DELEGATE_PREV opens, we
are dealing with either a client reboot situation or a network
partition resulting in deletion of |lease state (and returning
NFSAERR EXPI RED). A server which supports del egati ons can be sure
that no open-owners for that client have been recycled since client
initialization or deletion of |ease state and thus can be confident
that confirmation will not be required.

9.2. Lock Ranges

The protocol allows a | ock-owner to request a lock with a byte range
and then either upgrade or unlock a sub-range of the initial |ock.

It is expected that this will be an uncomon type of request. In any
case, servers or server file systenms may not be able to support sub-
range |l ock semantics. 1In the event that a server receives a | ocking

request that represents a sub-range of current |ocking state for the
| ock-owner, the server is allowed to return the error
NFSAERR LOCK RANGE to signify that it does not support sub-range | ock
operations. Therefore, the client should be prepared to receive this
error and, if appropriate, report the error to the requesting
appl i cation.

The client is discouraged from conbining nultiple independent | ocking
ranges that happen to be adjacent into a single request since the
server may not support sub-range requests and for reasons related to
the recovery of file locking state in the event of server failure.

As discussed in the Section 9.6.2 below, the server may enpl oy
certain optimnizations during recovery that work effectively only when
the client’s behavior during |ock recovery is simlar to the client’s
| ocki ng behavior prior to server failure.

9.3. Upgradi ng and Downgradi ng Locks

If aclient has a wite lock on a record, it can request an atonic
downgrade of the lock to a read lock via the LOCK request, by setting
the type to READ_LT. |If the server supports atonic downgrade, the
request will succeed. |If not, it will return NFS4ERR LOCK NOTSUPP
The client should be prepared to receive this error, and if
appropriate, report the error to the requesting application.

Haynes & Noveck Expi res June 7, 2015 [Page 113]

Internet-Draft NFSv4 Decenber 2014

If aclient has a read lock on a record, it can request an atomc
upgrade of the lock to a wite lock via the LOCK request by setting
the type to WRITE LT or WRITEWLT. |If the server does not support
atom c upgrade, it will return NFS4ERR LOCK NOTSUPP. |f the upgrade
can be achi eved without an existing conflict, the request will
succeed. O herwise, the server will return either NFS4ERR_DENI ED or
NFS4ERR_DEADLOCK. The error NFS4ERR DEADLOCK is returned if the
client issued the LOCK request with the type set to WRITEWLT and the
server has detected a deadl ock. The client should be prepared to
receive such errors and if appropriate, report the error to the
requesting application

9.4. Bl ocking Locks

Sone clients require the support of blocking |ocks. The NFS version
4 protocol nust not rely on a call back nmechanismand therefore is
unable to notify a client when a previously denied | ock has been
granted. dients have no choice but to continually poll for the

Il ock. This presents a fairness problem Two new |l ock types are
added, READW and WRI TEW and are used to indicate to the server that
the client is requesting a blocking |ock. The server should maintain
an ordered list of pending blocking | ocks. Wen the conflicting |ock
is released, the server may wait the |l ease period for the first
waiting client to re-request the lock. After the |ease period
expires the next waiting client request is allowed the lock. dients
are required to poll at an interval sufficiently small that it is
likely to acquire the lock in a timely manner. The server is not
required to maintain a list of pending blocked |locks as it is not
used to provide correct operation but only to increase fairness.
Because of the unordered nature of crash recovery, storing of |ock
state to stable storage would be required to guarantee ordered
granting of Dbl ocking | ocks.

Servers may al so note the | ock types and del ay returning denial of
the request to allow extra tine for a conflicting |lock to be

rel eased, allowi ng a successful return. |In this way, clients can
avoi d the burden of needlessly frequent polling for blocking |ocks.
The server should take care in the Iength of delay in the event the
client retransmts the request.

If a server receives a bl ocking | ock request, denies it, and then

| ater receives a nonbl ocking request for the same |ock, which is al so
denied, then it should renove the lock in question fromits list of
pendi ng bl ocking locks. dients should use such a nonbl ocki ng
request to indicate to the server that this is the last time they
intend to poll for the lock, as may happen when the process
requesting the lock is interrupted. This is a courtesy to the
server, to prevent it fromunnecessarily waiting a | ease period

Haynes & Noveck Expi res June 7, 2015 [Page 114]

Internet-Draft NFSv4 Decenber 2014

before granting other |ock requests. However, clients are not
required to performthis courtesy, and servers nust not depend on
them doing so. Also, clients nust be prepared for the possibility
that this final |ocking request will be accepted

9.5. Lease Renewa

The purpose of a lease is to allow a server to renove stale | ocks
that are held by a client that has crashed or is otherw se
unreachable. It is not a mechani smfor cache consistency and | ease
renewal s may not be denied if the | ease interval has not expired.

The client can inplicitly provide a positive indication that it is
still active and that the associated state held at the server, for
the client, is still valid. Any operation made with a valid clientid
(DELEGPURGE, LOCK, LOCKT, OPEN, RELEASE_LOCKOMNER, or RENEW or a
valid stateid (CLOSE, DELECRETURN, LOCK, LOCKU, OPEN, OPEN_CONFI RM
OPEN_DOWNGRADE, READ, SETATTR, or WRITE) inforns the server to renew
all of the leases for that client (i.e., all those sharing a given
client 1D). In the latter case, the stateid nmust not be one of the
speci al stateids (anonynmous stateid or READ bypass stateid).

Note that if the client had restarted or rebooted, the client would
not be naking these requests w thout issuing the SETCLI ENTI DY
SETCLI ENTI D_CONFI RM sequence. The use of the SETCLI ENTI D/
SETCLI ENTI D_CONFI RM sequence (one that changes the client verifier)
notifies the server to drop the | ocking state associated with the
client. SETCLIENTI D/ SETCLI ENTI D_CONFI RM never renews a | ease.

If the server has rebooted, the stateids (NFSAERR STALE STATEI D
error) or the client ID (NFS4ERR_STALE CLIENTID error) will not be
valid hence preventing spurious renewals.

Thi s approach allows for | ow overhead | ease renewal which scal es
well. In the typical case no extra RPC calls are required for |ease
renewal and in the worst case one RPCis required every | ease period
(i.e., a RENEWoperation). The nunber of |ocks held by the client is
not a factor since all state for the client is involved with the

| ease renewal action.

Since all operations that create a new | ease al so renew exi sting

| eases, the server nust maintain a conmon | ease expiration tinme for
all valid |leases for a given client. This |ease time can then be
easily updated upon inplicit |ease renewal actions.

Haynes & Noveck Expi res June 7, 2015 [Page 115]

Internet-Draft NFSv4 Decenber 2014

9.6. Crash Recovery

The inportant requirenent in crash recovery is that both the client
and the server know when the other has failed. Additionally, it is
required that a client sees a consistent view of data across server
restarts or reboots. Al READ and WRI TE operations that may have
been queued within the client or network buffers nust wait until the
client has successfully recovered the | ocks protecting the READ and
WRI TE operati ons.

9.6.1. dient Failure and Recovery

In the event that a client fails, the server may recover the client’s
| ocks when the associ ated | eases have expired. Conflicting |ocks
fromanother client may only be granted after this | ease expiration
If the client is able to restart or reinitialize within the |ease
period the client may be forced to wait the remai nder of the |ease
period before obtaining new I ocks.

To mnimze client delay upon restart, open and | ock requests are
associated with an instance of the client by a client supplied
verifier. This verifier is part of the initial SETCLIENTID call nade
by the client. The server returns a client 1D as a result of the
SETCLI ENTI D operation. The client then confirms the use of the
client IDwith SETCLIENTID CONFIRM The client 1D in conbination
with an opaque owner field is then used by the client to identify the
open-owner for OPEN. This chain of associations is then used to
identify all locks for a particular client.

Since the verifier will be changed by the client upon each
initialization, the server can conpare a new verifier to the verifier
associated with currently held | ocks and determ ne that they do not
match. This signifies the client’s new instantiati on and subsequent
| oss of locking state. As a result, the server is free to rel ease
all locks held which are associated with the old client |ID which was
derived fromthe old verifier.

Note that the verifier nust have the sane uni queness properties of
the verifier for the COWM T operati on.

9.6.2. Server Failure and Recovery

If the server loses locking state (usually as a result of a restart
or reboot), it must allowclients time to discover this fact and re-
establish the lost |locking state. The client nust be able to re-
establish the |ocking state w thout having the server deny valid
requests because the server has granted conflicting access to another
client. Likewise, if there is the possibility that clients have not

Haynes & Noveck Expi res June 7, 2015 [Page 116]

Internet-Draft NFSv4 Decenber 2014

yet re-established their | ocking state for a file, the server nust
di sal | ow READ and WRI TE operations for that file. The duration of
this recovery period is equal to the duration of the | ease period.

A client can determne that server failure (and thus | oss of |ocking
state) has occurred, when it receives one of two errors. The
NFS4ERR_STALE_STATEID error indicates a stateid invalidated by a
reboot or restart. The NFS4ERR STALE CLIENTID error indicates a
client 1D invalidated by reboot or restart. When either of these are
received, the client nust establish a newclient 1D (see

Section 9.1.1) and re-establish the locking state as discussed bel ow

The period of special handling of |ocking and READs and WRI TEs, equa
in duration to the lease period, is referred to as the "grace
period". During the grace period, clients recover |ocks and the
associ ated state by reclai mtype | ocking requests (i.e., LOCK
requests with reclaimset to true and OPEN operations with a claim
type of either CLAI M PREVIOQUS or CLAI M DELEGATE PREV). During the
grace period, the server nust reject READ and WRI TE operations and
non-recl aiml ocking requests (i.e., other LOCK and OPEN operati ons)
with an error of NFS4ERR GRACE

If the server can reliably determ ne that granting a non-recl ai m
request will not conflict with reclamation of |ocks by other clients,
t he NFS4ERR _CRACE error does not have to be returned and the non-
reclaimclient request can be serviced. For the server to be able to
service READ and WRI TE operations during the grace period, it nust
again be able to guarantee that no possible conflict could arise

bet ween an inpending reclai mlocking request and the READ or WRI TE
operation. |If the server is unable to offer that guarantee, the
NFS4ERR_GRACE error nust be returned to the client.

For a server to provide sinple, valid handling during the grace
period, the easiest nethod is to sinply reject all non-reclaim

| ocki ng requests and READ and WRI TE operations by returning the
NFSAERR GRACE error. However, a server may keep information about
granted locks in stable storage. Wth this information, the server
could determine if a regular |ock or READ or WRI TE operation can be
saf el y processed.

For exanple, if a count of locks on a given file is available in
stabl e storage, the server can track reclained |locks for the file and
when all reclainms have been processed, non-reclai mlocking requests
may be processed. This way the server can ensure that non-reclaim

| ocking requests will not conflict with potential reclaimrequests.
Wth respect to I/Orequests, if the server is able to determ ne that
there are no outstanding reclaimrequests for a file by infornmation

Haynes & Noveck Expi res June 7, 2015 [Page 117]

Internet-Draft NFSv4 Decenber 2014

from stabl e storage or another similar mechanism the processing of I
/O requests could proceed normally for the file.

To reiterate, for a server that allows non-reclaimlock and I/0O
requests to be processed during the grace period, it MJST deternmne
that no | ock subsequently reclained will be rejected and that no | ock
subsequently recl ai red woul d have prevented any |/ O operation
processed during the grace period.

Clients should be prepared for the return of NFS4ERR GRACE errors for
non-reclaimlock and 1/O requests. 1In this case the client should
enploy a retry mechanismfor the request. A delay (on the order of
several seconds) between retries should be used to avoid overwhel imi ng
the server. Further discussion of the general issue is included in
[Floyd]. The client must account for the server that is able to
perform1/0O and non-reclai mlocking requests within the grace period
as well as those that cannot do so.

A reclaimtype | ocking request outside the server’s grace period can
only succeed if the server can guarantee that no conflicting |ock or
I/ O request has been granted since reboot or restart.

A server may, upon restart, establish a new value for the | ease
period. Therefore, clients should, once a newclient IDis
established, refetch the lease_tine attribute and use it as the basis
for | ease renewal for the | ease associated with that server.

However, the server nust establish, for this restart event, a grace
period at least as long as the | ease period for the previous server
instantiation. This allows the client state obtained during the
previous server instance to be reliably re-established.

9.6.3. Network Partitions and Recovery

If the duration of a network partition is greater than the |ease
peri od provided by the server, the server will have not received a

| ease renewal fromthe client. |If this occurs, the server may cance
the |l ease and free all locks held for the client. As a result, all
stateids held by the client will become invalid or stale. Once the
client is able to reach the server after such a network partition
all 1/O subnmitted by the client with the nowinvalid stateids wll
fail with the server returning the error NFS4ERR EXPI RED. Once this
error is received, the client will suitably notify the application
that held the | ock.

Haynes & Noveck Expi res June 7, 2015 [Page 118]

Internet-Draft NFSv4 Decenber 2014

9.6.3.1. Courtesy Locks

As a courtesy to the client or as an optim zation, the server may
continue to hold I ocks, including del egations, on behalf of a client
for which recent conmuni cation has extended beyond the | ease peri od,
del ayi ng the cancellation of the lease. |If the server receives a
lock or 1/Orequest that conflicts with one of these courtesy | ocks
or if it runs out of resources, the server MAY cause | ease

cancel lation to occur at that tine and henceforth return

NFS4ERR _EXPI RED when any of the stateids associated with the freed
locks is used. |If |ease cancellation has not occurred and the server
receives a lock or I/Orequest that conflicts with one of the
courtesy locks, the requirenents are as foll ows:

0 In the case of a courtesy lock which is not a delegation, it MJST
free the courtesy lock and grant the new request.

o0 In the case of lock or I/O request which conflicts with a
del egation which is being held as courtesy lock, the server NMNAY
del ay resolution of request but MJST NOT reject the request and
MUST free the del egation and grant the new request eventually.

0 In the case of a requests for a delegation which conflicts with a
del egation which is being held as a courtesy |ock, the server MAY
grant the new request or not as it chooses, but if it grants the
conflicting request, the delegation held as a courtesy |ock MJST
be freed.

If the server does not reboot or cancel the | ease before the network
partition is healed, when the original client tries to access a
courtesy lock which was freed, the server SHOULD send back a
NFS4ERR BAD STATEID to the client. |If the client tries to access a
courtesy |lock which was not freed, then the server SHOULD mark all of
the courtesy locks as inplicitly being renewed.

9.6.3.2. Lease Cancellation

As a result of |ease expiration, |eases nmay be cancel ed, either
i medi at el y upon expiration or subsequently, depending on the
occurrence of a conflicting | ock or extension of the period of
partition beyond what the server will tolerate.

When a lease is canceled, all locking state associated with it is
freed and use of any the associated stateids will result in
NFSAERR _EXPI RED being returned. Simlarly, use of the associated
clientid will result in NFS4ERR _EXPI RED bei ng ret urned

Haynes & Noveck Expi res June 7, 2015 [Page 119]

Internet-Draft NFSv4 Decenber 2014

The client should recover fromthis situation by using SETCLI ENTID
foll owed by SETCLIENTID CONFIRM in order to establish a new
clientid. Once a lock is obtained using this clientid, a |lease wll
be established.

9.6.3.3. dient's Reaction to a Freed Lock

There is no way for a client to predeterm ne how a given server is
goi ng to behave during a network partition. Wen the partition
heal s, either the client still has all of its locks, it has sone of
its locks, or it has none of them The client will be able to
exam ne the various error return values to determne its response.

NFS4ERR_EXPI RED:
Al'l 1 ocks have been freed as a result of a |ease cancellation
whi ch occurred during the partition. The client should use a
SETCLI ENTI D to recover.

NFS4ERR_ADM N_REVOKED:
The current | ock has been revoked before, during, or after the
partition. The client SHOULD handle this error as it nornally
woul d.

NFS4ERR_BAD STATEI D

The current | ock has been revoked/rel eased during the partition

and the server did not reboot. Oher |ocks MAY still be renewed.
The client need not do a SETCLIENTID and i nstead SHOULD probe via
a RENEW cal | .

NFS4ERR_RECLAI M_BAD:
The current | ock has been revoked during the partition and the
server rebooted. The server mght have no information on the
other locks. They may still be renewable.

NFS4ERR_NO_GRACE:

The client’s | ocks have been revoked during the partition and the
server rebooted. None of the client’s locks will be renewable.

NFS4AERR_OLD_STATEI D

The server has not rebooted. The client SHOULD handl e this error
as it nornally would.

Haynes & Noveck Expi res June 7, 2015 [Page 120]

Internet-Draft NFSv4 Decenber 2014

9.6.3.4. Edge Conditions

When a network partition is conbined with a server reboot, then both
the server and client have responsibilities to ensure that the client
does not reclaima lock which it should no | onger be able to access.

Briefly those are:

o Cient’s responsibility: Aclient MIST NOT attenpt to reclai many
| ocks which it did not hold at the end of its nost recent
successfully established client |ease.

0 Server’'s responsibility: A server MJIST NOT allow a client to
reclaima lock unless it knows that it could not have since
granted a conflicting | ock. However, in deciding whether a
conflicting | ock could have been granted, it is permtted to
assune its clients are responsi ble, as above.

A server may consider a client’s |ease "successfully established”
once it has received an open operation fromthat client.

The above are directed to CLAIM PREVIQUS reclains and not to

CLAI M DELEGATE _PREV recl ai ns, which generally do not involve a server
reboot. However, when a server persistently stores del egation
information to support CLAI M DELEGATE PREV across a period in which
both client and server are down at the sane tine, sinilar strictures

apply.
The next sections give exanples showi ng what can go wong if these
responsibilities are neglected, and provi des exanpl es of server
i mpl ementation strategies that could neet a server’s
responsibilities.

9.6.3.4.1. First Server Edge Condition
The first edge condition has the follow ng scenario:

1. dient A acquires a lock

2. dient A and server experience nutual network partition, such
that client Ais unable to renewits |ease.

3. Cdient A's | ease expires, so server releases |ock

4. Cdient B acquires a lock that would have conflicted with that of
Client A

5. dient B releases the | ock

Haynes & Noveck Expi res June 7, 2015 [Page 121]

Internet-Draft NFSv4 Decenber 2014

6. Server reboots
7. Network partition between client A and server heals.

8. Cdient A issues a RENEWoperation, and gets back a
NFS4ERR_STALE _CLI ENTI D.

9. dient Areclains its lock within the server’s grace peri od.
Thus, at the final step, the server has erroneously granted client
A's lock reclaim |If client B nodified the object the | ock was
protecting, client A wll experience object corruption.

9.6.3.4.2. Second Server Edge Condition

The second known edge condition foll ows:

1. Client A acquires a | ock.

2. Server reboots.

3. Client A and server experience nutual network partition, such
that client Ais unable to reclaimits lock within the grace
peri od.

4. Server’s reclaimgrace period ends. dient A has no | ocks

recorded on server.

5. Client B acquires a |lock that would have conflicted with that of
Client A

6. Client B releases the |ock.

7. Server reboots a second tine.

8. Network partition between client A and server heals.

9. Client A issues a RENEW operation, and gets back a
NFS4ERR_STALE_CLI ENTI D.

10. dient Areclains its lock within the server’s grace peri od.
As with the first edge condition, the final step of the scenario of

the second edge condition has the server erroneously granting client
A's lock reclaim

Haynes & Noveck Expi res June 7, 2015 [Page 122]

Internet-Draft NFSv4 Decenber 2014

9.6.3.4.3. Handling Server Edge Conditions

In both of the above exanples, the client attenpts reclaimof a |ock
that it held at the end of its nobst recent successfully established
| ease; thus, it has fulfilled its responsibility.

The server, however, has failed, by granting a reclaim despite
having granted a conflicting | ock since the reclainmed | ock was | ast
hel d.

Sol ving these edge conditions requires that the server either assune
after it reboots that edge condition occurs, and thus return
NFS4ERR_NO CRACE for all reclaimattenpts, or that the server record
some information in stable storage. The anount of information the
server records in stable storage is in inverse proportion to how
harsh the server wants to be whenever the edge conditions occur. The
server that is conpletely tolerant of all edge conditions will record
in stable storage every lock that is acquired, renoving the |ock
record fromstable storage only when the lock is unlocked by the
client and the | ock’s owner advances the sequence number such that
the lock release is not the last stateful event for the owner’s
sequence. For the two aforenenti oned edge conditions, the harshest a
server can be, and still support a grace period for reclains,
requires that the server record in stable storage some m ni nal
information. For exanple, a server inplenmentation could, for each
client, save in stable storage a record contai ni ng:

o the client’s id string

0 a boolean that indicates if the client’s |ease expired or if there
was adninistrative intervention (see Section 9.8) to revoke a
byt e-range | ock, share reservation, or del egation

0 atimestanp that is updated the first tine after a server boot or
reboot the client acquires byte-range |ocking, share reservation
or delegation state on the server. The tinestanp need not be
updat ed on subsequent |ock requests until the server reboots.

The server inplenentation would also record in the stable storage the
tinmestanps fromthe two nbst recent server reboots.

Assumi ng the above record keeping, for the first edge condition

after the server reboots, the record that client A's | ease expired
means that another client could have acquired a conflicting record

| ock, share reservation, or delegation. Hence the server nust reject
areclaimfromclient Awith the error NFS4ERR NO GRACE or
NFS4ERR_RECLAI M_BAD

Haynes & Noveck Expi res June 7, 2015 [Page 123]

Internet-Draft NFSv4 Decenber 2014

For the second edge condition, after the server reboots for a second
time, the record that the client had an unexpired record | ock, share
reservation, or delegation established before the server’s previous

i ncarnati on neans that the server nust reject a reclaimfromclient A
with the error NFS4ERR NO GRACE or NFS4ERR _RECLAI M BAD.

Regardl ess of the | evel and approach to record keeping, the server
MUST i mpl enent one of the followi ng strategies (which apply to
reclainms of share reservations, byte-range |ocks, and del egations):

1. Reject all reclains with NFS4ERR NO GRACE. This is super harsh
but necessary if the server does not want to record lock state in
stabl e storage.

2. Record sufficient state in stable storage to neet its
responsibilities. |In doubt, the server should err on the side of
bei ng har sh.

In the event that, after a server reboot, the server deternmi nes
that there is unrecoverabl e damage or corruption to the stable
storage, then for all clients and/or |ocks affected, the server
MJUST return NFS4ERR_NO _GRACE.

9.6.3.4.4. dient Edge Condition
A third edge condition effects the client and not the server. |[If the

server reboots in the mddle of the client reclaimng sone | ocks and
then a network partition is established, the client mght be in the

situation of having reclained sone, but not all locks. In that case,
a conservative client woul d assune that the non-reclai med | ocks were
revoked.

The third known edge condition follows:

1. Client A acquires a |ock 1.
2. Client A acquires a |lock 2.
3. Server reboots.

4, Client A issues a RENEW operation, and gets back a
NFS4ERR_STALE _CLI ENTI D.

5. Client Areclains its lock 1 within the server’s grace peri od.
6. Client A and server experience nutual network partition, such

that client Ais unable to reclaimits renmaining |ocks within
t he grace peri od.

Haynes & Noveck Expi res June 7, 2015 [Page 124]

Internet-Draft NFSv4 Decenber 2014

7. Server’s reclaimagrace period ends.

8. Client B acquires a |ock that would have conflicted with Cient
A's |ock 2.

9. Client B releases the |ock

10. Server reboots a second tine.
11. Network partition between client A and server heals.

12. dient A issues a RENEW operation, and gets back a
NFSA4ERR_STALE_CLI ENTI D.

13. dient Areclains both lock 1 and lock 2 within the server’s
grace period.

At the last step, the client reclains lock 2 as if it had held that
| ock continuously, when in fact a conflicting | ock was granted to
client B.

This occurs because the client failed its responsibility, by
attenpting to reclaimlock 2 even though it had not held that | ock at
the end of the |lease that was established by the SETCLIENTID after
the first server reboot. (The client did hold lock 2 on a previous
lease. But it is only the nost recent | ease that matters.)

A server could avoid this situation by rejecting the reclaimof |ock
2. However, to do so accurately it would have to ensure that
additional information about individual |ocks held survives reboot.
Server inplenmentations are not required to do that, so the client
must not assune that the server wll.

Instead, a client MJST reclaimonly those | ocks which it successfully
acquired fromthe previous server instance, omtting any that it
failed to reclaimbefore a new reboot. Thus, in the |ast step above,
client A should reclaimonly |ock 1.

9.6.3.4.5. Cient’s Handling of ReclaimErrors

A mandate for the client’s handling of the NFS4ERR NO GRACE and
NFSA4ERR_RECLAI M BAD errors is outside the scope of this
specification, since the strategies for such handling are very
dependent on the client’s operating environnent. However, one
potential approach is described bel ow

When the client’s reclaimfails, it could exanm ne the change
attribute of the objects the client is trying to reclaimstate for,

Haynes & Noveck Expi res June 7, 2015 [Page 125]

Internet-Draft NFSv4 Decenber 2014

and use that to determine whether to re-establish the state via
normal OPEN or LOCK requests. This is acceptable provided the
client’s operating environnment allows it. In other words, the client
i npl ementer is advised to docunent for his users the behavior. The
client could also informthe application that its byte-range |ock or
share reservations (whether they were del egated or not) have been

| ost, such as via a UNIX signal, a GUJ pop-up wi ndow, etc. See
Section 10.5, for a discussion of what the client should do for
dealing with unreclai med del egations on client state.

For further discussion of revocation of | ocks see Section 9.8.
9.7. Recovery froma Lock Request Timeout or Abort

In the event a lock request tinmes out, a client nmay decide to not
retry the request. The client nmay al so abort the request when the
process for which it was issued is termnated (e.g., in UNIX due to a
signal). It is possible though that the server received the request
and acted upon it. This would change the state on the server w thout
the client being aware of the change. It is paranount that the
client re-synchronize state with server before it attenpts any other
operation that takes a seqid and/or a stateid with the same state-
owner. This is straightforward to do without a special re-
synchroni ze operati on.

Since the server maintains the |last | ock request and response
received on the state-owner, for each state-owner, the client should
cache the last lock request it sent such that the | ock request did
not receive a response. Fromthis, the next time the client does a
| ock operation for the state-owner, it can send the cached request,
if there is one, and if the request was one that established state
(e.g., a LOCK or OPEN operation), the server will return the cached
result or if never saw the request, performit. The client can
follow up with a request to renove the state (e.g., a LOCKU or CLOSE
operation). Wth this approach, the sequencing and stateid
information on the client and server for the given state-owner wll
re-synchronize and in turn the lock state will re-synchronize.

9.8. Server Revocation of Locks

At any point, the server can revoke |l ocks held by a client and the
client nmust be prepared for this event. When the client detects that
its locks have been or may have been revoked, the client is
responsible for validating the state informati on between itself and
the server. Validating |locking state for the client neans that it
must verify or reclaimstate for each lock currently held.

Haynes & Noveck Expi res June 7, 2015 [Page 126]

Internet-Draft NFSv4 Decenber 2014

The first instance of |ock revocation is upon server reboot or re-
initialization. 1In this instance the client will receive an error
(NFSAERR_STALE_STATEI D or NFS4ERR STALE CLIENTID) and the client wll
proceed with normal crash recovery as described in the previous
section.

The second | ock revocation event is the inability to renew the | ease
before expiration. While this is considered a rare or unusual event,
the client nust be prepared to recover. Both the server and client
will be able to detect the failure to renew the | ease and are capabl e
of recovering without data corruption. For the server, it tracks the
| ast renewal event serviced for the client and knows when the | ease
will expire. Similarly, the client nust track operations which wll
renew the | ease period. Using the time that each such request was
sent and the time that the corresponding reply was received, the
client should bound the tine that the corresponding renewal could
have occurred on the server and thus deternmine if it is possible that
a | ease period expiration could have occurred.

The third |l ock revocati on event can occur as a result of

adm nistrative intervention within the |lease period. Wile this is
considered a rare event, it is possible that the server’s

adm ni strator has decided to release or revoke a particular |ock held
by the client. As a result of revocation, the client will receive an
error of NFS4ERR _ADM N_REVCKED. In this instance the client nmay
assune that only the state-owner’s | ocks have been lost. The client
notifies the | ock hol der appropriately. The client cannot assune the
| ease period has been renewed as a result of a failed operation

Wien the client determ nes the | ease period may have expired, the
client must mark all locks held for the associ ated | ease as
"unval i dated". This nmeans the client has been unable to re-establish
or confirmthe appropriate |lock state with the server. As described
in Section 9.6, there are scenarios in which the server may grant
conflicting locks after the | ease period has expired for a client.
When it is possible that the | ease period has expired, the client
nmust validate each lock currently held to ensure that a conflicting
| ock has not been granted. The client may acconplish this task by
issuing an I/Orequest; if there is no relevant I/0O pending, a zero-
| ength read specifying the stateid associated with the lock in
question can be synthesised to trigger the renewal. |f the response
to the request is success, the client has validated all of the |ocks
governed by that stateid and re-established the appropriate state
between itself and the server.

If the I/Orequest is not successful, then one or nore of the |ocks

associated with the stateid was revoked by the server and the client
must notify the owner.

Haynes & Noveck Expi res June 7, 2015 [Page 127]

Internet-Draft NFSv4 Decenber 2014

9.9. Share Reservations

A share reservation is a mechanismto control access to a file. It
is a separate and i ndependent mechani sm from byt e-range | ocki ng.

When a client opens a file, it issues an OPEN operation to the server
specifying the type of access required (READ, WRI TE, or BOTH) and the
type of access to deny others (OPEN4A_SHARE DENY_NONE,
OPEN4_SHARE_DENY_READ, OPEN4_SHARE DENY _WRI TE, or
OPEN4A_SHARE DENY _BOTH). If the OPEN fails the client will fail the
application’s open request.

Pseudo-code definition of the semantics:

if (request.access ==
return (NFS4ERR_| NVAL)
else if ((request.access & file_state.deny)) ||
(request.deny & file_state.access))
return (NFS4ERR_DEN ED)

Thi s checking of share reservations on OPEN is done with no exception
for an existing OPEN for the same open-owner.

The constants used for the OPEN and OPEN DOANGRADE operations for the
access and deny fields are as foll ows:

const OPEN4_SHARE ACCESS READ = 0x00000001;
const OPENA_SHARE_ACCESS WRI TE = 0x00000002;
const OPENA_SHARE_ACCESS BOTH = 0x00000003;
const OPENA_SHARE_DENY_NONE = 0x00000000;
const OPENA_SHARE DENY READ = 0x00000001;
const OPEN4_SHARE DENY WRITE = 0x00000002;
const OPENA_SHARE_DENY_BOTH = 0x00000003;

9.10. OPEN CLCSE Qperations

To provide correct share semantics, a client MJUST use the OPEN
operation to obtain the initial filehandl e and indicate the desired
access and what access, if any, to deny. Even if the client intends
to use one of the special stateids (anonynous stateid or READ bypass
stateid), it nust still obtain the filehandle for the regular file
with the OPEN operation so the appropriate share semantics can be
applied. dients that do not have a deny node built into their
programm ng interfaces for opening a file should request a deny node
of OPEN4_SHARE_DENY_NONE

Haynes & Noveck Expi res June 7, 2015 [Page 128]

Internet-Draft NFSv4 Decenber 2014

The OPEN operation with the CREATE flag, al so subsunmes the CREATE
operation for regular files as used in previous versions of the NFS
protocol. This allows a create with a share to be done atom cally.

The CLCSE operation renoves all share reservations held by the open-
owner on that file. |If byte-range |ocks are held, the client SHOULD

rel ease all |ocks before issuing a CLOSE. The server MAY free all
out st andi ng | ocks on CLOSE but sone servers may not support the CLOSE
of a file that still has byte-range | ocks held. The server MJST

return failure, NFS4ERR LOCKS HELD, if any |ocks would exist after
t he CLGCSE.

The LOOKUP operation will return a filehandl e w thout establishing
any lock state on the server. Wthout a valid stateid, the server
will assume the client has the | east access. For exanple, if one
client opened a file with OPENA_SHARE DENY BOTH and anot her client
accesses the file via a filehandl e obtai ned through LOOKUP, the
second client could only read the file using the special READ bypass
stateid. The second client could not WRITE the file at all because
it would not have a valid stateid from OPEN and the speci al anonynous
stateid would not be all owed access.

9.10.1. dose and Retention of State Information

Since a CLOSE operation requests deallocation of a stateid, dealing
with retransm ssion of the CLOSE, may pose special difficulties,
since the state information, which normally would be used to
determne the state of the open file being designated, m ght be
deal | ocated, resulting in an NFS4ERR BAD STATEI D error

Servers may deal with this problemin a nunber of ways. To provide
the greatest degree assurance that the protocol is being used
properly, a server should, rather than deallocate the stateid, mark
it as close-pending, and retain the stateid with this status, unti

| ater deallocation. 1In this way, a retransnmtted CLOSE can be
recogni zed since the stateid points to state information with this
distinctive status, so that it can be handled w thout error

When adopting this strategy, a server should retain the state
information until the earliest of:

0 Another validly sequenced request for the sanme open-owner, that is
not a retransm ssion.

o The tine that an open-owner is freed by the server due to period
with no activity.

o Al locks for the client are freed as a result of a SETCLI ENTI D

Haynes & Noveck Expi res June 7, 2015 [Page 129]

Internet-Draft NFSv4 Decenber 2014

Servers may avoid this conplexity, at the cost of |ess conplete
protocol error checking, by sinply responding NFS4_OK in the event of
a CLCSE for a deallocated stateid, on the assunption that this case
nmust be caused by a retransmitted close. Wen adopting this
approach, it is desirable to at least log an error when returning a
no-error indication in this situation. |If the server nmaintains a
reply-cache mechanism it can verify the CLOSE is indeed a

retransm ssion and avoid error logging in nost cases.

9.11. Open Upgrade and Downgrade

When an OPEN is done for a file and the open-owner for which the open
i s being done already has the file open, the result is to upgrade the
open file status maintai ned on the server to include the access and
deny bits specified by the new OPEN as wel|l as those for the existing
OPEN. The result is that there is one open file, as far as the
protocol is concerned, and it includes the union of the access and
deny bits for all of the OPEN requests conpleted. Only a single
CLOSE will be done to reset the effects of both OPENs. Note that the
client, when issuing the OPEN, may not know that the same file is in
fact being opened. The above only applies if both OPENs result in
the OPENed obj ect being designated by the sane fil ehandl e.

When the server chooses to export nultiple filehandl es correspondi ng
to the same file object and returns different fil ehandl es on two
different OPENs of the sanme file object, the server MJST NOT "OR'
toget her the access and deny bits and coal esce the two open files.
Instead the server nmust nmaintain separate OPENs with separate
stateids and will require separate CLOSEs to free them

When multiple open files on the client are nerged into a single open
file object on the server, the close of one of the open files (on the
client) may necessitate change of the access and deny status of the
open file on the server. This is because the union of the access and
deny bits for the remmining opens may be smaller (i.e., a proper
subset) than previously. The OPEN DOMGRADE operation is used to
make the necessary change and the client should use it to update the
server so that share reservation requests by other clients are
handl ed properly. The stateid returned has the same "other"” field as
that passed to the server. The "seqid" value in the returned stateid
MUST be increnented (Section 9.1.4), even in situations in which
there has been no change to the access and deny bits for the file.

9.12. Short and Long Leases
When determining the tine period for the server |ease, the usua

| ease tradeoffs apply. Short |eases are good for fast server
recovery at a cost of increased RENEWor READ (with zero |ength)

Haynes & Noveck Expi res June 7, 2015 [Page 130]

Internet-Draft NFSv4 Decenber 2014

requests. Longer |eases are certainly kinder and gentler to servers
trying to handle very large nunbers of clients. The nunber of RENEW
requests drop in proportion to the lease tinme. The di sadvant ages of
|l ong | eases are slower recovery after server failure (the server nust
wait for the leases to expire and the grace period to el apse before
granting new | ock requests) and increased file contention (if client
fails to transnit an unl ock request then server nust wait for |ease
expiration before granting new | ocks).

Long | eases are usable if the server is able to store |lease state in
non-vol atile menory. Upon recovery, the server can reconstruct the
| ease state fromits non-volatile menmory and continue operation with
its clients and therefore I ong | eases would not be an issue.

9.13. O ocks, Propagation Delay, and Cal cul ati ng Lease Expiration

To avoid the need for synchroni zed cl ocks, | ease tines are granted by
the server as a tinme delta. However, there is a requirenent that the
client and server clocks do not drift excessively over the duration
of the lock. There is also the issue of propagation delay across the
net wor k which could easily be several hundred mlliseconds as well as
the possibility that requests will be |Iost and need to be
retransmtted

To take propagation delay into account, the client should subtract it

fromlease tines (e.g., if the client estimtes the one-way
propagati on delay as 200 nsec, then it can assunme that the |ease is
al ready 200 nsec old when it gets it). |In addition, it will take

anot her 200 nsec to get a response back to the server. So the client
must send a | ock renewal or wite data back to the server 400 nsec
before the | ease woul d expire.

The server’s | ease period configuration should take into account the
network di stance of the clients that will be accessing the server’s
resources. It is expected that the |ease period will take into
account the network propagation delays and other network del ay
factors for the client population. Since the protocol does not allow
for an automatic nmethod to determ ne an appropriate | ease period, the
server’s adm ni strator may have to tune the | ease period.

9.14. Mgration, Replication and State

When responsibility for handling a given file systemis transferred
to a new server (mgration) or the client chooses to use an
alternative server (e.g., in response to server unresponsiveness) in
the context of file systemreplication, the appropriate handling of
state shared between the client and server (i.e., |ocks, |eases,
stateids, and client IDs) is as described below The handling

Haynes & Noveck Expi res June 7, 2015 [Page 131]

Internet-Draft NFSv4 Decenber 2014

differs between nmigration and replication. For related discussion of
file server state and recover of such see the sections under
Section 9. 6.

If a server replica or a server imigrating a file system agrees to,
or is expected to, accept opaque values fromthe client that
originated from anot her server, then servers SHOULD encode the
"opaque" values in network byte order. This way, servers acting as
replicas or immigrating file systems will be able to parse val ues
like stateids, directory cookies, filehandles, etc. even if their
native byte order is different fromother servers cooperating in the
replication and migration of the file system

9.14.1. Mgration and State

In the case of migration, the servers involved in the mgration of a
file system SHOULD transfer all server state fromthe original to the
new server. This nust be done in a way that is transparent to the
client. This state transfer will ease the client’s transition when a
file systemmgration occurs. |If the servers are successful in
transferring all state, the client will continue to use stateids
assigned by the original server. Therefore the new server nust
recogni ze these stateids as valid. This holds true for the client ID
as well. Since responsibility for an entire file systemis
transferred with a nigration event, there is no possibility that
conflicts will arise on the new server as a result of the transfer of
| ocks.

As part of the transfer of infornmation between servers, |eases would
be transferred as well. The |eases being transferred to the new
server will typically have a different expiration time fromthose for
the sane client, previously on the old server. To maintain the
property that all |eases on a given server for a given client expire
at the sane tine, the server should advance the expiration tine to
the later of the | eases being transferred or the | eases already
present. This allows the client to maintain | ease renewal of both

cl asses without special effort.

The servers may choose not to transfer the state information upon

m gration. However, this choice is discouraged. 1In this case, when
the client presents state information fromthe original server (e.g.
in a RENEWop or a READ op of zero length), the client nust be
prepared to receive either NFS4AERR_STALE CLI ENTI D or

NFS4ERR _STALE STATEID fromthe new server. The client should then
recover its state information as it normally would in response to a
server failure. The new server nust take care to allow for the
recovery of state information as it would in the event of server
restart.

Haynes & Noveck Expi res June 7, 2015 [Page 132]

Internet-Draft NFSv4 Decenber 2014

A client SHOULD re-establish new callback information with the new
server as soon as possible, according to sequences described in
Section 15.35 and Section 15.36. This ensures that server operations
are not blocked by the inability to recall del egations.

9.14.2. Replication and State

Since client switch-over in the case of replication is not under
server control, the handling of state is different. In this case

| eases, stateids and client IDs do not have validity across a
transition fromone server to another. The client nmust re-establish
its locks on the new server. This can be conpared to the re-

establi shment of |ocks by neans of reclaimtype requests after a
server reboot. The difference is that the server has no provision to
di stinguish requests reclaimng | ocks fromthose obtaining new | ocks
or to defer the latter. Thus, a client re-establishing a |ock on the
new server (by neans of a LOCK or OPEN request), nay have the
requests denied due to a conflicting lock. Since replication is

i ntended for read-only use of file systems, such denial of |ocks
shoul d not pose large difficulties in practice. Wen an attenpt to
re-establish a lock on a new server is denied, the client should
treat the situation as if his original |ock had been revoked.

9.14.3. Notification of Mgrated Lease

In the case of |ease renewal, the client may not be subnmitting
requests for a file systemthat has been m grated to another server
This can occur because of the inplicit |ease renewal nechanism The
client renews | eases for all file systens when subnmitting a request
to any one file systemat the server

In order for the client to schedul e renewal of |eases that may have
been relocated to the new server, the client nmust find out about

| ease rel ocation before those | eases expire. To acconplish this, all
operations which inplicitly renew | eases for a client (such as OPEN
CLOSE, READ, WRI TE, RENEW LOCK, and others), will return the error
NFS4ERR_LEASE MOVED if responsibility for any of the | eases to be
renewed has been transferred to a new server. This condition will
continue until the client receives an NFS4ERR MOVED error and the
server receives the subsequent GETATTR(fs |l ocations) for an access to
each file systemfor which a | ease has been noved to a new server

By convention, the conpound including the GETATTR(fs_I| ocati ons)
SHOULD append a RENEW operation to pernmt the server to identify the
client doing the access.

Upon receiving the NFS4ERR LEASE MOVED error, a client that supports

file systemmigration MJST probe all file systens fromthat server on
which it holds open state. Once the client has successfully probed

Haynes & Noveck Expi res June 7, 2015 [Page 133]

Internet-Draft NFSv4 Decenber 2014

all those file systenms which are migrated, the server MJST resune
normal handling of stateful requests fromthat client.

In order to support legacy clients that do not handle the

NFSAERR LEASE MOVED error correctly, the server SHOULD tine out after
a wait of at least two | ease periods, at which tinme it will resune
normal handling of stateful requests fromall clients. |If a client
attenpts to access the mgrated files, the server MIST reply
NFS4ERR_MOVED.

When the client receives an NFS4ERR MOVED error, the client can
follow the normal process to obtain the new server information
(through the fs_locations attribute) and performrenewal of those

| eases on the new server. |f the server has not had state
transferred to it transparently, the client will receive either
NFSA4ERR_STALE_CLI ENTI D or NFS4ERR _STALE_STATEID fromthe new server
as described above. The client can then recover state information as
it does in the event of server failure.

9.14.4. Mgration and the lease tine Attribute

In order that the client may appropriately nmanage its |leases in the
case of migration, the destination server nust establish proper
values for the lease tinme attribute.

When state is transferred transparently, that state shoul d include
the correct value of the lease tine attribute. The |ease_ tine
attribute on the destination server nust never be |less than that on
the source since this would result in premature expiration of |eases
granted by the source server. Upon migration in which state is
transferred transparently, the client is under no obligation to re-
fetch the lease_tinme attribute and may continue to use the val ue
previously fetched (on the source server).

If state has not been transferred transparently (i.e., the client
sees a real or sinulated server reboot), the client should fetch the
val ue of lease_time on the new (i.e., destination) server, and use it
for subsequent |ocking requests. However the server nust respect a
grace period at least as long as the lease_tinme on the source server
in order to ensure that clients have anple tine to reclaimtheir

| ocks before potentially conflicting non-reclainmed | ocks are granted.
The means by which the new server obtains the value of |ease_time on
the old server is left to the server inplementations. It is not
specified by the NFS version 4 protocol

Haynes & Noveck Expi res June 7, 2015 [Page 134]

Internet-Draft NFSv4 Decenber 2014

10.

10.

Client-Side Caching

Client-side caching of data, of file attributes, and of file names is
essential to providing good performance with the NFS protocol

Provi ding distributed cache coherence is a difficult problem and
previ ous versions of the NFS protocol have not attenpted it.

I nstead, several NFS client inplenmentation techniques have been used
to reduce the problens that a | ack of coherence poses for users.
These techni ques have not been clearly defined by earlier protoco
specifications and it is often unclear what is valid or invalid
client behavior.

The NFSv4 protocol uses nany techniques simlar to those that have
been used in previous protocol versions. The NFSv4 protocol does not
provi de distributed cache coherence. However, it defines a nore
limted set of caching guarantees to allow | ocks and share
reservations to be used wi thout destructive interference fromclient
si de cachi ng.

In addition, the NFSv4 protocol introduces a del egati on nmechani sm

whi ch all ows many deci sions normally nade by the server to be nade
locally by clients. This mechani sm provides efficient support of the
common cases where sharing is infrequent or where sharing is read-
only.

1. Performance Challenges for dient-Side Caching

Cachi ng techni ques used in previous versions of the NFS protocol have
been successful in providing good perfornmance. However, severa
scalability challenges can arise when those techniques are used with
very large nunbers of clients. This is particularly true when
clients are geographically distributed which classically increases
the | atency for cache re-validation requests.

The previous versions of the NFS protocol repeat their file data
cache validation requests at the time the file is opened. This
behavi or can have serious performance drawbacks. A conmon case is
one in which a file is only accessed by a single client. Therefore,
sharing is infrequent.

In this case, repeated reference to the server to find that no
conflicts exist is expensive. A better option with regards to
performance is to allow a client that repeatedly opens a file to do
so without reference to the server. This is done until potentially
conflicting operations fromanother client actually occur

A simlar situation arises in connection with file l|ocking. Sending
file lock and unlock requests to the server as well as the read and

Haynes & Noveck Expi res June 7, 2015 [Page 135]

Internet-Draft NFSv4 Decenber 2014

10.

wite requests necessary to nmake data caching consistent with the

| ocki ng semantics (see Section 10.3.2) can severely limt
performance. When locking is used to provide protection agai nst
infrequent conflicts, a large penalty is incurred. This penalty may
di scourage the use of file |ocking by applications.

The NFSv4 protocol provides nore aggressive caching strategies with
the foll owi ng design goal s:

0 Conpatibility with a large range of server senmantics

o0 Provide the sane caching benefits as previous versions of the NFS
protocol when unable to provide the nore aggressive nodel.

0 Requirements for aggressive caching are organi zed so that a | arge
portion of the benefit can be obtai ned even when not all of the
requi renents can be net.

The appropriate requirenents for the server are discussed in later
sections in which specific forns of caching are covered (see
Section 10.4).

2. Delegation and Cal | backs

Recal | abl e del egation of server responsibilities for a file to a
client inproves performance by avoiding repeated requests to the
server in the absence of inter-client conflict. Wth the use of a
"cal | back" RPC from server to client, a server recalls del egated
responsi bilities when another client engages in sharing of a

del egated file.

A del egation is passed fromthe server to the client, specifying the
obj ect of the delegation and the type of delegation. There are
different types of delegations but each type contains a stateid to be
used to represent the del egati on when perforning operations that
depend on the delegation. This stateid is simlar to those

associ ated with |l ocks and share reservations but differs in that the
stateid for a delegation is associated with a client ID and nmay be
used on behal f of all the open-owners for the given client. A

del egation is nmade to the client as a whole and not to any specific
process or thread of control within it

Because cal |l back RPCs may not work in all environnents (due to
firewalls, for exanple), correct protocol operation does not depend
on them Prelimnary testing of callback functionality by neans of a
CB _NULL procedure deternines whether callbacks can be supported. The
CB_NULL procedure checks the continuity of the callback path. A
server nmakes a prelimnary assessnent of callback availability to a

Haynes & Noveck Expi res June 7, 2015 [Page 136]

Internet-Draft NFSv4 Decenber 2014

given client and avoi ds del egating responsibilities until it has
determ ned that call backs are supported. Because the granting of a
del egation is always conditional upon the absence of conflicting
access, clients nmust not assunme that a delegation will be granted and
they nust always be prepared for OPENs to be processed without any
del egati ons bei ng granted.

Once granted, a del egati on behaves in nost ways |like a |lock. There
is an associated | ease that is subject to renewal together with al
of the other |eases held by that client.

Unli ke |1 ocks, an operation by a second client to a delegated file
will cause the server to recall a delegation through a call back.

On recall, the client holding the del egation nust flush nodified
state (such as nodified data) to the server and return the

del egation. The conflicting request will not be acted on until the
recall is conplete. The recall is considered conplete when the
client returns the delegation or the server tines out its wait for
the del egation to be returned and revokes the del egation as a result
of the tineout. 1In the interim the server will either delay
responding to conflicting requests or respond to themwth

NFSAERR DELAY. Following the resolution of the recall, the server
has the informati on necessary to grant or deny the second client’s
request.

At the time the client receives a delegation recall, it may have
substantial state that needs to be flushed to the server. Therefore,
the server should allow sufficient tine for the del egation to be
returned since it may involve nunerous RPCs to the server. If the
server is able to deternmine that the client is diligently flushing
state to the server as a result of the recall, the server MAY extend
the usual time allowed for a recall. However, the tine allowed for
recall conpletion should not be unbounded.

An exanple of this is when responsibility to nedi ate opens on a given
file is delegated to a client (see Section 10.4). The server wll

not know what opens are in effect on the client. Wthout this

know edge the server will be unable to determne if the access and
deny state for the file allows any particular open until the

del egation for the file has been returned.

Aclient failure or a network partition can result in failure to

respond to a recall callback. 1In this case, the server will revoke
the delegation which in turn will render useless any nodified state
still on the client.

Haynes & Noveck Expi res June 7, 2015 [Page 137]

Internet-Draft NFSv4 Decenber 2014

10.

Clients need to be aware that server inplenmenters may enforce

practical limtations on the nunber of del egations issued. Further,
as there is no way to determ ne which del egations to revoke, the
server is allowed to revoke any. |If the server is inplenented to

revoke anot her del egation held by that client, then the client nmay be
able to determine that a lint has been reached because each new

del egation request results in a revoke. The client could then
determ ne which delegations it may not need and preenptively rel ease
t hem

2.1. Delegation Recovery

There are three situations that del egation recovery nust deal with
o dient reboot or restart

0 Server reboot or restart (see Section 9.6.3.1)

0 Network partition (full or call back-only)

In the event the client reboots or restarts, the confirmation of a
SETCLI ENTI D done with an nfs _client_id4 with a new verifier4 val ue
will result in the release of byte-range | ocks and share
reservations. Delegations, however, nmay be treated a bit
differently.

There will be situations in which delegations will need to be
reestablished after a client reboots or restarts. The reason for
this is the client nay have file data stored locally and this data
was associated with the previously held del egations. The client will
need to reestablish the appropriate file state on the server

To allow for this type of client recovery, the server MAY all ow

del egations to be retained after other sort of |ocks are rel eased.
This inplies that requests fromother clients that conflict with
these del egations will need to wait. Because the nornal recal
process may require significant time for the client to flush changed
state to the server, other clients need to be prepared for del ays
that occur because of a conflicting delegation. |In order to give
clients a chance to get through the reboot process during which

| eases will not be renewed, the server MAY extend the period for

del egation recovery beyond the typical |ease expiration period. For
open del egations, such del egations that are not rel eased are
reclaimed using OPEN with a claimtype of CLAl M DELEGATE PREV. (See
Section 10.5 and Section 15.18 for discussion of open del egation and
the details of OPEN respectively).

Haynes & Noveck Expi res June 7, 2015 [Page 138]

Internet-Draft NFSv4 Decenber 2014

A server MAY support a claimtype of CLAI M DELEGATE PREV, but if it
does, it MJUST NOT renopve del egati ons upon SETCLI ENTI D_CONFI RM and

i nstead MJUST make them available for client reclaimusing

CLAI M DELEGATE PREV. The server MJST NOT renove the del egations
until either the client does a DELEGPURGE, or one | ease period has
el apsed fromthe time the later of the SETCLI ENTI D_CONFI RM or the

| ast successful CLAI M DELEGATE PREV recl aim

Note that the requirenent stated above is not nmeant to inply that
when the server is no | onger obliged, as required above, to retain
del egation information, that it should necessarily dispose of it.
Sone specific cases are:

0 When the period is terninated by the occurrence of DELEGPURGE
del etion of unreclaimed del egations is appropriate and desirable.

0 Wien the period is terninated by a | ease period el apsing w thout a
successful CLAI M DELEGATE PREV reclaim and that situation appears
to be the result of a network partition (i.e., |ease expiration
has occurred), a server’'s |ease expiration approach, possibly
i ncluding the use of courtesy |ocks would normally provide for the
retention of unreclainmed delegations. Even in the event that
| ease cancel | ati on occurs, such del egati on should be reclai ned
usi ng CLAI M DELEGATE_PREV as part of network partition recovery.

0 \When the period of non-comrunicating is followed by a client
reboot, unreclaimed del egations, should al so be recl ai mabl e by use
of CLAI M DELEGATE PREV as part of client reboot recovery.

0 Wien the period is terninated by a | ease period el apsing w thout a
successful CLAI M DELEGATE PREV reclaim and | ease renewal is
occurring, the server may well conclude that unreclained
del egati ons have been abandoned, and consider the situation as one
in which an inplied DELEGPURGE shoul d be assuned.

A server that supports a claimtype of CLAI M DELEGATE PREV MJST
support the DELEGPURGE operation, and simlarly a server that
supports DELEGPURGE MJUST support CLAI M DELEGATE PREV. A server which
does not support CLAI M DELEGATE PREV MJST return NFS4ERR_NOTSUPP i f
the client attenpts to use that feature or perforns a DELEGPURGE
operation.

Support for a claimtype of CLAI M DELEGATE PREV, is often referred to
as providing for "client-persistent delegations"” in that they allow
use of client persistent storage on the client to store data witten
by the client, even across a client restart. It should be noted
that, with the optional exception noted below, this feature requires

Haynes & Noveck Expi res June 7, 2015 [Page 139]

Internet-Draft NFSv4 Decenber 2014

persi stent storage to be used on the client and does not add to
persi stent storage requirements on the server.

One good way to think about client-persistent delegations is that for
the nost part, they function |like "courtesy |ocks", with specia
semantic adjustnments to allow themto be retained across a client
restart, which cause all other sorts of locks to be freed. Such

| ocks are generally not retained across a server restart. The one
exception is the case of sinultaneous failure of the client and
server and is discussed bel ow

When the server indicates support of CLAI M DELEGATE PREV (inplicitly)
by returning NFS_ OK to DELEGPURGE, a client with a wite del egation
can use wite-back caching for data to be witten to the server,
deferring the wite-back, until such tinme as the delegation is
recal l ed, possibly after intervening client restarts. Simlarly,
when the server indicates support of CLAI M DELEGATE PREV, a client
with a read del egation and an open-for-wite subordinate to that

del egation, may be sure of the integrity of its persistently cached
copy of the file after a client restart wi thout specific verification
of the change attribute.

When the server reboots or restarts, delegations are reclainmed (using
the OPEN operation with CLAIM PREVIOUS) in a sinilar fashion to byte-
range | ocks and share reservations. However, there is a slight
semantic difference. In the normal case, if the server decides that
a del egation should not be granted, it perforns the requested action
(e.g., OPEN) without granting any delegation. For reclaim the
server grants the delegation but a special designation is applied so
that the client treats the del egation as having been granted but
recalled by the server. Because of this, the client has the duty to
wite all nodified state to the server and then return the

del egation. This process of handling del egation reclaimreconciles
three principles of the NFSv4 protocol

o Upon reclaim a client claimng resources assigned to it by an
earlier server instance nust be granted those resources.

0 The server has unquestionable authority to determn ne whether
del egations are to be granted and, once granted, whether they are
to be conti nued.

0 The use of callbacks is not to be depended upon until the client
has proven its ability to receive them

When a client has nore than a single open associated with a

del egation, state for those additional opens can be established using
OPEN operations of type CLAI M DELEGATE_CUR. \When these are used to

Haynes & Noveck Expi res June 7, 2015 [Page 140]

Internet-Draft NFSv4 Decenber 2014

establ i sh opens associated with recl ai ned del egati ons, the server
MUST al | ow t hem when nade within the grace period

Situations in which there is a series of client and server restarts
where there is no restart of both at the sanme tine, are dealt with
via a conbi nati on of CLAI M DELEGATE PREV and CLAI M _PREVI QUS recl ai m
cycles. Persistent storage is needed only on the client. For each
server failure, a CLAIMPREVICQUS reclaimcycle is done, while for
each client restart, a CLAl M DELEGATE PREV reclaimcycle is done.

To deal with the possibility of sinultaneous failure of client and
server (e.g., a data center power outage), the server MAY
persistently store delegation information so that it can respond to a
CLAI M _DELEGATE PREV recl ai mrequest which it receives froma
restarting client. This is the one case in which persistent

del egation state can be retained across a server restart. A server
is not required to store this information, but if it does do so, it
shoul d do so for wite del egations and for read del egations, during

t he pendency of which (across multiple client and/or server

i nstances), some open-for-wite was done as part of del egation. Wen
the space to persistently record such information is limted, the
server should recall delegations in this class in preference to
keepi ng them active wi thout persistent storage recording.

When a network partition occurs, del egations are subject to freeing
by the server when the | ease renewal period expires. This is simlar
to the behavior for |ocks and share reservations, and, as for |ocks
and share reservations it nmay be nodified by support for "courtesy

| ocks"™ in which |locks are not freed in the absence of a conflicting

| ock request. \hereas, for |ocks and share reservations, freeing of
I ocks will occur inmediately upon the appearance of a conflicting
request, for delegations, the server MAY institute period during

whi ch conflicting requests are held off. Eventually the occurrence
of a conflicting request fromanother client will cause revocation of
t he del egati on.

A loss of the callback path (e.g., by later network configuration
change) will have a simlar effect in that it can also result in
revocation of a delegation A recall request will fail and revocation
of the delegation will result.

A client normally finds out about revocation of a del egation when it
uses a stateid associated with a del egation and receives one of the
errors NFS4ERR _EXPI RED, NFS4ERR BAD STATEI D, or NFS4ERR_ADM N_REVCKED
(NFS4ERR EXPI RED i ndicates that all |ock state associated with the
client has been lost). It also may find out about del egation
revocation after a client reboot when it attenpts to reclaima

del egation and receives NFSAERR EXPIRED. Note that in the case of a

Haynes & Noveck Expi res June 7, 2015 [Page 141]

Internet-Draft NFSv4 Decenber 2014

10.

revoked OPEN_DELEGATE WRI TE del egation, there are issues because data
may have been nodified by the client whose del egation is revoked and
separately by other clients. See Section 10.5.1 for a discussion of
such issues. Note also that when del egati ons are revoked,

i nformati on about the revoked delegation will be witten by the
server to stable storage (as described in Section 9.6). This is done
to deal with the case in which a server reboots after revoking a

del egation but before the client holding the revoked del egation is
notified about the revocation

Note that when there is a |oss of a delegation, due to a network
partition in which all |ocks associated with the | ease are lost, the
client will also receive the error NFSAERR EXPI RED. This case can be
di stinguished fromother situations in which del egations are revoked
by seeing that the associated clientid becones invalid so that
NFSAERR _STALE CLIENTID is returned when it is used.

When NFSA4ERR EXPI RED is returned, the server MAY retain infornmation
about the delegations held by the client, deleting those that are
invalidated by a conflicting request. Retaining such informtion
will allowthe client to recover all non-invalidated del egations
using the claimtype CLAI M DELEGATE PREV, once the
SETCLI ENTI D CONFIRM i s done to recover. Attenpted recovery of a
del egation that the client has no record of, typically because they
were invalidated by conflicting requests, will get the error
NFSAERR BAD RECLAIM Once a reclaimis attenpted for all del egations
that the client held, it SHOULD do a DELEGPURGE to al |l ow any
remai ni ng server delegation infornmation to be freed.

3. Data Caching

When applications share access to a set of files, they need to be

i npl emented so as to take account of the possibility of conflicting
access by another application. This is true whether the applications
in question execute on different clients or reside on the sane
client.

Share reservations and byte-range | ocks are the facilities the NFS
version 4 protocol provides to allow applications to coordinate
access by providing nutual exclusion facilities. The NFSv4
protocol's data caching nust be inplenented such that it does not

i nval i date the assunptions that those using these facilities depend
upon.

Haynes & Noveck Expi res June 7, 2015 [Page 142]

Internet-Draft NFSv4 Decenber 2014

10.3.1. Data Caching and OPENs

In order to avoid invalidating the sharing assunptions that
applications rely on, NFSv4 clients should not provide cached data to
applications or nodify it on behalf of an application when it would
not be valid to obtain or nodify that sanme data via a READ or WRI TE
operati on.

Furthernmore, in the absence of open del egation (see Section 10.4) two
additional rules apply. Note that these rules are obeyed in practice
by many NFSv2 and NFSv3 clients.

o First, cached data present on a client nust be revalidated after
doing an OPEN. Revalidating nmeans that the client fetches the
change attribute fromthe server, conpares it with the cached
change attribute, and if different, declares the cached data (as
wel|l as the cached attributes) as invalid. This is to ensure that
the data for the OPENed file is still correctly reflected in the
client’s cache. This validation nust be done at |east when the
client’s OPEN operation includes DENY=WRI TE or BOTH t hus
termnating a period in which other clients may have had the
opportunity to open the file with WRITE access. Cients may
choose to do the revalidation nore often (such as at OPENs
speci fying DENY=NONE) to parallel the NFSv3 protocol’s practice
for the benefit of users assuming this degree of cache
reval i dati on.

Since the change attribute is updated for data and netadata

nmodi fications, sone client inplenenters nay be tenpted to use the
time_nodify attribute and not the change attribute to validate
cached data, so that netadata changes do not spuriously invalidate
clean data. The inplenenter is cautioned against this approach
The change attribute is guaranteed to change for each update to
the file, whereas tine_nodify is guaranteed to change only at the
granularity of the tinme_delta attribute. Use by the client’s data
cache validation logic of time_nodify and not the change attribute
runs the risk of the client incorrectly marking stale data as
val i d.

0 Second, nodified data nust be flushed to the server before closing
a file OPENed for wite. This is conplenentary to the first rule.
If the data is not flushed at CLOSE, the revalidation done after
the client OPENs a file is unable to achieve its purpose. The
other aspect to flushing the data before close is that the data
must be conmitted to stable storage, at the server, before the
CLCSE operation is requested by the client. 1In the case of a
server reboot or restart and a CLOSEd file, it nmay not be possible

Haynes & Noveck Expi res June 7, 2015 [Page 143]

Internet-Draft NFSv4 Decenber 2014

toretransmt the data to be witten to the file. Hence, this
requirenent.

10.3.2. Data Caching and File Locking

For those applications that choose to use file |ocking instead of
share reservations to exclude inconsistent file access, there is an
anal ogous set of constraints that apply to client side data caching.
These rules are effective only if the file locking is used in a way
that matches in an equival ent way the actual READ and WRI TE
operations executed. This is as opposed to file locking that is
based on pure convention. For exanple, it is possible to manipul ate
a two-negabyte file by dividing the file into two one-negabyte
regions and protecting access to the two regions by file | ocks on
bytes zero and one. A lock for wite on byte zero of the file would
represent the right to do READ and WRI TE operations on the first
region. A lock for wite on byte one of the file would represent the
right to do READ and WRI TE operations on the second region. As |ong
as all applications mani pulating the file obey this convention, they
will work on a local file system However, they may not work wth
the NFSv4 protocol unless clients refrain from data cachi ng.

The rules for data caching in the file |ocking environnent are:

o First, when a client obtains a file lock for a particular region
the data cache corresponding to that region (if any cached data
exi sts) nust be revalidated. |If the change attribute indicates
that the file may have been updated since the cached data was
obt ai ned, the client nust flush or invalidate the cached data for
the newy locked region. A client night choose to invalidate al
of non-nodified cached data that it has for the file but the only
requirenent for correct operation is to invalidate all of the data
in the newy | ocked region

0 Second, before releasing a wite lock for a region, all nodified
data for that region nust be flushed to the server. The nodified
data nust also be witten to stable storage.

Note that flushing data to the server and the invalidation of cached
data nust reflect the actual byte ranges | ocked or unl ocked.

Roundi ng these up or down to reflect client cache bl ock boundaries
will cause problens if not carefully done. For exanple, witing a
nodi fied bl ock when only half of that block is within an area bei ng
unl ocked may cause invalid nodification to the regi on outside the

unl ocked area. This, in turn, may be part of a region | ocked by
another client. dients can avoid this situation by synchronously
performng portions of wite operations that overlap that portion
(initial or final) that is not a full block. Simlarly, invalidating

Haynes & Noveck Expi res June 7, 2015 [Page 144]

Internet-Draft NFSv4 Decenber 2014

10.

a |l ocked area which is not an integral number of full buffer blocks
would require the client to read one or two partial blocks fromthe
server if the revalidation procedure shows that the data which the
client possesses nay not be valid.

The data that is witten to the server as a prerequisite to the

unl ocking of a region nust be witten, at the server, to stable
storage. The client may acconplish this either with synchronous
wites or by follow ng asynchronous wites with a COW T operati on
This is required because retransnission of the nodified data after a
server reboot mght conflict with a | ock held by another client.

A client inplenentation nay choose to accommodate applications which
use byte-range | ocking in non-standard ways (e.g., using a byte-range
| ock as a gl obal semaphore) by flushing to the server nore data upon
a LOCKU than is covered by the | ocked range. This may include

nodi fied data within files other than the one for which the unl ocks
are being done. In such cases, the client nust not interfere with
appl i cati ons whose READs and WRI TEs are being done only within the
bounds of record | ocks which the application holds. For exanmple, an
application locks a single byte of a file and proceeds to wite that
single byte. A client that chose to handle a LOCKU by flushing all
nodi fied data to the server could validly wite that single byte in
response to an unrelated unlock. However, it would not be valid to
wite the entire block in which that single witten byte was | ocated
since it includes an area that is not |ocked and mi ght be | ocked by
another client. dient inplenentations can avoid this problem by
dividing files with nodified data into those for which all
nmodi fi cations are done to areas covered by an appropriate byte-range
| ock and those for which there are nodifications not covered by a
byte-range lock. Any wites done for the former class of files nust
not include areas not |ocked and thus not nodified on the client.

3.3. Data Caching and Mandatory File Locking

Client side data caching needs to respect nmandatory file | ocking when
it isin effect. The presence of mandatory file locking for a given
file is indicated when the client gets back NFS4AERR LOCKED from a
READ or WRITE on a file it has an appropriate share reservation for.
When mandatory locking is in effect for a file, the client nust check

for an appropriate file lock for data being read or witten. If a
| ock exists for the range being read or witten, the client may
satisfy the request using the client’s validated cache. |If an

appropriate file lock is not held for the range of the read or wite,
the read or wite request nmust not be satisfied by the client’s cache
and the request nust be sent to the server for processing. Wen a

read or wite request partially overlaps a | ocked region, the request

Haynes & Noveck Expi res June 7, 2015 [Page 145]

Internet-Draft NFSv4 Decenber 2014

10.

shoul d be subdivided into nultiple pieces with each region (locked or
not) treated appropriately.

3.4. Data Caching and File ldentity

When clients cache data, the file data needs to be organized
according to the file system object to which the data bel ongs. For
NFSv3 clients, the typical practice has been to assune for the

pur pose of caching that distinct filehandles represent distinct file
system objects. The client then has the choice to organize and

mai ntain the data cache on this basis.

In the NFSv4 protocol, there is now the possibility to have
significant deviations froma "one fil ehandl e per object" node
because a fil ehandl e may be constructed on the basis of the object’s
pat hnane. Therefore, clients need a reliable nethod to determine if
two filehandl es designate the sane file systemobject. If clients
were sinply to assunme that all distinct fil ehandl es denote distinct
obj ects and proceed to do data caching on this basis, caching

i nconsi stencies would arise between the distinct client side objects
whi ch mapped to the same server side object.

By providing a nethod to differentiate fil ehandles, the NFSv4
protocol alleviates a potential functional regression in conparison
with the NFSv3 protocol. Wthout this nmethod, caching

i nconsi stencies within the same client could occur and this has not
been present in previous versions of the NFS protocol. Note that it
is possible to have such inconsistencies with applications executing
on multiple clients but that is not the issue being addressed here.

For the purposes of data caching, the follow ng steps allow an NFSv4
client to determ ne whether two distinct fil ehandl es denote the sane
server side object:

o |If GETATTR directed to two filehandles returns different val ues of
the fsid attribute, then the filehandles represent distinct
obj ect s.

o |If GETATTR for any file with an fsid that matches the fsid of the
two filehandles in question returns a unique_handles attribute
with a value of TRUE, then the two objects are distinct.

o |If GETATTR directed to the two fil ehandl es does not return the
fileid attribute for both of the handles, then it cannot be
determ ned whether the two objects are the sane. Therefore,
operations which depend on that knowl edge (e.g., client side data
caching) cannot be done reliably. Note that if GETATTR does not
return the fileid attribute for both filehandles, it will return

Haynes & Noveck Expi res June 7, 2015 [Page 146]

Internet-Draft NFSv4 Decenber 2014

it for neither of the filehandles, since the fsid for both
filehandl es is the sane.

o |If GETATTR directed to the two fil ehandl es returns different
values for the fileid attribute, then they are distinct objects.

o0 Oherwi se they are the sane object.
10.4. Open Del egation

When a file is being OPENed, the server nmay del egate further handling
of opens and closes for that file to the opening client. Any such
del egation is recallable, since the circunstances that all owed for
the del egation are subject to change. |In particular, the server may
receive a conflicting OPEN from another client, the server nust
recall the del egation before deciding whether the OPEN fromthe other
client may be granted. WMaking a delegation is up to the server and
clients should not assunme that any particular OPEN either will or
will not result in an open delegation. The following is a typica

set of conditions that servers might use in decidi ng whether OPEN
shoul d be del egat ed:

o0 The client nust be able to respond to the server’s call back
requests. The server will use the CB _NULL procedure for a test of
cal I back ability.

o The client nust have responded properly to previous recalls.

0 There nust be no current open conflicting with the requested
del egati on.

0 There should be no current delegation that conflicts with the
del egati on bei ng request ed.

0 The probability of future conflicting open requests should be | ow
based on the recent history of the file.

0 The existence of any server-specific semantics of OPEN CLOSE t hat
woul d make the required handling inconpatible with the prescribed
handl i ng that the del egated client would apply (see bel ow).

There are two types of open del egati ons, OPEN DELEGATE READ and
OPEN_DELEGATE_WRI TE. A OPEN_DELEGATE_READ del egation allows a client
to handle, on its own, requests to open a file for reading that do
not deny read access to others. It MJST, however, continue to send
all requests to open a file for witing to the server. Miltiple
OPEN_DELEGATE READ del egati ons nmay be outstandi ng sinmultaneously and
do not conflict. A OPEN_DELEGATE WRI TE del egation allows the client

Haynes & Noveck Expi res June 7, 2015 [Page 147]

Internet-Draft NFSv4 Decenber 2014

to handle, on its own, all opens. Only one OPEN_DELEGATE_WRI TE
del egation may exist for a given file at a given tine and it is
i nconsistent with any OPEN _DELEGATE READ del egati ons

When a single client holds a OPEN DELEGATE READ del egation, it is
assured that no other client may nodify the contents or attributes of
the file. |If nmore than one client holds an OPEN_DELEGATE_READ

del egation, then the contents and attributes of that file are not

all oned to change. Wen a client has an OPEN DELEGATE WRI TE

del egation, it may nodify the file data since no other client will be
accessing the file's data. The client holding a OPEN DELEGATE WRI TE
del egation may only affect file attributes which are intimately
connected with the file data: size, tine_nodify, change

When a client has an open del egation, it does not send OPENs or
CLCSEs to the server but updates the appropriate status internally.
For a OPEN DELEGATE READ del egati on, opens that cannot be handl ed
locally (opens for wite or that deny read access) nust be sent to
t he server.

When an open del egation is nmade, the response to the OPEN contains an
open del egation structure which specifies the foll ow ng:

o the type of delegation (read or wite)

0 space limtation information to control flushing of data on cl ose
(OPEN_DELEGATE_WRI TE del egati on only, see Section 10.4.1)

o0 an nfsace4 specifying read and wite perm ssions
0 a stateid to represent the delegation for READ and WRI TE

The del egation stateid is separate and distinct fromthe stateid for
the OPEN proper. The standard stateid, unlike the del egation
stateid, is associated with a particular open-owner and will continue
to be valid after the delegation is recalled and the file remains
open.

When a request internal to the client is nmade to open a file and open
del egation is in effect, it will be accepted or rejected solely on
the basis of the following conditions. Any requirenent for other
checks to be made by the del egate should result in open del egation
bei ng deni ed so that the checks can be nade by the server itself.

0 The access and deny bits for the request and the file as described
in Section 9.9.

0 The read and wite pernissions as deternined bel ow

Haynes & Noveck Expi res June 7, 2015 [Page 148]

Internet-Draft NFSv4 Decenber 2014

10.

The nfsaced4 passed with del egation can be used to avoid frequent
ACCESS calls. The perm ssion check should be as foll ows:

o |If the nfsaced4 indicates that the open may be done, then it should
be granted wi thout reference to the server

o |If the nfsaced4 indicates that the open may not be done, then an
ACCESS request nmust be sent to the server to obtain the definitive
answer .

The server nmay return an nfsaced4 that is nore restrictive than the
actual ACL of the file. This includes an nfsace4 that specifies
denial of all access. Note that sone common practices such as
mappi ng the traditional user "root" to the user "nobody" may make it
incorrect to return the actual ACL of the file in the del egation
response.

The use of del egation together with various other forns of caching
creates the possibility that no server authentication will ever be
performed for a given user since all of the user’s requests m ght be
satisfied locally. Were the client is depending on the server for
authentication, the client should be sure authentication occurs for
each user by use of the ACCESS operation. This should be the case
even if an ACCESS operation woul d not be required otherwi se. As
nmentioned before, the server may enforce frequent authentication by
returning an nfsaced4 denying all access with every open del egation

4.1. Open Del egation and Data Caching

OPEN del egation all ows nmuch of the message overhead associated with
the opening and closing files to be elimnated. An open when an open
del egation is in effect does not require that a validation nmessage be
sent to the server unless there exists a potential for conflict with
the requested share node. The continued endurance of the

" OPEN_DELEGATE_READ del egati on" provi des a guarantee that no OPEN for
wite and thus no wite has occurred that did not originate fromthis
client. Sinmilarly, when closing a file opened for wite and if
OPEN_DELEGATE WRI TE del egation is in effect, the data witten does
not have to be flushed to the server until the open delegation is
recall ed. The continued endurance of the open del egation provides a
guarantee that no open and thus no read or wite has been done by
anot her client.

For the purposes of open del egati on, READs and WRI TEs done w t hout an
OPEN (anonymous and READ bypass stateids) are treated as the
functional equivalents of a corresponding type of OPEN. READs and
WRI TEs done with an anonynous stateid done by another client will
force the server to recall a OPEN _DELEGATE _WRI TE del egation. A WRITE

Haynes & Noveck Expi res June 7, 2015 [Page 149]

Internet-Draft NFSv4 Decenber 2014

with an anonynous stateid done by another client will force a recal
of OPEN_DELEGATE READ del egations. The handling of a READ bypass
stateid is identical except that a READ done with a READ bypass
stateid will not force a recall of an OPEN DELEGATE READ del egati on

Wth delegations, a client is able to avoid witing data to the
server when the CLOSE of a file is serviced. The file close system
call is the usual point at which the client is notified of a | ack of
stable storage for the nodified file data generated by the
application. At the close, file data is witten to the server and

t hrough nornal accounting the server is able to deternmine if the
available file system space for the data has been exceeded (i.e.
server returns NFS4ERR NOSPC or NFS4ERR DQUOT). This accounting

i ncludes quotas. The introduction of delegations requires that a
alternative nethod be in place for the same type of conmunication to
occur between client and server

In the del egation response, the server provides either the limt of
the size of the file or the nunber of nodified bl ocks and associ ated
bl ock size. The server nust ensure that the client will be able to
flush data to the server of a size equal to that provided in the
original delegation. The server nust nake this assurance for al

out st andi ng del egations. Therefore, the server nust be careful in
its managenent of avail able space for new or nodified data taking
into account available file system space and any applicabl e quot as.
The server can recall delegations as a result of managi ng the
available file system space. The client should abide by the server’s
state space limts for delegations. |[If the client exceeds the stated
limts for the delegation, the server’s behavior is undefined.

Based on server conditions, quotas or available file system space,
the server may grant OPEN _DELEGATE WRI TE del egations with very
restrictive space limtations. The limtations may be defined in a
way that will always force nodified data to be flushed to the server
on cl ose.

Wth respect to authentication, flushing nodified data to the server
after a CLOSE has occurred may be problematic. For exanple, the user
of the application may have | ogged off the client and unexpired

aut hentication credentials may not be present. In this case, the
client may need to take special care to ensure that |ocal unexpired
credentials will in fact be available. One way that this may be
acconpl i shed by tracking the expiration time of credentials and
flushing data well in advance of their expiration

Haynes & Noveck Expi res June 7, 2015 [Page 150]

Internet-Draft NFSv4 Decenber 2014

10.

10.

4.2. Open Delegation and File Locks

When a client holds a OPEN DELEGATE WRI TE del egation, |ock operations
may be performed locally. This includes those required for nmandatory
file locking. This can be done since the delegation inplies that
there can be no conflicting locks. Simlarly, all of the
reval i dations that would normally be associ ated with obtaining | ocks
and the flushing of data associated with the rel easing of |ocks need
not be done.

When a client holds a OPEN DELEGATE READ del egation, |ock operations
are not perforned locally. Al |ock operations, including those
requesting non-exclusive | ocks, are sent to the server for

resol ution.

4.3. Handling of CB GETATTR

The server needs to enploy special handling for a GETATTR where the
target is a file that has a OPEN DELEGATE_WRI TE del egation in effect.
The reason for this is that the client holding the
OPEN_DELEGATE WRI TE del egati on may have nodified the data and the
server needs to reflect this change to the second client that
submitted the GETATTR Therefore, the client holding the
OPEN_DELEGATE _WRI TE del egation needs to be interrogated. The server
will use the CB_CETATTR operation. The only attributes that the
server can reliably query via CB_GETATTR are size and change

Since CB GETATTR is being used to satisfy another client’s GETATTR
request, the server only needs to know if the client holding the

del egation has a nodified version of the file. |If the client’s copy
of the delegated file is not nodified (data or size), the server can
satisfy the second client’s GETATTR request fromthe attributes
stored locally at the server. |If the file is nodified, the server
only needs to know about this nodified state. |If the server
deternmines that the file is currently nodified, it will respond to
the second client’s CETATTR as if the file had been nodified |ocally
at the server.

Since the formof the change attribute is determ ned by the server
and is opaque to the client, the client and server need to agree on a
met hod of communi cating the nodified state of the file. For the size
attribute, the client will report its current view of the file size.
For the change attribute, the handling is nore invol ved.

For the client, the following steps will be taken when receiving a
OPEN _DELEGATE WRI TE del egati on

Haynes & Noveck Expi res June 7, 2015 [Page 151]

Internet-Draft NFSv4 Decenber 2014
o The value of the change attribute will be obtained fromthe server
and cached. Let this value be represented by c.
o0 The client will create a value greater than ¢ that will be used
for conmunicating nodified data is held at the client. Let this

val ue be represented by d.

o When the client is queried via CB _GETATTR for the change

attribute, it checks to see if it holds nodified data. If the
file is nodified, the value d is returned for the change attribute
value. If this file is not currently nodified, the client returns

the value ¢ for the change attribute.

For simplicity of inplenentation, the client MAY for each CB_GETATTR
return the sane value d. This is true even if, between successive
CB_GETATTR operations, the client again nodifies in the file' s data
or netadata in its cache. The client can return the sane val ue
because the only requirenent is that the client be able to indicate
to the server that the client holds nodified data. Therefore, the
val ue of d may al ways be c + 1.

Wil e the change attribute is opaque to the client in the sense that
it has no idea what units of tine, if any, the server is counting
change with, it is not opaque in that the client has to treat it as
an unsigned integer, and the server has to be able to see the results
of the client’s changes to that integer. Therefore, the server MJST
encode the change attribute in network order when sending it to the
client. The client MJUST decode it fromnetwork order to its native
order when receiving it and the client MJST encode it network order
when sending it to the server. For this reason, the change attribute
is defined as an unsigned integer rather than an opaque array of

byt es.

For the server, the following steps will be taken when providing a
OPEN_DELEGATE WRI TE del egati on

o Upon providing a OPEN DELEGATE WRI TE del egation, the server will
cache a copy of the change attribute in the data structure it uses
to record the del egation. Let this value be represented by sc.

0 When a second client sends a GETATTR operation on the sane file to
the server, the server obtains the change attribute fromthe first
client. Let this value be cc.

o If the value cc is equal to sc, the file is not nodified and the

server returns the current values for change, tine_netadata, and
time_nodify (for exanple) to the second client.

Haynes & Noveck Expi res June 7, 2015 [Page 152]

Internet-Draft NFSv4 Decenber 2014

o If the value cc is NOT equal to sc, the file is currently nodified
at the first client and nost likely will be nodified at the server
at a future tine. The server then uses its current tinme to
construct attribute values for tine_netadata and tine _nodify. A
new val ue of sc, which we will call nsc, is conputed by the
server, such that nsc >= sc + 1. The server then returns the
constructed tine_netadata, tinme_nodify, and nsc values to the
requester. The server replaces sc in the delegation record with
nsc. To prevent the possibility of tine_nodify, tinme_netadata,
and change from appearing to go backward (whi ch woul d happen i f
the client holding the delegation fails to wite its nodified data
to the server before the delegation is revoked or returned), the
server SHOULD update the file's netadata record with the
constructed attribute values. For reasons of reasonable
performance, conmtting the constructed attribute values to stable
storage i s OPTI ONAL.

As discussed earlier in this section, the client MAY return the sane
cc val ue on subsequent CB_GETATTR calls, even if the file was
modified in the client’s cache yet again between successive

CB GETATTR calls. Therefore, the server nust assume that the file
has been nodified yet again, and MJST take care to ensure that the
new nsc it constructs and returns is greater than the previous nsc it
returned. An exanple inplenentation’s del egation record woul d
satisfy this mandate by including a boolean field (let us call it
"nodified") that is set to FALSE when the del egation is granted, and
an sc value set at the time of grant to the change attribute val ue.
The nodified field would be set to TRUE the first time cc != sc, and
woul d stay TRUE until the delegation is returned or revoked. The
processing for constructing nsc, time_nodify, and tinme_netadata woul d
use this pseudo code

if (!modified) {
do CB _GETATTR for change and size

if (cc != sc)
nodi fi ed = TRUE;
} else {
do CB _CGETATTR for size
}

if (nmodified) {
sc = sc + 1;
time_nmodify = tine_netadata = current _tine;
update sc, time_nodify, time_metadata into file' s netadata

Haynes & Noveck Expi res June 7, 2015 [Page 153]

Internet-Draft NFSv4 Decenber 2014

10.

This would return to the client (that sent GETATTR) the attributes it
requested, but nake sure size conmes fromwhat CB_GETATTR ret urned
The server would not update the file's nmetadata with the client’s
nodi fied size.

In the case that the file attribute size is different than the
server’s current value, the server treats this as a nodification
regardl ess of the value of the change attribute retrieved via
CB_GETATTR and responds to the second client as in the | ast step

Thi s nmet hodol ogy resol ves issues of clock differences between client
and server and other scenarios where the use of CB_GETATTR breaks
down.

It should be noted that the server is under no obligation to use
CB GETATTR and therefore the server MAY sinply recall the del egation
to avoid its use.

4.4. Recall of Open Del egation
The follow ng events necessitate recall of an open del egation

o Potentially conflicting OPEN request (or READ/WRI TE done with
"special" stateid)

0 SETATTR i ssued by another client
0 REMOVE request for the file

0 RENAME request for the file as either source or target of the
RENAVE

Whet her a RENAME of a directory in the path leading to the file
results in recall of an open del egation depends on the semantics of
the server file system |f that file system deni es such RENAMES when
afile is open, the recall nust be performed to determ ne whether the
file in question is, in fact, open

In addition to the situations above, the server may choose to recal
open del egations at any tine if resource constraints nake it

advi sable to do so. dients should always be prepared for the
possibility of recall

When a client receives a recall for an open delegation, it needs to
update state on the server before returning the del egation. These
same updates nust be done whenever a client chooses to return a

del egation voluntarily. The following items of state need to be
dealt with:

Haynes & Noveck Expi res June 7, 2015 [Page 154]

Internet-Draft NFSv4 Decenber 2014

(o]

If the file associated with the delegation is no | onger open and
no previous CLOSE operation has been sent to the server, a CLOSE
operation nmust be sent to the server

If afile has other open references at the client, then OPEN
operations nust be sent to the server. The appropriate stateids
will be provided by the server for subsequent use by the client
since the delegation stateid will not longer be valid. These OPEN
requests are done with the claimtype of CLAIM DELEGATE CUR. This
will allow the presentation of the delegation stateid so that the
client can establish the appropriate rights to performthe OPEN
(see Section 15.18 for details.)

If there are granted file | ocks, the correspondi ng LOCK operations
need to be perforned. This applies to the OPEN _DELEGATE WRI TE
del egati on case only.

For a OPEN DELEGATE WRI TE del egation, if at the time of recall the
file is not open for wite, all nodified data for the file nust be
flushed to the server. |If the del egation had not existed, the
client would have done this data flush before the CLOSE operation

For a OPEN DELEGATE WRI TE del egation when a file is still open at
the time of recall, any nodified data for the file needs to be
flushed to the server.

Wth the OPEN _DELEGATE WRI TE del egation in place, it is possible
that the file was truncated during the duration of the del egation
For exanple, the truncation could have occurred as a result of an
OPEN UNCHECKED4 with a size attribute value of zero. Therefore,
if atruncation of the file has occurred and this operation has
not been propagated to the server, the truncation must occur
before any nodified data is witten to the server

In the case of OPEN DELEGATE WRI TE del egation, file |ocking inposes
some additional requirenments. To precisely naintain the associated
invariant, it is required to flush any nodified data in any region
for which a wite | ock was rel eased while the OPEN DELEGATE WRI TE
del egation was in effect. However, because the OPEN _DELEGATE WRI TE
del egation inplies no other |ocking by other clients, a sinpler

i mpl ementation is to flush all nodified data for the file (as
described just above) if any wite |ock has been rel eased while the
OPEN_DELEGATE_WRI TE del egation was in effect.

An impl enentation need not wait until delegation recall (or deciding
to voluntarily return a delegation) to performany of the above
actions, if inplenentation considerations (e.g., resource
availability constraints) nake that desirable. Generally, however

Haynes & Noveck Expi res June 7, 2015 [Page 155]

Internet-Draft NFSv4 Decenber 2014

10.

the fact that the actual open state of the file nay continue to
change makes it not worthwhile to send informati on about opens and
closes to the server, except as part of delegation return. Only in
the case of closing the open that resulted in obtaining the

del egation would clients be likely to do this early, since, in that
case, the close once done will not be undone. Regardless of the
client’s choices on scheduling these actions, all nust be perforned
before the delegation is returned, including (when applicable) the
cl ose that corresponds to the open that resulted in the del egation
These actions can be perfornmed either in previous requests or in
previ ous operations in the sanme COMPOUND request.

4.5. OPEN Del egation Race with CB_RECALL

The server inforns the client of recall via a CB_RECALL. A race case
whi ch nmay develop is when the delegation is inmediately recall ed

bef ore the COMPOUND whi ch established the delegation is returned to
the client. As the CB RECALL provides both a stateid and a
filehandl e for which the client has no mapping, it cannot honor the
recall attenpt. At this point, the client has two choices, either do
not respond or respond with NFSAERR BADHANDLE. |If it does not
respond, then it runs the risk of the server deciding to not grant it
further del egations.

If instead it does reply with NFSAERR BADHANDLE, then both the client
and the server mght be able to detect that a race condition is
occurring. The client can keep a list of pending del egations. Wen
it receives a CB RECALL for an unknown del egation, it can cache the
stateid and filehandle on a |ist of pending recalls. Wen it is
provided with a delegation, it would only use it if it was not on the
pending recall list. Upon the next CB_RECALL, it could inmediately
return the del egation

In turn, the server can keep track of when it issues a del egation and
assune that if a client responds to the CB RECALL with a

NFSAERR BADHANDLE, then the client has yet to receive the del egation

The server SHOULD give the client a reasonable tine both to get this

del egation and to return it before revoking the delegation. Unlike a
failed call back path, the server should periodically probe the client
with CB RECALL to see if it has received the delegation and is ready

to return it.

When the server finally determ nes that enough tinme has |apsed, it
SHOULD revoke the delegation and it SHOULD NOT revoke the | ease.
During this extended recall process, the server SHOULD be renew ng
the client |ease. The intent here is that the client not pay too
onerous a burden for a condition caused by the server

Haynes & Noveck Expi res June 7, 2015 [Page 156]

Internet-Draft NFSv4 Decenber 2014

10.4.6. dients that Fail to Honor Del egation Recalls

A client may fail to respond to a recall for various reasons, such as
a failure of the callback path fromserver to the client. The client
may be unaware of a failure in the callback path. This |ack of
awareness could result in the client finding out long after the
failure that its del egati on has been revoked, and another client has
nmodi fied the data for which the client had a delegation. This is
especially a problemfor the client that held a OPEN_DELEGATE WRI TE
del egati on.

The server also has a dilema in that the client that fails to
respond to the recall might al so be sending other NFS requests,

i ncluding those that renew the | ease before the | ease expires.
Wthout returning an error for those | ease renew ng operations, the
server leads the client to believe that the delegation it has is in
force.

This difficulty is solved by the follow ng rules:

o \When the callback path is down, the server MJUST NOT revoke the
del egation if one of the foll owi ng occurs:

* The client has issued a RENEW operation and the server has
returned an NFS4ERR CB PATH DOM error. The server MJST renew
the | ease for any byte-range | ocks and share reservations the
client has that the server has known about (as opposed to those
| ocks and share reservations the client has established but not
yet sent to the server, due to the delegation). The server
SHOULD give the client a reasonable tine to return its
del egations to the server before revoking the client’s
del egati ons.

* The client has not issued a RENEW operation for sone period of
time after the server attenpted to recall the delegation. This
period of time MJUST NOT be | ess than the val ue of the
| ease_time attribute.

0 When the client holds a delegation, it cannot rely on operations,
except for RENEW that take a stateid, to renew del egation | eases
across call back path failures. The client that wants to keep
del egations in force across call back path failures nust use RENEW
to do so.

Haynes & Noveck Expi res June 7, 2015 [Page 157]

Internet-Draft NFSv4 Decenber 2014

10.

10.

4.7. Del egation Revocation

At the point a delegation is revoked, if there are associ ated opens
on the client, the applications holding these opens need to be
notified. This notification usually occurs by returning errors for
READY WRI TE operations or when a close is attenpted for the open file.

If no opens exist for the file at the point the delegation is
revoked, then notification of the revocation is unnecessary.

However, if there is nodified data present at the client for the
file, the user of the application should be notified. Unfortunately,
it may not be possible to notify the user since active applications
may not be present at the client. See Section 10.5.1 for additiona
details.

5. Data Caching and Revocation

When | ocks and del egations are revoked, the assunptions upon which
successful caching depend are no | onger guaranteed. For any |ocks or
share reservati ons that have been revoked, the correspondi ng owner
needs to be notified. This notification includes applications with a
file open that has a correspondi ng del egati on whi ch has been revoked.
Cached data associated with the revocation nust be renoved fromthe
client. In the case of nodified data existing in the client’s cache,
that data nust be renoved fromthe client without it being witten to
the server. As nentioned, the assunptions made by the client are no
| onger valid at the point when a | ock or del egation has been revoked.
For exanple, another client may have been granted a conflicting |ock
after the revocation of the lock at the first client. Therefore, the
data within the lock range may have been nodified by the other

client. Cbviously, the first client is unable to guarantee to the
application what has occurred to the file in the case of revocation

Notification to a | ock-owner will in many cases consist of sinply
returning an error on the next and all subsequent READs/WRI TEs to the
open file or on the close. Were the nethods available to a client
make such notification inpossible because errors for certain
operations may not be returned, nore drastic action such as signals
or process termnation may be appropriate. The justification for
this is that an invariant for which an application depends on nay be
viol ated. Depending on how errors are typically treated for the
client operating environment, further levels of notification

i ncludi ng | oggi ng, consol e nmessages, and GUl pop-ups rmay be
appropri at e.

Haynes & Noveck Expi res June 7, 2015 [Page 158]

Internet-Draft NFSv4 Decenber 2014

10.

10.

5.1. Revocation Recovery for Wite Qpen Del egation

Revocation recovery for a OPEN_DELEGATE WRI TE del egati on poses the
special issue of nodified data in the client cache while the file is
not open. |In this situation, any client which does not flush

nodi fied data to the server on each cl ose nust ensure that the user
receives appropriate notification of the failure as a result of the
revocation. Since such situations may require human action to
correct problens, notification schenes in which the appropriate user
or admnistrator is notified may be necessary. Logging and consol e
messages are typi cal exanpl es.

If there is nodified data on the client, it nust not be flushed
normally to the server. A client may attenpt to provide a copy of
the file data as nodified during the del egation under a different
nane in the file system nanme space to ease recovery. Note that when
the client can deternine that the file has not been nodified by any
other client, or when the client has a conplete cached copy of the
file in question, such a saved copy of the client’s view of the file
may be of particular value for recovery. |n other cases, recovery
using a copy of the file based partially on the client’s cached data
and partially on the server copy as nodified by other clients, wll
be anything but straightforward, so clients nay avoid saving file
contents in these situations or mark the results specially to warn
users of possible problens.

Savi ng of such nodified data in del egation revocation situations may
be limted to files of a certain size or m ght be used only when
sufficient disk space is available within the target file system
Such saving may al so be restricted to situations when the client has
sufficient buffering resources to keep the cached copy avail abl e
until it is properly stored to the target file system

6. Attribute Caching

The attributes discussed in this section do not include nanmed
attributes. Individual naned attributes are anal ogous to files and
caching of the data for these needs to be handled just as data
caching is for regular files. Simlarly, LOXKUP results from an
OPENATTR directory are to be cached on the sane basis as any other
pat hnanes and sinilarly for directory contents.

Clients may cache file attributes obtained fromthe server and use
themto avoid subsequent GETATTR requests. Such caching is wite
through in that nodification to file attributes is always done by
means of requests to the server and should not be done locally and
cached. The exception to this are nodifications to attributes that
are intimately connected with data caching. Therefore, extending a

Haynes & Noveck Expi res June 7, 2015 [Page 159]

Internet-Draft NFSv4 Decenber 2014

file by witing data to the |ocal data cache is reflected i nmediately
in the size as seen on the client wthout this change being

i mMmedi ately reflected on the server. Normally such changes are not
propagated directly to the server but when the nodified data is
flushed to the server, anal ogous attribute changes are nade on the
server. \Wen open delegation is in effect, the nodified attributes
may be returned to the server in the response to a CB_GETATTR cal l.

The result of local caching of attributes is that the attribute
caches mai ntained on individual clients will not be coherent.
Changes nade in one order on the server may be seen in a different
order on one client and in a third order on a different client.

The typical file system application programr ng interfaces do not
provide means to atomcally nodify or interrogate attributes for
multiple files at the sane tinme. The follow ng rules provide an
envi ronnment where the potential incoherency nentioned above can be
reasonably managed. These rules are derived fromthe practice of
previ ous NFS protocols.

o Al attributes for a given file (per-fsid attributes excepted) are
cached as a unit at the client so that no non-serializability can
arise within the context of a single file.

0 An upper tine boundary is maintained on howlong a client cache
entry can be kept w thout being refreshed fromthe server.

0 \When operations are perforned that nodify attributes at the
server, the updated attribute set is requested as part of the
containing RPC. This includes directory operations that update
attributes indirectly. This is acconplished by follow ng the
nmodi fyi ng operation with a GETATTR operation and then using the
results of the GETATTR to update the client’s cached attri butes.

Note that if the full set of attributes to be cached is requested by
READDI R, the results can be cached by the client on the sanme basis as
attributes obtained via CGETATTR

A client may validate its cached version of attributes for a file by
fetching just both the change and tinme_access attributes and assum ng
that if the change attribute has the sane value as it did when the
attributes were cached, then no attributes other than tine_access
have changed. The reason why tinme_access is also fetched is because
many servers operate in environnents where the operation that updates
change does not update tine_access. For example, PCSIX file
semantics do not update access tine when a file is nodified by the
wite systemcall. Therefore, the client that wants a current

Haynes & Noveck Expi res June 7, 2015 [Page 160]

Internet-Draft NFSv4 Decenber 2014

10.

ti me_access value should fetch it with change during the attribute
cache validation processing and update its cached tinme_access.

The client nay nmaintain a cache of nodified attributes for those
attributes intimately connected with data of nodified regular files
(size, time_nodify, and change). Qher than those three attributes,
the client MJUST NOT naintain a cache of nodified attributes.
Instead, attribute changes are imedi ately sent to the server.

In sone operating environnments, the equivalent to tine_access is
expected to be inplicitly updated by each read of the content of the
file object. If an NFS client is caching the content of a file

obj ect, whether it is a regular file, directory, or synbolic link
the client SHOULD NOT update the time_access attribute (via SETATTR
or a small READ or READDIR request) on the server with each read that
is satisfied fromcache. The reason is that this can defeat the
performance benefits of caching content, especially since an explicit
SETATTR of time_access nay alter the change attribute on the server
If the change attribute changes, clients that are caching the content
will think the content has changed, and will re-read unnodified data
fromthe server. Nor is the client encouraged to maintain a nodified
version of tine_access in its cache, since this would nean that the
client will either eventually have to wite the access tinme to the
server with bad performance effects, or it would never update the
server’s time_access, thereby resulting in a situation where an
application that caches access tine between a close and open of the
same file observes the access tine oscillating between the past and
present. The tine_access attribute always neans the tine of |ast
access to a file by a read that was satisfied by the server. This
way clients will tend to see only tinme_access changes that go forward
in time.

7. Data and Metadata Caching and Menory Mapped Files

Sone operating environnments include the capability for an application
tomp a file's content into the application' s address space. Each
time the application accesses a nmenory |ocation that corresponds to a
bl ock that has not been |oaded into the address space, a page fault
occurs and the file is read (or if the block does not exist in the
file, the block is allocated and then instantiated in the
application’s address space).

As | ong as each nenory mapped access to the file requires a page
fault, the relevant attributes of the file that are used to detect
access and nodification (tine_access, tine_netadata, tinme_nodify, and
change) will be updated. However, in nany operating environnments
when page faults are not required these attributes will not be
updated on reads or updates to the file via nenory access (regardl ess

Haynes & Noveck Expi res June 7, 2015 [Page 161]

Internet-Draft NFSv4 Decenber 2014

of whether the file is a local file or is being accessed renotely).
A client or server MAY fail to update attributes of a file that is
bei ng accessed via nenory mapped I/ O, This has several inplications:

(0]

If there is an application on the server that has nmenory napped a
file that a client is also accessing, the client may not be able
to get a consistent value of the change attribute to determ ne
whether its cache is stale or not. A server that knows that the
file is nmenory mapped coul d al ways pessinmistically return updated
val ues for change so as to force the application to always get the
nost up to date data and netadata for the file. However, due to

t he negative perfornmance inplications of this, such behavior is
OPTI ONAL.

If the menory mapped file is not being nodified on the server, and
instead is just being read by an application via the nmenory napped
interface, the client will not see an updated tine_access
attribute. However, in many operating environnents, neither will
any process running on the server. Thus NFS clients are at no

di sadvantage with respect to | ocal processes.

If there is another client that is nenory mapping the file, and if
that client is holding a OPEN DELEGATE WRI TE del egati on, the sane
set of issues as discussed in the previous two bullet itens apply.
So, when a server does a CB GETATTR to a file that the client has
modified in its cache, the response from CB_GETATTR wi || not
necessarily be accurate. As discussed earlier, the client’s
obligation is to report that the file has been nodified since the
del egati on was granted, not whether it has been nodified again

bet ween successive CB GETATTR calls, and the server MJST assune
that any file the client has nodified in cache has been nodified
agai n between successive CB_GETATTR calls. Depending on the
nature of the client’s nenory managenent system this weak
obligation my not be possible. A client MAY return stale

i nformati on in CB_GETATTR whenever the file is nmenory napped.

The m xture of menmory mapping and file locking on the sane file is
probl ematic. Consider the follow ng scenario, where the page size
on each client is 8192 bytes.

* Cient A nmenory naps first page (8192 bytes) of file X

* Cient B nmenory nmaps first page (8192 bytes) of file X

* Cient Awite locks first 4096 bytes

* Cient Bwite |locks second 4096 bytes

Haynes & Noveck Expi res June 7, 2015 [Page 162]

Internet-Draft NFSv4 Decenber 2014

10.

* Cient A via a STORE instruction nodifies part of its |ocked
regi on.

* Simultaneous to client A client B issues a STORE on part of
its | ocked region.

Here the challenge is for each client to resynchronize to get a
correct view of the first page. In many operating environments, the
virtual nenory managenent systenms on each client only know a page is
nodi fi ed, not that a subset of the page corresponding to the
respective |lock regions has been nodified. So it is not possible for
each client to do the right thing, which is to only wite to the
server that portion of the page that is |ocked. For exanple, if
client Asinply wites out the page, and then client B wites out the
page, client A's data is |ost.

Moreover, if nmandatory |locking is enabled on the file, then we have a
different problem Wen clients A and B issue the STORE
instructions, the resulting page faults require a byte-range | ock on
the entire page. Each client then tries to extend their |ocked range
to the entire page, which results in a deadl ock

Conmruni cati ng the NFS4ERR DEADLOCK error to a STORE instruction is
difficult at best.

If aclient is locking the entire nenmory mapped file, there is no
problem w th advi sory or mandatory byte-range | ocking, at |east unti
the client unlocks a region in the niddle of the file.

G ven the above issues the following are pernitted:

o Cdients and servers MAY deny nenory mapping a file they know there
are byte-range | ocks for.

0o Cdients and servers MAY deny a byte-range lock on a file they know
is menory napped.

o Aclient MAY deny nmenmory mapping a file that it knows requires
mandatory locking for I/O If mandatory |ocking is enabled after
the file is opened and mapped, the client MAY deny the application
further access to its napped file.

8. Nane Caching

The results of LOOKUP and READDI R operations may be cached to avoid
the cost of subsequent LOOKUP operations. Just as in the case of
attribute caching, inconsistencies nay arise anong the various client
caches. To nitigate the effects of these inconsistencies and given

Haynes & Noveck Expi res June 7, 2015 [Page 163]

Internet-Draft NFSv4 Decenber 2014

10.

the context of typical file system APls, an upper time boundary is
mai nt ai ned on how I ong a client name cache entry can be kept without
verifying that the entry has not been made invalid by a directory
change operation performed by another client.

When a client is not nmaking changes to a directory for which there
exi st nanme cache entries, the client needs to periodically fetch
attributes for that directory to ensure that it is not being

nmodi fied. After determ ning that no nodification has occurred, the
expiration tine for the associ ated nane cache entries nmay be updated
to be the current tinme plus the nane cache stal eness bound.

When a client is naking changes to a given directory, it needs to

det ermi ne whet her there have been changes nmade to the directory by
other clients. It does this by using the change attribute as
reported before and after the directory operation in the associated
change_info4 value returned for the operation. The server is able to
communi cate to the client whether the change_info4 data is provided
atomically with respect to the directory operation. |f the change
val ues are provided atomically, the client is then able to conpare
the pre-operation change value with the change value in the client’s

nane cache. |If the conparison indicates that the directory was
updat ed by another client, the nane cache associated with the
nodi fied directory is purged fromthe client. |If the comparison

i ndi cates no nodification, the nane cache can be updated on the
client to reflect the directory operation and the associated ti nmeout
extended. The post-operation change val ue needs to be saved as the
basis for future change_i nfo4 conparisons

As denonstrated by the scenario above, nane caching requires that the
client revalidate nanme cache data by inspecting the change attribute
of a directory at the point when the nanme cache itemwas cached

This requires that the server update the change attribute for
directories when the contents of the corresponding directory is

nmodi fied. For a client to use the change_info4 information
appropriately and correctly, the server nust report the pre and post
operation change attribute values atomically. Wen the server is
unable to report the before and after values atomically with respect
to the directory operation, the server nust indicate that fact in the
change_info4 return value. Wen the information is not atonically
reported, the client should not assune that other clients have not
changed the directory.

9. Directory Caching
The results of READDI R operations may be used to avoid subsequent

READDI R operations. Just as in the cases of attribute and nanme
caching, inconsistencies nmay arise anong the various client caches.

Haynes & Noveck Expi res June 7, 2015 [Page 164]

Internet-Draft NFSv4 Decenber 2014

11.

To nmitigate the effects of these inconsistencies, and given the
context of typical file system APls, the followi ng rules should be
fol | owed:

0 Cached READDIR information for a directory which is not obtained
in a single READDI R operation nust always be a consistent snapshot
of directory contents. This is determined by using a GETATTR
before the first READDIR and after the | ast of READDI R t hat
contributes to the cache.

0 An upper tine boundary is nmaintained to indicate the | ength of
time a directory cache entry is considered valid before the client
must revalidate the cached information.

The revalidation technique parallels that discussed in the case of
nane caching. Wen the client is not changing the directory in
question, checking the change attribute of the directory with GETATTR
is adequate. The lifetime of the cache entry can be extended at

t hese checkpoints. When a client is nodifying the directory, the
client needs to use the change_info4 data to determ ne whether there
are other clients nodifying the directory. |If it is determned that
no other client nodifications are occurring, the client may update
its directory cache to reflect its own changes.

As denonstrated previously, directory caching requires that the
client revalidate directory cache data by inspecting the change
attribute of a directory at the point when the directory was cached.
This requires that the server update the change attribute for
directories when the contents of the corresponding directory is

nmodi fied. For a client to use the change_info4 information
appropriately and correctly, the server nust report the pre and post
operation change attribute values atomically. Wen the server is
unable to report the before and after values atomically with respect
to the directory operation, the server nust indicate that fact in the
change_info4 return value. Wen the information is not atonically
reported, the client should not assune that other clients have not
changed the directory.

M nor Ver si oni ng

To address the requirenment of an NFS protocol that can evolve as the
need arises, the NFSv4 protocol contains the rules and framework to
allow for future minor changes or versioning.

The base assunption with respect to minor versioning is that any
future accepted m nor version nust follow the | ETF process and be
docunmented in a standards track RFC. Therefore, each m nor version
number will correspond to an RFC. M nor version 0 of the NFS version

Haynes & Noveck Expi res June 7, 2015 [Page 165]

Internet-Draft NFSv4 Decenber 2014

12.

12.

4 protocol is represented by this RFC. The COVPOUND and CB_COVPOUND
procedures support the encoding of the mnor version being requested
by the client.

Future minor versions will extend, rather than replace the XDR for
the preceding ninor version, as had been done in noving fromNFSv2 to
NFSv3 and from NFSv3 to NFSv4. 0.

Specification of detailed rules for the construction of mnor
versions will be addressed in docunents defining early m nor versions
or, nore desirably, in an RFC establishing a versioning franmework for
NFSv4 as a whol e.

Internationalization
1. Introduction

Internationalization is a conplex topic with its own set of
term nol ogy (see [RFC6365]). The topic is nmade nore conplex in
NFSv4.0 by the tangled history and state of NFS inpl enmentations.

This section describes what we m ght call "NFSv4.0
internationalization" (i.e., internationalization as inplenented by
existing clients and servers) as the basis upon which NFSv4.0 clients
may i npl ement internationalization support.

This section is based on the behavi or of existing inplenentations.
Not e that the behaviors described are each denonstrated by a

conbi nati on of an NFSv4 server inplenentation proper and a server-
side physical file system It is common for servers and physica
file systems to be configurable as to the behavior shown. |In the

di scussi on bel ow, each configuration that shows different behavior is
consi dered separately.

Note that in this section, the keywords "MJST", "SHOULD', and " NAY",
retain their normal neanings. However, in deriving this
specification frominplenentation patterns, we docunent bel ow how the
normati ve terns used derive fromthe behavi or of existing

i mpl ementations, in those situations in which existing inplenmentation
behavi or patterns can be determ ned.

0 Behavior inplenented by all existing clients or servers is
descri bed using "MJST", since new inplenentations need to foll ow
exi sting ones to be assured of interoperability. While it is
possi bl e that different behavior m ght be workable, we have found
no case where this seens reasonabl e.

Haynes & Noveck Expi res June 7, 2015 [Page 166]

Internet-Draft NFSv4 Decenber 2014

0 Behavior inplemented by no existing clients or servers is
descri bed using "MJUST NOI*, if such behavior poses
interoperability problens.

0 Behavior inplenented by nost existing clients or servers, where
that behavior is nore desirable than any alternative is described
usi ng "SHOULD', since new inplenentations need to follow that
exi sting practice unless there are strong reasons to do ot herwi se.

The converse holds for "SHOULD NOT".

0 Behavior inplenented by sonme, but not all existing clients or
servers, is described using "MAY", indicating that new
i mpl ement ati ons have a choice as to whether they will behave in
that way. Thus, new inplenentations will have the sane
flexibility that existing ones do.

0 Behavior inplenmented by all existing clients or servers, so far as
i s known, but where there remains sone uncertainty as to details
i s described using "should". Such cases primarily concern details
of error returns. New inplementations should foll ow existing
practice even though such situations generally do not affect
interoperability.

There are also cases in which certain server behaviors, while not
known to exist, cannot be reliably determned not to exist. |In part,
this is a consequence of the long period of time that has el apsed
since the publication of [RFC3530], resulting in a situation in which
those involved in the inplenentati on nay no | onger be involved in or
aware of working group activities.

In the case of possible server behavior that is neither known to
exi st nor known not to exist, we use SHOULD NOT and MJST NOT as
follows, and simlarly for "SHOULD' and "MJST".

0 |In sone cases, the potential behavior is not known to exist but is
of such a nature that, if it were in fact inplenmented
interoperability difficulties would be expected and reported,
giving us cause to conclude that the potential behavior is not
i npl emented. For such behavior, we use MUST NOT. Simlarly we
use "MJST" to apply to the contrary behavior

0 In other cases, potential behavior is not known to exist but the
behavi or, while undesirable, is not of such a nature that we are
abl e to draw any concl usions about its potential existence. In
such cases, we use SHOULD NOT. Sinmilarly we use "SHOULD' to apply
to the contrary behavior.

Haynes & Noveck Expi res June 7, 2015 [Page 167]

Internet-Draft NFSv4 Decenber 2014

12.

12.

In the case of a MAY, SHOULD, or SHOULD NOT that applies to servers,
clients need to be aware that there are servers which may or nay not
take the specified action, and they need to be prepared for either
eventuality.

2. Linmtations on internationalization-related processing in the
NFSv4 cont ext

There are a nunber of noteworthy circunmstances that limt the degree
to which internationalization-related processing can be nade
universal with regard to NFSv4 clients and servers:

0 The NFSv4 client is part of an extensive set of client-side
sof t ware conponents whose design and internal interfaces are not
within the IETF s purview, limting the degree to which a
particul ar character encodi ng may be namde standard

0 Server-side handling of file conponent nanmes is typically
i mpl emented within a server-side physical file system whose
handl i ng of character encodi ng and normalization is not
specifiable by the I ETF.

0 Typical inplenmentation patterns in Unix systens result in the
NFSv4 client having no know edge of the character encodi ng bei ng
used, which may even vary between processes on the sane client
system

0 Users nmay need access to files stored previously with non-UTF-8
encodi ngs, or with UTF-8 encodings that do not match any
particul ar normalization form

3. Sunmmary of Server Behavior Types

As nentioned in Section 12.6, servers MAY reject conponent nane
strings that are not valid UTF-8. This |eads to a nunber of types of
val id server behavior as outlined below. Wen these are conbi ned
with the valid normalization-related behaviors as described in
Section 12.4, this |l eads to the conbi ned behaviors outlined bel ow.

o0 Servers which limt file conponent nanes to UTF-8 strings exist
with nornmalization-related handling described in Section 12. 4.
These are best described as "UTF-8-only servers"

0 Servers which do not limt file conponent nanmes to UTF-8 strings
are very comon and are necessary to deal with clients/
applications not oriented to the use of UTF-8. Such servers
i gnore nornalization-related i ssues and there is no way for them
to inplement either normalization or representation-independent

Haynes & Noveck Expi res June 7, 2015 [Page 168]

Internet-Draft NFSv4 Decenber 2014

| ookups. These are best described as "UTF-8-unaware servers"”
since they treat file conponent nanmes as uninterpreted strings of
bytes and have no know edge of the characters represented. See
Section 12.7 for details.

0o It is possible for a server to all ow conmponent nanmes which are not
valid UTF-8, while still being aware of the structure of UTF-8
strings. Such servers could inplenment either normalization or
represent ati on-i ndependent | ookups, but apply those techniques
only to valid UTF-8 strings. Such servers are not comon, but it
is possible to configure at | east one known server to have this
behavi or. This behavi or SHOULD NOT be used due to the possibility
that a fil enane using one character set may, by coincidence, have
t he appearance of a UTF-8 filenane; the results of UTF-8
normal i zati on or representation-independent | ookups are unlikely
to be correct in all cases with respect to the other character
set.

12.4. String Encoding

Strings that potentially contain characters outside the ASCI| range
[RFC20] are generally represented in NFSv4 using the UTF-8 encodi ng
[RFC3629] of Unicode [UNICODE]. See [RFC3629] for precise encoding
and decodi ng rul es.

Some details of the protocol treatnment depend on the type of string:

o0 For strings which are conponent nanes, the preferred encoding for
any non-ASCl| characters is the UTF-8 representati on of Uni code.

In many cases, clients have no know edge of the encodi ng being
used, with the encodi ng done at user-level under control of a per-
process | ocal e specification. As a result, it may be inpossible
for the NFSv4 client to enforce use of UTF-8. Use of non-UTF-8
encodi ngs can be problematic since it nay interfere with access to
files stored using other fornms of name encodi ng. Al so,
normal i zati on-rel ated processing (see Section 12.5) of a string
not encoded in UTF-8 could result in inappropriate name

nmodi fication or aliasing. |In cases in which one has a non- UTF8
encoded nane that accidentally conforns to UTF-8 rules,
substitution of canonically equivalent strings can change the non-
UTF- 8 encoded nane drastically.

The kinds of nodification and aliasing nentioned here can lead to

both fal se negatives and fal se positives depending on the strings

in question, which can result in security issues such as elevation
of privilege and denial of service (see [RFC6943] for further

di scussi on).

Haynes & Noveck Expi res June 7, 2015 [Page 169]

Internet-Draft NFSv4 Decenber 2014

12.

o For strings based on domai n nanes, non-ASClI| characters MJST be
represented using the UTF-8 encodi ng of Uni code, and additiona
string format restrictions apply. See Section 12.6 for details.

o0 The contents of synbolic Iinks (of type linktext4 in the XDR) MJST
be treated as opaque data by NFSv4 servers. Although UTF-8
encoding is often used, it need not be. |In this respect, the
contents of synbolic links are like the contents of regular files
in that their encoding is not within the scope of this
speci fication.

o For other sorts of strings, any non-ASCl| characters SHOULD be
represented using the UTF-8 encodi ng of Uni code.

5. Nor mal i zati on

The client and server operating environments may differ in their
policies and operational nmethods with respect to character
normalization (See [UNICODE] for a discussion of normalization
forns). This difference may al so exi st between applications on the
same client. This adds to the difficulty of providing a single
nornal i zation policy for the protocol that allows for naxinal
interoperability. This issue is simlar to the character case issues
where the server may or nmay not support case insensitive file name
mat chi ng and may or nay not preserve the character case when storing
file names. The protocol does not mandate a particul ar behavi or but
all ows for a range of useful behaviors.

The NFS version 4 protocol does not nmandate the use of a particul ar
normalization format this tinme. A subsequent ninor version of the
NFSv4 protocol might specify a particular normalization form
Therefore, the server and client can expect that they may receive
unnormal i zed characters w thin protocol requests and responses. |If
the operating environnent requires nornalization, then the

i mpl ementation will need to nornalize the various UTF-8 encoded
strings within the protocol before presenting the information to an
application (at the client) or local file system (at the server).

Server inplenentations MAY normalize file nanes to conformto a
particul ar normalization formbefore using the resulting string when
| ooking up or creating a file. Servers MAY al so perform

normal i zati on-insensitive string conparisons w thout nodifying the
names to match a particular normalization form Except in cases in
whi ch conponent nanmes are excluded from normali zation-rel ated
handl i ng because they are not valid UTF-8 strings, a server MJST make
the sane choice (as to whether to normalize or not, the target form
of normalization and whether to do nornalization-insensitive string
comparisons) in the sane way for all accesses to a particular file

Haynes & Noveck Expi res June 7, 2015 [Page 170]

Internet-Draft NFSv4 Decenber 2014

12.

system Servers SHOULD NOT reject a file name because it does not
conformto a particular nornalization formas this may deny access to
clients that use a different normalization form

6. Types with Processing Defined by Oher Internet Areas

There are two types of strings that NFSv4 deals with that are based
on domai n nanes. Processing of such strings is defined by other

I nternet standards, and hence the processing behavior for such
strings should be consistent across all server operating systens and
server file systens.

These are as foll ows:

0 Server nanes as they appear in the fs_locations attribute. Note
that for nost purposes, such server nanes will only be sent by the
server to the client. The exception is use of the fs_|ocations
attribute in a VERI FY or NVERI FY operati on.

o Principal suffixes which are used to denote sets of users and
groups, and are in the formof domain nanes

The general rules for handling all of these domain-related strings
are simlar and independent of the role of the sender or receiver as
client or server although the consequences of failure to obey these
rules may be different for client or server. The server can report
errors when it is sent invalid strings, whereas the client wll
simply ignore invalid string or use a default value in their place.

The string sent SHOULD be in the formof one or nore U | abels as
defined by [RFC5890]. If that is inpractical, it can instead be in
the formof one or nore LDH | abel s [RFC5890] or a UTF-8 donai n namne
that contains |abels that are not properly formatted U-| abels. The
recei ver needs to be able to accept domain and server nanmes in any of
the formats allowed. The server MJST reject, using the error
NFSAERR_ | NVAL, a string that is not valid UTF-8, or that contains an
ASCI| label that is not a valid LDH | abel, or that contains an XN

| abel (begins with "xn--") for which the characters after "xn--" are
not valid output of the Punycode al gorithm [RFC3492].

When a domain string is part of id@onain or group@onain, there are
two possi bl e approaches:

1. The server treats the domain string as a series of U labels. 1In
cases where the domain string is a series of A-labels or NR-LDH
| abels, it converts themto Ul abels using the Punycode al gorithm
[RFC3492]. In cases where the donmain string is series of other
sorts of LDH | abels, the server can use the ToUni code function

Haynes & Noveck Expi res June 7, 2015 [Page 171]

Internet-Draft NFSv4 Decenber 2014

12.

defined in [RFC3490] to convert the string to a series of labels
that generally conformto the Ul abel syntax. In cases where the
domain string is a UTF-8 string that contains non-U-1|abels, the
server can attenpt to use to ToASClII function defined in

[RFC3490] and then the ToUni code function on the string to
convert it to a series of labels that generally conformto the

U- | abel syntax. As a result, the domain string returned within a
userid on a GETATTR may not match that sent when the userid is
set using SETATTR, al though when this happens, the domain will be
in the formthat generally conformto the U | abel syntax.

2. The server does not attenpt to treat the domain string as a
series of U labels; specifically, it does not map a domain string
which is not a U-label into a Ul abel using the nethods descri bed
above. As a result, the domain string returned on a GETATTR of
the userid MUST be the sane as that used when setting the userid
by the SETATTR

A server SHOULD use the first nethod

For VERI FY and NVERI FY, additional string processing requirenents
apply to verification of the owner and owner _group attributes, see
Section 5.9.

7. UTF-8 Related Errors

Where the client sends an invalid UTF-8 string, the server MAY return
an NFS4ERR I NVAL error. This includes cases in which inappropriate
prefixes are detected and where the count includes trailing bytes
that do not constitute a full UCS character

Requi rements for server handling of conponent nanmes which are not
valid UTF-8, when a server does not return NFS4ERR_INVAL in response
to receiving them are described in Section 12.8.

Where the client supplied string is not rejected with NFS4ERR | NVAL
but contains characters that are not supported by the server as a
value for that string (e.g., names containing slashes, or characters
that do not fit into 16 bits when converted from UTF-8 to a Uni code
codepoint), the server should return an NFS4ERR BADCHAR error.

Wiere a UTF-8 string is used as a file nane, and the file system
whi l e supporting all of the characters within the nane, does not
all ow that particular name to be used, the error should return the
error NFS4ERR BADNAME. This includes such situations as file system
prohibitions of "." and ".." as file names for certain operations,
and simlar constraints

Haynes & Noveck Expi res June 7, 2015 [Page 172]

Internet-Draft NFSv4 Decenber 2014

12.8. Servers that accept file conponent nanes that are not valid UTF-8
strings

As stated previously, servers MAY accept, on all or on sone subset of
the physical file systens exported, conponent nanmes that are not
valid UTF-8 strings. A typical pattern is for a server to use

UTF- 8-unawar e physical file systems that treat conponent names as

uni nterpreted strings of bytes, rather than having any awareness of
the character set being used.

Such servers SHOULD NOT change the stored representation of conponent
nanes fromthose received on the wire, and SHOULD use an oct et -by-
octet conparison of conponent nanme strings to determ ne equival ence
(as opposed to any broader notion of string conparison). This is
because the server has no know edge of the character encodi ng being
used.

Nonet hel ess, when such a server uses a broader notion of string
equi val ence than recommended in the precedi ng paragraph the follow ng
consi derations apply:

0 CQutside of 7-bit ASCII, string processing that changes string
contents is usually specific to a character set and hence is
general |y unsafe when the character set is unknown. This
processing could change the filename in an unexpected fashion
rendering the file inaccessible to the application or client that
created or renanmed the file and to others expecting the origina
filenane. Hence, such processing should not be perforned because
doing so is likely to result in incorrect string nodification or
al i asi ng.

0 Unicode nornalization is particularly dangerous, as such
processing assunes that the string is UTF-8. \Wen that assunption
is fal se because a different character set was used to create the
filenane, nornmalization nay corrupt the filenane with respect to
that character set, rendering the file inaccessible to the
application that created it and others expecting the origina
filenane. Hence, Unicode nornalization SHOULD NOT be perforned,
because it may cause incorrect string nodification or aliasing.

When t he above reconmendations are not followed, the resulting string
nmodi fication and aliasing can lead to both fal se negatives and fal se
positives depending on the strings in question, which can result in
security issues such as elevation of privilege and denial of service
(see [RFC6943] for further discussion).

Haynes & Noveck Expi res June 7, 2015 [Page 173]

Internet-Draft NFSv4 Decenber 2014

13. Error Val ues

NFS error nunbers are assigned to failed operations within a Conpound
(COVPOUND or CB COVPOUND) request. A Conpound request contains a
nunber of NFS operations that have their results encoded in sequence
in a Conpound reply. The results of successful operations will

consi st of an NFS4_(OK status followed by the encoded results of the
operation. |If an NFS operation fails, an error status will be
entered in the reply and the Compound request will be term nated.

13.1. Error Definitions

Protocol Error Definitions

o m e e e e e e e e e e Fom e e e - - B +
| Error | Nunber | Description [
o oo S S S +
NFS4_ K	O	Section 13.1.3.1	
NFS4ERR_ACCESS	13	Section 13.1.6.1	
NFS4ERR_ADM N_REVCKED	10047	Section 13.1.5.1	
NFS4ERR_ATTRNOTSUPP	10032	Section 13.1.11.1	
NFS4ERR_BADCHAR	10040	Section 13.1.7.1	
NFS4ERR_BADHANDLE	10001	Section 13.1.2.1	
NFS4ERR_BADNANE	10041	Section 13.1.7.2	
NFS4ERR_BADOMNER	10039	Section 13.1.11.2	
NFS4ERR_BADTYPE	10007	Section 13.1.4.1	
NFS4ERR_BADXDR	10036	Section 13.1.1.1	
NFS4ERR_BAD_COXKI E	10003	Section 13.1.1.2	
NFS4ERR_BAD_RANGE	10042	Section 13.1.8.1	
NFS4ERR BAD SEQ D	10026	Section 13.1.8.2	
NFS4ERR _BAD STATEI D	10025	Section 13.1.5.2	
NFS4ERR_CB_PATH DOMN	10048	Section 13.1.12.1	
NFS4ERR_CLI D_I NUSE	10017	Section 13.1.10.1	
NFS4ERR_DEADLOCK	10045	Section 13.1.8.3	
NFS4ERR_DELAY	10008	Section 13.1.1.3	
NFS4ERR_DENI ED	10010	Section 13.1.8.4	
NFS4ERR_DQUOT	69	Section 13.1.4.2	
NFS4ERR_EXI ST	17	Section 13.1.4.3	
NFS4ERR_EXPI RED	10011	Section 13.1.5.3	
NFS4ERR_FBI G	27	Section 13.1.4.4	
NFS4ERR_FHEXPI RED	10014	Section 13.1.2.2	
NFS4ERR_FI LE_OPEN	10046	Section 13.1.4.5	
NFS4ERR_GRACE	10013	Section 13.1.9.1	
NFS4ERR_	I NVAL	22	Section 13.1.1.4
NFS4ERR_I O	5	Section 13.1.4.6	
NFS4ERR_I SDI R	21	Section 13.1.2.3	
NFS4ERR_LEASE_MOVED	10031	Section 13.1.5.4	
NFS4ERR_LOCKED	10012	Section 13.1.8.5	

Haynes & Noveck Expi res June 7, 2015 [Page 174]

Internet-Draft NFSv4 Decenber 2014

NFS4ERR _LOCKS HELD	10037	Section 13.1.8.6
NFS4ERR_LOCK_NOTSUPP	10043	Section 13.1.8.7
NFS4ERR_LOCK RANGE	10028	Section 13.1.8.8
NFSAERR_M NOR_VERS_M SMATCH	10021	Section 13.1.3.2
NFSAERR_MLI NK	31	Section 13.1.4.7
NFS4ERR_MOVED	10019	Section 13.1.2.4
NFS4ERR _NAMETOOLONG	63	Section 13.1.7.3
NFS4ERR_NCENT	2	Section 13.1.4.8
NFS4ERR_NOFI LEHANDLE	10020	Section 13.1.2.5

NFS4ERR_NOSPC	28	Section 13.1.4.9
NFS4ERR _NOTDI R	20	Section 13.1.2.6
NFS4ERR_NOTEMPTY	66	Section 13.1.4.10
NFS4ERR_NOTSUPP	10004	Section 13.1.1.5
NFS4ERR_NOT_SAME	10027	Section 13.1.11.3

NFS4ERR_NO GRACE	10033	Section 13.1.9.2	
NFS4ERR_NXI O	6	Section 13.1.4.11	
NFSAERR OLD _STATEI D	10024	Section 13.1.5.5	
NFS4ERR OPENMODE	10038	Section 13.1.8.9	
NFS4ERR OP_	LLEGAL	10044	Section 13.1.3.3
NFS4ERR_PERM	1	Section 13.1.6.2	
NFS4ERR _RECLAI M_BAD	10034	Section 13.1.9.3	
NFSAERR_RECLAI M_CONFLI CT	10035	Section 13.1.9.4	

| NFSAERR_RESOURCE | 10018 | Section 13.1.3.4

| NFS4ERR_RESTOREFH | 10030 | Section 13.1.4.12 |
| NFS4ERR_RCFS | 30 | Section 13.1.4.13 |
| NFS4ERR_SAME | 10009 | Section 13.1.11.4

| NFSAERR _SERVERFAULT | 10006 | Section 13.1.1.6 |
| NFS4ERR_SHARE_DENI ED | 10015 | Section 13.1.8.10

NFS4ERR_STALE	70	Section 13.1.2.7
NFS4ERR_STALE CLI ENTID	10022	Section 13.1.10.2
NFS4ERR _STALE STATEI D	10023	Section 13.1.5.6
NFS4ERR_SYM.I NK	10029	Section 13.1.2.8

| NFS4AERR_TOOSMALL | 10005 | Section 13.1.1.7 |
| NFSAERR_WRONGSEC | 10016 | Section 13.1.6.3

| NFS4ERR_XDEV | 18 | Section 13.1.4.14

o m e e e e e e e e eaaa o o m e e oo e e e e oo +

Table 6

13.1.1. General Errors

This section deals with errors that are applicable to a broad set of
di fferent purposes.

Haynes & Noveck Expi res June 7, 2015 [Page 175]

Internet-Draft NFSv4 Decenber 2014

13.

13.

13.

13.

13.

1.1.1. NFS4ERR _BADXDR (Error Code 10036)

The argunents for this operation do not match those specified in the
XDR definition. This includes situations in which the request ends
before all the argunents have been seen. Note that this error
appl i es when fixed enunerations (these include bool eans) have a val ue
within the input streamwhich is not valid for the enum A replier
may pre-parse all operations for a Conpound procedure before doing
any operation execution and return RPC-level XDR errors in that case.

1.1.2. NFS4ERR _BAD COOKIE (Error Code 10003)

Used for operations that provide a set of information indexed by sone
quantity provided by the client or cookie sent by the server for an
earlier invocation. Were the value cannot be used for its intended
purpose, this error results.

1.1.3. NFS4ERR DELAY (Error Code 10008)

For any of a nunber of reasons, the replier could not process this
operation in what was deened a reasonable time. The client should
wait and then try the request with a new RPC transaction |D.

Sone exanple of situations that might lead to this situation:

0 A server that supports hierarchical storage receives a request to
process a file that had been m grated.

0 An operation requires a delegation recall to proceed and waiting
for this delegation recall nakes processing this request in a
timely fashion inpossible.

1.1.4. NFS4ERR_INVAL (Error Code 22)

The argunents for this operation are not valid for sone reason, even
t hough they do match those specified in the XDR definition for the
request.

1.1.5. NFS4ERR_NOTSUPP (Error Code 10004)
Operation not supported, either because the operation is an OPTI ONAL

one and is not supported by this server or because the operation MJST
NOT be inplenmented in the current ninor version

Haynes & Noveck Expi res June 7, 2015 [Page 176]

Internet-Draft NFSv4 Decenber 2014

13.

13.

13.

13.

13.

13.

1.1.6. NFS4ERR_SERVERFAULT (Error Code 10006)

An error occurred on the server which does not map to any of the
specific | egal NFSv4 protocol error values. The client should
translate this into an appropriate error. UN X clients nmay choose to
translate this to EIO

1.1.7. NFS4ERR_TOOSMALL (Error Code 10005)

Used where an operation returns a variable anount of data, with a
limt specified by the client. Were the data returned cannot be
fitted within the limt specified by the client, this error results.

1.2. Fil ehandl e Errors

These errors deal with the situation in which the current or saved
filehandl e, or the filehandl e passed to PUTFH i ntended to becone the
current filehandle, is invalid in some way. This includes situations
in which the filehandle is a valid filehandl e in general but is not
of the appropriate object type for the current operation

Where the error description indicates a problemw th the current or
saved filehandle, it is to be understood that filehandles are only
checked for the condition if they are inplicit argunents of the
operation in question

1.2.1. NFS4ERR_BADHANDLE (Error Code 10001)

Illegal NFS filehandle for the current server. The current
filehandl e failed internal consistency checks. Once accepted as
valid (by PUTFH), no subsequent status change can cause the
filehandle to generate this error.

1.2.2. NFS4ERR_FHEXPI RED (Error Code 10014)

A current or saved filehandle which is an argunent to the current
operation is volatile and has expired at the server

1.2.3. NFS4ERR ISDIR (Error Code 21)
The current or saved fil ehandl e designates a directory when the

current operation does not allow a directory to be accepted as the
target of this operation.

Haynes & Noveck Expi res June 7, 2015 [Page 177]

Internet-Draft NFSv4 Decenber 2014

13.

13.

13.

13.

13.

13.

13.

1.2.4. NFS4ERR_MOVED (Error Code 10019)

The file systemwhich contains the current fil ehandle object is not
present at the server. It may have been relocated, mgrated to

anot her server or may have never been present. The client nmay obtain
the new file systemlocation by obtaining the "fs | ocations" or
attribute for the current filehandle. For further discussion, refer
to Section 8.

1.2.5. NFS4ERR_NOFI LEHANDLE (Error Code 10020)

The | ogical current or saved filehandle value is required by the
current operation and is not set. This nmay be a result of a
mal f or mred COVPOUND operation (i.e., no PUTFH or PUTROOTFH before an
operation that requires the current filehandl e be set).

1.2.6. NFS4ERR NOTDIR (Error Code 20)

The current (or saved) fil ehandl e designates an object which is not a
directory for an operation in which a directory is required.

1.2.7. NFS4ERR_STALE (Error Code 70)

The current or saved fil ehandl e val ue designating an argunent to the
current operation is invalid. The file systemobject referred to by
that filehandl e no | onger exists or access to it has been revoked.

1.2.8. NFS4ERR_SYM.I NK (Error Code 10029)

The current filehandl e designates a synbolic |ink when the current
operation does not allow a synmbolic link as the target.

1.3. Conpound Structure Errors

This section deals with errors that relate to overall structure of a
Conpound request (by which we nean to include both COMPOUND and
CB_COVPOUND), rather than to particul ar operations.

There are a nunber of basic constraints on the operations that may
appear in a Conpound request.

1.3.1. NFS_ K (Error code 0)

I ndi cates the operation conpleted successfully, in that all of the
constituent operations conpleted w thout error

Haynes & Noveck Expi res June 7, 2015 [Page 178]

Internet-Draft NFSv4 Decenber 2014

13.

13.

13.

13.

13.

13.

1.3.2. NFS4ERR M NOR VERS M SMATCH (Error code 10021)

The m nor version specified is not one that the current |istener
supports. This value is returned in the overall status for the
Conpound but is not associated with a specific operation since the
results must specify a result count of zero

1.3.3. NFS4ERR _OP_I LLEGAL (Error Code 10044)

The operation code is not a valid one for the current Conpound
procedure. The opcode in the result stream natched with this error
is the | LLEGAL val ue, although the value that appears in the request
stream may be different. VWhere an illegal value appears and the
replier pre-parses all operations for a Compound procedure before
doi ng any operation execution, an RPC-level XDR error may be returned
in this case

1.3.4. NFS4ERR RESOURCE (Error Code 10018)

For the processing of the Conmpound procedure, the server may exhaust
avai |l abl e resources and cannot continue processing operations within
the Conpound procedure. This error will be returned fromthe server
in those instances of resource exhaustion related to the processing
of the Conpound procedure.

1.4. File SystemErrors

These errors describe situations which occurred in the underlying
file systeminplenmentation rather than in the protocol or any NFSv4.x
feature.

1.4.1. NFS4ERR_BADTYPE (Error Code 10007)

An attenpt was nade to create an object with an inappropriate type
specified to CREATE. This nmay be because the type is undefined,
because it is a type not supported by the server, or because it is a
type for which create is not intended such as a regular file or naned
attribute, for which OPEN is used to do the file creation.

1.4.2. NFS4ERR DQUOT (Error Code 69)

Resource (quota) hard limt exceeded. The user’s resource linmt on
the server has been exceeded.

Haynes & Noveck Expi res June 7, 2015 [Page 179]

Internet-Draft NFSv4 Decenber 2014

13.

13.

13.

13.

13.

13.

13.

13.

13.

1.4.3. NFS4ERR EXI ST (Error Code 17)

A file system object of the specified target nane (when creating,
renam ng or |inking) already exists.

1.4.4. NFS4ERR _FBI G (Error Code 27)

Fil esystem object too large. The operation would have caused a file
system obj ect to grow beyond the server’s limt.

1.4.5. NFS4ERR_FI LE_OPEN (Error Code 10046)

The operation is not allowed because a file system object involved in
the operation is currently open. Servers may, but are not required
to disallow linking-to, renoving, or renam ng open file system

obj ect s.

1.4.6. NFS4ERR_IO (Error Code 5)

Indicates that an I/O error occurred for which the file system was
unabl e to provide recovery.

1.4.7. NFS4ERR_ MLINK (Error Code 31)

The request woul d have caused the server’'s limt for the number of
hard Iinks a file system object may have to be exceeded.

1.4.8. NFS4ERR_NCENT (Error Code 2)

I ndicates no such file or directory. The file system object
ref erenced by the nane specified does not exist.

1.4.9. NFS4ERR_NOSPC (Error Code 28)

I ndi cates no space |l eft on device. The operation would have caused
the server’'s file systemto exceed its linmt.

1.4.10. NFS4ERR_NOTEMPTY (Error Code 66)
An attenpt was nade to renpve a directory that was not enpty.
1.4.11. NFS4ERR NXI O (Error Code 6)

I/ O error. No such device or address.

Haynes & Noveck Expi res June 7, 2015 [Page 180]

Internet-Draft NFSv4 Decenber 2014

13.

13.

13.

13.

13.

13.

1.4.12. NFS4ERR RESTOREFH (Error Code 10030)

The RESTOREFH operati on does not have a saved filehandle (identified
by SAVEFH) to operate upon

1.4.13. NFS4ERR ROFS (Error Code 30)

Indicates a read-only file system A nodifying operation was
attenpted on a read-only file system

1.4.14. NFS4ERR XDEV (Error Code 18)

I ndicates an attenpt to do an operation, such as linking, that
i nappropriately crosses a boundary. This may be due to such
boundari es as:

0 That between file systens (where the fsids are different).

o0 That between different naned attribute directories or between a
naned attribute directory and an ordinary directory.

0 That between regions of a file systemthat the file system
i npl ementation treats as separate (for exanple for space
accounting purposes), and where cross-connection between the
regions are not allowed.

1.5. State Managenent Errors

These errors indicate problens with the stateid (or one of the
stateids) passed to a given operation. This includes situations in
which the stateid is invalid as well as situations in which the
stateid is valid but designates revoked | ocking state. Depending on
the operation, the stateid when valid may desi gnate opens, byte-range
| ocks, or file del egations.

1.5.1. NFS4ERR ADM N_REVOKED (Error Code 10047)

A stateid designates |ocking state of any type that has been revoked
due to administrative interaction, possibly while the | ease is valid,
or because a del egati on was revoked because of failure to return it,
while the | ease was valid.

1.5.2. NFS4ERR_BAD STATEID (Error Code 10025)

A stateid generated by the current server instance was used which
ei ther:

Haynes & Noveck Expi res June 7, 2015 [Page 181]

Internet-Draft NFSv4 Decenber 2014

o Does not designate any |ocking state (either current or
superseded) for a current (state-owner, file) pair.

o0 Designates locking state that was freed after | ease expiration but
wi t hout any | ease cancellation, as nmay happen in the handling of
"courtesy | ocks".

13.1.5.3. NFS4ERR EXPI RED (Error Code 10011)

A stateid or clientid designates |ocking state of any type that has

been revoked or rel eased due to cancellation of the client’s |ease,

ei ther inmediately upon | ease expiration, or following a later
request for a conflicting |ock.
13.1.5.4. NFS4ERR _LEASE _MOVED (Error Code 10031)

A |l ease being renewed is associated with a file systemthat has been
mgrated to a new server

13.1.5.5. NFS4ERR _CLD STATEID (Error Code 10024)

A stateid is provided with a seqid value that is not the nost
current.

13.1.5.6. NFS4ERR STALE_STATEID (Error Code 10023)
A stateid generated by an earlier server instance was used.

13.1.6. Security Errors
These are the various permission-related errors in NFSv4.

13.1.6.1. NFS4ERR _ACCESS (Error Code 13)
I ndi cates pernission denied. The caller does not have the correct
permi ssion to performthe requested operation. Contrast this with
NFS4ERR_PERM (Section 13.1.6.2), which restricts itself to owner or
privil eged user perm ssion failures.

13.1.6.2. NFS4ERR_PERM (Error Code 1)
I ndi cates requester is not the owner. The operation was not allowed

because the caller is neither a privileged user (root) nor the owner
of the target of the operation

Haynes & Noveck Expi res June 7, 2015 [Page 182]

Internet-Draft NFSv4 Decenber 2014

13.

13.

13.

13.

13.

13.

1.6.3. NFS4ERR_WRONGSEC (Error Code 10016)

I ndicates that the security mechani sm being used by the client for
the operation does not match the server’s security policy. The
client should change the security nechani sm being used and re-send
the operation. SECINFO can be used to determ ne the appropriate
mechani sm

1.7. Name Errors

Nanes in NFSv4 are UTF-8 strings. Wen the strings are not of length
zero, the error NFS4ERR | NVAL results. Wen they are not valid UTF-8
the error NFS4ERR I NVAL al so results, but servers may accommodat e
file systems with different character formats and not return this
error. Besides this, there are a nunber of other errors to indicate
specific problens wth nanes.

1.7.1. NFS4ERR_BADCHAR (Error Code 10040)

A UTF-8 string contains a character which is not supported by the
server in the context in which it is being used.

1.7.2. NFS4ERR BADNAME (Error Code 10041)

A name string in a request consisted of valid UTF-8 characters
supported by the server but the name is not supported by the server
as a valid nanme for current operation. An exanple night be creating
a file or directory naned ".." on a server whose file system uses
that nane for links to parent directories.

This error should not be returned due a normnalization issue in a
string. Wen a file systemkeeps names in a particular normalization
form it is the server’s responsibility to do the appropriate
nornal i zation, rather than rejecting the nane.

1.7.3. NFS4ERR _NAMETOOLONG (Error Code 63)

Ret urned when the filenanme in an operation exceeds the server’s
implementation limt.

1.8. Locking Errors

This section deal with errors related to | ocking, both as to share
reservations and byte-range locking. It does not deal with errors
specific to the process of reclaimng |ocks. Those are dealt with in
t he next section.

Haynes & Noveck Expi res June 7, 2015 [Page 183]

Internet-Draft NFSv4 Decenber 2014

13.

13.

13.

13.

13.

13.

13.

1.8.1. NFS4ERR_BAD RANGE (Error Code 10042)

The range for a LOCK, LOCKT, or LOCKU operation is not appropriate to
the all owabl e range of offsets for the server. E.g., this error
results when a server which only supports 32-bit ranges receives a
range that cannot be handled by that server. (See Section 15.12.4).
1.8.2. NFS4ERR BAD SEQ D (Error Code 10026)

The sequence nunber (seqid) in a |locking request is neither the next
expected nunber or the | ast nunber processed.

1.8.3. NFS4ERR_DEADLOCK (Error Code 10045)

The server has been able to determine a file | ocking deadl ock
condition for a blocking | ock request.

1.8.4. NFS4ERR DENI ED (Error Code 10010)

An attenpt to lock a file is denied. Since this may be a tenporary
condition, the client is encouraged to re-send the |ock request unti
the lock is accepted. See Section 9.4 for a discussion of the re-
send.

1.8.5. NFS4ERR_LOCKED (Error Code 10012)

A read or wite operation was attenpted on a file where there was a
conflict between the 1/0 and an existing | ock:

0 There is a share reservation inconsistent with the 1/0O being done.

0o The range to be read or witten intersects an existing nandatory
byt e range | ock.

1.8.6. NFS4ERR _LOCKS HELD (Error Code 10037)

An operation was prevented by the unexpected presence of | ocks.
1.8.7. NFS4ERR_LOCK NOTSUPP (Error Code 10043)

A | ocki ng request was attenpted which would require the upgrade or

downgrade of a | ock range already held by the owner when the server
does not support atom c upgrade or downgrade of | ocks.

Haynes & Noveck Expi res June 7, 2015 [Page 184]

Internet-Draft NFSv4 Decenber 2014

13.

13.

13.

13.

13.

13.

13.

1.8.8. NFS4ERR_LOCK RANCE (Error Code 10028)

A lock request is operating on a range that overlaps in part a
currently held | ock for the current |ock-owner and does not precisely
mat ch a single such | ock where the server does not support this type
of request, and thus does not inplenent POSI X | ocking senmantics
[fentl]. See Section 15.12.5, Section 15.13.5, and Section 15.14.5
for a discussion of howthis applies to LOCK, LOCKT, and LOCKU
respectively.

1.8.9. NFS4ERR _OPENMODE (Error Code 10038)

The client attenpted a READ, WRI TE, LOCK or other operation not
sanctioned by the stateid passed (e.g., witing to a file opened only
for read).

1.8.10. NFS4ERR SHARE DEN ED (Error Code 10015)

An attenpt to OPEN a file with a share reservation has fail ed because
of a share conflict.

1.9. ReclaimErrors

These errors relate to the process of reclainmng |locks after a server
restart.

1.9.1. NFS4ERR_GRACE (Error Code 10013)

The server is in its recovery or grace period which should at |east
mat ch the | ease period of the server. A locking request other than a
reclaimcould not be granted during that period.

1.9.2. NFS4ERR_NO GRACE (Error Code 10033)

The server cannot guarantee that it has not granted state to another
client which may conflict with this client’s state. No further
reclaims fromthis client will succeed.

1.9.3. NFS4ERR_RECLAI M BAD (Error Code 10034)

The server cannot guarantee that it has not granted state to another
client which may conflict with the requested state. However, this
applies only to the state requested in this call; further reclains
may succeed.

Unl i ke NFS4ERR RECLAI M CONFLI CT, this can occur between correctly
functioning clients and servers: the "edge condition" scenarios
described in Section 9.6.3.1 | eave only the server know ng whet her

Haynes & Noveck Expi res June 7, 2015 [Page 185]

Internet-Draft NFSv4 Decenber 2014

13.

13.

13.

13.

13.

13.

13.

13.

the client’s locks are still valid, and NFS4ERR_RECLAI M BAD is the
server’s way of informng the client that they are not.

1.9.4. NFS4ERR_RECLAI M_CONFLI CT (Error Code 10035)

The reclaimattenpted by the client conflicts with a | ock already
hel d by another client. Unlike NFS4ERR_RECLAI M BAD, this can only
occur if one of the clients ni sbehaved.

1.10. dient Managenent Errors

This sections deals with errors associated with requests used to
create and manage client |Ds.

1.10.1. NFS4ERR CLID_INUSE (Error Code 10017)

The SETCLI ENTI D operation has found that a clientid is already in use
by another client.

1.10.2. NFS4ERR_STALE CLIENTID (Error Code 10022)

A client 1D not recogni zed by the server was used in a | ocking or
SETCLI ENTI D_CONFI RM r equest .

1.11. Attribute Handling Errors

This section deals with errors specific to attribute handling within
NFSv4.

1.11.1. NFS4ERR_ATTRNOTSUPP (Error Code 10032)

An attribute specified is not supported by the server. This error
MUST NOT be returned by the GETATTR operati on.

1.11.2. NFS4ERR_BADOMNER (Error Code 10039)

Ret urned when an owner or owner_group attribute value or the who
field of an ace within an ACL attribute value cannot be translated to
a |l ocal representation.

1.11.3. NFS4ERR_NOT_SAME (Error Code 10027)

This error is returned by the VERI FY operation to signify that the

attributes conpared were not the sane as those provided in the
client’s request.

Haynes & Noveck Expi res June 7, 2015 [Page 186]

Internet-Draft NFSv4 Decenber 2014

13.1.11. 4. NFS4ERR SAME (Error Code 10009)

This error is returned by the NVERI FY operation to signify that the
attributes conpared were the sane as those provided in the client’s
request.

13.1.12. M scellaneous Errors
13.1.12.1. NFS4ERR CB PATH DOMN (Error Code 10048)

There is a problemcontacting the client via the call back path.
13.2. Operations and their valid errors

This section contains a table which gives the valid error returns for
each protocol operation. The error code NFS4 _OK (indicating no
error) is not listed but should be understood to be returnable by al
operations except |LLEGAL.

Valid error returns for each protocol operation

NFS4ERR_ACCESS, NFS4ERR _BADHANDLE
NFSAERR_BADXDR, NFS4ERR_DELAY,
NFSAERR_FHEXPI RED, NFS4ERR_| NVAL,
NFSAERR | O, NFS4ERR_MOVED,

NFS4ERR_NOFI LEHANDLE, NFS4ERR RESOURCE
NFSAERR_SERVERFAULT, NFS4ERR_STALE

NFS4ERR_ADM N_REVOKED, NFS4ERR BADHANDLE,
NFS4ERR_BAD SEQ D, NFS4ERR_BAD_STATEI D,
NFS4ERR_BADXDR, NFS4ERR_DELAY,
NFS4ERR_EXPI RED, NFS4ERR_FHEXPI RED,
NFS4ERR | NVAL, NFS4ERR | SDI R,
NFS4ERR_LEASE_MOVED, NFS4ERR_LOCKS HELD,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_OLD_STATEI D, NFS4ERR_RESOURCE,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_STALE_STATEI D

NFS4ERR_ACCESS, NFS4ERR _BADHANDLE
NFSAERR_BADXDR, NFS4ERR_DELAY,
NFSAERR_FHEXPI RED, NFS4ERR_| NVAL,
NFSAERR | O, NFS4ERR | SDI R, NFS4ERR_MOVED,
NFS4ERR_NOFI LEHANDLE, NFS4ERR RESOURCE
NFS4ERR_ROFS, NFS4ERR SERVERFAULT,

Haynes & Noveck Expi res June 7, 2015 [Page 187]

Internet-Draft NFSv4 Decenber 2014

NFS4ERR _STALE, NFS4ERR SYM.I NK
CREATE NFS4ERR_ACCESS, NFS4ERR_ATTRNOTSUPP,
NFS4ERR_BADCHAR, NFS4ERR_BADHANDLE,
NFS4ERR_BADNAME, NFS4ERR_BADOWKER,
NFS4ERR _BADTYPE, NFS4ERR_BADXDR
NFS4ERR_DELAY, NFS4ERR DQUOT,

NFS4ERR_EXI ST, NFS4ERR_FHEXPI RED,
NFS4ERR | NVAL, NFS4ERR | O, NFS4ERR_MOVED,
NFS4ERR_NAMETOOLONG, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOSPC, NFS4ERR NOTDI R,
NFS4ERR_PERM NFS4ERR_RESOURCE,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE

DEL EGPURGE NFS4ERR _BADXDR, NFS4ERR _DELAY,
NFS4ERR_NOTSUPP, NFS4ERR_LEASE_MOVED,
NFS4ERR_RESOURCE, NFS4ERR SERVERFAULT,
NFS4ERR_STALE_CLI ENTI D

DELEGRETURN NFS4ERR_ADM N_REVOKED, NFS4ERR BAD STATEI D,
NFS4ERR_BADXDR, NFS4ERR _DELAY,
NFS4ERR_EXPI RED, NFS4ERR | NVAL,
NFS4ERR_LEASE_MOVED, NFS4ERR MOVED,
NFS4ERR_NOFI LEHANDLE, NFS4ERR _NOTSUPP,
NFS4ERR_OLD_STATEI D, NFS4ERR_RESOURCE,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_STALE_STATEI D

GETATTR NFS4ERR_ACCESS, NFS4ERR BADHANDLE,
NFS4ERR_BADXDR, NFS4ERR_DELAY,
NFS4ERR_FHEXPI RED, NFS4ERR_GRACE,
NFS4ERR | NVAL, NFS4ERR | O, NFS4ERR_MOVED,
NFS4ERR_NOFI LEHANDLE, NFS4ERR_RESOURCE,
NFS4ERR_SERVERFAULT, NFS4ERR STALE
GETFH NFS4ERR BADHANDLE, NFS4ERR_FHEXPI RED,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_RESOURCE, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE

| LLEGAL NFSAERR_BADXDR, NFS4ERR_OP_| LLEGAL

LI NK NFS4ERR_ACCESS, NFS4ERR_BADCHAR
NFSAERR_BADHANDLE, NFS4ERR_BADNAME,
NFSAERR_BADXDR, NFS4ERR_DELAY
NFS4ERR_DQUOT, NFS4ERR_EXI ST,
NFSAERR_FHEXPI RED, NFS4ERR_FI LE_OPEN

Haynes & Noveck Expi res June 7, 2015 [Page 188]

Internet-Draft NFSv4 Decenber 2014

NFS4ERR | NVAL, NFS4ERR | O, NFS4ERR | SDI R,
NFS4ERR_M.I NK, NFS4ERR_MOVED,
NFS4ERR_NAMETOOLONG, NFS4ERR_NCENT,
NFS4ERR_NOFI LEHANDLE, NFS4ERR_NOSPC,
NFS4ERR_NOTDI R, NFS4ERR_NOTSUPP,
NFS4ERR_RESOURCE, NFS4ERR ROFS,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_WRONGSEC, NFS4ERR_XDEV

LOCK NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,
NFS4ERR_BADHANDLE, NFS4ERR BAD_RANGE,
NFS4ERR_BAD_SEQ D, NFS4ERR_BAD_STATEI D,
NFS4ERR_BADXDR, NFS4ERR_DEADLOCK,
NFS4ERR_DELAY, NFS4ERR DEN ED,

NFS4ERR_EXPl RED, NFS4ERR_FHEXPI RED,
NFS4ERR_GRACE, NFS4ERR | NVAL,

NFS4ERR | SDI R, NFS4ERR_LEASE_MOVED,
NFS4ERR_LOCK_NOTSUPP, NFS4ERR LOCK_RANGE,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NO GRACE, NFS4ERR OLD_STATEI D,
NFS4ERR_OPENMODE, NFS4ERR_RECLAI M _BAD,
NFS4ERR_RECLAI M_CONFLI CT, NFS4ERR_RESOURCE,
NFS4ERR_SERVERFAULT, NFS4ERR STALE,
NFS4ERR_STALE_CLI ENTI D,
NFS4ERR_STALE_STATEI D

LOCKT NFS4ERR_ACCESS, NFS4ERR_BADHANDLE,
NFS4ERR_BAD_RANGE, NFS4ERR BADXDR,
NFS4ERR_DELAY, NFS4ERR DENI ED,
NFS4ERR_EXPI RED, NFS4ERR_FHEXPI RED,
NFS4ERR_GRACE, NFS4ERR | NVAL,

NFS4ERR | SDI R, NFS4ERR_LEASE_MOVED,
NFS4ERR_LOCK_RANGE, NFS4ERR_MOVED,
NFS4ERR_NOFI LEHANDLE, NFS4ERR_RESOURCE,
NFS4ERR_SERVERFAULT, NFS4ERR STALE,
NFS4ERR_STALE_CLI ENTI D

LOCKU NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,
NFS4ERR_BADHANDLE, NFS4ERR BAD_ RANGE,
NFS4ERR_BAD_SEQ D, NFS4ERR_BAD_STATEI D,
NFS4ERR_BADXDR, NFS4ERR DELAY,
NFS4ERR_EXPI RED, NFS4ERR_FHEXPI RED,
NFS4AERR_GRACE, NFS4ERR | NVAL,

NFS4ERR | SDI R, NFS4ERR_LEASE_MOVED,
NFS4ERR_LOCK_RANGE, NFS4ERR_MOVED,
NFS4ERR_NOFI LEHANDLE, NFS4ERR_OLD_STATEI D,
NFS4ERR_RESOURCE, NFS4ERR SERVERFAULT,
NFS4ERR_STALE, NFS4ERR STALE_STATEI D

Haynes & Noveck Expi res June 7, 2015 [Page 189]

Internet-Draft

Haynes & Noveck

L OOKUP

L OOKUPP

NVERI FY

OPEN

NFSv4 Decenber

NFSAERR_ACCESS, NFS4ERR_BADCHAR,
NFSAERR_BADHANDLE, NFS4ERR_BADNAME,
NFSAERR _BADXDR, NFS4ERR_DELAY,
NFS4ERR_FHEXPI RED, NFS4ERR | NVAL,
NFS4ERR | O, NFS4ERR_MOVED,
NFSA4ERR_NAMETOCLONG, NFS4ERR_NCENT,
NFSAERR_NCFI LEHANDLE, NFS4ERR_NOTDI R,
NFSAERR_RESOURCE, NFS4ERR_SERVERFAULT,
NFSAERR _STALE, NFS4ERR_SYM.I NK,
NFS4ERR_VRONGSEC

NFS4ERR_ACCESS, NFS4ERR_BADHANDLE,
NFSAERR_DELAY, NFS4ERR_FHEXPI RED,

NFSAERR | O, NFS4ERR_MOVED, NFS4ERR_NOENT,

NFSAERR _NCFI LEHANDLE, NFS4ERR_NOTDI R,
NFS4ERR_RESOURCE, NFS4ERR_SERVERFAULT,
NFSA4ERR_STALE, NFS4ERR _SYM.I NK,
NFS4ERR_WRONGSEC

NFSAERR_ACCESS, NFS4ERR_ATTRNOTSUPP,
NFSAERR_BADCHAR, NFS4ERR _BADHANDLE,
NFS4ERR_BADXDR, NFS4ERR_DELAY,
NFS4ERR_FHEXPI RED, NFS4ERR_CGRACE,
NFSAERR | NVAL, NFS4ERR | O, NFS4ERR_MOVED,
NFS4ERR_NOFI L EHANDL E, NFS4ERR SAME,
NFSAERR_SERVERFAULT, NFS4ERR_STALE

NFS4ERR _ACCESS, NFS4ERR_ADM N_REVOKED,
NFS4ERR_ATTRNOTSUPP, NFS4ERR BADCHAR,
NFS4ERR_BADHANDLE, NFS4ERR_BADNAME,
NFS4ERR_BADOWNER, NFS4ERR_BADXDR,
NFS4ERR_BAD SEQ D, NFS4ERR_BAD STATEI D,
NFS4ERR_DELAY, NFS4ERR_DQUOT,
NFS4ERR_EXI ST, NFS4ERR_EXPI RED,
NFSA4ERR FBI G NFS4ERR FHEXPI RED,

NFSA4ERR_GRACE, NFS4ERR | NVAL, NFS4ERR | O

NFS4ERR | SDI R, NFS4ERR_MOVED,
NFSAERR_NAMETOOLONG, NFS4ERR_NCENT,
NFSAERR_NCFI LEHANDLE, NFS4ERR_NOSPC,
NFS4ERR_NOTDI R, NFS4ERR_NOTSUP,
NFS4ERR_NO _CGRACE, NFS4ERR OLD_STATEI D,
NFSAERR_PERM NFS4ERR_RECLAI M _BAD,

NFS4ERR_RECLAI M_CONFLI CT, NFS4ERR RESOURCE,

NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_SHARE_DENI ED, NFS4ERR_STALE,
NFS4ERR_STALE_CLI ENTI D, NFS4ERR_SYMLI NK,
NFS4ERR_WRONGSEC

Expi res June 7, 2015 [Page

2014

190]

Internet-Draft NFSv4 Decenber 2014

OPENATTR NFS4ERR_ACCESS, NFS4ERR_BADHANDLE,
NFS4ERR_BADXDR, NFS4ERR_DELAY,
NFS4ERR_DQUOT, NFS4ERR_FHEXPI RED,
NFS4ERR | O, NFS4ERR MOVED, NFS4ERR_NCENT,
NFS4ERR_NOFI LEHANDLE, NFS4ERR NOSPC,
NFS4ERR_NOTSUPP, NFS4ERR RESOURCE,
NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE

OPEN_CONFI RM NFS4ERR_ADM N_REVOKED, NFS4ERR_BADHANDLE,
NFS4ERR_BAD SEQ D, NFS4ERR_BAD_STATEI D,
NFS4ERR BADXDR, NFS4ERR EXPI RED,
NFS4ERR_FHEXPI RED, NFS4ERR | NVAL,
NFS4ERR | SDI R, NFS4ERR_LEASE_MOVED,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_OLD_STATEI D, NFS4ERR_RESOURCE,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_STALE_STATEI D

OPEN_DOWNGRADE NFS4ERR_ADM N_REVOKED, NFS4ERR_BADHANDLE,
NFS4ERR_BADXDR, NFS4ERR BAD_SEQ D,
NFS4ERR_BAD_STATEI D, NFS4ERR DELAY,
NFS4ERR_EXPI RED, NFS4ERR_FHEXPI RED,
NFSA4ERR | NVAL, NFS4ERR LEASE_MOVED,
NFS4ERR_LOCKS HELD, NFS4ERR_MOVED,
NFS4ERR_NOFI LEHANDLE, NFS4ERR_OLD_STATEI D,
NFS4ERR_RESOURCE, NFS4ERR_ROFS,
NFS4ERR_SERVERFAULT, NFS4ERR STALE,
NFS4ERR_STALE_STATEI D

PUTFH NFS4ERR_BADHANDLE, NFS4ERR_BADXDR,
NFS4ERR DELAY, NFS4ERR_FHEXPI| RED,
NFS4ERR_MOVED, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE, NFS4ERR_WRONGSEC
PUTPUBFH NFS4ERR DELAY, NFS4ERR SERVERFAULT,
NFS4ERR_WRONGSEC

PUTROOTFH NFS4ERR DELAY, NFS4ERR SERVERFAULT,
NFS4ERR_WRONGSEC

READ NFS4ERR ACCESS, NFS4ERR ADM N_REVOKED,
NFS4ERR_BADHANDLE, NFS4ERR_BADXDR,
NFS4ERR_BAD_STATEI D, NFS4ERR _DELAY,
NFS4ERR_EXPI RED, NFS4ERR_FHEXPI RED,
NFS4ERR_GRACE, NFS4ERR | NVAL, NFS4ERR | O
NFS4ERR | SDI R, NFS4ERR_LEASE_MOVED,

Haynes & Noveck Expi res June 7, 2015 [Page 191]

Internet-Draft NFSv4 Decenber 2014

NFS4ERR_LOCKED, NFS4ERR_MOVED,
NFS4ERR_NOFI LEHANDLE, NFS4ERR OLD_STATEI D,
NFS4ERR_OPENMODE, NFS4ERR_RESOURCE,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
NFS4ERR_STALE_STATEI D, NFS4ERR SYM.I NK
READDI R NFS4ERR_ACCESS, NFS4ERR BADHANDLE,
NFS4ERR_BADXDR, NFS4ERR_BAD_COCKI E,
NFS4ERR_DELAY, NFS4ERR FHEXPI RED,
NFS4ERR | NVAL, NFS4ERR | O, NFS4ERR_MOVED,
NFS4ERR_NOFI LEHANDLE, NFS4ERR_NOTDI R,
NFS4ERR_NOT_SAME, NFS4ERR RESOURCE,
NFS4ERR_SERVERFAULT, NFS4ERR STALE,
NFS4ERR_TOOSMALL

READLI NK NFS4ERR_ACCESS, NFS4ERR_BADHANDLE,
NFS4ERR_DELAY, NFS4ERR FHEXPI RED,
NFS4ERR | NVAL, NFS4ERR | O, NFS4ERR | SDI R,
NFS4ERR_MOVED, NFS4ERR_NOTSUP,
NFS4ERR_RESOURCE, NFS4ERR_NOF| LEHANDLE,
NFS4ERR_SERVERFAULT, NFS4ERR STALE
RELEASE_L OCKOWNER NFS4ERR_BADXDR, NFS4ERR_EXPI RED,
NFS4ERR_LEASE_MOVED, NFS4ERR_LOCKS_HELD,
NFS4ERR_RESOURCE, NFS4ERR SERVERFAULT,
NFS4ERR_STALE_CLI ENTI D

REMOVE NFS4ERR_ACCESS, NFS4ERR_BADCHAR,
NFS4ERR_BADHANDLE, NFS4ERR_BADNAME,
NFS4ERR_BADXDR, NFS4ERR DELAY,
NFS4ERR_FHEXPI RED, NFS4ERR FI LE_OPEN,
NFS4ERR_GRACE, NFS4ERR | NVAL, NFS4ERR | O
NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG,
NFS4ERR_NOENT, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTDI R, NFS4ERR_NOTEMPTY,
NFS4ERR_RESOURCE, NFS4ERR_RCFS,
NFS4ERR_SERVERFAULT, NFS4ERR STALE
RENANE NFS4ERR_ACCESS, NFS4ERR_BADCHAR,
NFS4ERR_BADHANDLE, NFS4ERR_BADNAME,
NFS4ERR_BADXDR, NFS4ERR_DELAY,
NFS4ERR_DQUOT, NFS4ERR EXI ST,
NFS4ERR_FHEXP| RED, NFS4ERR FI LE_OPEN,
NFS4ERR_GRACE, NFS4ERR | NVAL, NFS4ERR | O
NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG,
NFS4ERR_NOENT, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOSPC, NFS4ERR_NOTDI R,
NFS4ERR_NOTEMPTY, NFS4ERR RESOURCE,

Haynes & Noveck Expi res June 7, 2015 [Page 192]

Internet-Draft NFSv4 Decenber 2014

NFS4ERR_ROFS, NFS4ERR SERVERFAULT,
NFS4ERR_STALE, NFS4ERR WRONGSEC,
NFS4ERR_XDEV

RENEW NFS4ERR_ACCESS, NFS4ERR_BADXDR,
NFS4ERR_CB_PATH DOWN, NFS4ERR_EXPI| RED,
NFS4ERR_LEASE_MOVED, NFS4ERR RESOURCE,
NFS4ERR_SERVERFAULT, NFS4ERR_STALE_CLI ENTI D
RESTOREFH NFS4ERR_BADHANDLE, NFS4ERR_FHEXPI RED,
NFS4ERR_MOVED, NFS4ERR_RESOURCE,
NFS4ERR_RESTOREFH, NFS4ERR SERVERFAULT,
NFS4ERR_STALE, NFS4ERR WRONGSEC
SAVEFH NFS4ERR_BADHANDLE, NFS4ERR_FHEXPI RED,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_RESOURCE, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE

SECI NFO NFS4ERR_ACCESS, NFS4ERR BADCHAR,
NFS4ERR_BADHANDLE, NFS4ERR_BADNAME,
NFS4ERR_BADXDR, NFS4ERR_DELAY,
NFS4ERR_FHEXPI RED, NFS4ERR | NVAL,
NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG,
NFS4ERR_NOENT, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOTDI R, NFS4ERR_RESOURCE,
NFS4ERR_SERVERFAULT, NFS4ERR STALE
SETATTR NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,
NFS4ERR_ATTRNOTSUPP, NFS4ERR BADCHAR,
NFS4ERR_BADHANDLE, NFS4ERR BADOWKER,
NFS4ERR_BADXDR, NFS4ERR BAD_STATEI D,
NFS4ERR_DELAY, NFS4ERR_DQUOT,
NFS4ERR_EXP| RED, NFS4ERR FBI G
NFS4ERR_FHEXPI RED, NFS4ERR_GRACE,
NFS4ERR | NVAL, NFS4ERR | O, NFS4ERR | SDI R,
NFS4ERR_LEASE_MOVED, NFS4ERR_LOCKED,
NFS4ERR_MOVED, NFS4ERR_NOFI LEHANDLE,
NFS4ERR_NOSPC, NFS4ERR_OLD_STATEI D,
NFS4ERR_OPENMODE, NFS4ERR_PERM
NFS4ERR_RESOURCE, NFS4ERR_RCFS,
NFS4ERR_SERVERFAULT, NFS4ERR STALE,
NFS4ERR_STALE_STATEI D

SETCLI ENTI D NFS4ERR_BADXDR, NFS4ERR CLI D_I NUSE,
NFS4ERR_DELAY, NFS4ERR I NVAL,
NFS4ERR_RESOURCE, NFS4ERR_SERVERFAULT

Haynes & Noveck Expi res June 7, 2015 [Page 193]

Internet-Draft

VERI FY

SETCLI ENTI D_CONFI RM

NFSv4 Decenber 2014

NFS4ERR_BADXDR, NFS4ERR_CLI D_| NUSE,
NFSAERR_DELAY, NFS4ERR_RESOURCE,
NFSAERR_SERVERFAULT, NFS4ERR_STALE_CLI ENTI D

NFS4ERR_ACCESS, NFS4ERR_ATTRNOTSUPP,
NFS4ERR_BADCHAR, NFS4ERR_BADHANDLE,
NFSAERR_BADXDR, NFS4ERR_DELAY,
NFSAERR_FHEXPI RED, NFS4ERR_GRACE,
NFSAERR | NVAL, NFS4ERR | O NFS4ERR_MOVED,
NFSAERR _NCFI LEHANDLE, NFS4ERR_NOT_SAME,
NFS4ERR_RESOURCE, NFS4ERR_SERVERFAULT,
NFS4ERR_STALE

I

I

I

I

I

I

I

I

I

I

I

|

| NFS4ERR_ACCESS, NFS4ERR_ADM N_REVOKED,
| NFS4ERR_BADXDR, NFS4ERR_BADHANDLE,

| NFS4ERR_BAD_STATEI D, NFS4ERR_DELAY,

| NFS4ERR_DQUOT, NFS4ERR EXPI RED,

| NFS4ERR FBI G NFS4ERR_FHEXPI RED,

| NFS4ERR_GRACE, NFS4ERR | NVAL, NFS4ERR | O
| NFS4ERR | SDIR, NFS4ERR_LEASE_MOVED,

| NFS4ERR_LOCKED, NFS4ERR_MOVED,

| NFS4ERR_NOFI LEHANDLE, NFS4ERR_NOSPC,

| NFS4ERR_NXI O, NFS4ERR OLD_STATEI D,

| NFS4ERR_OPENMODE, NFS4ERR_RESOURCE,

| NFS4ERR_ROFS, NFS4ERR_SERVERFAULT,

| NFS4ERR_STALE, NFS4ERR STALE_STATEI D,

| NFS4ERR_SYMLI NK

I

Table 7

13.3. Call back operations and their valid errors

This section contains a table which gives the valid error returns for
each cal | back operation. The error code NFS4_COK (indicating no

error) is not

listed but should be understood to be returnable by all

cal | back operations with the exception of CB | LLEGAL.

Haynes & Noveck

Expi res June 7, 2015 [Page 194]

Internet-Draft NFSv4 Decenber 2014

Valid error returns for each protocol callback operation

TSRS o m e me e em o +
| Call back | Errors [
| Operation | |
S o o m eeee oo +
CB_GETATTR NFS4ERR_BADHANDLE, NFS4ERR BADXDR, NFS4ERR _DELAY,

NFSAERR | NVAL, NFS4ERR_SERVERFAULT

I I I
| | |
| CBILLEGAL | NFS4ERR BADXDR NFS4ERR OP_| LLEGAL |
I I I
CB RECALL	NFS4ERR BADHANDLE, NFS4ERR BADXDR,
	NFS4ERR BAD_STATEI D, NFS4ERR DELAY,
	NFS4ERR_SERVERFAULT
I I I
o me e oo o o o e e e e e e e e e e e eeee i —eeo- +

Table 8
13.4. FErrors and the operations that use them

Errors and the operations that use them

NFS4ERR_ACCESS ACCESS, COW T, CREATE, GETATTR, LINK,
LOCK, LOCKT, LOCKU, LOCKUP, LOOKUPP,
NVERI FY, OPEN, OPENATTR, READ,

READDI R, READLI NK, REMOVE, RENAME,

RENEW SECI NFO, SETATTR, VERIFY, WRI TE

CLOSE, DELEGRETURN, LOCK, LOCKU, OPEN,
OPEN_CONFI RM OPEN_DOWNGRADE, READ,
SETATTR, WRI TE

NFSAERR_ADM N_REVCKED

NFS4ERR_ATTRNOTSUPP CREATE, NVERI FY, OPEN, SETATTR, VERI FY

NFS4ERR_BADCHAR CREATE, LINK, LOOKUP, NVERI FY, OPEN,
REMOVE, RENAME, SECI NFO, SETATTR,
VERI FY

NFS4ERR_BADHANDL E ACCESS, CB_GETATTR, CB_RECALL, CLOSE,
COW T, CREATE, GETATTR, GETFH, LI NK,
LOCK, LOCKT, LOCKU, LOOKUP, LOOKUPP,
NVERI FY, OPEN, OPENATTR, OPEN_CONFI RM
OPEN_DOWNGRADE, PUTFH, READ, READDI R,
READLI NK, REMOVE, RENAME, RESTOREFH,

Haynes & Noveck Expi res June 7, 2015 [Page 195]

Internet-Draft NFSv4 Decenber 2014

SAVEFH, SECI NFO, SETATTR, VERI FY,
VWRI TE

NFSAERR_BADNANME CREATE, LINK, LOOKUP, OPEN, REMOVE,
RENAME, SECI NFO

NFS4ERR_BADOMNER CREATE, OPEN, SETATTR

NFS4AERR_BADTYPE CREATE

NFS4ERR_BADXDR ACCESS, CB_GETATTR, CB_|LLEGAL,
CB_RECALL, CLCSE, COW T, CREATE,
DELEGPURGE, DELEGRETURN, GETATTR,

| LLEGAL, LINK, LOCK, LOCKT, LOCKU,
LOOKUP, NVERI FY, OPEN, OPENATTR,
OPEN_CONFI RM OPEN_DOWNGRADE, PUTFH,
READ, READDI R, RELEASE_LOCKOMNER,
REMOVE, RENAME, RENEW SECI NFO,
SETATTR, SETCLI ENTI D,

SETCLI ENTI D_CONFI RM VERI FY, WRI TE

NFSAERR_BAD_COOKI E READDI R

NFS4ERR_BAD_RANGE LOCK, LOCKT, LOCKU

NFS4ERR_BAD_SEQ D CLOSE, LOCK, LOCKU, OPEN,
OPEN_CONFI RM OPEN_DOWNGRADE
NFS4ERR_BAD STATEI D CB_RECALL, CLCSE, DELEGRETURN, LOCK,
LOCKU, OPEN, OPEN_CONFI RM
OPEN_DOANGRADE, READ, SETATTR, WRI TE

NFS4ERR_CB_PATH_DOWN RENEW

NFS4ERR_CLI D_I NUSE SETCLI ENTI D, SETCLI ENTI D_CONFI RM

NFS4ERR_DEADL OCK LOCK

NFSAERR_DELAY ACCESS, CB_GETATTR, CB_RECALL, CLCSE,
COW T, CREATE, DELEGPURGE,
DELEGRETURN, GETATTR, LINK, LOCK,
LOCKT, LOCKU, LOOKUP, LOOKUPP,

NVERI FY, OPEN, OPENATTR,
OPEN_DOWNGRADE, PUTFH, PUTPUBFH,
PUTROOTFH, READ, READDI R, READLI NK,
REMOVE, RENAME, SECI NFO, SETATTR,
SETCLI ENTI D, SETCLI ENTI D_CONFI RM
VERI FY, WRI TE

Haynes & Noveck Expi res June 7, 2015 [Page 196]

Internet-Draft NFSv4 Decenber 2014

NFS4AERR_DENI ED LOCK, LOCKT

NFSAERR_DQUOT CREATE, LINK, OPEN, OPENATTR, RENAME,
SETATTR, WRI TE

NFS4ERR_EXI ST CREATE, LINK, OPEN, RENAME

NFSAERR_EXPI RED CLOSE, DELEGRETURN, LOCK, LOCKT,
LOCKU, OPEN, OPEN_CONFI RM
OPEN_DOWNGRADE, READ,
RELEASE_LOCKOMNER, RENEW SETATTR,
VWRI TE

NFS4ERR_FBI G OPEN, SETATTR, WRI TE

NFS4ERR_FHEXPI RED ACCESS, CLOSE, COW T, CREATE,
GETATTR, GETFH, LINK, LOCK, LOCKT,
LOCKU, LOOKUP, LOOKUPP, NVERI FY, OPEN,
OPENATTR, OPEN_CONFI RM
OPEN_DOMNGRADE, PUTFH, READ, READDI R
READLI NK, REMOVE, RENAME, RESTOREFH,
SAVEFH, SECI NFO, SETATTR, VERI FY,

VWRI TE

NFS4ERR_FI LE_OPEN LI NK, REMOVE, RENAME

NFSAERR_GRACE GETATTR, LOCK, LOCKT, LOCKU, NVERI FY,
OPEN, READ, REMOVE, RENAME, SETATTR
VERI FY, WRI TE

NFS4ERR | NVAL ACCESS, CB_GETATTR, CLOSE, COW T,
CREATE, DELEGRETURN, GETATTR, LI NK
LOCK, LOCKT, LOCKU, LOCKUP, NVERI FY,
OPEN, OPEN_CONFI RM OPEN_DOWNGRADE,
READ, READDI R, READLI NK, REMOVE,
RENAME, SECI NFO, SETATTR, SETCLI ENTI D,
VERI FY, WRI TE

NFSAERR | O ACCESS, COW T, CREATE, GETATTR, LINK
LOOKUP, LOOKUPP, NVERI FY, OPEN,
OPENATTR, READ, READDI R, READLI NK,
REMOVE, RENAME, SETATTR, VERIFY, WRITE
NFS4ERR | SDI R CLOSE, COW T, LINK, LOCK, LOCKT,
LOCKU, OPEN, OPEN_CONFI RM READ,
READLI NK, SETATTR, WRI TE

Haynes & Noveck Expi res June 7, 2015 [Page 197]

Internet-Draft NFSv4 Decenber 2014

NFS4ERR_LEASE_MOVED CLOSE, DELEGPURGE, DELEGRETURN, LOCK,
LOCKT, LOCKU, OPEN_CONFI RM
OPEN_DOWNGRADE, READ,

RELEASE _LOCKOMER, RENEW SETATTR,
VRI TE

NFS4ERR_LOCKED READ, SETATTR, WRI TE

NFS4AERR_LOCKS_HELD CLOSE, OPEN_DOWNGRADE,
RELEASE L OCKOMNNER

NFS4ERR LOCK_NOTSUPP LOCK

NFSAERR_LOCK_RANGE LOCK, LOCKT, LOCKU

NFSAERR_MLI NK LI NK

NFS4ERR_MOVED ACCESS, CLOSE, COW T, CREATE,
DELECRETURN, GETATTR, GETFH, LI NK,
LOCK, LOCKT, LOCKU, LOOKUP, LOOKUPP,
NVERI FY, OPEN, OPENATTR, OPEN_CONFI RM
OPEN_DOMWNGRADE, PUTFH, READ, READDI R,
READLI NK, REMOVE, RENAME, RESTOREFH,
SAVEFH, SECI NFO, SETATTR, VERI FY,

VWRI TE

NFS4ERR_NAMETOCOLONG CREATE, LINK, LOOKUP, OPEN, REMOVE,
RENAME, SECI NFO

NFS4ERR_NOENT LI NK, LOOKUP, LOOKUPP, OPEN, OPENATTR
REMOVE, RENAME, SECI NFO

ACCESS, CLOSE, COMM T, CREATE,
DELEGRETURN, GETATTR, GETFH, LI NK,
LOCK, LOCKT, LOCKU, LOOKUP, LOOKUPP,
NVERI FY, OPEN, OPENATTR, OPEN_CONFI RM
OPEN_DOWNGRADE, READ, READDI R,

READLI NK, REMOVE, RENAME, SAVEFH,
SECI NFO, SETATTR, VERIFY, WRI TE

NFS4ERR_NCFI LEHANDLE

NFS4ERR_NOSPC CREATE, LINK, OPEN, OPENATTR, RENAME,

SETATTR, WRI TE
NFS4ERR_NOTDI R CREATE, LINK, LOOKUP, LOOKUPP, OPEN,
READDI R, REMOVE, RENAME, SECI NFO

NFS4ERR_NOTEMPTY REMOVE, RENAME

Haynes & Noveck Expi res June 7, 2015 [Page 198]

Internet-Draft NFSv4 Decenber 2014

NFS4ERR_NOTSUP OPEN, READLI NK

NFS4ERR_NOTSUPP DELEGPURGE, DELEGRETURN, LI NK|
OPENATTR

NFS4ERR_NOT_SAME READDI R, VERI FY

NFS4ERR_NO_GRACE LOCK, OPEN

NFSAERR_NXI O VRI TE

CLOSE, DELEGRETURN, LOCK, LOCKU, OPEN,
OPEN_CONFI RM OPEN_DOWNGRADE, READ,
SETATTR, WRITE

NFS4ERR_OLD_STATEI D

NFS4ERR_OPENMODE LOCK, READ, SETATTR, WRITE

NFSAERR_OP_| LLEGAL CB_| LLEGAL, | LLEGAL

NFS4ERR_PERM CREATE, OPEN, SETATTR

NFSAERR_RECLAI M_BAD LCCK, OPEN

NFSAERR_RECLAI M_CONFLI CT LOCK, OPEN

NFS4ERR_RESOURCE ACCESS, CLOSE, COM T, CREATE,
DELEGPURGE, DELEGRETURN, CETATTR,
GETFH, LINK, LOCK, LOCKT, LOCKU,
LOOKUP, LOOKUPP, OPEN, OPENATTR,
OPEN_CONFI RM OPEN_DOWNGRADE, READ,
READDI R, READLI NK, RELEASE_LOCKOMNNER,
REMOVE, RENAME, RENEW RESTOREFH,
SAVEFH, SECI NFO, SETATTR, SETCLI ENTI D,
SETCLI ENTI D_CONFI RM VERI FY, WRI TE

NFS4ERR_RESTCOREFH RESTCOREFH

NFS4ERR_RCOFS COW T, CREATE, LINK, OPEN, OPENATTR,
OPEN_DOWNGRADE, REMOVE, RENAME,
SETATTR, WRI TE

NFSAERR_SAME NVERI FY

NFS4ERR_SERVERFAULT ACCESS, CB_GETATTR, CB_RECALL, CLCSE,
COW T, CREATE, DELEGPURGE,
DELEGRETURN, GETATTR, GETFH, LI NK,
LOCK, LOCKT, LOCKU, LOOKUP, LOOKUPP,
NVERI FY, OPEN, OPENATTR, OPEN_CONFI RM

Haynes & Noveck Expi res June 7, 2015 [Page 199]

Internet-Draft NFSv4 Decenber 2014

OPEN_DOANGRADE, PUTFH, PUTPUBFH,
PUTROOTFH, READ, READDI R, READLI NK,
RELEASE _LOCKOMER, REMOVE, RENAME,
RENEW RESTOREFH, SAVEFH, SECI NFO,
SETATTR, SETCLI ENTI D,

SETCLI ENTI D_CONFI RM VERI FY, WRI TE

NFS4AERR_SHARE_DENI ED OPEN

NFSAERR_STALE ACCESS, CLOSE, COM T, CREATE,
DELEGRETURN, GETATTR, GETFH, LI NK
LOCK, LOCKT, LOCKU, LOOKUP, LOOKUPP,
NVERI FY, OPEN, OPENATTR, OPEN_CONFI RM
OPEN_DOWNGRADE, PUTFH, READ, READD R,
READLI NK, REMOVE, RENAME, RESTOREFH,
SAVEFH, SECI NFO, SETATTR, VERI FY,

VRI TE

NFSA4ERR_STALE_CLI ENTI D DELEGPURGE, LOCK, LOCKT, OPEN,
RELEASE _LOCKOMNER, RENEW
SETCLI ENTI D_CONFI RM
NFS4ERR_STALE_STATEI D CLOSE, DELEGRETURN, LOCK, LOCKU,
OPEN_CONFI RM OPEN_DOWNGRADE, READ,
SETATTR, WRI TE

NFSAERR_SYMLI NK COW T, LOOKUP, LOOKUPP, OPEN, READ,
VRI TE

NFS4ERR_TOOSMAL L READDI R

NFS4ERR_WRONGSEC LI NK, LOOKUP, LOOKUPP, OPEN, PUTFH,
PUTPUBFH, PUTROOTFH, RENAME, RESTCOREFH

NFS4ERR_XDEV LI NK, RENAME

Table 9
14. NFSv4 Requests

For the NFSv4 RPC program there are two traditional RPC procedures:
NULL and COVPOUND. All other functionality is defined as a set of
operations and these operations are defined in normal XDR/ RPC synt ax
and semantics. However, these operations are encapsulated within the
COVPOUND procedure. This requires that the client conbine one or
more of the NFSv4 operations into a single request.

Haynes & Noveck Expi res June 7, 2015 [Page 200]

Internet-Draft NFSv4 Decenber 2014

14.

The NFS4_CALLBACK programis used to provide server to client
signaling and is constructed in a sinmilar fashion as the NFSv4
program The procedures CB _NULL and CB_COVPOUND are defined in the
same way as NULL and COVMPOUND are within the NFS program The
CB_COVPOUND request al so encapsul ates the renaini ng operations of the
NFS4_CALLBACK program There is no predefined RPC program nunber for
the NFS4_CALLBACK program It is up to the client to specify a
program nunber in the "transient" programrange. The program and
port nunber of the NFS4_CALLBACK program are provided by the client
as part of the SETCLIENTI Y SETCLI ENTI D_CONFI RM sequence. The program
and port can be changed by anot her SETCLI ENTI D/ SETCLI ENTI D_CONFI RM
sequence, and it is possible to use the sequence to change t hem
within a client incarnation w thout renmoving relevant |eased client
state.

1. Conpound Procedure

The COVPOUND procedure provides the opportunity for better
performance within high | atency networks. The client can avoid

curmul ative latency of nultiple RPCs by combining multiple dependent
operations into a single COVMPOUND procedure. A conpound operation
may provide for protocol sinplification by allowing the client to
conbi ne basic procedures into a single request that is custonized for
the client’s environment.

The CB_COVPOUND procedure precisely parallels the features of
COVPOUND as descri bed above.

The basic structure of the COVMPOUND procedure is:

The nunops and nunres fields, used in the depiction above, represent
the count for the counted array encoding use to signify the nunber of
argunents or results encoded in the request and response. As per the
XDR encodi ng, these counts nust match exactly the nunber of operation
argunents or results encoded

Haynes & Noveck Expi res June 7, 2015 [Page 201]

Internet-Draft NFSv4 Decenber 2014

14.

14.

2. Evaluation of a Compound Request

The server will process the COMPOUND procedure by eval uati ng each of
the operations within the COMPOUND procedure in order. Each
conponent operation consists of a 32 bit operation code, followed by
the argument of length determined by the type of operation. The
results of each operation are encoded in sequence into a reply
buffer. The results of each operation are preceded by the opcode and
a status code (normally zero). |If an operation results in a non-zero
status code, the status will be encoded and eval uation of the
conmpound sequence will halt and the reply will be returned. Note
that eval uation stops even in the event of "non error" conditions
such as NFS4ERR_SAME

There are no atomcity requirements for the operations contained
within the COWOUND procedure. The operations being evaluated as
part of a COVPOUND request may be eval uated sinultaneously with other
COVPOUND requests that the server receives

A COMPOUND is not a transaction and it is the client’s responsibility
for recovering fromany partially conpl eted COM/POUND procedure.

These may occur at any point due to errors such as NFS4ERR RESOURCE
and NFS4ERR DELAY. Note that these errors can occur in an otherw se
valid operation string. Further, a server reboot which occurs in the
m ddl e of processing a COVWOUND procedure may | eave the client with
the difficult task of deternining how far COMPOUND processi ng has
proceeded. Therefore, the client should avoid overly conpl ex
COVPOUND procedures in the event of the failure of an operation
within the procedure.

Each operation assumes a "current"” and "saved" filehandle that is
avail abl e as part of the execution context of the conpound request.
Operations may set, change, or return the current filehandle. The
"saved" filehandle is used for tenporary storage of a filehandle
val ue and as operands for the RENAME and LI NK operati ons.

3. Synchronous Modi fying Operations

NFSv4 operations that nodify the file system are synchronous. Wen
an operation is successfully conpleted at the server, the client can
depend that any data associated with the request is now on stable
storage (the one exception is in the case of the file data in a WRITE
operation with the UNSTABLE4 option specified).

This inplies that any previous operations within the sane conpound
request are also reflected in stable storage. This behavior enables
the client’s ability to recover froma partially executed conpound
request which may resulted fromthe failure of the server. For

Haynes & Noveck Expi res June 7, 2015 [Page 202]

Internet-Draft NFSv4 Decenber 2014

14.

15.

15.

15.

15.

15.

15.

15.

exanple, if a conmpound request contains operations A and B and the
server is unable to send a response to the client, depending on the
progress the server nade in servicing the request the result of both
operations may be reflected in stable storage or just operation A may
be reflected. The server nmust not have just the results of operation
B in stable storage.

4. QOperation Val ues
The operations encoded in the COVPOUND procedure are identified by
operation values. To avoid overlap with the RPC procedure nunbers,
operations 0 (zero) and 1 are not defined. Operation 2 is not
defined but reserved for future use with mnor versioning.

NFSv4 Procedur es
[RFC Editor: prior to publishing this docunent as an RFC, pl ease have
every Section that has a title of "Procedure X" or "Operation Y:"
start at the top of a new page.]
1. Procedure 0: NULL - No Operation
1.1. SYNOPSIS

<nul | >
1.2. ARGUMENT

voi d;
1.3. RESULT

voi d;
1.4. DESCRI PTI ON
Standard NULL procedure. Void argument, void response. This
procedure has no functionality associated with it. Because of this
it is sometines used to neasure the overhead of processing a service
request. Therefore, the server should ensure that no unnecessary

work is done in servicing this procedure.

2. Procedure 1: COVPOUND - Conpound Operations

Haynes & Noveck Expi res June 7, 2015 [Page 203]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

2.1. SYNOPSI S
compoundar gs -> conpoundr es
2.2. ARGUMENT

uni on nfs_argop4 switch (nfs_opnumd argop) ({
case <OPCODE>: <argunent>

|
struct COVPOUND4args {
utf8str_cs tag;
uint32_t m norver si on
nfs_argop4 argarray<>

b
2.3. RESULT

uni on nfs_resop4 switch (nfs_opnund resop) {
case <OPCODE>: <argunent>

}
struct COVPOUND4res {
nf sst at 4 st at us;
utf8str_cs t ag;
nfs resop4 resarray<>

I
2.4. DESCRI PTI ON

The COVPOUND procedure is used to conbine one or nore of the NFS
operations into a single RPC request. The nain NFS RPC program has
two main procedures: NULL and COVPOUND. All other operations use the
COVPOUND procedure as a wrapper.

The COVPOUND procedure is used to conbine individual operations into
a single RPC request. The server interprets each of the operations
inturn. |If an operation is executed by the server and the status of
that operation is NFS4_CK, then the next operation in the COVWOUND
procedure is executed. The server continues this process until there
are no nore operations to be executed or one of the operations has a
status val ue other than NFS4_ K

In the processing of the COMPOUND procedure, the server may find that
it does not have the avail able resources to execute any or all of the
operations within the COWPOUND sequence. |In this case, the error

Haynes & Noveck Expi res June 7, 2015 [Page 204]

Internet-Draft NFSv4 Decenber 2014

NFS4ERR_RESOURCE wi |l | be returned for the particular operation within
t he COVPOUND procedure where the resource exhaustion occurred. This
assunes that all previous operations within the COWOUND sequence
have been eval uated successfully. The results for all of the

eval uat ed operations nust be returned to the client.

The server will generally choose between two net hods of decoding the
client’s request. The first would be the traditional one-pass XDR
decode, in which decoding of the entire COVMPOUND precedes execution
of any operation withinit. |If there is an XDR decoding error in
this case, an RPC XDR decode error would be returned. The second
met hod woul d be to nmake an initial pass to decode the basic COVPOUND
request and then to XDR decode each of the individual operations, as

the server is ready to execute it. |In this case, the server may
encounter an XDR decode error during such an operation decode, after
previ ous operations within the COWPOUND have been executed. |In this

case, the server would return the error NFSAERR BADXDR to signify the
decode error.

The COVPOUND argunents contain a "mnorversion" field. The initia
and default value for this field is O (zero). This field will be
used by future minor versions such that the client can conmunicate to
the server what mnor version is being requested. |If the server

recei ves a COMPOUND procedure with a minorversion field value that it
does not support, the server MJST return an error of

NFSAERR M NOR_VERS M SMATCH and a zero length resultdata array.

Contained within the COMPOUND results is a "status" field. |If the
results array length is non-zero, this status nust be equivalent to
the status of the last operation that was executed within the
COVWPOUND procedure. Therefore, if an operation incurred an error
then the "status" value will be the same error value as is being
returned for the operation that fail ed.

Note that operations, 0 (zero), 1 (one), and 2 (two) are not defined
for the COMPOUND procedure. It is possible that the server receives
a request that contains an operation that is less than the first

| egal operation (OP_ACCESS) or greater than the last |egal operation
(OP_RELEASE LOCKOMNER). In this case, the server’s response wll
encode the opcode OP_ILLEGAL rather than the illegal opcode of the
request. The status field in the ILLEGAL return results will set to
NFSAERR OP | LLEGAL. The COMPOUND procedure’s return results wll

al so be NFS4ERR OP_I| LLEGAL.

The definition of the "tag" in the request is left to the
inplementer. |t may be used to sunmmarize the content of the conpound
request for the benefit of packet sniffers and engi neers debuggi ng

i mpl ement ati ons. However, the value of "tag" in the response SHOULD

Haynes & Noveck Expi res June 7, 2015 [Page 205]

Internet-Draft NFSv4 Decenber 2014

15.

be the same value as provided in the request. This applies to the
tag field of the CB_COVPOUND procedure as well.

2.4.1. Current Filehandle

The current and saved fil ehandl e are used throughout the protocol
Most operations inplicitly use the current fil ehandl e as a argunent
and many set the current filehandle as part of the results. The
combi nation of client specified sequences of operations and current
and saved filehandl e argunents and results allows for greater
protocol flexibility. The best or easiest exanple of current
filehandl e usage is a sequence like the foll ow ng:

PUTFH f hl {fh1}
LOOKUP " conpA" {fh2}
GETATTR {fh2}
LOOKUP " conpB" {fh3}
GETATTR {fh3}
LOOKUP " conpC' {f h4}
GETATTR {f h4}
GETFH
Figure 1

In this exanple, the PUTFH (Section 15.22) operation explicitly sets
the current filehandle value while the result of each LOOKUP
operation sets the current filehandl e value to the resultant file
systemobject. Also, the client is able to insert GETATTR operations
using the current filehandle as an argunent.

The PUTROOTFH (Section 15.24) and PUTPUBFH (Section 15.24) operations
al so set the current filehandle. The above exanple would repl ace
"PUTFH fh1" with PUTROOTFH or PUTPUBFH with no fil ehandl e argument in
order to achieve the sane effect (on the assunption that "conpA" is
directly below the root of the namespace).

Along with the current filehandle, there is a saved filehandl e.

While the current filehandle is set as the result of operations |ike
LOOKUP, the saved filehandl e nust be set directly with the use of the
SAVEFH operation. The SAVEFH operations copies the current
filehandl e value to the saved value. The saved filehandle value is
used in conbination with the current filehandl e value for the LINK
and RENAME operations. The RESTOREFH operation will copy the saved
filehandl e value to the current filehandle value; as a result, the
saved fil ehandl e val ue may be used a sort of "scratch" area for the
client’s series of operations.

Haynes & Noveck Expi res June 7, 2015 [Page 206]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

2.5. | MPLEMENTATI ON

Since an error of any type may occur after only a portion of the
operations have been evaluated, the client nust be prepared to
recover fromany failure. |f the source of an NFS4ERR RESOURCE error
was a conplex or lengthy set of operations, it is likely that if the
number of operations were reduced the server would be able to

eval uate them successfully. Therefore, the client is responsible for
dealing with this type of complexity in recovery.

A single conpound should not contain nultiple operations that have
different values for the clientid field used in OPEN, LOCK, RENEW
This can cause confusion in cases in which operations that do not
contain clientids have potential interactions with operations that
do. Wien only a single clientid has been used, it is clear what
client is being referenced. For a particular exanple involving the
i nteraction of OPEN and GETATTR, see Section 15.18.6.

3. Operation 3: ACCESS - Check Access Rights
3.1. SYNOPSIS
(cfh), accessreq -> supported, accessrights

3.2. ARGUMENT

const ACCESS4_READ = 0x00000001;
const ACCESS4_LOOKUP = 0x00000002
const ACCESS4_MODI FY = 0x00000004;
const ACCESS4_EXTEND = 0x00000008;
const ACCESS4_DELETE = 0x00000010;
const ACCESS4 _EXECUTE = 0x00000020;

struct ACCESS4args {
/* CURRENT_FH. object */
ui nt 32_t access;

H

3.3. RESULT

Haynes & Noveck Expi res June 7, 2015 [Page 207]

Internet-Draft NFSv4 Decenber 2014

15.

struct ACCESS4resok {
ui nt 32_t support ed;
uint32_t access;

b

uni on ACCESS4res switch (nfsstat4 status) {
case NF4_XK
ACCESS4r esok resok4;
defaul t:
voi d;
b

3.4. DESCRI PTI ON

ACCESS determ nes the access rights that a user, as identified by the
credentials in the RPC request, has with respect to the file system
obj ect specified by the current filehandle. The client encodes the
set of access rights that are to be checked in the bit mask "access"
The server checks the perm ssions encoded in the bit mask. |[If a
status of NFS4 K is returned, two bit nasks are included in the
response. The first, "supported", represents the access rights for
whi ch the server can verify reliably. The second, "access",
represents the access rights available to the user for the filehandle
provided. On success, the current filehandle retains its val ue.

Note that the supported field will contain only as many val ues as
were originally sent in the argunents. For exanple, if the client
sends an ACCESS operation with only the ACCESS4 READ val ue set and
the server supports this value, the server will return only
ACCESS4_READ even if it could have reliably checked other val ues.

The results of this operation are necessarily advisory in nature. A
return status of NFS4_OK and the appropriate bit set in the bit nmask
does not inply that such access will be allowed to the file system
object in the future. This is because access rights can be revoked
by the server at any tine.

The followi ng access perm ssions nmay be requested:
ACCESS4 READ: Read data fromfile or read a directory.

ACCESS4_LOOKUP: Look up a nane in a directory (no nmeaning for non-
directory objects).

ACCESS4 MODI FY: Rewrite existing file data or nodify existing
directory entries.

Haynes & Noveck Expi res June 7, 2015 [Page 208]

Internet-Draft NFSv4 Decenber 2014

ACCESS4_EXTEND: Wite new data or add directory entries.
ACCESS4 _DELETE: Delete an existing directory entry.
ACCESS4 EXECUTE: Execute file (no neaning for a directory).
On success, the current filehandl e retains its val ue.
15.3.5. | MPLEMENTATI ON
In general, it is not sufficient for the client to attenpt to deduce
access permnissions by inspecting the uid, gid, and node fields in the

file attributes or by attenpting to interpret the contents of the ACL
attribute. This is because the server may performuid or gid mapping

or enforce additional access control restrictions. It is also
possi ble that the server may not be in the sane |ID space as the
client. In these cases (and perhaps others), the client cannot

reliably performan access check with only current file attributes.

In the NFSv2 protocol, the only reliable way to determ ne whether an
operation was allowed was to try it and see if it succeeded or
failed. Using the ACCESS operation in the NFSv4 protocol, the client
can ask the server to indicate whether or not one or nore classes of
operations are pernitted. The ACCESS operation is provided to allow
clients to check before doing a series of operations which night
result in an access failure. The OPEN operation provides a point
where the server can verify access to the file object and nethod to
return that information to the client. The ACCESS operation is stil
useful for directory operations or for use in the case the UN X AP
"access" is used on the client.

The information returned by the server in response to an ACCESS cal
is not permanent. It was correct at the exact tine that the server
perfornmed the checks, but not necessarily afterward. The server can
revoke access permi ssion at any tine.

The client should use the effective credentials of the user to build
the authentication information in the ACCESS request used to
determ ne access rights. It is the effective user and group
credentials that are used in subsequent read and wite operations.

Many i npl enentations do not directly support the ACCESS4 DELETE

perm ssion. Operating systems like UNIX will ignore the
ACCESS4_DELETE bit if set on an access request on a non-directory
object. In these systens, delete permission on a file is determ ned

by the access permissions on the directory in which the file resides,
i nstead of being determined by the perm ssions of the file itself.
Therefore, the nmask returned enunerating which access rights can be

Haynes & Noveck Expi res June 7, 2015 [Page 209]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

supported will have the ACCESS4 DELETE value set to 0. This
indicates to the client that the server was unable to check that
particul ar access right. The ACCESS4 DELETE bit in the access mask
returned will then be ignored by the client.
4. Operation 4: CLOSE - Cose File
4.1. SYNOPSI S

(cfh), seqid, open_stateid -> open_stateid

4.2. ARGUMENT

struct CLCSE4args {
/* CURRENT_FH: object */

seqi d4 seqi d;

statei d4 open_statei d;
b
4.3. RESULT

uni on CLCSE4res switch (nfsstat4 status) {
case NFH4_X

statei d4 open_statei d;
defaul t:

b

voi d;

4. 4. DESCRI PTI ON

The CLOSE operation rel eases share reservations for the regular or
naned attribute file as specified by the current filehandle. The
share reservations and other state information released at the server
as a result of this CLOSE is only associated with the supplied
stateid. The sequence id provides for the correct ordering. State
associated with other OPENs is not affected.

If byte-range | ocks are held, the client SHOULD rel ease all | ocks
before issuing a CLOSE. The server MAY free all outstanding | ocks on
CLCSE but sone servers nay not support the CLOSE of a file that stil
has byte-range | ocks held. The server MIUST return failure if any

| ocks woul d exist after the CLCSE

On success, the current filehandl e retains its val ue.

Haynes & Noveck Expi res June 7, 2015 [Page 210]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

15.

4.5. | MPLEMENTATI ON
Even though CLOSE returns a stateid, this stateid is not useful to
the client and should be treated as deprecated. CLCSE "shuts down"
the state associated with all OPENs for the file by a single open-
owner. As noted above, CLOSE will either release all file Iocking
state or return an error. Therefore, the stateid returned by CLOSE
is not useful for operations that foll ow
5. Operation 5: COWMT - Commt Cached Data
5.1. SYNOPSIS

(cfh), offset, count -> verifier

5.2. ARGUMENT

struct COW T4args {
/* CURRENT_FH. file */

of fset4 of f set;
count4 count ;
b
5.3. RESULT

struct COWM T4resok {
verifier4d writeverf;
H

union COM T4res switch (nfsstat4 status) {
case NF4_ XK

COWM T4r esok r esok4;
def aul t:

H

voi d;

5.4. DESCRI PTI ON

The COW T operation forces or flushes data to stable storage for the
file specified by the current filehandle. The flushed data is that
whi ch was previously witten with a WRI TE operation which had the
stable field set to UNSTABLEA.

The of fset specifies the position within the file where the flush is
to begin. An offset value of 0 (zero) nmeans to flush data starting
at the beginning of the file. The count specifies the nunmber of

Haynes & Noveck Expi res June 7, 2015 [Page 211]

Internet-Draft NFSv4 Decenber 2014

15.

bytes of data to flush. |If count is O (zero), a flush fromoffset to
the end of the file is done.

The server returns a wite verifier upon successful conpletion of the
COWM T. The wite verifier is used by the client to deternine if the
server has restarted or rebooted between the initial WRI TE(s) and the
COW T. The client does this by conparing the wite verifier
returned fromthe initial wites and the verifier returned by the
COW T operation. The server nust vary the value of the wite
verifier at each server event or instantiation that may lead to a

| oss of unconmmtted data. Mst commonly this occurs when the server

i s rebooted; however, other events at the server may result in
uncommitted data | oss as well.

On success, the current filehandle retains its val ue.
5.5. | MPLEMENTATI ON

The COM T operation is similar in operation and semantics to the
PCSI X fsync() [fsync] systemcall that synchronizes a file' s state
with the disk (file data and netadata is flushed to disk or stable
storage). COMW T perforns the same operation for a client, flushing
any unsynchroni zed data and netadata on the server to the server’s
di sk or stable storage for the specified file. Like fsync(), it may
be that there is sone nodified data or no nodified data to
synchroni ze. The data may have been synchroni zed by the server’s
normal periodic buffer synchronization activity. COVWM T shoul d
return NFS4_OK, unless there has been an unexpected error

COWMT differs fromfsync() in that it is possible for the client to
flush a range of the file (nost likely triggered by a buffer-

recl amati on scheme on the client before file has been conpletely
witten).

The server inplenentation of COWMT is reasonably sinple. |f the
server receives a full file COWMT request, that is starting at

of fset 0 and count 0, it should do the equivalent of fsync()' ing the
file. Oherwise, it should arrange to have the cached data in the
range specified by offset and count to be flushed to stable storage.
In both cases, any netadata associated with the file nust be flushed
to stable storage before returning. It is not an error for there to
be nothing to flush on the server. This neans that the data and

nmet adata that needed to be flushed have al ready been flushed or | ost
during the last server failure.

The client inplenentation of COMT is a little nore conplex. There
are two reasons for wanting to commit a client buffer to stable
storage. The first is that the client wants to reuse a buffer. In

Haynes & Noveck Expi res June 7, 2015 [Page 212]

Internet-Draft NFSv4 Decenber 2014

this case, the offset and count of the buffer are sent to the server
in the COWMT request. The server then flushes any cached data based
on the offset and count, and flushes any nmetadata associated with the

file. It then returns the status of the flush and the wite
verifier. The other reason for the client to generate a COMT is
for a full file flush, such as may be done at close. |In this case,

the client would gather all of the buffers for this file that contain
unconmitted data, do the COM T operation with an offset of 0 and
count of 0, and then free all of those buffers. Any other dirty

buf fers would be sent to the server in the nornal fashion

After a buffer is witten by the client with the stable paraneter set
to UNSTABLE4, the buffer nust be considered as nodified by the client
until the buffer has either been flushed via a COWM T operation or
witten via a WRITE operation with stable parameter set to FILE _SYNC4
or DATA SYNC4. This is done to prevent the buffer from being freed
and reused before the data can be flushed to stable storage on the
server.

When a response is returned fromeither a WRITE or a COWM T operation
and it contains a wite verifier that is different than previously
returned by the server, the client will need to retransnit all of the
buffers containing unconmitted cached data to the server. How this

is to be done is up to the inplenmenter. |If there is only one buffer
of interest, then it should probably be sent back over in a WRITE
request with the appropriate stable paraneter. |If there is nore than

one buffer, it mght be worthwhile retransmitting all of the buffers
in WRITE requests with the stable paraneter set to UNSTABLE4 and then
retransmtting the COM T operation to flush all of the data on the
server to stable storage. The tining of these retransnissions is
left to the inplenmenter.
The above description applies to page-cache-based systens as well as
buf f er-cache-based systens. |In those systens, the virtual nenory
systemw || need to be nodified instead of the buffer cache.

15.6. Operation 6: CREATE - Create a Non-Regular File Object

15.6.1. SYNOPSI S

(cfh), nane, type, attrs -> (cfh), cinfo, attrset

15.6.2. ARGUMENT

Haynes & Noveck Expi res June 7, 2015 [Page 213]

Internet-Draft NFSv4 Decenber 2014

15.

15.

uni on createtyped4 switch (nfs_ftyped type) {
case NF4LNK:

l'i nktext4 |inkdat a;
case NF4BLK:
case NF4CHR:

specdat a4 devdat a;
case NF4SOCK
case NF4Fl FO
case NF4D R

voi d;
def aul t:

H

struct CREATE4args {
/* CURRENT_FH directory for creation */

void; /* server should return NFS4ERR BADTYPE */

creat etyped obj type
conponent 4 obj nane;
fattr4 Createattrs;
b
6.3. RESULT
struct CREATE4resok {
change_i nfo4 ci nf o;
bi t map4 attrset; [* attributes set */

b

uni on CREATE4res switch (nfsstat4 status) {
case NF4_X

CREATE4r esok resok4;
defaul t:

H

voi d;

6.4. DESCRI PTI ON

The CREATE operation creates a non-regular file object in a directory
with a given nane. The OPEN operation is used to create a regul ar
file.

The obj name specifies the name for the new object. The objtype
determ nes the type of object to be created: directory, symink, etc.

If an object of the sane nane already exists in the directory, the
server will return the error NFS4ERR _EXI ST.

Haynes & Noveck Expi res June 7, 2015 [Page 214]

Internet-Draft NFSv4 Decenber 2014

For the directory where the new file object was created, the server
returns change_info4 information in cinfo. Wth the atomic field of
the change_info4 struct, the server will indicate if the before and
after change attributes were obtained atomcally with respect to the
file object creation.

If the objnane is of zero length, NFSAERR | NVAL will be returned.
The objname is al so subject to the normal UTF-8, character support,
and nane checks. See Section 12.7 for further discussion

The current filehandle is replaced by that of the new object.

The createattrs specifies the initial set of attributes for the
object. The set of attributes may include any witable attribute
valid for the object type. Wen the operation is successful, the
server will return to the client an attribute mask signifying which
attributes were successfully set for the object.

If createattrs includes neither the owner attribute nor an ACL with
an ACE for the owner, and if the server’s file system both supports
and requires an owner attribute (or an owner ACE) then the server
MUST derive the owner (or the owner ACE). This would typically be
fromthe principal indicated in the RPC credentials of the call, but
the server’s operating environment or file system senantics nmay
dictate other nethods of derivation. Simlarly, if createattrs

i ncludes neither the group attribute nor a group ACE, and if the
server’s file system both supports and requires the notion of a group
attribute (or group ACE), the server MJST derive the group attribute
(or the correspondi ng owner ACE) for the file. This could be from
the RPC call’s credentials, such as the group principal if the
credentials include it (such as with AUTH SYS), fromthe group
identifier associated with the principal in the credentials (e.g.
PCSI X systens have a user database [getpwnan] that has the group
identifier for every user identifier), inherited fromdirectory the
object is created in, or whatever else the server’'s operating
environnment or file systemsemantics dictate. This applies to the
OPEN operation too.

Conversely, it is possible the client will specify in createattrs an
owner attribute or group attribute or ACL that the principa

i ndicated the RPC call’s credentials does not have perm ssions to
create files for. The error to be returned in this instance is
NFS4ERR_PERM This applies to the OPEN operation too.

Haynes & Noveck Expi res June 7, 2015 [Page 215]

Internet-Draft NFSv4 Decenber 2014

15.6.5. | MPLEMENTATI ON

If the client desires to set attribute values after the create, a
SETATTR operation can be added to the COVPOUND request so that the
appropriate attributes will be set.

15.7. Operation 7: DELEGPURGE - Purge Del egations Awaiting Recovery
15.7.1. SYNOPSI S

clientid ->
15.7.2. ARGUVMENT

struct DELEGPURGE4args {
clientid4 clientid;
}

15.7.3. RESULT

struct DELEGPURGE4res {
nf sst at 4 st at us;
H

15.7.4. DESCRI PTI ON

Purges all of the delegations awaiting recovery for a given client.
This is useful for clients which do not conmit del egation infornation
to stable storage to indicate that conflicting requests need not be
del ayed by the server awaiting recovery of delegation information

This operation is provided to support clients that record del egation
informati on on stable storage on the client. In this case,
DELEGPURGE shoul d be issued inmedi ately after doing del egation
recovery (using CLAI M DELEGATE_PREV) on all del egations known to the
client. Doing so will notify the server that no additiona

del egations for the client will be recovered allowing it to free
resources, and avoid delaying other clients who make requests that
conflict with the unrecovered del egations. Al client SHOULD use
DELEGPURGE as part of recovery once it is known that no further

CLAI M _DELEGATE_PREV recovery will be done. This includes clients
that do not record del egation information on stable storage, who
woul d then do a DELEGPURGE i mmedi ately after SETCLI ENTI D_CONFI RM

The set of del egations known to the server and the client nay be
different. The reasons for this include:

Haynes & Noveck Expi res June 7, 2015 [Page 216]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

o Aclient may fail after naking a request which resulted in
del egation but before it received the results and commtted them
to the client’s stable storage.

o Aclient may fail after deleting its indication that a del egation
exi sts but before the delegation return is fully processed by the
server.

0 In the case in which the server and the client restart, the server
may have linmted persistent recording of delegation to a subset of
t hose in existence.

o Aclient may have only persistently recorded information about a
subset of del egati ons.

The server MAY support DELEGPURCE, but its support or non-support
shoul d match that of CLAI M DELEGATE PREV:

0 A server may support both DELEGPURGE and CLAlI M DELEGATE PREV.
0 A server may support neither DELEGPURGE nor CLAI M DELEGATE_PREV.
This fact allows a client starting up to deternine if the server is
prepared to support persistent storage of delegation infornmation and
thus whether it nmay use wite-back caching to | ocal persistent
storage, relying on CLAI M DELEGATE PREV recovery to all ow such
changed data to be flushed safely to the server in the event of
client restart.
8. Operation 8 DELEGRETURN - Return Del egation
8.1. SYNOPSIS

(cfh), stateid ->
8.2. ARGUMENT
struct DELEGRETURMNargs {

/* CURRENT_FH del egated file */
statei d4 del eg_st at ei d;

H

8.3. RESULT

Haynes & Noveck Expi res June 7, 2015 [Page 217]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

15.

struct DELEGRETURN4res {
nf sstat 4 st at us;
H

8.4. DESCRI PTI ON

Returns the del egati on represented by the current filehandl e and
statei d.

Del egations nmay be returned when recalled or voluntarily (i.e.,
before the server has recalled them. 1In either case the client nust
properly propagate state changed under the context of the del egation
to the server before returning the del egation.

9. Operation 9: GETATTR - Get Attributes
9.1. SYNOPSI S

(cfh), attrbits -> attrbits, attrvals
9.2. ARGUMENT
struct GETATTR4args {

/* CURRENT_FH:. directory or file */
bi t map4 attr_request;

b
9.3. RESULT
struct GETATTR4resok {

fattr4 obj _attributes;
b

uni on CETATTR4res switch (nfsstat4 status) {
case NFS4_CK

GETATTR4r esok resok4;
defaul t:

H

voi d;

9.4. DESCRI PTI ON

The GETATTR operation will obtain attributes for the file system
obj ect specified by the current filehandle. The client sets a bit in
the bitmap argunent for each attribute value that it would like the

Haynes & Noveck Expi res June 7, 2015 [Page 218]

Internet-Draft NFSv4 Decenber 2014

15.

server to return. The server returns an attribute bitmap that
indicates the attribute values for which it was able to return
val ues, followed by the attribute values ordered | owest attribute
nunmber first.

The server MUST return a value for each attribute that the client
requests if the attribute is supported by the server. |f the server
does not support an attribute or cannot approximate a useful val ue
then it MJST NOT return the attribute value and MJUST NOT set the
attribute bit in the result bitmap. The server MJST return an error
if it supports an attribute on the target but cannot obtain its
value. In that case no attribute values will be returned.

File systens which are absent should be treated as having support for
a very small set of attributes as described in GETATTR Wthin an
Absent File System (Section 8.3.1), even if previously, when the file
system was present, nore attributes were support ed.

Al'l servers MJST support the REQUI RED attributes as specified in the
section File Attributes (Section 5), for all file systens, with the
exception of absent file systens.

On success, the current filehandle retains its val ue.
9.5. | MPLEMENTATI ON

Suppose there is a OPEN _DELEGATE WRI TE del egati on hel d by anot her
client for file in question and size and/or change are anobng the set
of attributes being interrogated. The server has two choi ces.
First, the server can obtain the actual current value of these
attributes fromthe client holding the del egation by using the
CB_GETATTR cal | back. Second, the server, particularly when the

del egated client is unresponsive, can recall the delegation in
question. The GETATTR MJST NOT proceed until one of the follow ng
occurs:

0 The requested attribute values are returned in the response to
CB_GETATTR

0 The OPEN DELEGATE WRI TE del egation is returned.
0 The OPEN DELEGATE WRI TE del egation is revoked.
Unl ess one of the above happens very quickly, one or nore

NFSAERR DELAY errors will be returned while a delegation is
out st andi ng.

Haynes & Noveck Expi res June 7, 2015 [Page 219]

Internet-Draft NFSv4 Decenber

15.

15.

15.

15.

15.

15.

15.

10. Operation 10: CGETFH - Get Current Filehandle
10.1. SYNOPSI S

(cfh) -> filehandle
10.2. ARGUMENT

/* CURRENT _FH. */
voi d;

10.3. RESULT
struct GETFH4resok {

nfs_fh4 obj ect;
b

uni on CETFH4res switch (nfsstat4 status) {
case NF4_XK
GETFH4r esok resok4;
defaul t:
voi d;
b

10.4. DESCRI PTI ON
This operation returns the current filehandl e val ue.
On success, the current filehandle retains its val ue.

10.5. | MPLEMENTATI ON

2014

Operations that change the current filehandle Iike LOOKUP or CREATE

do not automatically return the new filehandle as a result. For

instance, if a client needs to | ookup a directory entry and obtain

its filehandl e then the follow ng request is needed.
PUTFH (directory filehandl e)
LOOKUP (entry nane)
GETFH

11. Operation 11: LINK - Create Link to a File

Haynes & Noveck Expi res June 7, 2015 [Page 220]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

11.1. SYNOPSI S
(sfh), (cfh), newnane -> (cfh), cinfo
11.2. ARGUMENT

struct LINK4dargs {
/* SAVED FH. source object */
/* CURRENT_FH target directory */
conponent 4 newnane;

11.3. RESULT

struct LI NK4resok {
change_i nfo4 ci nfo;
b

union LI NK4dres switch (nfsstat4 status) {
case NF4_ XX

LI NK4r esok resok4;
defaul t:

H

voi d;

11. 4. DESCRI PTI ON

The LINK operation creates an additional newname for the file
represented by the saved filehandl e, as set by the SAVEFH operation
in the directory represented by the current filehandle. The existing
file and the target directory nmust reside within the sane file system
on the server. On success, the current filehandle will continue to
be the target directory. |If an object exists in the target directory
with the same name as newnane, the server must return NFSAERR EXI ST

For the target directory, the server returns change_info4 information
incinfo. Wth the atomic field of the change_info4 struct, the
server will indicate if the before and after change attributes were
obtained atonically with respect to the link creation

If the newnane has a length of 0 (zero), or if newnane does not obey
the UTF-8 definition, the error NFSAERR I NVAL will be returned.

Haynes & Noveck Expi res June 7, 2015 [Page 221]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

11.5. | MPLEMENTATI ON

Changes to any property of the "hard" linked files are reflected in
all of the linked files. Wwen alink is nade to a file, the
attributes for the file should have a value for numinks that is one
greater than the val ue before the LINK operation.

The statenment "file and the target directory nust reside within the
same file systemon the server” neans that the fsid fields in the
attributes for the objects are the sane. |f they reside on different
file systens, the error NFS4AERR XDEV is returned. This error nmay be
returned by some servers when there is an internal partitioning of a
file systemthat the LINK operation would violate.

On sone servers, and are illegal values for newname and the
error NFS4ERR BADNAME will be returned if they are specified

When the current filehandl e designates a nanmed attribute directory
and the object to be linked (the saved filehandle) is not a naned
attribute for the same object, the error NFS4AERR XDEV MJST be
returned. When the saved fil ehandl e designates a nanmed attribute and
the current filehandle is not the appropriate naned attribute
directory, the error NFS4ERR XDEV MJST al so be returned.

When the current filehandl e designates a nanmed attribute directory
and the object to be linked (the saved filehandle) is a naned
attribute within that directory, the server MAY return the error
NFS4ERR_NOTSUPP

In the case that newnane is already linked to the file represented by
the saved fil ehandl e, the server will return NFS4ERR_EXI ST.

Note that synbolic links are created with the CREATE operation.
12. Operation 12: LOCK - Create Lock
12.1. SYNOPSI S

(cfh) locktype, reclaim offset, length, |ocker -> stateid
12. 2. ARGUMENT

enum nfs_| ock_typed {

READ LT =1,
WRI TE_LT = 2,
READW LT = 3, /* bl ocking read */
VWRI TEW LT =4 /* blocking wite */

Haynes & Noveck Expi res June 7, 2015 [Page 222]

Internet-Draft NFSv4 Decenber 2014

/*
* For LOCK, transition from open_owner to new | ock_owner
*/
struct open_to_ | ock owner4 {
seqi d4 open_seqi d;
statei d4 open_statei d;
seqi d4 | ock_seqi d;
| ock_owner 4 | ock_owner;
b
/*
* For LOCK, existing |ock owner continues to request file |ocks
*/
struct exist_|ock_owner4 {
st at ei d4 | ock_stateid;
seqi d4 | ock_seqi d;
b
uni on | ocker4 switch (bool new_ | ock _owner) {
case TRUE
open_t o_| ock_owner 4 open_owner
case FALSE:
exi st _| ock_owner4 | ock_owner;
b
/*
* LOCK/ LOCKT/ LOCKU: Record | ock managenent
*/

struct LOCK4args {
/* CURRENT _FH. file */
nfs_ | ock _typed4 | ocktype;

bool reclaim
of fset4 of f set;
| engt h4 | engt h;
| ocker 4 | ocker;

H

15.12.3. RESULT

Haynes & Noveck Expi res June 7, 2015 [Page 223]

Internet-Draft NFSv4 Decenber 2014

15.

struct LOCK4deni ed {

of fset4 of f set;

| engt h4 | engt h;

nfs | ock typed4 | ocktype;

| ock_owner 4 owner ;
b
struct LOCKAresok {

st at ei d4 | ock_stateid;
|

uni on LOCK4res switch (nfsstat4 status) {
case NF4_XK
LOCK4r esok r esok4;
case NFS4ERR DEN ED
LOCK4deni ed deni ed;
def aul t:

H

voi d;

12. 4. DESCRI PTI ON

The LOCK operation requests a byte-range |lock for the byte range
specified by the offset and | ength paraneters. The lock type is also
specified to be one of the nfs_|lock _typeds. |If this is a reclaim
request, the reclaimparaneter will be TRUE

Bytes in a file may be | ocked even if those bytes are not currently
all ocated to the file. To lock the file froma specific offset
through the end-of-file (no matter how long the file actually is) use
a length field with all bits set to 1 (one). |If the length is zero,
or if alength which is not all bits set to one is specified, and

| ength when added to the offset exceeds the maxi mum 64-bit unsigned

i nteger value, the error NFS4ERR INVAL will result.

Sone servers may only support |ocking for byte offsets that fit
within 32 bits. |If the client specifies a range that includes a byte
beyond the last byte offset of the 32-bit range, but does not include
the | ast byte offset of the 32-bit and all of the byte offsets beyond
it, up to the end of the valid 64-bit range, such a 32-bit server
MUST return the error NFS4AERR BAD RANGE

In the case that the lock is denied, the owner, offset, and | ength of
a conflicting |l ock are returned.

On success, the current filehandle retains its val ue.

Haynes & Noveck Expi res June 7, 2015 [Page 224]

Internet-Draft NFSv4 Decenber 2014

15.12.5. | MPLEMENTATI ON

If the server is unable to determ ne the exact offset and | ength of
the conflicting | ock, the sane offset and | ength that were provided
in the argunents should be returned in the denied results. Section 9
contains a full description of this and the other file Iocking
operati ons.

LOCK operations are subject to perm ssion checks and to checks

agai nst the access type of the associated file. However, the
specific right and nodes required for various type of |ocks, reflect
the semantics of the server-exported file system and are not

specified by the protocol. For exanple, Wndows 2000 allows a wite
lock of a file open for READ, while a PCSI X-conpliant system does
not .

When the client nakes a | ock request that corresponds to a range that
the | ock-owner has | ocked already (with the sanme or different |ock
type), or to a sub-region of such a range, or to a regi on which
includes multiple | ocks already granted to that |ock-owner, in whole
or in part, and the server does not support such | ocking operations
(i.e., does not support POSI X | ocki ng semantics), the server will
return the error NFS4ERR LOCK RANGE. In that case, the client may
return an error, or it may emnul ate the required operations, using
only LOCK for ranges that do not include any bytes already | ocked by
that | ock-owner and LOCKU of | ocks held by that | ock-owner
(specifying an exactly-matching range and type). Simlarly, when the
client makes a | ock request that ampunts to upgradi ng (changing from
aread lock to a wite lock) or downgrading (changing fromwite |ock
to a read |l ock) an existing record | ock, and the server does not
support such a lock, the server will return NFSAERR LOCK NOTSUPP

Such operations may not perfectly reflect the required semantics in
the face of conflicting | ock requests fromother clients.

When a client holds an OPEN DELEGATE WRI TE del egation, the client
hol di ng that delegation is assured that there are no opens by other
clients. Thus, there can be no conflicting LOCK operations from such
clients. Therefore, the client may be handling | ocki ng requests

| ocal ly, without doing LOCK operations on the server. |If it does
that, it nust be prepared to update the | ock status on the server, by
sendi ng appropriate LOCK and LOCKU operations before returning the
del egati on.

When one or nore clients hold OPEN DELEGATE READ del egati ons, any
LOCK operation where the server is inplementing nmandatory | ocking
semantics MJUST result in the recall of all such delegations. The
LOCK operation may not be granted until all such del egations are
returned or revoked. Except where this happens very quickly, one or

Haynes & Noveck Expi res June 7, 2015 [Page 225]

Internet-Draft NFSv4 Decenber 2014

nmore NFSAERR DELAY errors will be returned to requests nade while the
del egati on remnai ns out st andi ng.

The | ocker argunent specifies the |ock-owner that is associated with
the LOCK request. The locker4 structure is a switched union that

i ndi cates whether the client has already created byte-range | ocking
state associated with the current open file and | ock-owner. There
are nultiple cases to be considered, corresponding to possible

combi nations of whether |ocking state has been created for the
current open file and | ock-owner, and whet her the bool ean

new | ock_owner is set. In all of the cases, there is a |ock_seqid
specified, whether the | ock-owner is specified explicitly or
implicitly. This seqid value is used for checking | ock-owner
sequenci ng/repl ay issues. \When the given |ock-owner is not known to
the server, this establishes an initial sequence value for the new

| ock- owner.

0 In the case in which the state has been created and the boolean is
false, the only part of the argunent other than lock _seqid is just
a stateid representing the set of |ocks associated with that open
file and | ock-owner.

0 In the case in which the state has been created and the boolean is
true, the server rejects the request with the error
NFS4ERR_BAD SEQ D. The only exception is where there is a
retransm ssion of a previous request in which the bool ean was
true. In this case, the lock_seqid will match the origina
request and the response will reflect the final case, bel ow

o0 |In the case where no byte-range | ocking state has been established
and the boolean is true, the argunent contains an
open_to_l ock_owner structure which specifies the stateid of the
open file and the | ock-owner to be used for the | ock. Note that
al t hough the open-owner is not given explicitly, the open_seqid
associated with it is used to check for open-owner sequencing
i ssues. This case provides a nethod to use the established state
of the open_stateid to transition to the use of a |ock stateid.

15.13. Operation 13: LOCKT - Test For Lock
15.13.1. SYNOPSIS

(cfh) locktype, offset, length, owner -> {void, NFS4ERR DEN ED ->
owner }

Haynes & Noveck Expi res June 7, 2015 [Page 226]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

13.2. ARGUMENT

struct LOCKT4args {
/* CURRENT_FH. file */
nfs | ock typed4 | ocktype;

of f set 4 of f set;
| engt h4 | engt h;
| ock_owner 4 owner ;

H

13.3. RESULT

uni on LOCKT4res switch (nfsstat4 status) {
case NFS4ERR_DEN ED
LOCK4deni ed deni ed;
case NF$4_K
voi d;
defaul t:

H

voi d;

13. 4. DESCRI PTI ON

The LOCKT operation tests the | ock as specified in the argunments. |f
a conflicting | ock exists, the owner, offset, length, and type of the
conflicting lock are returned; if no lock is held, nothing other than
NFS4 OK is returned. Lock types READ LT and READW LT are processed
in the same way in that a conflicting lock test is done w thout
regard to bl ocking or non-blocking. The sane is true for WRITE_LT
and WRI TEW LT.

The ranges are specified as for LOCK. The NFS4ERR | NVAL and
NFSAERR BAD RANGE errors are returned under the same circunstances as
for LOCK.

On success, the current filehandle retains its val ue.

13.5. | MPLEMENTATI ON

If the server is unable to determ ne the exact offset and | ength of
the conflicting |l ock, the sanme offset and |l ength that were provided
in the argunments should be returned in the denied results. Section 9

contains further discussion of the file |ocking nechanisns.

LOCKT uses a | ock _owner4 rather a stateid4, as is used in LOCK to
identify the owner. This is because the client does not have to open

Haynes & Noveck Expi res June 7, 2015 [Page 227]

Internet-Draft NFSv4 Decenber 2014

the file to test for the existence of a lock, so a stateid may not be
avai |l abl e.

The test for conflicting | ocks SHOULD excl ude | ocks for the current

| ock-owner. Note that since such | ocks are not exam ned the possible
exi stence of overlapping ranges may not affect the results of LOCKT
If the server does exami ne |ocks that match the | ock-owner for the
pur pose of range checki ng, NFS4ERR LOCK RANGE nmay be returned. In
the event that it returns NFS4_CK, clients may do a LOCK and receive
NFS4ERR LOCK RANGE on the LOCK request because of the flexibility
provided to the server.

When a client holds an OPEN _DELEGATE WRI TE del egation, it nmay choose
(see Section 15.12.5)) to handle LOCK requests locally. 1In such a
case, LOCKT requests will simlarly be handled |ocally.
15.14. Operation 14: LOCKU - Unlock File
15.14.1. SYNOPSI S
(cfh) type, seqid, stateid, offset, length -> stateid
15.14. 2. ARGUMENT
struct LOCKWargs {

/* CURRENT_FH: file */
nfs_| ock_typed4 |ocktype;

seqi d4 seqi d;
statei d4 | ock_stateid;
of fset4 of f set;
| engt h4 | engt h;

H

15.14.3. RESULT

uni on LOCKU4res switch (nfsstat4 status) {
case NFS4 OK:

st at ei d4 | ock_stateid;
def aul t:

H

voi d;

Haynes & Noveck Expi res June 7, 2015 [Page 228]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

14. 4. DESCRI PTI ON

The LOCKU operation unl ocks the byte-range | ock specified by the
paraneters. The client may set the locktype field to any val ue that
is legal for the nfs_|ock typed4 enunerated type, and the server MJST
accept any legal value for |ocktype. Any legal value for |ocktype
has no effect on the success or failure of the LOCKU operation

The ranges are specified as for LOCK. The NFS4ERR_|I NVAL and
NFSAERR BAD RANGE errors are returned under the same circunstances as
for LOCK

On success, the current filehandle retains its val ue.
14.5. | MPLEMENTATI ON

If the area to be unl ocked does not correspond exactly to a | ock
actually held by the | ock-owner the server nmay return the error
NFS4ERR_LOCK_RANGE. This includes the case in which the area is not
| ocked, where the area is a sub-range of the area | ocked, where it
overlaps the area | ocked w thout matching exactly or the area
specified includes nultiple | ocks held by the | ock-owner. 1In all of
these cases, allowed by PCSI X | ocking [fcntl] semantics, a client
receiving this error, should if it desires support for such
operations, sinulate the operation using LOCKU on ranges
corresponding to locks it actually holds, possibly foll owed by LOCK
requests for the sub-ranges not being unl ocked.

When a client holds an OPEN DELEGATE WRI TE del egation, it nay choose
(see Section 15.12.5)) to handle LOCK requests locally. 1In such a
case, LOCKU requests will simlarly be handled |ocally.
15. Operation 15: LOOKUP - Lookup Fil enane
15.1. SYNOPSI S
(cfh), conponent -> (cfh)
15.2. ARGUMENT
struct LOOKUP4args {

/* CURRENT_FH. directory */
component 4 obj nane;

H

Haynes & Noveck Expi res June 7, 2015 [Page 229]

Internet-Draft NFSv4 Decenber 2014

15.15.3. RESULT

struct LOOKUP4res {
/* CURRENT_FH. object */
nf sst at 4 st at us;

H

15.15. 4. DESCRI PTI ON

This operation LOOKUPs or finds a file system object using the
directory specified by the current filehandle. LOOKUP eval uates the
component and if the object exists the current filehandl e is replaced
with the conponent’s filehandl e.

If the conponent cannot be evaluated either because it does not exist
or because the client does not have permission to evaluate the
component, then an error will be returned and the current filehandle
wi || be unchanged.

If the conponent is of zero length, NFS4ERR INVAL will be returned
The conponent is al so subject to the normal UTF-8, character support,
and nane checks. See Section 12.7 for further discussion.

15.15.5. | MPLEMENTATI ON
If the client wants to achieve the effect of a nulti-conponent
| ookup, it may construct a COVPOUND request such as (and obtain each
filehandl e):

PUTFH (directory filehandl e)

LOOKUP " pub”
GETFH
LOOKUP " f 00"
GETFH
LOOKUP " bar "
GETFH

NFSv4 servers depart fromthe semantics of previous NFS versions in
all owi ng LOOKUP requests to cross nount points on the server. The
client can detect a nount point crossing by conparing the fsid
attribute of the directory with the fsid attribute of the directory
| ooked up. If the fsids are different then the new directory is a
server mount point. UN X clients that detect a nount point crossing
will need to nount the server’s file system This needs to be done
to maintain the file object identity checking nechani sns conmon to
UNI X clients.

Haynes & Noveck Expi res June 7, 2015 [Page 230]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

Servers that limt NFS access to "shares" or "exported" file systens
shoul d provide a pseudo-file systeminto which the exported file
systens can be integrated, so that clients can browse the server’s
nane space. The clients’ view of a pseudo file systemw Il be
limted to paths that lead to exported file systens.

Not e: previous versions of the protocol assigned special semantics to
the nanes "." and ".." NFSv4 assigns no special semantics to these
nanes. The LOCKUPP operator mnust be used to | ookup a parent
directory.

Note that this operation does not follow synmbolic links. The client
is responsible for all parsing of filenames including fil enanmes that
are nodified by synmbolic |inks encountered during the | ookup process.

If the current filehandle supplied is not a directory but a synbolic
link, the error NFS4ERR SYMLINK is returned as the error. For al
other non-directory file types, the error NFS4ERR_NOTDI R i s ret urned.

16. Operation 16: LOOKUPP - Lookup Parent Directory
16.1. SYNOPSI S

(cfh) -> (cfh)
16.2. ARGUMENT

/* CURRENT_FH. object */
voi d;

16.3. RESULT

struct LOOKUPP4res {
/* CURRENT_FH directory */
nf sst at 4 st at us;

H

16. 4. DESCRI PTI ON

The current filehandle is assuned to refer to a regular directory or
a naned attribute directory. LOOKUPP assigns the filehandle for its
parent directory to be the current filehandle. |If there is no parent
directory an NFS4ERR NCENT error nust be returned. Therefore,
NFSAERR_NCENT wi Il be returned by the server when the current
filehandle is at the root or top of the server's file tree.

Haynes & Noveck Expi res June 7, 2015 [Page 231]

Internet-Draft NFSv4 Decenber 2014

15.16.5. | MPLEMENTATI ON
As for LOOKUP, LOOKUPP will also cross nmount points.

If the current filehandle is not a directory or naned attribute
directory, the error NFS4ERR NOTDIR is returned.

If the current filehandle is a named attribute directory that is
associated with a file system object via OPENATTR (i.e., not a sub-
directory of a naned attribute directory), LOOKUPP SHOULD return the
filehandl e of the associated file system object.
15.17. Operation 17: NVERIFY - Verify Difference in Attributes
15.17.1. SYNOPSI S
(cfh), fattr -> -
15.17.2. ARGUMENT
struct NVERI FY4args {
/* CURRENT_FH: object */
fattr4 obj attributes;
b
15.17.3. RESULT

struct NVERI FY4res {
nf sst at 4 st at us;
H

15.17.4. DESCRI PTI ON
This operation is used to prefix a sequence of operations to be
performed if one or nore attributes have changed on sone file system
object. If all the attributes match then the error NFS4ERR_SAME nust
be returned.
On success, the current filehandl e retains its val ue.

15.17.5. | MPLEMENTATI ON
This operation is useful as a cache validation operator. |If the

object to which the attributes bel ong has changed then the foll ow ng
operations may obtain new data associated with that object. For

Haynes & Noveck Expi res June 7, 2015 [Page 232]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

instance, to check if a file has been changed and obtain new data if
it has:

PUTFH (public)

LOCOKUP " f oobar™”
NVERI FY attrbits attrs
READ 0 32767

In the case that a RECOMMENDED attribute is specified in the NVER FY
operation and the server does not support that attribute for the file
system object, the error NFS4ERR ATTRNOTSUPP is returned to the
client.

When the attribute rdattr_error or any wite-only attribute (e.qg.
time_nodify_set) is specified, the error NFS4ERR INVAL is returned to
the client.

18. Operation 18: OPEN - Open a Regular File

18.1. SYNOPSI S

(cfh), seqid, share_access, share_deny, owner, openhow, claim->
(cfh), stateid, cinfo, rflags, attrset, del egation

18.2. ARGUMENT

/*

* Various definitions for OPEN

*/

enum cr eat ennded {
UNCHECKED4 = 0,
GUARDED4 =1,
EXCLUSI VE4 =2

b

uni on createhow4 switch (createnoded4 node) {
case UNCHECKED4
case GUARDED4

fattr4 createattrs;
case EXCLUSI VE4.
verifier4d createverf;

H

enum opent ype4d {
OPEN4_NOCREATE
OPEN4_CREATE

H

Haynes & Noveck Expi res June 7, 2015 [Page 233]

Internet-Draft NFSv4 Decenber 2014

uni on openflag4 switch (opentyped opentype) {
case OPENA_CREATE:

cr eat ehow4 how;
def aul t:

H

/* Next definitions used for OPEN del egation */
enum limt_by4 {

voi d;

NFS LIM T_SI ZE =1,
NFS_LI M T_BLOCKS =2
/* others as needed */
b
struct nfs_nodified Iimt4 {
uint32_t num bl ocks;
uint32_t byt es_per bl ock;
b

union nfs_space_linmt4 switch (Iimt_by4 limtby) {
[* limt specified as file size */
case NFS_LIM T_SI ZE:
ui nt 64 _t filesize;
/* limt specified by number of bl ocks */
case NFS LI M T_BLOCKS:
nfs nodified lint4 nod_bl ocks;
b

enum open_del egation_type4 {

OPEN_DELEGATE_NONE =0,
OPEN_DELEGATE_READ =1,
OPEN_DELEGATE _WRI TE =2

b

enum open_cl aimtyped {
CLAI M_NULL =0,
CLAI M_PREVI QUS =1,
CLAI M_DELEGATE_CUR = 2,
CLAI M_DELEGATE_PREV =3

|

struct open_cl ai mdel egate_cur4 {
statei d4 del egat e_st at ei d;
component 4 file;

b

uni on open_claim switch (open_claimtyped clain) {

/*

Haynes & Noveck Expi res June 7, 2015 [Page 234]

Internet-Draft NFSv4 Decenber 2014

* No special rights to file.
* Ordinary OPEN of the specified file.
*/
case CLAI M_NULL:
/* CURRENT_FH directory */
conponent 4 file;

* Right to the file established by an

* open previous to server reboot. File

* identified by filehandl e obtai ned at

* that time rather than by nane.

*/

case CLAI M _PREVI QUS
/* CURRENT_FH file being reclained */
open_del egati on_t ype4 del egat e_t ype;

/*
* Right to file based on a del egation
* granted by the server. File is
* specified by nane.
*/
case CLAI M _DELEGATE_CUR:
/* CURRENT_FH directory */
open_cl ai m del egate_cur4 del egate cur_info

/*
* Right to file based on a del egati on
* granted to a previous boot instance
* of the client. File is specified by nane.
*/
case CLAlI M _DELEGATE_PREV
/* CURRENT_FH directory */

component 4 file_del egate_prev;
b
/*
* OPEN. Open a file, potentially receiving an open del egati on
*/
struct OPEMargs {
seqi d4 seqi d;
uint32_t share_access;
uint32_t share_deny;
open_owner 4 owner
openfl ag4 openhow;
open_cl ai n4 cl ai m
b

Haynes & Noveck Expi res June 7, 2015 [Page 235]

Internet-Draft NFSv4

15.18.3. RESULT

struct open_read_del egationd {
statei d4 stateid; /* Stateid for del egation*/
bool recal | ; /* Pre-recalled flag for
del egati ons obt ai ned

by reclai m (CLA M _PREVI QUS) */

nf saced4 permi ssions; /* Defines users who don’'t
need an ACCESS call to
open for read */

b

struct open_wite_del egationd {

statei d4 stateid; /[* Stateid for del egation */
bool recal | ; /* Pre-recalled flag for

del egati ons obt ai ned
by reclaim
(CLAI M _PREVI QUS) */

nfs_space limt4
space limt; /* Defines condition that
the client nust check to
det ermi ne whet her the
file needs to be flushed
to the server on close. */

nf sace4 perm ssions; /* Defines users who don't
need an ACCESS call as
part of a del egated
open. */

H

uni on open_del egati on4
switch (open_del egation_type4 del egation_type) {
case OPEN_DELEGATE_NONE
voi d;
case OPEN_DELEGATE READ:
open_r ead_del egati on4 read;
case OPEN _DELEGATE_WRI TE
open_wite delegationd wite;
b
/*
* Result flags
*/

/* Cient nmust confirmopen */

Haynes & Noveck Expi res June 7, 2015

Decenber 2014

[Page 236]

Internet-Draft NFSv4 Decenber 2014

15.

15.

const OPEN4_RESULT_CONFI RM = 0x00000002
/* Type of file | ocking behavior at the server */
const OPENA_RESULT_LOCKTYPE_POSI X = 0x00000004;

struct OPEMNresok {

statei d4 stateid; /* Stateid for open */
change_i nfo4 ci nf o; /* Directory Change Info */
ui nt 32_t rfl ags; /* Result flags */

bi t map4 attrset; [* attribute set for create*/

open_del egati on4 del egation; /* Info on any open
del egati on */
b

uni on OPENdres switch (nfsstat4 status) {
case NF4_ XK
/* CURRENT_FH. opened file */
OPEN4r esok r esok4;
defaul t:
voi d;
b

18.4. Warning to Cient Inplenenters

OPEN resenbles LOOKUP in that it generates a filehandl e for the
client to use. Unlike LOOKUP though, OPEN creates server state on
the filehandle. 1In normal circunstances, the client can only rel ease
this state with a CLOSE operation. CLOSE uses the current filehandle
to determine which file to close. Therefore, the client MJST foll ow
every OPEN operation with a GETFH operation in the sane COVPOUND
procedure. This will supply the client with the filehandl e such that
CLCSE can be used appropriately.

Sinply waiting for the lease on the file to expire is insufficient
because the server may naintain the state indefinitely as long as
anot her client does not attenpt to nake a conflicting access to the
same file.

18. 5. DESCRI PTI ON

The OPEN operation creates and/or opens a regular file in a directory
with the provided name. |If the file does not exist at the server and
creation is desired, specification of the method of creation is

provi ded by the openhow paraneter. The client has the choice of
three creation methods: UNCHECKED4, GUARDED4, or EXCLUSI VE4.

If the current filehandle is a naned attribute directory, OPEN will
then create or open a naned attribute file. Note that exclusive

Haynes & Noveck Expi res June 7, 2015 [Page 237]

Internet-Draft NFSv4 Decenber 2014

create of a naned attribute is not supported. |If the createnode is
EXCLUSI VE4 and the current filehandle is a nanmed attribute directory,
the server will return El NVAL.

UNCHECKED4 neans that the file should be created if a file of that
name does not exist and encountering an existing regular file of that
nane is not an error. For this type of create, createattrs specifies
the initial set of attributes for the file. The set of attributes
may include any witable attribute valid for regular files. Wen an
UNCHECKED4 create encounters an existing file, the attributes
specified by createattrs are not used, except that when an size of
zero is specified, the existing file is truncated. |f GUARDED is
specified, the server checks for the presence of a duplicate object
by name before performng the create. |If a duplicate exists, an
error of NFSAERR EXIST is returned as the status. |If the object does
not exist, the request is perforned as described for UNCHECKED4. For
each of these cases (UNCHECKED4 and GUARDED4) where the operation is
successful, the server will return to the client an attribute nask
signifying which attributes were successfully set for the object.

EXCLUSI VE4 specifies that the server is to follow exclusive creation
semantics, using the verifier to ensure exclusive creation of the
target. The server should check for the presence of a duplicate

obj ect by nanme. |If the object does not exist, the server creates the
object and stores the verifier with the object. |If the object does
exi st and the stored verifier matches the client provided verifier,
the server uses the existing object as the newly created object. |If
the stored verifier does not match, then an error of NFS4ERR EXI ST is
returned. No attributes may be provided in this case, since the
server may use an attribute of the target object to store the
verifier. |f the server uses an attribute to store the exclusive
create verifier, it will signify which attribute by setting the
appropriate bit in the attribute mask that is returned in the
results.

For the target directory, the server returns change_info4 information
incinfo. Wth the atonic field of the change_info4 struct, the
server will indicate if the before and after change attributes were
obtained atomically with respect to the link creation

Upon successful creation, the current filehandle is replaced by that
of the new object.

The OPEN operation provides for Wndows share reservation capability
with the use of the share_access and share_deny fields of the OPEN
argunents. The client specifies at OPEN the required share_access
and share_deny nodes. For clients that do not directly support
SHAREs (i.e., UNI X), the expected deny value is DENY NONE. 1In the

Haynes & Noveck Expi res June 7, 2015 [Page 238]

Internet-Draft NFSv4 Decenber 2014

case that there is a existing SHARE reservation that conflicts with

the OPEN request, the server returns the error NFS4ERR SHARE DENI ED.

For a conpl ete SHARE request, the client nust provide values for the
owner and seqid fields for the OPEN argunent. For additiona

di scussi on of SHARE senantics see Section 9.09.

In the case that the client is recovering state froma server
failure, the claimfield of the OPEN argunment is used to signify that
the request is nmeant to reclaimstate previously held.

The "clain field of the OPEN argunent is used to specify the file to
be opened and the state information which the client clains to
possess. There are four basic claimtypes which cover the various
situations for an OPEN. They are as foll ows:

CLAI M NULL: For the client, this is a new OPEN request and there is
no previous state associate with the file for the client.

CLAI M PREVIQUS: The client is claimng basic OPEN state for a file
that was held previous to a server reboot. Cenerally used when a
server is returning persistent filehandles; the client may not
have the file nanme to reclaimthe OPEN

CLAI M DELEGATE _CUR: The client is clainmng a delegation for OPEN as
granted by the server. GCenerally this is done as part of
recalling a del egation.

CLAI M DELEGATE PREV: The client is claimng a delegation granted to
a previous client instance. This claimtype is for use after a
SETCLI ENTI D_CONFI RM and before the correspondi ng DELEGPURGE i n two
situations: after a client reboot and after a | ease expiration
that resulted in loss of all lock state. The server MAY support
CLAI M DELEGATE_PREV. If it does support CLAI M DELEGATE_PREV,
SETCLI ENTI D_CONFI RM MUST NOT renove the client’s del egation state,
and the server MJST support the DELEGPURGE operati on.

The following errors apply to use of the CLAI M DELEGATE PREV cl ai m
type:

0 NFS4ERR NOTSUPP is returned if the server does not support this
claimtype.

0 NFS4ERR INVAL is returned if the reclaimis done at an
i nappropriate time, e.g., after DELEGPURCGE has been done.

0 NFS4ERR BAD RECLAIMis returned if the other error conditions do

not apply and the server has no record of the del egati on whose
reclaimis being attenpted.

Haynes & Noveck Expi res June 7, 2015 [Page 239]

Internet-Draft NFSv4 Decenber 2014

For OPEN requests whose claimtype is other than CLAI M PREVI QUS
(i.e., requests other than those devoted to reclaimng opens after a
server reboot) that reach the server during its grace or |ease
expiration period, the server returns an error of NFS4ERR GRACE

For any OPEN request, the server may return an open del egation, which
allows further opens and closes to be handled locally on the client
as described in Section 10.4. Note that delegation is up to the
server to decide. The client should never assune that del egation
will or will not be granted in a particular instance. It should

al ways be prepared for either case. A partial exception is the
reclaim (CLAI M PREVI QUS) case, in which a delegation type is clained.
In this case, delegation will always be granted, although the server
may specify an imediate recall in the del egation structure.

The rflags returned by a successful OPEN allow the server to return
i nformati on governing how the open file is to be handl ed.

OPEN4_RESULT_CONFI RM i ndi cates that the client MJUST execute an
OPEN_CONFI RM oper ati on before using the open file.
OPEN4A_RESULT_LOCKTYPE_PCSI X i ndi cates the server’s file | ocking
behavi or supports the conplete set of Posix |ocking techniques
[fentl]. Fromthis the client can choose to nmanage file | ocking
state in a way to handle a nmis-match of file |ocking managemnent.

If the conponent is of zero length, NFS4ERR INVAL will be returned.
The conponent is also subject to the normal UTF-8, character support,
and nane checks. See Section 12.7 for further discussion

When an OPEN i s done and the specified open-owner already has the
resulting filehandl e open, the result is to "OR' together the new
share and deny status together with the existing status. |In this
case, only a single CLCSE need be done, even though multiple OPENs
were conpl eted. Wen such an OPEN is done, checking of share
reservations for the new OPEN proceeds nornally, with no exception
for the existing OPEN held by the same owner. |In this case, the
stateid returned as an "other" field that matches that of the

previ ous open while the "seqid" field is increnented to reflect the
change status due to the new open (Section 9.1.4).

If the underlying file systemat the server is only accessible in a
read-only node and the OPEN request has specified
OPEN4_SHARE_ACCESSS_WRI TE or OPEN4_SHARE ACCESS BOTH, the server wll
return NFSAERR ROFS to indicate a read-only file system

As with the CREATE operation, the server MJST derive the owner, owner

ACE, group, or group ACE if any of the four attributes are required
and supported by the server’'s file system For an OPEN with the

Haynes & Noveck Expi res June 7, 2015 [Page 240]

Internet-Draft NFSv4 Decenber 2014

15.

EXCLUSI VE4 createnode, the server has no choice, since such OPEN
calls do not include the createattrs field. Conversely, if
createattrs is specified, and includes owner or group (or
correspondi ng ACEs) that the principal in the RPC call’s credentials
does not have authorization to create files for, then the server may
return NFS4ERR_PERM

In the case of a OPEN which specifies a size of zero (e.g.
truncation) and the file has nanmed attributes, the named attributes
are left as is. They are not renoved.

18. 6. | MPLEMENTATI ON

The OPEN operation contains support for EXCLUSI VE4 create. The
mechanismis simlar to the support in NFSv3 [RFC1813]. As in NFSv3,
this mechani sm provides reliable exclusive creation. Exclusive
create is invoked when the how paraneter is EXCLUSIVE4. 1In this
case, the client provides a verifier that can reasonably be expected
to be unique. A conbination of a client identifier, perhaps the
client network address, and a uni que nunber generated by the client,
perhaps the RPC transaction identifier, may be appropriate.

If the object does not exist, the server creates the object and
stores the verifier in stable storage. For file systens that do not
provi de a nechanismfor the storage of arbitrary file attributes, the
server may use one or nore elenents of the object neta-data to store
the verifier. The verifier nust be stored in stable storage to
prevent erroneous failure on retransnission of the request. It is
assuned that an exclusive create is being perforned because excl usive
semantics are critical to the application. Because of the expected
usage, exclusive CREATE does not rely solely on the normally volatile
duplicate request cache for storage of the verifier. The duplicate
request cache in volatile storage does not survive a crash and may
actually flush on a long network partition, opening failure w ndows.
In the UNIX local file systemenvironnent, the expected storage

| ocation for the verifier on creation is the neta-data (tinme stanps)
of the object. For this reason, an exclusive object create may not
include initial attributes because the server would have nowhere to
store the verifier.

If the server cannot support these exclusive create semantics,

possi bly because of the requirenment to conmit the verifier to stable
storage, it should fail the OPEN request with the error
NFS4ERR_NOTSUPP

Duri ng an excl usive CREATE request, if the object already exists, the
server reconstructs the object’s verifier and conpares it with the
verifier in the request. |If they match, the server treats the

Haynes & Noveck Expi res June 7, 2015 [Page 241]

Internet-Draft NFSv4 Decenber 2014

request as a success. The request is presuned to be a duplicate of
an earlier, successful request for which the reply was | ost and that
the server duplicate request cache nmechanismdid not detect. |If the
verifiers do not match, the request is rejected with the status,
NFS4ERR_EXI ST.

Once the client has performed a successful exclusive create, it nust
i ssue a SETATTR to set the correct object attributes. Until it does
so, it should not rely upon any of the object attributes, since the
server inplenentation may need to overload object neta-data to store
the verifier. The subsequent SETATTR nust not occur in the sane
COVPOUND request as the OPEN. This separation will guarantee that
the exclusive create nechanismw || continue to function properly in
the face of retransnission of the request.

Use of the GUARDED4 attribute does not provide exactly-once
semantics. In particular, if areply is lost and the server does not
detect the retransm ssion of the request, the operation can fail wth
NFSAERR _EXI ST, even though the create was perfornmed successfully.

The client would use this behavior in the case that the application
has not requested an exclusive create but has asked to have the file
truncated when the file is opened. |In the case of the client timnng
out and retransmtting the create request, the client can use
GUARDED4 to prevent against a sequence like: create, wite, create
(retransmitted) from occurring.

For SHARE reservations (see Section 9.9), the client nust specify a
val ue for share_access that is one of OPENA_SHARE ACCESS READ
OPEN4_SHARE_ACCESS_WRI TE, or OPENA_SHARE ACCESS BOTH. For
share_deny, the client nust specify one of OPENA_SHARE DENY_ NONE
OPEN4_SHARE DENY_READ, OPEN4_SHARE DENY WRI TE, or
OPENA_SHARE DENY BOTH. If the client fails to do this, the server
nmust return NFS4ERR | NVAL.

Based on the share_access val ue (OPEN4_SHARE ACCESS READ,
OPEN4_SHARE ACCESS WRI TE, or OPEN4_SHARE ACCESS BOTH) the client
shoul d check that the requester has the proper access rights to
performthe specified operation. This would generally be the results
of applying the ACL access rules to the file for the current
requester. However, just as with the ACCESS operation, the client
shoul d not attenpt to second-guess the server’s decisions, as access
rights may change and may be subject to server administrative
controls outside the ACL framework. |f the requester is not

aut horized to READ or WRI TE (dependi ng on the share_access val ue),
the server nust return NFS4ERR ACCESS. Note that since the NFS
version 4 protocol does not inpose any requirenent that READs and
WRI TEs issued for an open file have the sane credentials as the OPEN

Haynes & Noveck Expi res June 7, 2015 [Page 242]

Internet-Draft NFSv4 Decenber 2014

itself, the server still nust do appropriate access checking on the
READs and WRI TEs t hemnsel ves.

If the conponent provided to OPEN resolves to sonething other than a
regular file (or a nanmed attribute), an error will be returned to the
client. If it is a directory, NFS4ERR ISDIR is returned; otherw se,
NFS4ERR_SYMLINK is returned. Note that NFS4ERR_SYM.INK i s returned
for both syminks and for special files of other types; NFS4ERR | NVAL
woul d be inappropriate, since the argunments provided by the client
were correct, and the client cannot necessarily know at the tine it
sent the OPEN that the conponent would resolve to a non-regular file.

If the current filehandle is not a directory, the error
NFS4ERR NOTDIR wi | | be returned.

I f a COMPOUND contai ns an OPEN whi ch establishes an

OPEN _DELEGATE WRI TE del egati on, then nornmally subsequent GETATTRS
result in a CB_GETATTR being sent to the client hol ding the

del egation. However, in the case in which the OPEN and GETATTR are
part of the same COVMPOUND, the server SHOULD understand that the
operations are for the sanme client ID and avoid querying the client,
which will not be able to respond. This sequence of OPEN, GETATTR
SHOULD be understood as retrieving of the size and change attributes
at the time of OPEN, Further, as explained in Section 15.2.5, the
client should not construct a COMPOUND whi ch mi xes operations for
different client |Ds.

15.19. Operation 19: OPENATTR - QOpen Named Attribute Directory
15.19.1. SYNOPSIS
(cfh) createdir -> (cfh)
15.19.2. ARGUMENT
struct OPENATTR4args {
/* CURRENT_FH: object */
bool createdir;
b
15.19.3. RESULT
struct OPENATTR4res ({

/* CURRENT_FH named attr directory */
nf sstat 4 st at us;

H

Haynes & Noveck Expi res June 7, 2015 [Page 243]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

15.

19.4. DESCRI PTI ON

The OPENATTR operation is used to obtain the filehandl e of the naned
attribute directory associated with the current filehandle. The
result of the OPENATTR will be a filehandle to an object of type
NFAATTRDIR. Fromthis filehandl e, READDI R and LOOKUP operations can
be used to obtain filehandl es for the various named attributes
associated with the original file systemobject. Filehandles
returned within the nanmed attribute directory will have a type of
NF4NAVEDATTR.

The createdir argunent allows the client to signify if a naned
attribute directory should be created as a result of the OPENATTR
operation. Sone clients nmay use the OPENATTR operation with a val ue
of FALSE for createdir to determne if any named attributes exist for
the object. [If none exist, then NFS4ERR NCENT will be returned. |If
createdir has a value of TRUE and no naned attribute directory
exists, one is created. The creation of a naned attribute directory
assumes that the server has inplenmented naned attribute support in
this fashion and is not required to do so by this definition

19.5. | MPLEMENTATI ON
If the server does not support naned attributes for the current
filehandl e, an error of NFSAERR NOTSUPP will be returned to the
client.
20. Operation 20: OPEN _CONFI RM - Confirm QOpen
20.1. SYNOPSIS
(cfh), seqid, stateid -> stateid
20.2. ARGUMENT
struct OPEN_CONFI RM4args {
/* CURRENT_FH. opened file */
statei d4 open_st atei d;

seqi d4 seqi d;
b

20.3. RESULT

Haynes & Noveck Expi res June 7, 2015 [Page 244]

Internet-Draft NFSv4 Decenber 2014

15.

15.

struct OPEN_CONFI RWAr esok {
statei d4 open_st atei d;
b

uni on OPEN_CONFI RMAres switch (nfsstat4 status) {
case NFH4_X
OPEN_CONFI RvAr esok r esok4;
defaul t:
voi d;
|

20. 4. DESCRI PTI ON

This operation is used to confirmthe sequence id usage for the first
time that a open-owner is used by a client. The stateid returned
fromthe OPEN operation is used as the argunent for this operation
along with the next sequence id for the open-owner. The sequence id
passed to the OPEN_CONFI RM nust be 1 (one) greater than the seqid
passed to the OPEN operation (Section 9.1.4). |If the server receives
an unexpected sequence id with respect to the original open, then the
server assunes that the client will not confirmthe original OPEN and
all state associated with the original OPEN is rel eased by the
server.

On success, the current filehandle retains its val ue.
20.5. | MPLEMENTATI ON

A given client night generate many open_owner4 data structures for a
given client ID. The client will periodically either dispose of its
open_owner4s or stop using themfor indefinite periods of time. The
latter situation is why the NFSv4 protocol does not have an explicit
operation to exit an open_owner4: such an operation is of no use in
that situation. Instead, to avoid unbounded nenory use, the server
needs to inplenment a strategy for disposing of open_owner4s that have
no current open state for any files and have not been used recently.
The tinme period used to determ ne when to di spose of open_owner4s is
an inplenmentation choice. The time period should certainly be no

| ess than the lease tine plus any grace period the server w shes to

i mpl ement beyond a |l ease tinme. The OPEN _CONFI RM operation allows the
server to safely dispose of unused open_owner4 data structures.

In the case that a client issues an OPEN operation and the server no
| onger has a record of the open_owner4, the server needs to ensure
that this is a new OPEN and not a replay or retransm ssion

Haynes & Noveck Expi res June 7, 2015 [Page 245]

Internet-Draft NFSv4 Decenber 2014

Servers MJST NOT require confirmati on on OPENs that grant del egations
or are doing reclaimoperations. See Section 9.1.11 for details.

The server can easily avoid this by noting whether it has di sposed of
one open_owner4 for the given client ID. |f the server does not
support del egation, it mght sinply maintain a single bit that notes
whet her any open_owner4 (for any client) has been di sposed of.

The server nust hold unconfirnmed OPEN state until one of three events
occur. First, the client sends an OPEN_CONFI RM request with the
appropriate sequence id and stateid within the lease period. 1In this
case, the OPEN state on the server goes to confirmed, and the
open_owner4 on the server is fully established.

Second, the client sends another OPEN request with a sequence id that
is incorrect for the open_owner4 (out of sequence). |In this case,
the server assunes the second OPEN request is valid and the first one
is areplay. The server cancels the OPEN state of the first OPEN
request, establishes an unconfirnmed OPEN state for the second OPEN
request, and responds to the second OPEN request with an indication
that an OPEN_CONFIRM i s needed. The process then repeats itself.
Wiile there is a potential for a denial of service attack on the
client, it is mtigated if the client and server require the use of a
security flavor based on Kerberos V5 or sonme other flavor that uses

crypt ogr aphy.

What if the server is in the unconfirned OPEN state for a given
open_owner4, and it receives an operation on the open_owner4 that has
a stateid but the operation is not OPEN, or it is OPEN_CONFI RM but
with the wong stateid? Then, even if the seqid is correct, the
server returns NFS4ERR BAD STATEI D, because the server assumes the
operation is a replay: if the server has no established OPEN state,
then there is no way, for exanple, a LOCK operation could be valid.

Third, neither of the two aforenenti oned events occur for the
open_owner4 within the | ease period. 1In this case, the OPEN state is
cancel ed and di sposal of the open_owner4 can occur

15.21. Operation 21: OPEN _DOANGRADE - Reduce Open File Access

15.21.1. SYNOPSI S

(cfh), stateid, seqid, access, deny -> stateid

15.21.2. ARGUMENT

Haynes & Noveck Expi res June 7, 2015 [Page 246]

Internet-Draft NFSv4 Decenber 2014

15.

15.

struct OPEN_DOANGRADE4ar gs {
/* CURRENT_FH: opened file */

statei d4 open_st atei d;
seqi d4 seqi d;
uint32_t share_access;
uint32_t share_deny;

H

21.3. RESULT

struct OPEN_DOANGRADEAr esok {
statei d4 open_statei d;
b

uni on OPEN_DOWNGRADE4res switch(nfsstat4 status) {
case NF$4_K
OPEN_DOWNGRADE4r esok r esok4;
defaul t:
voi d;
b

21. 4. DESCRI PTI ON

This operation is used to adjust the share_access and share_deny bits
for a given open. This is necessary when a gi ven open-owner opens
the sane file nultiple times with different share_access and
share_deny flags. In this situation, a close of one of the opens nmay
change the appropriate share_access and share _deny flags to renpve
bits associated with opens no longer in effect.

The share_access and share_deny bits specified in this operation
replace the current ones for the specified open file. The
share_access and share_deny bits specified nust be exactly equal to
the union of the share_access and share _deny bits specified for sone
subset of the OPENs in effect for current open-owner on the current
file. If that constraint is not respected, the error NFS4ERR | NVAL
shoul d be returned. Since share_access and share_deny bits are
subsets of those already granted, it is not possible for this request
to be deni ed because of conflicting share reservations.

As the OPEN_DOWNGRADE may change a file to be not-open-for-wite and
a wite byte-range | ock m ght be held, the server may have to reject
t he OPEN_DOMNGRADE with a NFS4ERR_LOCKS HELD.

On success, the current filehandle retains its val ue.

Haynes & Noveck Expi res June 7, 2015 [Page 247]

Internet-Draft NFSv4 Decenber 2014

15.22. (Operation 22: PUTFH - Set Current Filehandle
15.22.1. SYNOPSI S

filehandle -> (cfh)
15.22.2. ARGUMENT

struct PUTFH4args {
nfs fha obj ect;

15.22.3. RESULT
struct PUTFH4res {
/* CURRENT_FH. */
nf sst at 4 st at us;
H
15.22. 4. DESCRI PTI ON

Repl aces the current filehandle with the filehandl e provided as an
argunent .

If the security mechani smused by the requester does not neet the
requirenents of the filehandle provided to this operation, the server
MJST return NFS4ERR_WRONGSEC

See Section 15.2.4.1 for nore details on the current filehandle.

15.22.5. | MPLEMENTATI ON

Conmonly used as the first operator in an NFS request to set the
context for follow ng operations.

15.23. Operation 23: PUTPUBFH - Set Public Filehandl e
15.23.1. SYNOPSI S

- -> (cfh)
15.23.2. ARGUMENT

voi d;

Haynes & Noveck Expi res June 7, 2015 [Page 248]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

23.3. RESULT

struct PUTPUBFH4res {
/* CURRENT_FH public fh */
nf sst at 4 st at us;

H

23.4. DESCRI PTI ON

Repl aces the current filehandle with the filehandl e that represents
the public filehandl e of the server’s nane space. This filehandle
may be different fromthe "root" filehandl e which nmay be associ ated
with sonme other directory on the server.

The public filehandl e concept was introduced in [RFC2054], [RFC2055],
[RFC2224]. The intent for NFSv4 is that the public filehandle
(represented by the PUTPUBFH operation) be used as a nethod of
providing conmpatibility with the WebNFS server of NFSv2 and NFSv3.

The public filehandle and the root filehandl e (represented by the
PUTROOTFH operation) should be equivalent. |[If the public and root
filehandl es are not equivalent, then the public filehandl e MIJST be a
descendant of the root filehandle.

23.5. | MPLEMENTATI ON

Used as the first operator in an NFS request to set the context for
fol |l owi ng operations.

Wth the NFSv2 and 3 public filehandle, the client is able to specify
whet her the path nane provided in the LOOKUP shoul d be eval uated as
either an absolute path relative to the server’s root or relative to
the public filehandle. [RFC2224] contains further discussion of the
functionality. Wth NFSv4, that type of specification is not
directly available in the LOOKUP operation. The reason for this is
because the conmponent separators needed to specify absolute vs.
relative are not allowed in NFSv4. Therefore, the client is
responsi ble for constructing its request such that the use of either
PUTROOTFH or PUTPUBFH are used to signify absolute or relative

eval uation of an NFS URL respectively.

Note that there are warnings nentioned in [RFC2224] with respect to
the use of absolute evaluation and the restrictions the server may
pl ace on that evaluation with respect to how nmuch of its nanespace
has been made avail able. These sanme warnings apply to NFSv4. It is
likely, therefore that because of server inplenentation details, an

Haynes & Noveck Expi res June 7, 2015 [Page 249]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

15.

NFSv3 absolute public filehandl e | ookup may behave differently than
an NFSv4 absol ute resol ution.

There is a formof security negotiation as described in [RFC2755]
that uses the public filehandl e as a nethod of enploying Sinple and
Protected GSSAPI Negotiati on Mechani sm (SNEGO) [RFC4178]. This

met hod is not available with NFSv4 as fil ehandl es are not overl oaded
wi th special meaning and therefore do not provide the sane framework
as NFSv2 and NFSv3. dients should therefore use the security
negoti ati on nechani sns described in this RFC

24. Operation 24: PUTROOTFH - Set Root Fil ehandl e
24.1. SYNOPSI S
- -> (cfh)
24.2. ARGUVMENT
voi d;
24.3. RESULT
struct PUTROOTFH4res {

/* CURRENT_FH. root fh */
nf sstat 4 st at us;

b

24. 4. DESCRI PTI ON

Repl aces the current filehandle with the filehandl e that represents
the root of the server’s nane space. Fromthis filehandl e a LOOKUP
operation can |ocate any other filehandle on the server. This
filehandl e nay be different fromthe "public" filehandl e which may be
associ ated with sone other directory on the server.

See Section 15.2.4.1 for nore details on the current filehandl e.

24.5. | MPLEMENTATI ON

Conmonly used as the first operator in an NFS request to set the
context for foll owi ng operations.

Haynes & Noveck Expi res June 7, 2015 [Page 250]

Internet-Draft NFSv4 Decenber 2014

15.25. Operation 25: READ - Read fromFile
15.25.1. SYNOPSI S

(cfh), stateid, offset, count -> eof, data
15.25. 2. ARGUMENT

struct READargs {
/* CURRENT_FH: file */

st at ei d4 stateid;
of fset4 of f set;
count 4 count ;

15.25.3. RESULT

struct READ4resok {
bool eof ;
opaque dat a<>

b

uni on READ4res switch (nfsstat4 status) {
case NF4_X

READ4r esok resok4;
defaul t:

H

voi d;

15.25. 4. DESCRI PTI ON

The READ operation reads data fromthe regular file identified by the
current filehandle.

The client provides an offset of where the READ is to start and a
count of how many bytes are to be read. An offset of 0O (zero) means
to read data starting at the beginning of the file. |If offset is
greater than or equal to the size of the file, the status, NFS4 K,
is returned with a data length set to 0 (zero) and eof is set to
TRUE. The READ is subject to access pernissions checking.

If the client specifies a count value of 0 (zero), the READ succeeds
and returns O (zero) bytes of data again subject to access

per m ssions checking. The server may choose to return fewer bytes
than specified by the client. The client needs to check for this
condi tion and handle the condition appropriately.

Haynes & Noveck Expi res June 7, 2015 [Page 251]

Internet-Draft NFSv4 Decenber 2014

15.

The stateid value for a READ request represents a value returned from
a previous byte-range | ock or share reservation request or the
stateid associated with a delegation. The stateid is used by the
server to verify that the associ ated share reservation and any byte-
range locks are still valid and to update | ease tineouts for the
client.

If the read ended at the end-of-file (formally, in a correctly forned
READ request, if offset + count is equal to the size of the file), or
the read request extends beyond the size of the file (if offset +
count is greater than the size of the file), eof is returned as TRUE;
otherwise it is FALSE. A successful READ of an enpty file wll

al ways return eof as TRUE.

If the current filehandle is not a regular file, an error will be
returned to the client. |In the case the current filehandle
represents a directory, NFS4ERR | SDIR i s returned; otherwi se,
NFSAERR_I NVAL is returned.

For a READ using the special anonynous stateid, the server MAY all ow
the READ to be serviced subject to mandatory file | ocks or the
current share deny nodes for the file. For a READ using the specia
READ bypass stateid, the server MAY al |l ow READ operations to bypass

| ocki ng checks at the server

On success, the current filehandle retains its val ue.
25.5. | MPLEMENTATI ON

If the server returns a "short read" (i.e., fewer data than requested
and eof is set to FALSE), the client should send another READ to get
the remaining data. A server may return | ess data than requested
under several circunstances. The file may have been truncated by
anot her client or perhaps on the server itself, changing the file
size fromwhat the requesting client believes to be the case. This
woul d reduce the actual anount of data available to the client. It
is possible that the server reduces the transfer size and so returns
a short read result. Server resource exhaustion may also result in a
short read.

I f mandatory byte-range locking is in effect for the file, and if the
byt e-range corresponding to the data to be read fromthe file is

WRI TE_LT | ocked by an owner not associated with the stateid, the
server will return the NFS4ERR LOCKED error. The client should try
to get the appropriate READ LT via the LOCK operation before
reattenpting the READ. Wen the READ conpletes, the client should
rel ease the byte-range | ock via LOCKU.

Haynes & Noveck Expi res June 7, 2015 [Page 252]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

I f another client has an OPEN_DELEGATE WRI TE del egation for the file
bei ng read, the del egation nust be recalled, and the operation cannot
proceed until that delegation is returned or revoked. Except where
this happens very quickly, one or nore NFS4ERR DELAY errors will be
returned to requests nmade whil e the del egati on renai ns outstandi ng.
Normal |y, delegations will not be recalled as a result of a READ
operation since the recall will occur as a result of an earlier OPEN
However, since it is possible for a READ to be done with a specia
stateid, the server needs to check for this case even though the
client should have done an OPEN previ ously.

26. Operation 26: READDIR - Read Directory
26.1. SYNOPSIS

(cfh), cookie, cookieverf, dircount, nmaxcount, attr_request ->
cooki everf { cookie, name, attrs }

26.2. ARGUMENT

struct READDI Rdargs ({
/* CURRENT_FH directory */

nfs_cooki e4 cooki e;
verifier4d cooki everf;
count 4 di rcount;
count 4 maxcount ;

bi t map4 attr_request;

b

26.3. RESULT

Haynes & Noveck Expi res June 7, 2015 [Page 253]

Internet-Draft

15.

Haynes & Noveck

struct entry4 {

NFSv4

Decenber 2014

nfs_cooki e4 cooki e;
conponent 4 narme;
fattr4 attrs
entry4 *nextentry,

b

struct dirlist4 {
entry4 *entries;
bool eof ;

b

struct READDI R4resok {
verifierd cooki everf;
dirlist4 reply;

|

uni on READDI Rdres switch (nfsstat4 status) {
case NF4_ XX
READDI R4r esok resok4;
defaul t:
voi d;
b

26.4. DESCRI PTI ON

The READDI R operation retrieves a variable nunber of entries froma
file systemdirectory and returns client requested attributes for
each entry along with information to allow the client to request
additional directory entries in a subsequent READD R

The argunents contain a cookie value that represents where the
READDI R shoul d start within the directory. A value of 0 (zero) for
the cookie is used to start reading at the beginning of the
directory. For subsequent READDIR requests, the client specifies a
cookie value that is provided by the server on a previ ous READDI R
request.

The cooki everf val ue should be set to 0 (zero) when the cookie val ue
is O (zero) (first directory read). On subsequent requests, it
shoul d be a cookieverf as returned by the server. The cookieverf
must match that returned by the READDI R in which the cookie was
acquired. |If the server determ nes that the cookieverf is no |onger
valid for the directory, the error NFS4ERR NOT_SAME nust be returned.

Expi res June 7, 2015 [Page 254]

Internet-Draft NFSv4 Decenber 2014

The dircount portion of the argunent is a hint of the maxi num nunber
of bytes of directory information that should be returned. This

val ue represents the length of the nanes of the directory entries and
the cookie value for these entries. This length represents the XDR
encodi ng of the data (names and cookies) and not the length in the
native format of the server.

The maxcount val ue of the argunment is the maxi mum nunber of bytes for
the result. This maxi mum size represents all of the data being
returned within the READDI R4resok structure and includes the XDR
overhead. The server nmay return less data. |f the server is unable
to return a single directory entry within the maxcount limt, the
error NFS4ERR _TOOSMALL will be returned to the client.

Finally, attr_request represents the list of attributes to be
returned for each directory entry supplied by the server

On successful return, the server’s response will provide a |ist of
directory entries. Each of these entries contains the nane of the
directory entry, a cookie value for that entry, and the associ ated
attributes as requested. The "eof" flag has a value of TRUE if there
are no nore entries in the directory.

The cookie value is only neaningful to the server and is used as a
"bookmar k" for the directory entry. As nentioned, this cookie is
used by the client for subsequent READDI R operations so that it may
continue reading a directory. The cookie is simlar in concept to a
READ of f set but should not be interpreted as such by the client. The
server SHOULD try to accept cookie values issued with READDI R
responses even if the directory has been nodified between the READDI R
calls but MAY return NFS4ERR NOT_VALID if this is not possible as

m ght be the case if the server has rebooted in the interim

In sone cases, the server nmay encounter an error while obtaining the

attributes for a directory entry. |Instead of returning an error for
the entire READDIR operation, the server can instead return the
attribute "fattr4_rdattr_error’. Wth this, the server is able to

comruni cate the failure to the client and not fail the entire
operation in the instance of what mght be a transient failure.
Qobviously, the client nust request the fattr4 rdattr_error attribute
for this method to work properly. |If the client does not request the
attribute, the server has no choice but to return failure for the
entire READDI R operati on.

For some file systemenvironnments, the directory entries "." and ".."
have speci al meaning and in other environnents, they may not. [|f the
server supports these special entries within a directory, they should
not be returned to the client as part of the READDI R response. To

Haynes & Noveck Expi res June 7, 2015 [Page 255]

Internet-Draft NFSv4 Decenber 2014

15.

enabl e sone client environments, the cookie values of 0, 1, and 2 are
to be considered reserved. Note that the UNIX client will use these
val ues when conbi ning the server’s response and | ocal representations
to enable a fully fornmed UNI X directory presentation to the
appl i cation.

For READDI R argunents, cookie values of 1 and 2 SHOULD NOT be used

and for READDI R results cookie values of 0, 1, and 2 MJUST NOT be
r et ur ned.

On success, the current filehandl e retains its val ue.
26.5. | MPLEMENTATI ON
The server’s file systemdirectory representations can differ

greatly. Aclient’s programmng interfaces may al so be bound to the
| ocal operating environnent in a way that does not translate well

into the NFS protocol. Therefore the use of the dircount and
maxcount fields are provided to allow the client the ability to
provide guidelines to the server. |If the client is aggressive about

attribute collection during a READDIR, the server has an idea of how
tolimt the encoded response. The dircount field provides a hint on
the nunber of entries based solely on the nanes of the directory
entries. Since it is a hint, it nmay be possible that a dircount
value is zero. |In this case, the server is free to ignore the

di rcount value and return directory information based on the
speci fi ed maxcount val ue.

As there is no way for the client to indicate that a cookie val ue
once received, will not be subsequently used, server inplenentations
shoul d avoi d schenes that all ocate nenory corresponding to a returned
cookie. Such allocation can be avoided if the server bases cookie
val ues on a value such as the offset within the directory where the
scan is to be resuned.

Cooki es generated by such techni ques shoul d be designed to renain
valid despite nodification of the associated directory. |If a server
were to invalidate a cookie because of a directory nodification
READDI R s of large directories m ght never finish

If a directory is deleted after the client has carried out one or
nmore READDI R operations on the directory, the cookies returned wll
beconme invalid but the server does not need to be concerned as the
directory file handl e used previously wuld have becone stal e and
woul d be reported as such on subsequent READDI R operations. The
server would not need to check the cookie verifier in this case.

Haynes & Noveck Expi res June 7, 2015 [Page 256]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

However, certain re-organi zation operations on a directory (including
directory conpaction) nmay invalidate READDDI R cooki es previously
given out. Wen such a situation occurs, the server should nodify
the cookie verifier so as to disallow use of cookies which would
otherw se no | onger be valid.

The cooki everf may be used by the server to hel p manage cooki e val ues
that may becone stale. It should be a rare occurrence that a server
is unable to continue properly reading a directory with the provided
cooki e/ cooki everf pair. The server should nake every effort to avoid
this condition since the application at the client may not be able to
properly handle this type of failure.

The use of the cookieverf will also protect the client from using
READDI R cooki e values that may be stale. For exanple, if the file
system has been migrated, the server may or nmay not be able to use
the sane cookie values to service READDI R as the previous server

used. Wth the client providing the cookieverf, the server is able
to provide the appropriate response to the client. This prevents the
case where the server nmay accept a cookie value but the underlying
directory has changed and the response is invalid fromthe client’s
context of its previous READD R

Since sonme servers will not be returning "." and ".." entries as has
been done with previous versions of the NFS protocol, the client that
requires these entries be present in READD R responses mnust fabricate
t hem
27. Operation 27: READLINK - Read Synbolic Link
27.1. SYNOPSI S

(cfh) -> linktext
27.2. ARGUMENT

/* CURRENT_FH. synlink */
voi d;

27.3. RESULT

Haynes & Noveck Expi res June 7, 2015 [Page 257]

Internet-Draft NFSv4 Decenber 2014

struct READLI NK4resok {
i nkt ext 4 i nk;
H

uni on READLI NK4res switch (nfsstat4 status) {
case NFH4_X
READL| NK4r esok resok4;
defaul t:
voi d;
|

15.27. 4. DESCRI PTI ON

READLI NK reads the data associated with a synbolic link. The data is
a UTF-8 string that is opaque to the server. That is, whether
created by an NFS client or created locally on the server, the data
in a synbolic link is not interpreted when created, but is sinply
stored.

On success, the current filehandle retains its val ue.

15.27.5. | MPLEMENTATI ON
A synmbolic link is nomnally a pointer to another file. The data is
not necessarily interpreted by the server, just stored in the file.
It is possible for a client inplenentation to store a path name that
is not neaningful to the server operating systemin a synbolic link
A READLI NK operation returns the data to the client for
interpretation. |If different inplenentations want to share access to
synmbolic |links, then they nust agree on the interpretation of the
data in the synbolic link
The READLINK operation is only all owed on objects of type NF4LNK
The server should return the error, NFS4ERR INVAL, if the object is
not of type, NF4LNK

15.28. (Operation 28: REMOVE - Renove Fil esystem Obj ect

15.28.1. SYNOPSIS

(cfh), filename -> change_info

15.28.2. ARGUMENT

Haynes & Noveck Expi res June 7, 2015 [Page 258]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

struct REMOVE4dargs {
/* CURRENT_FH directory */
conponent 4 target;

b
28.3. RESULT
struct REMOVE4resok {

change_i nfo4 ci nfo;
b

uni on REMOVE4res switch (nfsstat4 status) {
case NF4_ K

REMOVE4r esok r esok4;
def aul t:

H

voi d;

28.4. DESCRI PTI ON

The REMOVE operation renoves (deletes) a directory entry naned by
filenane fromthe directory corresponding to the current fil ehandle.
If the entry in the directory was the last reference to the
corresponding file systemobject, the object may be destroyed.

For the directory where the filenane was renoved, the server returns
change_info4 information in cinfo. Wth the atomic field of the
change_i nfo4 struct, the server will indicate if the before and after
change attributes were obtained atonmically with respect to the
renoval .

If the target is of zero length, NFS4AERR INVAL will be returned. The
target is also subject to the normal UTF-8, character support, and
nane checks. See Section 12.7 for further discussion.

On success, the current filehandle retains its val ue.
28.5. | MPLEMENTATI ON

NFSv3 required a different operator RVDIR for directory renoval and
REMOVE for non-directory renmoval. This allowed clients to skip
checking the file type when being passed a non-directory delete
systemcall (e.g., unlink() [unlink] in PCSIX) to renove a directory,
as well as the converse (e.g., arndir() on a non-directory) because
they knew the server would check the file type. NFSv4 REMOVE can be
used to delete any directory entry independent of its file type. The

Haynes & Noveck Expi res June 7, 2015 [Page 259]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

i mpl ementer of an NFSv4 client’s entry points fromthe unlink() and
rodir() systemcalls should first check the file type against the
types the systemcall is allowed to renove before issuing a REMOVE
Al ternatively, the inplenenter can produce a COVMPOUND cal |l that

i ncludes a LOOKUP/ VERI FY sequence to verify the file type before a
REMOVE operation in the sane COVMPOUND cal | .

The concept of last reference is server specific. However, if the
num inks field in the previous attributes of the object had the val ue
1, the client should not rely on referring to the object via a
filehandle. Likew se, the client should not rely on the resources
(di sk space, directory entry, and so on) fornerly associated with the
obj ect becomi ng inmedi ately available. Thus, if a client needs to be
able to continue to access a file after using REMOVE to renove it,
the client should take steps to nake sure that the file will still be
accessi ble. The usual mechanismused is to RENAME the file fromits
old nane to a new hi dden nane.

If the server finds that the file is still open when the REMOVE
arrives:

0 The server SHOULD NOT delete the file's directory entry if the
file was opened wi th OPEN4_ SHARE DENY WRI TE or
OPEN4_SHARE DENY_BOTH.

o If the file was not opened with OPENA_SHARE DENY_ WRI TE or
OPENA_SHARE DENY_BOTH, the server SHOULD delete the file's
directory entry. However, until last CLOSE of the file, the
server MAY continue to allow access to the file via its
filehandl e.

29. Operation 29: RENAME - Renane Directory Entry

29.1. SYNOPSI S

(sfh), oldnane, (cfh), newnane -> source cinfo, target _cinfo

29.2. ARGUMENT

struct RENANME4args {
/* SAVED FH. source directory */

conponent 4 ol dnanre;
/* CURRENT_FH target directory */
conmponent 4 newnare;

Haynes & Noveck Expi res June 7, 2015 [Page 260]

Internet-Draft NFSv4 Decenber 2014

15.

15.

29.3. RESULT

struct RENAME4resok {
change_i nfo4 source_ci nfo;
change_i nfo4 target cinfo;

H

uni on RENAVE4res switch (nfsstat4 status) {
case NF4_ XX
RENAME4r esok r esok4;
def aul t:
voi d;
i

29.4. DESCRI PTI ON

The RENAME operation renanmes the object identified by oldname in the
source directory corresponding to the saved fil ehandl e, as set by the
SAVEFH operation, to newnane in the target directory corresponding to
the current filehandle. The operation is required to be atomc to
the client. Source and target directories nust reside on the sane
file systemon the server. On success, the current filehandle wll
continue to be the target directory.

If the target directory already contains an entry with the nane,
newnane, the source object nmust be conpatible with the target: either
both are non-directories or both are directories and the target nust

be enpty. |If conpatible, the existing target is renoved before the
renane occurs (See Section 15.28 for client and server actions
whenever a target is renoved). |If they are not conpatible or if the
target is a directory but not enpty, the server will return the

error, NFS4ERR _EXI ST.

I f ol dnane and newnane both refer to the sane file (they mi ght be
hard |inks of each other), then RENAME shoul d perform no action and
return success.

For both directories involved in the RENAME, the server returns
change info4 information. Wth the atonmic field of the change_info4
struct, the server will indicate if the before and after change
attributes were obtained atomcally with respect to the renane.

If the oldnanme refers to a naned attri bute and the saved and current
filehandles refer to the naned attribute directories of different
file systemobjects, the server will return NFS4ERR XDEV just as if
the saved and current filehandles represented directories on
different file systens.

Haynes & Noveck Expi res June 7, 2015 [Page 261]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

If the oldnane or newnanme is of zero length, NFS4AERR_INVAL will be
returned. The ol dnane and newnane are al so subject to the nornal
UTF-8, character support, and name checks. See Section 12.7 for
further discussion.

29.5. | MPLEMENTATI ON

The RENAME operation nust be atonmic to the client. The statenent
"source and target directories nust reside on the sane file system on
the server” neans that the fsid fields in the attributes for the
directories are the sane. |If they reside on different file systens,
the error, NFSAERR XDEV, is returned.

Based on the value of the fh_expire_type attribute for the object,
the filehandl e may or may not expire on a RENAME. However, server

i npl ementers are strongly encouraged to attenpt to keep fil ehandl es
fromexpiring in this fashion

On sone servers, the file nanes "." and ".." are illegal as either

ol dnanme or newnane, and will result in the error NFS4ERR BADNAMVE. In
addition, on many servers the case of ol dnane or newnane being an
alias for the source directory will be checked for. Such servers
will return the error NFS4ERR I NVAL in these cases.

If either of the source or target filehandles are not directories,
the server will return NFS4ERR NOTDI R

30. Operation 30: RENEW- Renew a Lease
30.1. SYNOPSIS

clientid -> ()
30. 2. ARGUMENT

struct RENEWlargs {
clientid4 clientid;
H

30.3. RESULT

struct RENEWires {
nf sstat 4 st at us;
H

Haynes & Noveck Expi res June 7, 2015 [Page 262]

Internet-Draft NFSv4 Decenber 2014

15.

15.

30.4. DESCRI PTI ON

The RENEW operation is used by the client to renew | eases which it
currently holds at a server. In processing the RENEWrequest, the
server renews all |eases associated with the client. The associated
| eases are deternined by the clientid provided via the SETCLI ENTI D
operati on.

30.5. | MPLEMENTATI ON

When the client holds del egations, it needs to use RENEWto detect
when the server has determ ned that the callback path is down. Wen
the server has made such a determination, only the RENEW operation
will renew the | ease on delegations. |If the server determ nes the
cal l back path is down, it returns NFS4ERR CB PATH DOMN. Even though
it returns NFS4ERR CB PATH DOW, the server MJST renew the | ease on
the byte-range | ocks and share reservations that the client has
established on the server. |If for sonme reason the |ock and share
reservation | ease cannot be renewed, then the server MJST return an
error other than NFSAERR CB_PATH DOAN, even if the callback path is
al so down. In the event that the server has conditions such that it
could return either NFS4ERR CB PATH DOWN or NFS4ERR LEASE MOVED,
NFSAERR LEASE MOVED MUST be handl ed first.

The client that issues RENEW MUST choose the principal, RPC security
flavor, and if applicable, GSS-API nechani smand service via one of
the follow ng al gorithns:

o0 The client uses the sane principal, RPC security flavor -- and if
the flavor was RPCSEC GSS -- the same mechani sm and service that
was used when the client ID was established via
SETCLI ENTI D_CONFI RM

o0 The client uses any principal, RPC security flavor nmechani sm and
service conbination that currently has an OPEN file on the server.
I.e., the sanme principal had a successful OPEN operation, the file
is still open by that principal, and the flavor, mechanism and
service of RENEW match that of the previ ous OPEN.

The server MJUST reject a RENEWthat does not use one the
af orenentioned al gorithnms, with the error NFS4ERR ACCESS.

15.31. (Operation 31: RESTOREFH - Restore Saved Fil ehandl e

Haynes & Noveck Expi res June 7, 2015 [Page 263]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

15.

15.

31.1. SYNOPSIS
(sfh) -> (cfh)
31.2. ARGUVENT

[* SAVED FH. */
voi d;

31.3. RESULT

struct RESTOREFH4res {
/* CURRENT_FH: val ue of saved fh */
nfsstat4 st at us;

H

31.4. DESCRI PTI ON

Set the current filehandle to the value in the saved filehandle. |If
there is no saved filehandl e then return the error NFS4ERR RESTOREFH

31.5. | MPLEMENTATI ON

OQperations |ike OPEN and LOOKUP use the current filehandle to
represent a directory and replace it with a new fil ehandle. Assuning
the previous filehandl e was saved with a SAVEFH operator, the
previous filehandl e can be restored as the current filehandle. This
is commonly used to obtain post-operation attributes for the
directory, e.g.,

PUTFH (directory fil ehandl e)

SAVEFH

GETATTR attrbits (pre-op dir attrs)
CREATE optbits "foo" attrs

GETATTR attrbits (file attributes)
RESTOREFH

GETATTR attrbits (post-op dir attrs)

32. (Operation 32: SAVEFH - Save Current Filehandl e
32.1. SYNOPSI S

(cfh) -> (sfh)

Haynes & Noveck Expi res June 7, 2015 [Page 264]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

15.

15.

15.

32.2. ARGUMENT

/* CURRENT _FH. */
voi d;

32.3. RESULT
struct SAVEFH4res {

/* SAVED FH. value of current fh */
nf sstat 4 st at us;

H
32.4. DESCRI PTI ON
Save the current filehandle. |[|f a previous filehandl e was saved then
it is no longer accessible. The saved fil ehandl e can be restored as
the current filehandle with the RESTOREFH operator.
On success, the current filehandl e retains its val ue.
32.5. | MPLEMENTATI ON
33. Operation 33: SECINFO - (btain Avail able Security
33. 1. SYNOPSI S
(cfh), name -> { secinfo }
33. 2. ARGUMENT
struct SECI NFO4args {

/* CURRENT_FH directory */
conponent 4 nane;

H

33.3. RESULT

Haynes & Noveck Expi res June 7, 2015 [Page 265]

Internet-Draft NFSv4 Decenber 2014

15.

/*

* From RFC 2203

*/

enum rpc_gss_svc_t {
RPC_GSS_SVC _NONE
RPC GSS SVC | NTEGRI TY
RPC_GSS_SVC PRI VACY

I
N

H

struct rpcsec_gss_info {
sec_oi d4 oi d;
qop4 qop;
rpc_gss_svc_t servi ce;

H

/* RPCSEC GSS has a value of '6° - See RFC 2203 */
union secinfo4 switch (uint32_t flavor) {
case RPCSEC _GSS:
rpcsec_gss_info flavor _info;
defaul t:

|
typedef secinfod4 SECI NFO4r esok<>

voi d;

uni on SECI NFO4res switch (nfsstat4 status) {
case NF4_ XK

SECI NFO4r esok resok4;
defaul t:

H

voi d;

33.4. DESCRI PTI ON

The SECI NFO operation is used by the client to obtain a list of valid
RPC aut hentication flavors for a specific directory filehandle, file
nane pair. SECI NFO should apply the same access nethodol ogy used for
LOOKUP when eval uating the nanme. Therefore, if the requester does
not have the appropriate access to LOOKUP the nanme then SECI NFO nust
behave the same way and return NFS4ERR_ACCESS

The result will contain an array which represents the security
mechani sms avail able, with an order corresponding to server’s
preferences, the nost preferred being first in the array. The client
is free to pick whatever security mechanismit both desires and
supports, or to pick in the server’'s preference order the first one
it supports. The array entries are represented by the secinfo4

Haynes & Noveck Expi res June 7, 2015 [Page 266]

Internet-Draft NFSv4 Decenber 2014

15.

structure. The field 'flavor’ will contain a value of AUTH NONE
AUTH_SYS (as defined in [RFC5531]), or RPCSEC GSS (as defined in
[RFC2203]) .

For the flavors AUTH NONE and AUTH_SYS, no additional security
information is returned. For a return value of RPCSEC GSS, a
security triple is returned that contains the nechani smobject id (as
defined in [RFC2743]), the quality of protection (as defined in

[RFC2743]) and the service type (as defined in [RFC2203]). It is
possible for SECCINFO to return nultiple entries with flavor equal to
RPCSEC GSS with different security triple val ues.

On success, the current filehandle retains its val ue.

If the name has a length of O (zero), or if nanme does not obey the
UTF-8 definition, the error NFS4ERR INVAL wi |l be returned

33.5. | MPLEMENTATI ON

The SECI NFO operation is expected to be used by the NFS client when
the error value of NFSAERR WRONGSEC i s returned from anot her NFS
operation. This signifies to the client that the server’'s security
policy is different fromwhat the client is currently using. At this
point, the client is expected to obtain a list of possible security
flavors and choose what best suits its policies.

As nentioned, the server’s security policies will determ ne when a
client request receives NFSAERR WRONGSEC. The operati ons whi ch may
receive this error are: LINK LOOKUP, LOOKUPP, OPEN, PUTFH, PUTPUBFH
PUTROOTFH, RENAME, RESTOREFH, and indirectly READDIR. LINK and
RENAME wi Il only receive this error if the security used for the
operation is inappropriate for saved filehandle. Wth the exception
of READDI R, these operations represent the point at which the client
can instantiate a filehandle into the "current filehandle" at the
server. The filehandle is either provided by the client (PUTFH
PUTPUBFH, PUTROOTFH) or generated as a result of a name to fil ehandle
translation (LOOKUP and OPEN). RESTOREFH is different because the
filehandle is a result of a previous SAVEFH. Even though the
filehandl e, for RESTOREFH, mi ght have previously passed the server’s
i nspection for a security match, the server will check it again on
RESTOREFH to ensure that the security policy has not changed.

If the client wants to resolve an error return of NFSAERR WRONGSEC
the following will occur:

0 For LOOKUP and OPEN, the client will use SECINFO with the same
current filehandl e and nane as provided in the original LOOKUP or
OPEN to enunerate the available security triples.

Haynes & Noveck Expi res June 7, 2015 [Page 267]

Internet-Draft NFSv4 Decenber 2014

o For LINK, PUTFH, RENAME, and RESTOREFH, the client will use
SECI NFO and provide the parent directory filehandl e and obj ect
nane which corresponds to the filehandl e originally provided by
the PUTFH RESTOREFH, or for LINK and RENAME, the SAVEFH

o For LOCKUPP, PUTROOTFH and PUTPUBFH, the client will be unable to
use the SECI NFO operation since SECINFO requires a current
filehandl e and none exist for these two operations. Therefore,
the client nust iterate through the security triples available at
the client and reattenpt the PUTROOTFH or PUTPUBFH operation. In
the unfortunate event none of the MANDATORY security triples are
supported by the client and server, the client SHOULD try using
others that support integrity. Failing that, the client can try
usi ng AUTH_NONE, but because such forms lack integrity checks,
this puts the client at risk. Nonetheless, the server SHOULD
allow the client to use whatever security formthe client requests
and the server supports, since the risks of doing so are on the
client.

The READDI R operation will not directly return the NFS4ERR VWRONGSEC
error. However, if the READDI R request included a request for
attributes, it is possible that the READDI R request’s security triple
does not nmatch that of a directory entry. |If this is the case and
the client has requested the rdattr_error attribute, the server wll
return the NFS4ERR_WRONGSEC error in rdattr_error for the entry.

Note that a server MAY use the AUTH NONE flavor to signify that the
client is allowed to attenpt to use authentication flavors that are
not explicitly listed in the SECINFO results. Instead of using a
listed flavor, the client nmight then, for instance opt to use an
otherw se unlisted RPCSEC GSS nechani sminstead of AUTH NONE. |t may
wish to do so in order to nmeet an application requirenent for data

integrity or privacy. In choosing to use an unlisted flavor, the
client SHOULD al ways be prepared to handle a failure by falling back
to using AUTH NONE or another listed flavor. It cannot assune that

identity mapping is supported, and should be prepared for the fact
that its identity is squashed.

See Section 17 for a discussion on the recomendations for security
flavor used by SECI NFO

15.34. (Operation 34: SETATTR - Set Attributes
15.34.1. SYNOPSI S

(cfh), stateid, attrnask, attr_vals -> attrsset

Haynes & Noveck Expi res June 7, 2015 [Page 268]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

34.2. ARGUMENT

struct SETATTR4args ({
/* CURRENT_FH target object */
st at ei d4 st at ei d;
fattr4 obj attributes;

34.3. RESULT

struct SETATTR4res {
nf sstat 4 st at us;
bi t map4 attrsset;

H

34.4. DESCRI PTI ON

The SETATTR operation changes one or nore of the attributes of a file
system object. The new attributes are specified with a bitmp and
the attributes that followthe bitmap in bit order

The stateid argument for SETATTR is used to provi de byte-range

| ocking context that is necessary for SETATTR requests that set the
size attribute. Since setting the size attribute nodifies the file's
data, it has the sane | ocking requirenents as a correspondi ng WRI TE.
Any SETATTR that sets the size attribute is inconpatible with a share
reservation that specifies OPENA_SHARE DENY WRI TE. The area between
the old end-of-file and the new end-of-file is considered to be

nodi fied just as woul d have been the case had the area in question
been specified as the target of WRITE, for the purpose of checking
conflicts with byte-range | ocks, for those cases in which a server is
i mpl enmenti ng mandat ory byte-range | ocking behavior. A valid stateid
SHOULD al ways be specified. Wen the file size attribute is not set,
t he special anonynous stateid MAY be passed.

On either success or failure of the operation, the server will return
the attrsset bitmask to represent what (if any) attributes were
successfully set. The attrsset in the response is a subset of the
bitmap4 that is part of the obj _attributes in the argunent.

On success, the current filehandle retains its val ue.

Haynes & Noveck Expi res June 7, 2015 [Page 269]

Internet-Draft NFSv4 Decenber 2014

15.34.5. | MPLEMENTATI ON

If the request specifies the owner attribute to be set, the server
SHOULD al |l ow the operation to succeed if the current owner of the

obj ect matches the value specified in the request. Sonme servers nay
be inplemented in a way as to prohibit the setting of the owner
attribute unless the requester has privilege to do so. |If the server
is lenient in this one case of matching owner val ues, the client

i npl ementation may be sinplified in cases of creation of an object
(e.g., an exclusive create via OPEN) followed by a SETATTR

The file size attribute is used to request changes to the size of a
file. A value of zero causes the file to be truncated, a val ue | ess
than the current size of the file causes data fromnew size to the
end of the file to be discarded, and a size greater than the current
size of the file causes logically zeroed data bytes to be added to
the end of the file. Servers are free to inplenent this using holes
or actual zero data bytes. dients should not nmake any assunptions
regarding a server’s inplenmentation of this feature, beyond that the
bytes returned will be zeroed. Servers MJST support extending the
file size via SETATTR

SETATTR i s not guaranteed atomc. A failed SETATTR nay partially
change a file's attributes, hence the reason why the reply al ways
i ncludes the status and the list of attributes that were set.

If the object whose attributes are being changed has a file

del egation that is held by a client other than the one doing the
SETATTR, the del egation(s) nust be recalled, and the operation cannot
proceed to actually change an attribute until each such delegation is
returned or revoked. |In all cases in which del egations are recall ed,
the server is likely to return one or nmore NFS4ERR DELAY errors while
t he del egation(s) renai ns outstanding, although it m ght not do that
if the delegations are returned quickly.

Changing the size of a file with SETATTR indirectly changes the
time_nodify and change attributes. A client nust account for this as
si ze changes can result in data deletion

The attributes time_access_set and tine _nodify set are wite-only
attributes constructed as a switched union so the client can direct

the server in setting the time values. |[|f the switched union
specifies SET_TO CLI ENT_TI ME4, the client has provided an nfstined4 to
be used for the operation. |If the switch union does not specify

SET_TO CLIENT_TIME4, the server is to use its current tinme for the
SETATTR oper ati on.

Haynes & Noveck Expi res June 7, 2015 [Page 270]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

If server and client tines differ, progranms that conpare client tinme
to file times can break. A tinme maintenance protocol should be used
tolimt client/server time skew.

Use of a COVMPOUND containing a VER FY operation specifying only the
change attribute, immediately followed by a SETATTR, provi des a neans
whereby a client may specify a request that enul ates the
functionality of the SETATTR guard mechani sm of NFSv3. Since the
function of the guard nmechanismis to avoid changes to the file
attributes based on stale infornmation, del ays between checking of the
guard condition and the setting of the attributes have the potentia
to conpronmise this function, as would the corresponding delay in the
NFSv4 emul ation. Therefore, NFSv4 servers should take care to avoid
such del ays, to the degree possible, when executing such a request.

If the server does not support an attribute as requested by the
client, the server should return NFS4ERR ATTRNOTSUPP.

A mask of the attributes actually set is returned by SETATTR in all
cases. That mask MJST NOT include attribute bits not requested to be
set by the client. |If the attribute masks in the request and reply
are equal, the status field in the reply MIST be NFS4 OK.
35. Operation 35: SETCLIENTID - Negotiate Client ID
35.1. SYNOPSI S

client, callback, callback ident -> clientid, setclientid confirm
35.2. ARGUMENT
struct SETCLI ENTI D4args {

nfs client_id4 client;

cb client4 cal | back;
uint32_t cal | back_ident;

H

35.3. RESULT

Haynes & Noveck Expi res June 7, 2015 [Page 271]

Internet-Draft NFSv4 Decenber 2014

15.

15.

struct SETCLI ENTI D4r esok {
clientid4 clientid;
verifier4d setclientid _confirm

b

uni on SETCLI ENTI D4res switch (nfsstat4 status) {
case NF4_XK

SETCLI ENTI D4r esok r esok4;
case NFS4ERR CLI D | NUSE:

clientaddr4 client _using;
def aul t:

voi d;

H

35.4. DESCRI PTI ON

The client uses the SETCLIENTID operation to notify the server of its
intention to use a particular client identifier, callback, and

cal | back_ident for subsequent requests that entail creating |ock
share reservation, and del egation state on the server. Upon
successful conpletion the server will return a shorthand client ID
which, if confirned via a separate step, will be used in subsequent
file locking and file open requests. Confirmation of the client ID
nmust be done via the SETCLI ENTI D_CONFI RM operation to return the
client ID and setclientid confirmvalues, as verifiers, to the
server. The reason why two verifiers are necessary is that it is
possi ble to use SETCLI ENTI D and SETCLI ENTID CONFIRM to nodify the
cal | back and cal | back_ident information but not the shorthand client
ID. In that event, the setclientid confirmvalue is effectively the
only verifier.

The cal | back information provided in this operation will be used if
the client is provided an open del egation at a future point.
Therefore, the client nust correctly reflect the program and port
nunbers for the callback programat the time SETCLIENTID is used.

The cal | back_ident value is used by the server on the callback. The
client can | everage the callback_ident to elimnate the need for nore
than one cal | back RPC program nunber, while still being able to
determi ne which server is initiating the callback

35.5. | MPLEMENTATI ON

To understand how to inplenent SETCLI ENTID, make the foll ow ng
notations. Let:

Haynes & Noveck Expi res June 7, 2015 [Page 272]

Internet-Draft NFSv4 Decenber 2014

x be the value of the client.id subfield of the SETCLI ENTI D4ar gs
structure.

v be the value of the client.verifier subfield of the
SETCLI ENTI D4ar gs structure.

¢ be the value of the client IDfield returned in the
SETCLI ENTI D4r esok structure.

k represent the value conbination of the fields callback and
cal | back_ident fields of the SETCLI ENTI D4args structure.

s be the setclientid_confirmvalue returned in the SETCLI ENTI D4r esok
structure.

{ v, x, ¢, k, s} be aquintuple for a client record. A client
record is confirnmed if there has been a SETCLI ENTI D_CONFI RM
operation to confirmit. Oherwise it is unconfirmed. An
unconfirmed record is established by a SETCLI ENTID cal |

Since SETCLIENTID is a non-idenpotent operation, |et us assume that
the server is inplenenting the duplicate request cache (DRC).

When the server gets a SETCLIENTID { v, x, k } request, it processes
it in the follow ng manner.

o It first looks up the request in the DRC. If there is a hit, it
returns the result cached in the DRC. The server does NOT renove
client state (locks, shares, del egations) nor does it nodify any
recorded cal |l back and cal | back_ident information for client { x }.

For any DRC miss, the server takes the client ID string x, and
searches for client records for x that the server may have
recorded from previous SETCLIENTID calls. For any confirmed
record with the same id string x, if the recorded principal does
not match that of SETCLIENTID call, then the server returns a
NFS4ERR_CLI D_| NUSE error

For brevity of discussion, the remaining description of the
processi ng assunes that there was a DRC miss, and that where the
server has previously recorded a confirned record for client x,

t he af orenentioned principal check has successfully passed.

o The server checks if it has recorded a confirned record for { v,
X, ¢, I, s}, where | may or may not equal k. If so, and since the
idverifier v of the request matches that which is confirned and
recorded, the server treats this as a probable callback
i nformati on update and records an unconfirnmed { v, x, ¢, k, t }

Haynes & Noveck Expi res June 7, 2015 [Page 273]

Internet-Draft NFSv4 Decenber 2014

and | eaves the confirmed { v, x, ¢, I, s} in place, such that t
!=s. It does not matter if k equals | or not. Any pre-existing
unconfirmed { v, x, ¢, *, * } is renoved.

The server returns { ¢, t }. It is indeed returning the old
clientid4 value ¢, because the client apparently only wants to
update cal Il back value k to value |. It’'s possible this request is
one fromthe Byzantine router that has stale call back information
but this is not a problem The callback information update is
only confirmed if followed up by a SETCLIENTID CONFIRM{ c, t }.

The server awaits confirmation of k via SETCLIENTID CONFIRM{ c, t

}.
The server does NOT renove client (lock/share/delegation) state
for x.

0 The server has previously recorded a confirnmed { u, x, ¢, |, s}
record such that v !'=u, | may or may not equal k, and has not
recorded any unconfirmed { *, x, *, *, * } record for x. The
server records an unconfirmed { v, x, d, k, t } (d!=¢, t I=298).

The server returns { d, t }.

The server awaits confirmation of { d, k } via SETCLI ENTI D_CONFI RM

{ d, t}.
The server does NOT renove client (lock/share/delegation) state
for x.

0 The server has previously recorded a confirnmed { u, x, ¢, |, s}
record such that v !'=u, | may or may not equal k, and recorded an
unconfirmed { w, x, d, m t } record such that ¢ !=d, t I=s, m
may or may not equal k, mmay or may not equal |, and k may or nmay
not equal |I. Whether w==v or w!= v nakes no difference. The

server sinply renoves the unconfirnmed { w, x, d, m t } record and
replaces it with an unconfirned { v, x, e, k, r } record, such
that e!=4d, el!=¢, r !I=1t, r I=s.

The server returns { e, r }.

The server awaits confirmation of { e, k } via SETCLI ENTI D_CONFI RM
{ e r}.

The server does NOT renove client (lock/share/delegation) state
for x.

Haynes & Noveck Expi res June 7, 2015 [Page 274]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

o The server has no confirned { *, x, *, *, * } for x. It may or may

not have recorded an unconfirmed { u, x, ¢, I, s}, where | may or
may not equal k, and u may or may not equal v. Any unconfirmed
record { u, x, ¢, I, *}, regardless whether u ==v or | ==k, is
replaced with an unconfirned record { v, x, d, k, t } where d !=
c, t !I=s.

The server returns { d, t }.

The server awaits confirmation of { d, k } via SETCLI ENTI D_CONFI RM
{ d, t }. The server does NOT renove client (Iock/share/
del egation) state for x.

The server generates the clientid and setclientid_confirmval ues and
must take care to ensure that these values are extremely unlikely to
ever be regenerated.
36. Operation 36: SETCLIENTID CONFIRM - Confirmddient ID
36.1. SYNOPSI S
clientid, setclientid confirm-> -
36.2. ARGUMENT
struct SETCLI ENTI D_CONFI RMdar gs {
clientid4 clientid;
verifier4d setclientid confirm
b
36.3. RESULT

struct SETCLI ENTI D_CONFI RM4res {
nf sst at 4 st at us;
H

36.4. DESCRI PTI ON

This operation is used by the client to confirmthe results froma
previous call to SETCLIENTID. The client provides the server
supplied (froma SETCLI ENTI D response) client ID. The server
responds with a sinple status of success or failure.

Haynes & Noveck Expi res June 7, 2015 [Page 275]

Internet-Draft NFSv4 Decenber 2014

15.36.5. | MPLEMENTATI ON

The client nust use the SETCLI ENTI D_CONFI RM operation to confirmthe
followi ng two distinct cases:

o0 The client’s use of a new shorthand client identifier (as returned
fromthe server in the response to SETCLIENTID), a new call back
val ue (as specified in the arguments to SETCLI ENTI D) and a new
cal | back_ident (as specified in the argunents to SETCLI ENTI D)
value. The client’s use of SETCLIENTID CONFIRMin this case al so
confirns the renoval of any of the client’s previous rel evant
| eased state. Relevant |eased client state includes byte-range
| ocks, share reservations, and where the server does not support
the CLAI M DELEGATE PREV cl ai mtype, delegations. |If the server
supports CLAI M DELEGATE_PREV, then SETCLI ENTI D_CONFI RM MJUST NOT
renove del egations for this client; relevant |leased client state
woul d then just include byte-range | ocks and share reservations.

0 The client’s re-use of an old, previously confirned, shorthand
client identifier, a new callback value, and a new cal | back_i dent
value. The client’s use of SETCLIENTID CONFIRMin this case MJST
NOT result in the renoval of any previous | eased state (I ocks,
share reservations, and del egati ons)

We use the sane notation and definitions for v, x, ¢, k, s, and
unconfirmed and confirned client records as introduced in the
description of the SETCLI ENTID operation. The argunents to
SETCLI ENTI D_CONFI RM are indicated by the notation { ¢, s }, where ¢
is a value of type clientid4, and s is a value of type verifier4d
corresponding to the setclientid confirmfield.

As with SETCLI ENTI D, SETCLIENTID CONFIRMis a non-idenpotent
operation, and we assune that the server is inplenmenting the
duplicate request cache (DRC).

When the server gets a SETCLIENTID CONFIRM{ c, s } request, it
processes it in the foll ow ng manner.

o It first looks up the request in the DRC. If thereis a hit, it
returns the result cached in the DRC. The server does not renove
any relevant |leased client state nor does it nodify any recorded
cal | back and cal | back_ident information for client { x } as
represented by the shorthand val ue c.

For a DRC miss, the server checks for client records that match the
short hand value c¢c. The processing cases are as foll ows:

Haynes & Noveck Expi res June 7, 2015 [Page 276]

Internet-Draft NFSv4 Decenber 2014

0 The server has recorded an unconfirned { v, x, ¢, k, s } record
and a confirmed { v, x, ¢, |, t } record, such that s !'=1t. |If
the principals of the records do not match that of the
SETCLI ENTI D_CONFI RM the server returns NFS4ERR CLI D | NUSE, and no
rel evant |eased client state is removed and no recorded cal |l back
and cal | back_ident information for client { x } is changed.

O herwi se, the confirmed { v, x, ¢, |, t } record is renmoved and
the unconfirmed { v, x, ¢, k, s} is marked as confirned, thereby
nmodi fyi ng recorded and confirmed cal | back and cal | back_i dent
information for client { x }.

The server does not renpbve any rel evant |eased client state.
The server returns NFS4 K

o The server has not recorded an unconfirnmed { v, x, ¢, *, * } and
has recorded a confirmed { v, x, ¢, *, s }. If the principals of
the record and of SETCLI ENTI D CONFI RM do not natch, the server
returns NFS4ERR _CLI D | NUSE wi t hout renoving any rel evant |eased
client state and without changing recorded call back and
cal | back_ident values for client { x }.

If the principals match, then what has |ikely happened is that the
client never got the response fromthe SETCLI ENTI D_CONFI RM and
the DRC entry has been purged. Whatever the scenario, since the
principals match, as well as { ¢, s } matching a confirmed record
the server leaves client x’s relevant | eased client state intact,

| eaves its call back and cal | back_ident val ues unnodified, and
returns NFS4_OK

o The server has not recorded a confirnmed { *, *, ¢, *, * }, and has
recorded an unconfirned { *, x, ¢, k, s}. Evenif thisis a
retry fromclient, nonetheless the client’s first
SETCLI ENTI D_CONFI RM attenpt was not received by the server. Retry
or not, the server doesn’t know, but it processes it as if were a
first try. |If the principal of the unconfirmed { *, x, ¢, k, s}
record m smatches that of the SETCLI ENTI D_CONFI RM request the
server returns NFS4ERR CLI D I NUSE wi t hout removing any rel evant
| eased client state.

O herwi se, the server records a confirned { *, x, ¢, k, s }. If
there is also a confirmed { *, x, d, *, t }, the server MJST
renove the client x's relevant leased client state, and overwite
the call back state with k. The confirned record { *, x, d, *, t }
is renoved.

Server returns NFS4_OK.

Haynes & Noveck Expi res June 7, 2015 [Page 277]

Internet-Draft NFSv4 Decenber 2014

0 The server has no record of a confirmed or unconfirmed { *, *, c,
* s }. The server returns NFS4ERR STALE CLIENTID. The server
does not renove any relevant |eased client state, nor does it
nodi fy any recorded cal l back and cal | back_ident information for
any client.

The server needs to cache unconfirmed { v, x, ¢, k, s } client
records and await for sonme time their confirmation. As should be
clear fromthe record processing discussions for SETCLIENTID and
SETCLI ENTI D_CONFI RM there are cases where the server does not
determnistically renove unconfirmed client records. To avoid
runni ng out of resources, the server is not required to hold
unconfirmed records indefinitely. One strategy the server m ght use
istoset alimt on how nmany unconfirned client records it wll

mai ntain, and then when the limt would be exceeded, renpve the

ol dest record. Another strategy nmight be to renove an unconfirned
record when sonme anount of tinme has elapsed. The choice of the
amount of time is fairly arbitrary but it is surely no higher than
the server’s lease tine period. Consider that |eases need to be
renewed before the lease time expires via an operation fromthe
client. If the client cannot issue a SETCLIENTID CONFIRM after a
SETCLI ENTI D before a period of tine equal to that of a | ease expires,
then the client is unlikely to be able maintain state on the server
during steady state operation.

If the client does send a SETCLIENTI D CONFI RM for an unconfirned
record that the server has already deleted, the client will get
NFSAERR _STALE CLIENTID back. |f so, the client should then start
over, and send SETCLIENTID to reestablish an unconfirmed client
record and get back an unconfirned client ID and setclientid_confirm
verifier. The client should then send the SETCLI ENTI D_CONFI RM t o
confirmthe client ID

SETCLI ENTI D_CONFI RM does not establish or renew a | ease. However, if
SETCLI ENTI D_CONFI RM renoves rel evant |eased client state, and that
state does not include existing delegations, the server MIUST al | ow
the client a period of tine no |less than the value of |ease_tine
attribute, to reclaim (via the CLAIM DELEGATE PREV cl ai mtype of the
OPEN operation) its del egati ons before renoving unrecl ai ned

del egati ons.

15.37. Qperation 37: VERIFY - Verify Sane Attributes
15.37.1. SYNOPSI S

(cfh), fattr -> -

Haynes & Noveck Expi res June 7, 2015 [Page 278]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

37.2. ARGUMENT

struct VERI FY4args {
/* CURRENT_FH: object */
fattr4 obj attributes;
b

37.3. RESULT

struct VERI FY4dres {
nf sst at 4 st at us;
H

37.4. DESCRI PTI ON

The VERI FY operation is used to verify that attributes have a val ue
assunmed by the client before proceeding with follow ng operations in
the conpound request. |If any of the attributes do not match then the
error NFS4ERR NOT_SAME nust be returned. The current fil ehandl e
retains its value after successful conpletion of the operation

37.5. | MPLEMENTATI ON

One possible use of the VERIFY operation is the foll owi ng conmpound
sequence. Wth this the client is attenpting to verify that the file
being renoved will match what the client expects to be renobved. This
sequence can hel p prevent the unintended deletion of a file.

PUTFH (directory fil ehandl e)
LOOKUP (fil e nane)

VERI FY (filehandl e == fh)
PUTFH (directory fil ehandl e)
REMOVE (fil e nane)

Thi s sequence does not prevent a second client fromrenoving and
creating a new file in the mddle of this sequence but it does help
avoi d the unintended result.

In the case that a RECOVMMENDED attribute is specified in the VERI FY
operation and the server does not support that attribute for the file
system obj ect, the error NFSAERR ATTRNOTSUPP is returned to the
client.

When the attribute rdattr_error or any wite-only attribute (e.qg.
time_nodify set) is specified, the error NFS4ERR I NVAL is returned to
the client.

Haynes & Noveck Expi res June 7, 2015 [Page 279]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

38. (Operation 38: WRITE - Wite to File
38.1. SYNOPSI S
(cfh), stateid, offset, stable, data -> count, conmitted, witeverf
38. 2. ARGUMENT
enum st abl e_how4 {
UNSTABLE4

DATA_SYNCA
FI LE_SYNC4

o n
NP O

H

struct WRI TE4args {
/* CURRENT_FH: file */

st at ei d4 st at ei d;
of fset4 of fset;
st abl e_how4 st abl e;
opaque dat a<>

H

38.3. RESULT

struct WRI TE4resok {

count4 count ;
st abl e_how4 conmmi tted;
verifier4d writeverf;

H

uni on WRI TE4res switch (nfsstat4 status) {
case NF4_ XX

WRI TE4r esok resok4;
defaul t:

H

voi d;

38.4. DESCRI PTI ON

The WRI TE operation is used to wite data to a regular file. The
target file is specified by the current filehandle. The offset
specifies the offset where the data should be witten. An offset of
O (zero) specifies that the wite should start at the begi nning of
the file. The count, as encoded as part of the opaque data
paraneter, represents the nunber of bytes of data that are to be
witten. |If the count is O (zero), the WRITE will succeed and return

Haynes & Noveck Expi res June 7, 2015 [Page 280]

Internet-Draft NFSv4 Decenber 2014

a count of O (zero) subject to perm ssions checking. The server may
choose to wite fewer bytes than requested by the client.

Part of the wite request is a specification of howthe wite is to
be perfornmed. The client specifies with the stable paraneter the
met hod of how the data is to be processed by the server. |f stable
is FILE_SYNC4, the server nust commit the data witten plus all file
system netadata to stable storage before returning results. This
corresponds to the NFS version 2 protocol semantics. Any other
behavi or constitutes a protocol violation. |If stable is DATA SYNZ4,
then the server nust commit all of the data to stable storage and
enough of the netadata to retrieve the data before returning. The
server inplenenter is free to inplenent DATA SYNC4 in the sane
fashi on as FILE SYNC4, but with a possible performance drop. |If
stable is UNSTABLE4, the server is free to commt any part of the
data and the netadata to stable storage, including all or none,
before returning a reply to the client. There is no guarantee

whet her or when any unconmitted data will subsequently be comitted
to stable storage. The only guarantees nade by the server are that
it will not destroy any data w thout changing the value of verf and
that it will not conmt the data and netadata at a | evel |ess than
that requested by the client.

The stateid value for a WRI TE request represents a val ue returned
froma previous byte-range | ock or share reservation request or the
stateid associated with a delegation. The stateid is used by the
server to verify that the associated share reservati on and any byte-
range locks are still valid and to update | ease tineouts for the
client.

Upon successful conpletion, the following results are returned. The
count result is the nunber of bytes of data witten to the file. The
server may wite fewer bytes than requested. If so, the actua

nunber of bytes witten starting at location, offset, is returned.

The server also returns an indication of the | evel of conmtnent of

the data and netadata via commtted. |If the server committed al
data and netadata to stable storage, commtted should be set to
FILE SYNC4. |If the level of conmtnment was at |east as strong as

DATA SYNC4, then conmmitted should be set to DATA SYNC4. O herwi se,
committed nust be returned as UNSTABLE4. |f stable was FILE4 SYNC
then comm tted nust al so be FILE SYNC4: anything else constitutes a
protocol violation. |If stable was DATA SYNC4, then conmitted may be
FI LE_SYNC4 or DATA SYNCA: anything el se constitutes a protoco
violation. |f stable was UNSTABLE4, then committed may be either

FI LE_SYNC4, DATA SYNC4, or UNSTABLEA.

Haynes & Noveck Expi res June 7, 2015 [Page 281]

Internet-Draft NFSv4 Decenber 2014

15.

The final portion of the result is the wite verifier. The wite
verifier is a cookie that the client can use to determ ne whether the
server has changed instance (boot) state between a call to WRI TE and
a subsequent call to either WRITE or COWM T. This cooki e nust be
consistent during a single instance of the NFSv4 protocol service and
must be uni que between instances of the NFSv4 protocol server, where
unconmmi tted data may be | ost.

If aclient wites data to the server with the stable argunment set to
UNSTABLE4 and the reply yields a conmm tted response of DATA SYNC4 or
UNSTABLE4, the client will follow up sone tine in the future with a
COW T operation to synchroni ze outstandi ng asynchronous data and
metadata with the server’s stable storage, barring client error. It
is possible that due to client crash or other error that a subsequent
COWMT will not be received by the server.

For a WRI TE usi ng the special anonynous stateid, the server MAY all ow
the WRITE to be serviced subject to mandatory file | ocks or the
current share deny nodes for the file. For a WRITE using the special
READ bypass stateid, the server MJUST NOT allow the WRI TE operation to
bypass | ocking checks at the server and is treated exactly the same
as if the anonynous stateid were used.

On success, the current filehandle retains its val ue.
38.5. | MPLEMENTATI ON

It is possible for the server to wite fewer bytes of data than
requested by the client. 1In this case, the server should not return
an error unless no data was witten at all. |If the server wites

| ess than the nunmber of bytes specified, the client should issue
another WRITE to wite the remaining data.

It is assuned that the act of witing data to a file will cause the
time_nodified of the file to be updated. However, the tinme_nodified
of the file should not be changed unless the contents of the file are
changed. Thus, a WRITE request with count set to O should not cause
the tinme_nodified of the file to be updated.

The definition of stable storage has been historically a point of
contention. The follow ng expected properties of stable storage may
help in resolving design issues in the inplenentation. Stable
storage is persistent storage that survives:

1. Repeated power failures.

2. Hardware failures (of any board, power supply, etc.).

Haynes & Noveck Expi res June 7, 2015 [Page 282]

Internet-Draft NFSv4 Decenber 2014

3. Repeated software crashes, including reboot cycle.

This definition does not address failure of the stable storage nodul e
itself.

The verifier is defined to allow a client to detect different

i nstances of an NFSv4 protocol server over which cached, uncommitted
data may be lost. In the nost likely case, the verifier allows the
client to detect server reboots. This information is required so
that the client can safely deternine whether the server could have

| ost cached data. |f the server fails unexpectedly and the client
has unconmitted data from previous WRI TE requests (done with the
stabl e argunment set to UNSTABLE4 and in which the result conmitted
was returned as UNSTABLE4 as well) it may not have flushed cached
data to stable storage. The burden of recovery is on the client and
the client will need to retransnit the data to the server

A suggested verifier would be to use the tinme that the server was
booted or the tinme the server was last started (if restarting the
server without a reboot results in lost buffers).

The committed field in the results allows the client to do nore
effective caching. |If the server is commtting all WRI TE requests to
stable storage, then it should return with committed set to

FI LE_SYNC4, regardless of the value of the stable field in the
argunents. A server that uses an NVRAM accel erator may choose to

i mpl ement this policy. The client can use this to increase the

ef fecti veness of the cache by discardi ng cached data that has al ready
been conmmitted on the server

Sone i npl enentati ons may return NFS4ERR _NOSPC i nstead of

NFSAERR DQUOT when a user’s quota is exceeded. |In the case that the
current filehandle is a directory, the server will return
NFSAERR I SDIR. If the current filehandle is not a regular file or a
directory, the server will return NFS4ERR | NVAL.

If mandatory file locking is on for the file, and correspondi ng
record of the data to be witten file is read or wite |ocked by an
owner that is not associated with the stateid, the server will return
NFS4AERR LOCKED. If so, the client nust check if the owner
corresponding to the stateid used with the WRI TE operation has a
conflicting read | ock that overlaps with the region that was to be
witten. |f the stateid s owner has no conflicting read |ock, then
the client should try to get the appropriate wite byte-range | ock
via the LOCK operation before re-attenpting the WRITE. Wen the
VWRI TE conpl etes, the client should rel ease the byte-range | ock via
LOCKU.

Haynes & Noveck Expi res June 7, 2015 [Page 283]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

15.

If the stateid’ s owner had a conflicting read | ock, then the client
has no choice but to return an error to the application that
attenpted the WRITE. The reason is that since the stateid s owner
had a read | ock, the server either attenpted to tenporarily
effectively upgrade this read lock to a wite lock, or the server has
no upgrade capability. |If the server attenpted to upgrade the read
lock and failed, it is pointless for the client to re-attenpt the
upgrade via the LOCK operation, because there m ght be another client
also trying to upgrade. If two clients are blocked trying upgrade
the sane | ock, the clients deadl ock. |If the server has no upgrade
capability, then it is pointless to try a LOCK operation to upgrade.

39. Operation 39: RELEASE _LOCKOMER - Rel ease Lockowner State
39.1. SYNOPSI S

| ock- owner -> ()
39. 2. ARGUMENT

struct RELEASE_LOCKOMNNER4ar gs {
| ock_owner 4 | ock_owner
b

39.3. RESULT

struct RELEASE LOCKOMNNER4res {
nf sst at 4 st at us;
H

39.4. DESCRI PTI ON

This operation is used to notify the server that the | ock _owner is no
I onger in use by the client and that future client requests will not
reference this lock_owner. This allows the server to rel ease cached
state related to the specified lock_owner. |If file |ocks, associated
with the lock_owner, are held at the server, the error

NFS4AERR LOCKS HELD will be returned and no further action will be

t aken.

39.5. | MPLEMENTATI ON
The client may choose to use this operation to ease the anount of

server state that is held. Information that can be rel eased when a
RELEASE LOCKOMNER i s done includes the specified | ock-owner string,

Haynes & Noveck Expi res June 7, 2015 [Page 284]

Internet-Draft NFSv4 Decenber 2014

15.

15.

15.

15.

15.

15.

the seqid associated with the | ock-owner, any saved reply for the
| ock-owner, and any |ock stateids associated with that | ock-owner.

Dependi ng on the behavior of applications at the client, it nmay be
important for the client to use this operation since the server has
certain obligations with respect to holding a reference to | ock-
owner - associ ated state as long as an associated file is open.
Therefore, if the client knows for certain that the | ock_owner will
no | onger be used, either to reference existing |lock stateids
associated with the | ock-owner to create new ones, it should use
RELEASE_L OCKOMNNER.

40. QOperation 10044: |LLEGAL - Illegal operation
40.1. SYNOPSI S
<null> -> ()
40. 2. ARGUMENT
voi d;
40.3. RESULT

struct |LLEGAL4res {
nf sstat 4 st at us;
H

40. 4. DESCRI PTI ON

This operation is a place holder for encoding a result to handle the
case of the client sending an operation code within COMWPOUND that is
not supported. See Section 15.2.4 for nore details.

The status field of |LLEGAL4res MJUST be set to NFSAERR OP_| LLEGAL.
40.5. | MPLEMENTATI ON

A client will probably not send an operation with code OP_|I LLEGAL but
if it does, the response will be |ILLEGAL4res just as it would be with
any other invalid operation code. Note that if the server gets an
illegal operation code that is not OP_ILLEGAL, and if the server
checks for |egal operation codes during the XDR decode phase, then
the | LLEGAL4res woul d not be returned.

Haynes & Noveck Expi res June 7, 2015 [Page 285]

Internet-Draft NFSv4 Decenber 2014

16.

16.

16.

16.

16.

16.

16.

16.

16.

NFSv4 Cal | back Procedures
The procedures used for callbacks are defined in the foll ow ng
sections. In the interest of clarity, the terns "client" and
"server" refer to NFS clients and servers, despite the fact that for
an individual callback RPC, the sense of these terns would be
preci sely the opposite.
[RFC Editor: prior to publishing this document as an RFC, pl ease have
every Section that has a title of "Procedure X:" or "QOperation Y:"
start at the top of a new page.]
1. Procedure 0: CB NULL - No Qperation
1.1. SYNOPSIS

<nul | >
1.2. ARGUMENT

voi d;
1.3. RESULT

voi d;
1.4. DESCRI PTI ON
Standard NULL procedure. Void argunent, void response. Even though
there is no direct functionality associated with this procedure, the
server will use CB_NULL to confirmthe existence of a path for RPCs
fromserver to client.
2. Procedure 1: CB _COWOQUND - Conpound Qperations
2.1. SYNOPSIS

conpoundargs -> conpoundres

2.2. ARGUMENT

enum nfs_cb_opnumd {

OP_CB_GETATTR = 3,
OP_CB_RECALL = 4,
OP_CB_| LLEGAL = 10044

Haynes & Noveck Expi res June 7, 2015 [Page 286]

Internet-Draft NFSv4 Decenber 2014

16.

16.

uni on nfs_cb_argop4 switch (unsigned argop) {
case OP_CB GETATTR

CB_GETATTR4ar gs opchgetattr;
case OP_CB RECALL:
CB_RECALL4ar gs opcbrecal | ;
case OP_CB | LLEGAL: voi d;
i
struct CB_COVPOUND4args {
utf8str_cs tag;
uint32_t m nor ver si on;
ui nt 32_t cal | back_i dent;
nfs_cb_argop4 argarray<>;
b
2.3. RESULT
union nfs_chb _resop4 switch (unsigned resop) {
case OP_CB GETATTR CB_GETATTR4res opchgetattr;
case OP_CB RECALL: CB RECALLA4res opcbrecal | ;
case OP_CB | LLEGAL: CB | LLEGAL4res opchillegal;
|
struct CB_COVPOUND4res {
nf sst at 4 st at us;
utf8str_cs t ag;
nfs_cb_resop4 resarray<>;
|

2. 4. DESCRI PTI ON

The CB_COVPOUND procedure is used to conbi ne one or nore of the

cal | back procedures into a single RPC request. The main callback RPC
program has two nain procedures: CB NULL and CB_COVPOUND. All other
operations use the CB_COVMPOUND procedure as a wapper.

In the processing of the CB_COVWOUND procedure, the client may find
that it does not have the avail able resources to execute any or all
of the operations within the CB_COMPOUND sequence. |In this case, the
error NFS4ERR RESOURCE will be returned for the particul ar operation
within the CB_COVPOUND procedure where the resource exhaustion
occurred. This assunmes that all previous operations within the
CB_COVPOUND sequence have been eval uated successfully.

Contained within the CB_ COWOUND results is a "status’ field. This
status nust be equivalent to the status of the |last operation that
was executed within the CB_COVMPOUND procedure. Therefore, if an

Haynes & Noveck Expi res June 7, 2015 [Page 287]

Internet-Draft NFSv4 Decenber 2014

16.

16.

16.

16.

16.

operation incurred an error then the 'status’ value will be the sane
error value as is being returned for the operation that failed.

For the definition of the "tag" field, see Section 15. 2.

The val ue of callback ident is supplied by the client during

SETCLI ENTID. The server nust use the client supplied callback_ident
during the CB_.COWOUND to allow the client to properly identify the
server.

Illegal operation codes are handled in the sanme way as they are
handl ed for the COVPOUND procedure.

2.5. | MPLEMENTATI ON

The CB_COVPOUND procedure is used to conbi ne individual operations
into a single RPC request. The client interprets each of the
operations in turn. |f an operation is executed by the client and
the status of that operation is NFS4_OK, then the next operation in
the CB_COVPOUND procedure is executed. The client continues this
process until there are no nore operations to be executed or one of
the operations has a status val ue other than NFS4_OK

2.6. Operation 3: CB _CGETATTR - Get Attributes
2.6.1. SYNOPSI S
fh, attr_request -> attrnmask, attr_vals
2.6.2. ARGUMENT
struct CB_GETATTR4args {
nfs _fh4 fh;

bitmap4 attr_request;

H

2.6.3. RESULT

Haynes & Noveck Expi res June 7, 2015 [Page 288]

Internet-Draft NFSv4 Decenber 2014

16.

16.

16.

16.

16.

struct CB_GETATTR4resok {
fattr4 obj_attributes;
b

uni on CB CGETATTR4res switch (nfsstat4 status) {
case NF4_ K

CB GETATTR4r esok resok4;

def aul t:

b

voi d;

2.6.4. DESCRI PTI ON

The CB_CGETATTR operation is used by the server to obtain the current
nodi fied state of a file that has been OPEN DELEGATE WRI TE del egat ed.
The attributes size and change are the only ones guaranteed to be

serviced by the client. See Section 10.4.3 for a full description of
how the client and server are to interact with the use of CB_GETATTR

If the filehandl e specified is not one for which the client holds a
OPEN _DELEGATE WRI TE del egati on, an NFS4ERR BADHANDLE error is
returned.
2.6.5. | MPLEMENTATI ON
The client returns attrmask bits and the associated attribute val ues
only for the change attribute, and attributes that it may change
(time_nodi fy, and size).
2.7. COperation 4: CB_RECALL - Recall an Open Del egation
2.7.1. SYNOPSI S

stateid, truncate, fh -> ()

2.7.2. ARGUMENT

struct CB_RECALL4args {

st at ei d4 stateid;
bool truncat e;
nfs fh4 f h;

Haynes & Noveck Expi res June 7, 2015 [Page 289]

Internet-Draft NFSv4 Decenber 2014

16.

16.

16.

16.

16.

16.

16.

2.7.3. RESULT

struct CB_RECALL4res {
nf sst at 4 st at us;
H

2.7.4. DESCRI PTI ON

The CB RECALL operation is used to begin the process of recalling an
open del egation and returning it to the server

The truncate flag is used to optimize recall for a file which is
about to be truncated to zero. Wuen it is set, the client is freed
of obligation to propagate nodified data for the file to the server
since this data is irrelevant.

If the handl e specified is not one for which the client holds an open
del egati on, an NFS4ERR BADHANDLE error is returned.

If the stateid specified is not one corresponding to an open
del egation for the file specified by the filehandle, an
NFSAERR BAD STATEI D i s returned.

2.7.5. | MPLEMENTATI ON

The client should reply to the call back i mediately. Replying does
not conplete the recall except when an error was returned. The

recall is not conplete until the delegation is returned using a
DELEGRETURN.
2.8. (Operation 10044: CB ILLEGAL - Illegal Callback Operation

2.8.1. SYNOPSI S
<null> -> ()
2.8.2. ARGUMENT

voi d;

2.8.3. RESULT

Haynes & Noveck Expi res June 7, 2015 [Page 290]

Internet-Draft NFSv4 Decenber 2014

16.

16.

17.

/*
* CB_ILLEGAL: Response for illegal operation numbers
*/
struct CB | LLEGAL4res {
nfsstat4 st at us;
H

2.8.4. DESCRI PTI ON

This operation is a place-holder for encoding a result to handle the
case of the client sending an operation code within COMPOUND that is
not supported. See Section 15.2.4 for nore details.

The status field of CB I LLEGAL4res MJST be set to NFS4ERR OP_| LLEGAL.
2.8.5. | MPLEMENTATI ON

A server will probably not send an operation with code OP_CB | LLEGAL
but if it does, the response will be CB |ILLEGAL4res just as it would
be with any other invalid operation code. Note that if the client
gets an illegal operation code that is not OP_ILLEGAL, and if the
client checks for |egal operation codes during the XDR decode phase,
then the CB_| LLEGAL4res woul d not be returned.

Security Considerations

NFS has historically used a nodel where, froman authentication
perspective, the client was the entire nmachine, or at |east the
source | P address of the machine. The NFS server relied on the NFS
client to make the proper authentication of the end-user. The NFS
server in turn shared its files only to specific clients, as
identified by the client’s source I P address. G ven this nodel, the
AUTH SYS RPC security flavor sinply identified the end-user using the
client to the NFS server. Wen processing NFS responses, the client
ensured that the responses cane fromthe same | P address and port
nunber that the request was sent to. Wile such a nodel is easy to
i mpl ement and sinple to deploy and use, it is certainly not a safe
nmodel . Thus, NFSv4 nandates that inplenmentations support a security
nodel that uses end to end authentication, where an end-user on a
client nmutually authenticates (via cryptographic schenes that do not
expose passwords or keys in the clear on the network) to a principa
on an NFS server. Consideration should also be given to the
integrity and privacy of NFS requests and responses. The issues of
end to end nutual authentication, integrity, and privacy are

di scussed as part of Section 3.

Haynes & Noveck Expi res June 7, 2015 [Page 291]

Internet-Draft NFSv4 Decenber 2014

When an NFSv4 nmandated security nodel is used and a security
principal or an NFSv4 nane in user @ns_donmain form needs to be
translated to or froma |ocal representation as described in

Section 5.9, the translation SHOULD be done in a secure manner that
preserves the integrity of the translation. For comunication with a
name service such as LDAP ([RFC4511]), this means enploying a
security service that uses authentication and data integrity.
Kerberos and Transport Layer Security (TLS) ([RRFC5246]) are exanpl es
of such a security service

Note that being REQUI RED to inplenment does not nean REQUI RED to use;
AUTH _SYS can be used by NFSv4 clients and servers. However, AUTH SYS
is nerely an OPTIONAL security flavor in NFSv4, and so
interoperability via AUTH SYS is not assured.

For reasons of reduced admi nistration overhead, better perfornance
and/ or reduction of CPU utilization, users of NFSv4 inplenentations
may choose to not use security nechanisns that enable integrity
protection on each renpote procedure call and response. The use of
mechani sms without integrity | eaves the customer vul nerable to an
attacker in between the NFS client and server that nodifies the RPC
request and/or the response. While inplenentations are free to
provide the option to use weaker security nechanisns, there are two
operations in particular that warrant the inplementation overriding
user choi ces.

The first such operation is SECINFO. It is recommended that the
client issue the SECINFO call such that it is protected with a
security flavor that has integrity protection, such as RPCSEC GSS
with a security triple that uses either rpc_gss_svc_integrity or
rpc_gss_svc_privacy (rpc_gss_svc_privacy includes integrity
protection) service. Wthout integrity protection encapsul ating
SECI NFO and therefore its results, an attacker in the nmiddle could
nmodi fy results such that the client nmight select a weaker algorithm
in the set allowed by server, making the client and/or server

vul nerable to further attacks.

The second operation that SHOULD use integrity protection is any
GETATTR for the fs_locations attribute. The attack has two steps.
First the attacker nodifies the unprotected results of sone operation
to return NFS4ERR MOVED. Second, when the client follows up with a
GETATTR for the fs_locations attribute, the attacker nodifies the
results to cause the client to migrate its traffic to a server
controll ed by the attacker.

Because t he operations SETCLI ENTI Y SETCLI ENTI D_CONFI RM ar e

responsible for the release of client state, it is inperative that
the principal used for these operations is checked agai nst and match

Haynes & Noveck Expi res June 7, 2015 [Page 292]

Internet-Draft NFSv4 Decenber 2014

with the previous use of these operations. See Section 9.1.1 for
further discussion.

Unicode in the formof UTF-8 is used for file conponent nanmes (i.e.
both directory and file conponents), as well as the owner and

owner _group attributes; other character sets may al so be allowed for
file conponent names. String processing (e.g., Unicode
normal i zati on) raises security concerns for string conparison - see
Sections 5.9 and 12 for further discussion and see [RFC6943] for
related identifier conparison security considerations. File
conmponent nanes are identifiers with respect to the identifier
compari son discussion in [RFC6943] because they are used to identify
the objects to which ACLs are applied, see Section 6.

18. | ANA Consi derations
This section uses terns that are defined in [RFC5226].
18.1. Nanmed Attribute Definitions

| ANA has created a registry called the "NFSv4 Named Attribute
Definitions Registry" for [RFC3530] and [RFC5661]. This section
i ntroduces no new changes, but it does recap the intent.

The NFSv4 protocol supports the association of a file with zero or
nmore naned attributes. The name space identifiers for these
attributes are defined as string nanes. The protocol does not define
the specific assignnent of the name space for these file attributes.
The 1 ANA registry pronotes interoperability where comopn interests
exist. Wile application developers are allowed to define and use
attributes as needed, they are encouraged to register the attributes
wi th | ANA

Such registered naned attributes are presuned to apply to all m nor
versi ons of NFSv4, including those defined subsequently to the
registration. VWhere the naned attribute is intended to be limted
with regard to the ninor versions for which they are not be used, the
assignnent in registry will clearly state the applicable linits.

The registry is to be maintained using the Specification Required
policy as defined in Section 4.1 of [RFC5226].

Under the NFSv4 specification, the name of a naned attribute can in
theory be up to 2732 - 1 bytes in length, but in practice NFSv4d
clients and servers will be unable to handle a string that I|ong.

I ANA should reject any assignnent request with a naned attribute that
exceeds 128 UTF-8 characters. To give IESGthe flexibility to set up
bases of assignnent of Experinental Use and Standards Action, the

Haynes & Noveck Expi res June 7, 2015 [Page 293]

Internet-Draft NFSv4 Decenber 2014

18.

18.

19.

19.

prefixes of "EXPE' and "STDS" are Reserved. The zero |length naned
attribute nane is Reserved

The prefix "PRIV'" is allocated for Private Use. A site that wants to
make use of unregistered naned attributes without risk of conflicting
with an assignnment in IANA's registry should use the prefix "PRIV' in
all of its named attributes

Because sone NFSv4 clients and servers have case insensitive
semantics, the fifteen additional |ower case and m xed case
pernut ati ons of each of "EXPE', "PRI V', and "STDS', are Reserved
(e.g. "expe", "expE"', "exPe", etc. are Reserved). Simlarly, |ANA
must not allow two assignnents that would conflict if both naned
attri butes were converted to a conmon case.

The registry of naned attributes is a list of assignnents, each
containing three fields for each assignnent.

1. A US-ASCI| string nane that is the actual nane of the attribute.
Thi s name nmust be unique. This string nanme can be 1 to 128 UTF-8
characters | ong.

2. Areference to the specification of the naned attribute. The
ref erence can consune up to 256 bytes (or nmore if | ANA pernits).

3. The point of contact of the registrant. The point of contact can
consume up to 256 bytes (or nmore if |1 ANA permts).

1.1. Initial Registry

There is no initial registry.

1.2. Updating Registrations

The registrant is always pernitted to update the point of contact

field. To make any other change will require Expert Review or |ESG
Appr oval

Ref er ences
1. Normative References

[RFC20] Cerf, V., "ASCII format for network interchange", RFC 20,
Cct ober 1969.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", March 1997

Haynes & Noveck Expi res June 7, 2015 [Page 294]

Internet-Draft NFSv4 Decenber 2014

[RFC2203] Eisler, M, Chiu, A, and L. Ling, "RPCSEC GSS Protocol
Speci fication", RFC 2203, Septenber 1997.

[RFC2743] Linn, J., "Generic Security Service Application Program
Interface Version 2, Update 1", RFC 2743, January 2000.

[RFC3490] Faltstrom P., Hoffman, P., and A. Costello,
"Internationalizing Domain Names in Applications (IDNA)",
RFC 3490, March 2003.

[RFC3492] Costello, A, "Punycode: A Bootstring encoding of Unicode
for Internationalized Donmain Names in Applications
(IDNA) ", RFC 3492, March 2003.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, Novenber 2003.

[RFC5226] Narten, T. and H Al vestrand, "Cuidelines for Witing an
I ANA Consi derations Section in RFCs", BCP 26, RFC 5226,
May 2008.

[RFC5403] Eisler, M, "RPCSEC GSS Version 2", RFC 5403, February
2009.

[RFC5531] Thurlow, R, "RPC. Renote Procedure Call Protocol
Speci fication Version 2", RFC 5531, May 2009.

[RFC5665] Eisler, M, Ed., "I ANA Considerations for Renote Procedure
Call (RPC) Network ldentifiers and Universal Address
Formats", RFC 5665, January 2010.

[RFC5890] Klensin, J., "Internationalized Domain Nanes in
Applications (IDNA): Definitions and Docunment Franmewor k",
RFC 5890, August 2010.

[RFC5891] Klensin, J., "Internationalized Domain Nanes in
Applications (IDNA): Protocol", RFC 5891, August 2010.

[RFC6649] Astrand, L. and T. Yu, "Deprecate DES, RC4- HVAC- EXP, and
O her Weak Cryptographic Algorithns in Kerberos", RFC
6649, July 2012.

[RFCNFSv4XDR]
Haynes, T. and D. Noveck, "NFSv4 Version 0 XDR
Description", draft-ietf-nfsv4-rfc3530bis-dot-x-23 (work
in progress), Dec 2014.

Haynes & Noveck Expi res June 7, 2015 [Page 295]

Internet-Draft NFSv4 Decenber 2014

[SPECI ALCASI NG
The Uni code Consortium "Special Casing-6.3.0.txt", Unicode
Char acter Database , Septenber 2013,
<http://ww. uni code. or g/ Publ i c/ 6. 3. 0/ ucd/
Speci al Casi ng. t xt >.

[UNI CODE] The Uni code Consortium "The Uni code Standard, Version
6. 3. 0", Septenber 2013,
<http://ww. uni code. or g/ ver si ons/ Uni code6. 3. 0/ >.

[openg_syn i nk]
The Open G oup, "Section 3.372 of Chapter 3 of Base
Definitions of The Open G oup Base Specifications |Issue 6
| EEE Std 1003.1, 2004 Edition, HTM. Version
(www. opengroup. org), | SBN 1931624232", 2004.

19.2. Informative References
[Chet] Juszczak, C., "lnproving the Performance and Correctness
of an NFS Server", USEN X Conference Proceedings , June
1990.
[FI oyd] Fl oyd, S. and V. Jacobson, "The Synchroni zation of

Periodi ¢ Routing Messages", | EEE/ ACM Transacti ons on
Networ ki ng 2(2), pp. 122-136, April 1994.

[1 ESG_ERRATA]
| ESG "IESG Processing of RFC Errata for the | ETF Streant,
July 2008.

[M- SMB] M crosoft Corporation, , "Server Message Bl ock (SMB)
Prot ocol Specification", Ms-SMB 17.0, Novenber 2009.

[P1003. 1e]
Institute of Electrical and El ectronics Engi neers, |nc.
"| EEE Draft P1003. le", 1997.

[RFCO793] Postel, J., "Transm ssion Control Protocol", STD 7, RFC
793, Septenber 1981

[RFC1094] Nowicki, B., "NFS: Network File System Protoco
speci fication", RFC 1094, March 1989.

[RFC1813] Cal l aghan, B., Pawl owski, B., and P. Staubach, "NFS
Version 3 Protocol Specification", RFC 1813, June 1995.

[RFC1833] Srinivasan, R, "Binding Protocols for ONC RPC Version 2",
RFC 1833, August 1995.

Haynes & Noveck Expi res June 7, 2015 [Page 296]

Internet-Draft

[RFC2054]

[RFC2055]

[RFC2224]

[RFC2623]

[RFC2624]

[RFC2755]

[RFC3010]

[RFC3232]

[RFC3530]

[REC4121]

[RFCA178]

[RFCA506]

[RFC4511]

[RFC5246]

Haynes & Noveck

NFSv4 Decenber 2014

Cal I aghan, B., "WebNFS Cient Specification", RFC 2054,
Cct ober 1996.

Cal I aghan, B., "WebNFS Server Specification", RFC 2055,
Cct ober 1996.

Cal l aghan, B., "NFS URL Schene", RFC 2224, Cctober 1997.
Eisler, M, "NFS Version 2 and Version 3 Security |ssues

and the NFS Protocol’s Use of RPCSEC GSS and Kerberos V5",
RFC 2623, June 1999.

Shepler, S., "NFS Version 4 Design Considerations", RFC
2624, June 1999.

Chiu, A, Eisler, M,
Negoti ati on for WDbNFS',

and B. Callaghan, "Security
RFC 2755, January 2000.

Shepler, S., Callaghan, B., Robinson, D., Thurlow, R,
Beanme, C., Eisler, M, and D. Noveck, "Network File System
(NFS) version 4 Protocol”, RFC 3010, Decenber 2000.

Reynol ds, J.,
an On-1line Dat abase",

"Assi gned Nunbers: RFC 1700 i s Repl aced by
RFC 3232, January 2002.

Shepler, S., Callaghan, B., Robinson, D., Thurlow, R,
Beame, C., Eisler, M, and D. Noveck, "Network File System
(NFS) version 4 Protocol", RFC 3530, April 2003.

Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
Version 5 Generic Security Service Application Program
Interface (GSS-API) Mechanism Version 2", RFC 4121, July
2005.

Zhu, L., Leach, P., Jaganathan, K, and W Ingersoll, "The
Sinpl e and Protected Generic Security Service Application
Program I nterface (GSS-API) Negotiation Mechani sm', RFC
4178, COctober 2005.

Eisler, M, "XDR External
RFC 4506, May 2006.

Dat a Representation Standard",

Sernersheim J.,
(LDAP): The Protocol",

"Li ghtwei ght Directory Access Protocol
RFC 4511, June 2006.

Dierks, T. and E. Rescorl a,
(TLS) Protocol Version 1.2",

"The Transport Layer Security
RFC 5246, August 2008.

Expi res June 7, 2015 [Page 297]

Internet-Draft NFSv4 Decenber 2014

[RFC5661] Shepler, S., Eisler, M, and D. Noveck, "Network File
System (NFS) Version 4 Mnor Version 1 Protocol", RFC
5661, January 2010.

[RFC6365] Hoffnman, P. and J. Klensin, "Term nology Used in
Internationalization in the IETF', BCP 166, RFC 6365,
Sept enber 2011.

[RFC6943] Thaler, D., "lssues in ldentifier Comparison for Security
Pur poses"”, RFC 6943, May 2013.

[fentl]] The Open G oup, "Section "fcntl ()’ of SystemInterfaces of
The Open G oup Base Specifications |Issue 6 | EEE Std
1003.1, 2004 Edition, HTM. Version (www. opengroup. org),
| SBN 1931624232", 2004.

[fsync] The Qpen Group, "Section 'fsync()' of SystemInterfaces of
The Open Group Base Specifications Issue 6 | EEE Std
1003.1, 2004 Edition, HTM. Version (ww.opengroup. org),
| SBN 1931624232", 2004.

[get pwnanj
The Qpen Group, "Section 'getpwnan()’ of SystemInterfaces
of The Open Group Base Specifications Issue 6 | EEE Std
1003.1, 2004 Edition, HTM. Version (ww.opengroup. org),
| SBN 1931624232", 2004.

[read_api]
The Qpen Group, "Section 'read()’ of SystemlInterfaces of
The Open Group Base Specifications Issue 6, |EEE Std
1003. 1, 2004 Edition", 2004.

[readdir_api]
The OQpen Group, "Section 'readdir()’ of SystemlInterfaces
of The Open Group Base Specifications Issue 6, |EEE Std
1003. 1, 2004 Edition", 2004.

[unlink] The OQpen Group, "Section "unlink()’' of SystemlInterfaces
of The Open G oup Base Specifications Issue 6 | EEE Std
1003.1, 2004 Edition, HTM. Version (www. opengroup. org),
| SBN 1931624232", 2004.

[wite_api]
The Open Goup, "Section "wite()' of SystemlInterfaces of
The Open G oup Base Specifications Issue 6, |EEE Std
1003. 1, 2004 Edition", 2004.

Haynes & Noveck Expi res June 7, 2015 [Page 298]

Internet-Draft NFSv4 Decenber 2014

[xnf s] The Open G oup, "Protocols for Interworking: XNFS, Version
3W | SBN 1-85912-184-5", February 1998.

Appendi x A, Acknow edgnents

A bis is certainly built on the shoulders of the first attenpt.
Spencer Shepler, Brent Callaghan, David Robi nson, Robert Thurl ow,

Carl Beame, Mke Eisler, and David Noveck are responsible for a great
deal of the effort in this work

Tom Haynes would like to thank NetApp, Inc. for its funding of his
time on this project.

Rob Thurlow clarified how a client should contact a new server if a
m gration has occurred.

David Black, Nico Wllianms, Mke Eisler, Trond Mkl ebust, Janes
Lentini, and M ke Kupfer read many drafts of Section 12 and
contributed nunerous useful suggestions, wthout which the necessary
revision of that section for this docunent woul d not have been
possi bl e.

Pet er Staubach read al nost all of the drafts of Section 12 leading to
t he published result and his numerous coments were al ways useful and
contributed substantially to inproving the quality of the fina
result.

Peter Saint-Andre was graci ous enough to read the last draft of
Section 12 and provi ded sone key insight as to the concerns of the
Internationalization community.

James Lentini graciously read the rewite of Section 8 and his
comrents were vital in inproving the quality of that effort.

Rob Thurl ow, Sorin Fai bish, Janmes Lentini, Bruce Fields, and Trond
Mkl ebust were faithful attendants of the biweekly triage neeting and
accepted nany an action item

Bruce Fields was a good sounding board for both the Third Edge
Condition and Courtesy Locks in general. He was also the |eading
advocat e of stanping out backport issues from [RFC5661].

Marcel Tel ka was a chanpi on of straightening out the difference
bet ween a | ock-owner and an open-owner. He has also been diligent in
review ng the final docunent.

Benjam n Kaduk renminded us that DES is dead and Nico Wl lians hel ped
us close the Iid on the coffin.

Haynes & Noveck Expi res June 7, 2015 [Page 299]

Internet-Draft NFSv4 Decenber 2014

El wn Davi es provided a very thorough and engagi ng Gen- ART revi ew,
t hanks!

Appendi x B. RFC Editor Notes

[RFC Editor: please renove this section prior to publishing this
docunent as an RF(

[RFC Editor: prior to publishing this document as an RFC, pl ease
replace all occurrences of RFCNFSV4XDR with RFCxxxx where xxxx is the
RFC nunber assigned to the XDR docunent.]

[RFC Editor: Please note that there is also a reference entry that
needs to be nodified for the conpani on docunent.]

[RFC Editor: prior to publishing this docunent as an RFC, pl ease have
every top |l evel subsection of both Section 15 and Section 16 that has
atitle of "Procedure X:" or "Operation Y:" start at the top of a new

page.]
Aut hors’ Addr esses

Thonmas Haynes (editor)
Primary Data, |nc.

4300 El Camino Real Ste 100
Los Altos, CA 94022

USA

Phone: +1 408 215 1519
Emai | : t homas. haynes@ri nar ydat a. com

Davi d Noveck (editor)
Del |

300 I nnovative \Vay
Nashua, NH 03062

us

Phone: +1 781 572 8038
Enmai | : dave_noveck@el | . com

Haynes & Noveck Expi res June 7, 2015 [Page 300]

