
NFSv4 M. Eisler
Internet-Draft NetApp
Intended status: Standards Track October 18, 2010
Expires: April 21, 2011

 Metadata Striping for pNFS
 draft-eisler-nfsv4-pnfs-metastripe-02.txt

Abstract

 This Internet-Draft describes a means to add metadata striping to
 pNFS.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Eisler Expires April 21, 2011 [Page 1]

Internet-Draft pNFS Metadata Striping October 2010

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction and Motivation 3
 2. Terminology . 3
 3. Scope of Metadata Striping 4
 4. The Definition of Metadata Striping Layout 5
 4.1. Name of Metadata Striping Layout Type 5
 4.2. Value of Metadata Striping Layout Type 5
 4.3. Definition of the da_addr_body Field of the
 device_addr4 Data Type 6
 4.4. Definition of the loh_body Field of the layouthint4
 Data Type . 7
 4.5. Definition of the loc_body Field of the
 layout_content4 Data Type 8
 4.6. Definition of the lou_body Field of the layoutupdate4
 Data Type . 14
 4.7. Storage Access Protocols 14
 4.8. Revocation of Layouts 15
 4.9. Stateids . 15
 4.10. Lease Terms . 15
 4.11. Layout Operations Sent to an L-MDS 16
 4.12. Filehandles in Metadata Layouts 16
 4.13. READ and WRITE Operations 16
 4.14. Recovery . 16
 4.14.1. Failure and Restart of Client 16
 4.14.2. Failure and Restart of Server 16
 4.14.3. Failure and Restart of Storage Device 17
 5. Negotiation . 17
 6. Operational Recommendation for Deployment 17
 7. Acknowledgements . 17
 8. Security Considerations 17
 9. IANA Considerations . 17
 10. Normative References . 18
 Author’s Address . 18

Eisler Expires April 21, 2011 [Page 2]

Internet-Draft pNFS Metadata Striping October 2010

1. Introduction and Motivation

 The NFSv4.1 specification describes pNFS [2]. In NFSv4.1, pNFS is
 limited to the data contents of regular files. The content of
 regular files is distributed (striped) across multiple storage
 devices. Metadata is not distributed or striped, and indeed, the
 model presented in the NFSv4.1 specification is that of a single
 metadata server. This document describes a means to add metadata
 striping to pNFS, which includes the notion of multiple metadata
 servers. With metadata striping, multiple metadata servers may work
 together to provide a higher parallel performance.

 This document does not require a new minor version of NFSv4.
 Instead, it requires a new layout type.

 The XDR description is provided in this document in a way that makes
 it simple for the reader to extract into a ready to compile form.
 The reader can feed this document into the following shell script to
 produce the machine readable XDR description of the metadata layout:

 #!/bin/sh
 grep "^ *///" | sed ’s?^ */// ??’ | sed ’s?^.*///??’

 I.e. if the above script is stored in a file called "extract.sh", and
 this document is in a file called "spec.txt", then the reader can do:

 sh extract.sh < spec.txt > md.x

 The effect of the script is to remove leading white space from each
 line of the specification, plus a sentinel sequence of "///".

2. Terminology

 o Initial Metadata Server (I-MDS). The I-MDS is the metadata server
 the client obtains a filehandle from prior to acquiring any layout
 on the file.

 o Layout Metadata Server (L-MDS). The L-MDS is the metadata server
 the client obtains a filehandle from after direction from a
 layout.

 o Regular file: An object of file type NF4REG or NF4NAMEDATTR.

Eisler Expires April 21, 2011 [Page 3]

Internet-Draft pNFS Metadata Striping October 2010

3. Scope of Metadata Striping

 This proposal assumes a model where there are two or more servers
 capable of supporting NFSv4.1 operations. At least one server is an
 I-MDS, and the I-MDS should be thought of as a normal NFSv4.1 server,
 with the additional capability of granting metadata layouts on
 demand. The I-MDS might also be capable of granting non-metadata
 layouts, but this is irrelevant to the scope of metadata striping.
 The model also requires at least one additional server, an L-MDS,
 that is capable of supporting NFSv4.1 operations that are directed to
 the server by the I-MDS. It is permissible for an I-MDS to also be
 an L-MDS, and an L-MDS to also be an I-MDS. Indeed, a simple
 submodel is for every NFSv4.1 server in a set to be both an I-MDS and
 L-MDS.

 Metadata striping applies to all NFSv4.1 operations that operate on
 file objects. These operations can be broken down into three
 classes:

 o Filehandle-only. These are operations that take just filehandles
 as arguments, i.e. the current filehandle, or both the current
 filehandle and the saved filehandle, and no component names of
 files. When a client obtains a filehandle of an file object from
 an NFS server, it can obtain a metadata layout that indicates the
 optimal destination in the network to send filehandle-only
 operations for that file object. For example, after obtaining the
 filehandle via OPEN, and the metadata layout via LAYOUTGET, the
 client wants to get a byte range lock on the file. The client
 sends the LOCK request to the network address specified in the
 metadata layout.

 o Name-based. These are operations that take one or two filehandles
 (i.e. the current file handle, or both the current file handle and
 the saved filehandle) and one or two component names of files.
 When a client obtains a filehandle of a file object that is of
 type directory, it can obtain a metadata layout that indicates the
 optimal destinations in the network to send name-based operations
 for that directory. The optimal destinations MUST apply to the
 current filehandle that the operation uses. In other words, for
 LINK and RENAME, which take both the saved filehandle and the
 current filehandle as parameters, the pNFS client would use the
 metadata layout of the target directory (indicated in the current
 filehandle) for guidance where to send the operation. Note that
 if an L-MDS accepts a LINK or RENAME operation, the L-MDS MUST
 perform the operation atomically. If it cannot, then the L-MDS
 MUST return the error NFS4ERR_XDEV, and the client MUST send the
 operation to the I-MDS.

Eisler Expires April 21, 2011 [Page 4]

Internet-Draft pNFS Metadata Striping October 2010

 The choice of destination is a function of the name the client is
 requesting. For example, after the client obtains the filehandle
 of a directory via LOOKUP and the metadata layout via LAYOUTGET,
 the client wants to open a regular file within the directory. As
 with the LAYOUT4_NFSV4_1_FILES layout type, the client has a list
 network addresses to which to send requests. With the
 LAYOUT4_NFSV4_1_FILES layout, the choice of the index in the list
 of network addresses was computed from the offset of the read or
 write request. With the metadata layout, the choice of the index
 is derived from the name (or some other method, such as the name
 and one or more attributes of the directory, such as the
 filehandle, fileid, etc.) passed to OPEN.

 o Directory-reading. These are operations that take one filehandle
 and return the contents of a directory (currently, NFSv4 has just
 one such operation, READDIR). When a client obtains a filehandle
 of a file object that is of type directory, it can obtain a
 metadata layout that indicates the optimal destination in the
 network to send directory reading operations for that directory.
 For example, after the client obtains the filehandle of a
 directory via LOOKUP and the metadata layout via LAYOUTGET, the
 client wants to read the directory. As with the
 LAYOUT4_NFSV4_1_FILES layout type, the client has a list network
 addresses to which to send requests. With the
 LAYOUT4_NFSV4_1_FILES layout, the choice of the index in list of
 network addresses was computed from the offset of the read or
 write request. Since directories have cookies which resemble
 offsets, the choice of the index is computed from the the "cookie"
 argument to the operation.

4. The Definition of Metadata Striping Layout

4.1. Name of Metadata Striping Layout Type

 The name of the metadata striping layout type is LAYOUT4_METADATA.

4.2. Value of Metadata Striping Layout Type

 The value of the metadata striping layout type is TBD1.

Eisler Expires April 21, 2011 [Page 5]

Internet-Draft pNFS Metadata Striping October 2010

4.3. Definition of the da_addr_body Field of the device_addr4 Data Type

 /// %#include "nfs4_prot.h"
 /// union md_layout_addr4 switch (bool mdla_simple) {
 /// case TRUE:
 /// multipath_list4 mdla_simple_addr;
 /// case FALSE:
 /// nfsv4_1_file_layout_ds_addr4 mdla_complex_addr;
 /// };

 Figure 1

 If mdla_simple is TRUE, the remainder of the device address contains
 a list of elements (mdla_simple_addr), where each element represents
 a network address of an L-MDS which can serve equally as the target
 of metadata operations (typically the filehandle-only operations).
 See Section 13.5 of [2] for a description of how the multipath_list4
 data type supports multi-pathing.

 If mdla_simple is FALSE, the remainder of the device address is the
 same as the LAYOUT4_NFSV4_1_FILES device address, consisting of an
 array of lists of L-MDSes servers (nflda_multipath_ds_list), and an
 array of indices (nflda_stripe_indices). Each element of
 nflda_multipath_ds_list contains one or more subelements, and each
 subelement represents a network address of an L-MDS which may serve
 equally as the target of name-based and directory-reading operations
 (see Section 13.5 of [2]). The number of elements in
 nflda_multipath_ds_list array might be different than the stripe
 count. The stripe count is the number of elements in
 nflda_stripe_indices. The value of each element of
 nflda_stripe_indices is an index into nflda_multipath_ds_list, and
 thus the value of each element of nflda_stripe_indices MUST be less
 than the number of elements in nflda_multipath_ds_list.

Eisler Expires April 21, 2011 [Page 6]

Internet-Draft pNFS Metadata Striping October 2010

4.4. Definition of the loh_body Field of the layouthint4 Data Type

 /// enum md_layout_hint_care4 {
 /// MD4_CARE_STRIPE_UNIT_SIZE = 0x040,
 /// MD4_CARE_STRIPE_CNT_NAMEOPS = 0x080,
 /// MD4_CARE_STRIPE_CNT_DIRRDOPS = 0x100
 /// };
 /// %
 /// %/* Encoded in the loh_body field of type layouthint4: */
 /// %
 /// struct md_layouthint4 {
 /// uint32_t mdlh_care;
 /// count4 mdlh_stripe_cnt_nameops;
 /// count4 mdlh_stripe_cnt_dirrdops;
 /// nfs_cookie4 mdlh_stripe_unit_size;
 /// };

 Figure 2

 The layout-type specific content for the LAYOUT4_METDATA layout type
 is composed of four fields. The first field, mdlh_care, is a set of
 flags indicating which values of the hint the client cares about. If
 MD4_CARE_STRIPE_CNT_NAMEOPS is set, then the client indicates in the
 second field, mdlh_stripe_cnt_nameops the preferred stripe count for
 name-based operations. If MD4_CARE_STRIPE_CNT_DIRRDOPS is set, then
 the client indicates in the third field, mdlh_stripe_cnt_dirrdops,
 the preferred stripe count for directory-reading operations. If
 MD4_CARE_STRIPE_UNIT_SIZE is set, then the client indicates in the
 fourth field, mdlh_stripe_unit_size, the preferred stripe unit size
 for directory-reading operations.

Eisler Expires April 21, 2011 [Page 7]

Internet-Draft pNFS Metadata Striping October 2010

4.5. Definition of the loc_body Field of the layout_content4 Data Type

 /// struct md_layout_fhonly {
 /// deviceid4 mdlf_devid;
 /// nfs_fh4 mdlf_fh<1>;
 /// };
 ///
 /// struct md_layout_namebased {
 /// deviceid4 mdln_devid;
 /// uint32_t mdln_namebased_alg;
 /// uint32_t mdln_first_index;
 /// nfs_fh4 mdln_fh_list<>;
 /// };
 ///
 /// union md_layout_dirread_fhlist
 /// switch (bool mdldf_use_namebased) {
 /// case TRUE:
 /// void;
 /// case FALSE:
 /// nfs_fh4 mdldf_fh_list<>;
 /// };
 ///
 /// struct md_layout_dirread {
 /// deviceid4 mdld_devid;
 /// nfs_cookie4 mdld_first_cookie;
 /// nfs_cookie4 mdld_unit_size;
 /// uint32_t mdld_first_index;
 /// md_layout_dirread_fhlist mdld_fh_list;
 /// };
 ///
 /// struct md_layout4 {
 /// md_layout_fhonly mdl_fhops_layout<1>;
 /// md_layout_namebased mdl_nameops_layout<1>;
 /// md_layout_dirread mdl_dirrdops_layout_segments<>;
 /// };

 Figure 3

 The reply to a successful LAYOUTGET request MUST contain exactly one
 element in logr_layout. The element contains the metadata layout.
 The metadata layout consists of three variable length arrays. At
 least one of the arrays MUST be of non-zero length.

 o mdl_fhops_layout. This is an array of up to one element. If
 there is one element, the element indicates the preferred set
 L-MDSes as the target of filehandle-only operations. The element
 contains two fields, mdlf_devid, the pNFS device ID of the L-MDS

Eisler Expires April 21, 2011 [Page 8]

Internet-Draft pNFS Metadata Striping October 2010

 and mdlf_fh, an array of up to one filehandle.

 When the client receives a layout that has a mdl_fhops_layout
 array with one element, it uses GETDEVICEINFO to map mdlf_devid to
 a device address, of data type md_layout_addr4. The value of the
 device address field mdla_simple MUST be TRUE. The client can
 then select any element in mdla_simple_addr to send a filehandle-
 only operation. The field mdlf_devid MUST map to a device address
 with mdla_simple set to TRUE. The current filehandle REQUIRED for
 use with the filehandle-only operation is either mdlf_fh[0] (if
 and only if mdlf_fh has one element) or it is the filehandle the
 pNFS client used as the current filehandle to the LAYOUTGET
 operation that returned the metadata layout.

 o mdl_nameops_layout. This is an array of up to one element. If
 there is one element, the element indicates the preferred set of
 L-MDS servers to as the target of name-based operations. The list
 of L-MDSes is mapped from the mdln_devid device ID. The array
 mdln_fh_list is used to select a filehandle for accessing an
 L-MDS. The number of elements in this array MUST be one of three
 values:

 * Zero. The means that filehandles used for each L-MDS are the
 same as the filehandle used as the current filehandle to
 LAYOUTGET.

 * One. This means that every L-MDS uses filehandle in
 mdln_fh_list[0].

 * The same number of elements as
 mdla_complex_addr.nflda_multipath_ds_list. Thus, when sending
 a name-based operation to any L-MDS in
 mdla_complex_addr.nflda_multipath_ds_list[X], the filehandle in
 mdln_fh_list[X] MUST be used.

 The field mdld_first_index is the index into the first element of
 the of mdla_complex_addr.nflda_stripe_indices array to use. The
 field mdln_namebased_alg identifies the algorithm used to compute
 the actual element in the mdla_complex_addr.nflda_stripe_indices
 array to use.

 When the client receives a layout that has a mdl_nameops_layout
 array with one element, it uses GETDEVICEINFO to map mdln_devid to
 a device address of data type md_layout_addr4. The value of the
 device address field mdla_simple MUST be set to FALSE.

 The client determines the filehandle and the set of L-MDS network
 addresses to send a name-based operation via the following

Eisler Expires April 21, 2011 [Page 9]

Internet-Draft pNFS Metadata Striping October 2010

 algorithm:

 let F be the function designated by
 mdln_namebased_alg;

 let X = (x1, x2, x3, ...) some set of inputs for
 function F, such that x1 SHOULD be the
 component name of the file;

 stripe_unit_number = F(X);
 stripe_count = number of elements in
 mdla_complex_addr.nflda_stripe_indices;

 j = (stripe_unit_number + mdln_first_index) %
 stripe_count;

 idx = nflda_stripe_indices[j];

 fh_count = number of elements in mdln_fh_list;
 lmds_count = number of elements in
 mdla_complex_addr.nflda_multipath_ds_list;

 switch (fh_count) {
 case lmds_count:
 fh = mdln_fh_list[idx];
 break;

 case 1:
 fh = mdln_fh_list[0];
 break;

 case 0:
 fh = current filehandle passed to LAYOUTGET;
 break;

 default:
 throw a fatal exception;
 break;
 }

 address_list =
 mdla_complex_addr.nflda_multipath_ds_list[idx];

 Figure 4

 The client would then select an L-MDS from address_list, and send
 the name-based operation using the filehandle specified in fh.

Eisler Expires April 21, 2011 [Page 10]

Internet-Draft pNFS Metadata Striping October 2010

 If value of stripe_count is one, then in the above, the value of
 the stripe_unit_number derived from mdln_namebased_alg and the
 value of mdln_first_index will not change the index into
 nflda_stripe_indices because that index will always be zero.
 Hence when stripe_count is one, the value mdln_namedbased_alg does
 not matter. Thus, when mdla_complex_addr.nflda_stripe_indices has
 a length of one, the client MUST ignore the value of
 mdln_namebased_alg. This means that all name-based operations on
 the directory can be be sent any among the set of L-MDSes
 indicated in one element of
 mdla_complex_addr.nflda_multipath_ds_list. This serves the common
 case of where whole directories are distributed across a set
 L-MDSes, but the directories themselves are not striped.

 o mdl_dirops_layout_segments. This is an array of zero or more
 elements. Each element indicates the preferred set of L-MDSes as
 the preferred destination for directory reading operations and the
 pattern over which directory reading operations iterates over the
 L-MDSes. The set of L-MDSes is mapped from the value of the
 device ID in the field mdld_devid. The field mdld_first_cookie
 indicates the first directory entry cookie that a directory
 reading operation can use for the first unit of the pattern in
 this element. E.g., the value of mdld_first_cookie can be used as
 the value of the "cookie" field in READDIR4args. In the first
 element, mdld_first_cookie MUST be zero. The last cookie that can
 be used on the pattern can be no higher than one less than the
 value of mdld_first_cookie of the next element. If there is no
 next element, then the pattern is valid for all cookies from
 mdld_first_cookie through NFS4_UINT64_MAX inclusive. The field
 mdld_unit_size indicates the maximum number of cookies that can be
 read from each unit of a pattern, and thus indicates the lowest
 value of the "cookie" field in READDIR4args for each unit after
 the first unit. For example, if mdld_unit_size is 100000, and
 mdld_first_cookie is zero, then value of the "cookie" field in the
 READDIR4args of the READDIR operation sent to the second unit MUST
 be greater than or equal to 100000, and less than 200000. The
 field mdld_fh_list is used to select a filehandle for accessing an
 L-MDS. It is a switched union with a boolean discriminator
 mdldf_use_namebased. If mdldf_use_namebased is TRUE, then the
 array mdl_nameops_layout MUST be of length equal to one and the
 filehandle MUST be selected from mdl_nameops_layout.mdln_fh_list.
 Note however, that the device address MUST still be mapped from
 mdld_devid and not mdln_devid.

 o If mdldf_use_namebased is FALSE, then mlld_fh_list is present, and
 number of elements in mdld_fh_list MUST be one of three values:

Eisler Expires April 21, 2011 [Page 11]

Internet-Draft pNFS Metadata Striping October 2010

 * Zero. The means that filehandles used for each L-MDS are the
 same as the filehandle used as the current filehandle to
 LAYOUTGET.

 * One. This means that every L-MDS uses the filehandle in
 mdld_fh_list[0].

 * The same number of elements as
 mdld_complex_addr.nflda_multipath_ds_list. Thus, when sending
 a directory-reading operation to any L-MDS in
 mdld_complex_addr.nflda_multipath_ds_list[X], the filehandle in
 mdld_fh_list[X] MUST be used.

 The field mdld_first_index is the index into the first element of
 the mdld_complex_addr.nflda_stripe_indices array to use.

 When the client receives a layout that has a
 mdl_dirops_layout_segments array with more than zero elements, it
 uses GETDEVICEINFO to map the mdln_devid of each element of the
 array to a device address of data type md_layout_addr4. The value
 of the device address field mdla_simple MUST be set to FALSE. The
 client determines the filehandle and the set of L-MDS network
 addresses to send a name-based operation via the following
 algorithm:

 let cookie_arg be the cookie the pNFS client will
 use as the value of the cookie argument to a
 directory reading operation;

 segment_count = number of elements in
 mdl_dirrdops_layout_segments;

 find index k, such that (cookie_arg >=
 mdl_dirrdops_layout_segments[k].mdld_first_cookie)
 && ((k == (segment_count - 1)) || (cookie_arg
 < mdl_dirrdops_layout_segments[k+1]));

 relative_cookie = cookie_arg -
 mdl_dirrdops_layout_segments[k].mdld_first_cookie;

 address = the result of GETDEVICEINFO on
 mdl_dirrdops_layout_segments[k].mdld_devid;

 i = floor(relative_cookie /
 mdl_dirrdops_layout_segments[k].mdld_unit_size);

 stripe_count = number of elements in
 address.mdla_complex_addr.nflda_stripe_indices;

Eisler Expires April 21, 2011 [Page 12]

Internet-Draft pNFS Metadata Striping October 2010

 j = (stripe_unit_number + mdld_first_index) % stripe_count;

 idx = nflda_stripe_indices[j];
 lmds_count = number of elements in
 address.mdla_complex_addr.nflda_multipath_ds_list;

 if (mdl_dirrdops_layout_segments[k].
 mdldf_use_namebased == TRUE) {
 fh_count = number of elements in mdl_nameops_layout[0].mdln_fh_list;
 address.mdla_complex_addr.nflda_multipath_ds_list;
 } else {
 fh_count = number of elements in
 mdl_dirrdops_layout_segments[k].mdld_fh_list.
 mdldf_fh_list;
 }

 switch (fh_count) {
 case lmds_count:
 if (mdl_dirrdops_layout_segments[k].
 mdldf_use_namebased == TRUE) {
 fh = mdln_fh_list[idx];
 } else {
 fh = mdl_dirrdops_layout_segments[k].mdld_fh_list.
 mdldf_fh_list[idx];
 }
 break;

 case 1:
 if (mdl_dirrdops_layout_segments[k].
 mdldf_use_namebased == TRUE) {
 fh = mdln_fh_list[0];
 } else {
 fh = mdl_dirrdops_layout_segments[k].mdld_fh_list.
 mdldf_fh_list[0];
 }
 break;

 case 0:
 fh = current filehandle passed to LAYOUTGET;
 break;

 default:
 throw a fatal exception;
 break;
 }

 address_list = address.mdla_complex_addr.
 nflda_multipath_ds_list[idx];

Eisler Expires April 21, 2011 [Page 13]

Internet-Draft pNFS Metadata Striping October 2010

 Figure 5

 The client would then select an L-MDS from address_list, and send
 the directory-reading operation using the filehandle specified in
 fh. When the client is reading the beginning of the directory,
 cookie_arg is always zero. Subsequent directory-reading
 operations to read the rest of the directory will use the last
 cookie returned by the L-MDS. An MDS returning a metadata layout
 SHOULD return cookies that can be used directly to the I-MDS that
 returned the layout. However this might not always be possible.
 For example, the directory design of the filesystem of the MDS,
 might not return cookies in ascending order, or any order at all
 for that matter. Whereas, striping by definition requires an
 ordering. In such cases, if a directory is restriped while a pNFS
 client is reading its contents from the L-MDSes, it is possible
 that client will be unable to complete reading the directory, and
 as a result an error is returned to process reading the directory.
 To mitigate this, servers that have sent a CB_LAYOUTRECALL on the
 directory SHOULD NOT revoke the layout as long as they detect that
 the client is completing a read of the entire directory. Once a
 client has received a CB_LAYOUTRECALL, it SHOULD NOT send a
 directory-reading operation to an L-MDS with a cookie argument of
 zero. If the server has sent a CB_LAYOUTRECALL, the L-MDS SHOULD
 reject requests to read the directory that have a cookie argument
 zero and return the error NFS4ERR_PNFS_NO_LAYOUT.

4.6. Definition of the lou_body Field of the layoutupdate4 Data Type

 /// %/*
 /// % * LAYOUT4_METADATA.
 /// % * Encoded in the lou_body field of type layoutupdate4:
 /// % * Nothing. lou_body is a zero length array of octets.
 /// % */
 /// %

 Figure 6

 The LAYOUT4_METADATA layout type has no content for lou_body filed of
 the layoutupdate4 data type.

4.7. Storage Access Protocols

 The LAYOUT4_METADATA layout type uses NFSv4.1 operations (and
 potentially, operations of higher minor versions of NFSv4, subject to
 the definition of a minor version of NFSv4) to access striped
 metadata. The LAYOUT4_METADATA does not affect access to storage
 devices. Thus a client might be able to obtain both a
 LAYOUT4_METADATA layout, and a non-LAYOUT4_METADATA layout type

Eisler Expires April 21, 2011 [Page 14]

Internet-Draft pNFS Metadata Striping October 2010

 (e.g., LAYOUT4_NFSV4_1_FILES, LAYOUT4_OSD2_OBJECTS, or
 LAYOUT4_BLOCK_VOLUME) on the same regular file. Of course, for a
 non-regular file, a pNFS client will be unable to get layouts of
 types LAYOUT4_NFSV4_1_FILES, LAYOUT4_OSD2_OBJECTS, or
 LAYOUT4_BLOCK_VOLUME).

4.8. Revocation of Layouts

 Servers MAY revoke layouts of type LAYOUT4_METADATA. A client
 detects if layout has been revoked if the operation is rejected with
 NFS4ERR_PNFS_NO_LAYOUT. In NFSv4.1, the error NFS4ERR_PNFS_NO_LAYOUT
 could be returned only by READ and WRITE. When the server returns a
 layout of type LAYOUT4_METADATA, the set of operations that can
 return NFS4ERR_PNFS_NO_LAYOUT is: ACCESS, CLOSE, COMMIT, CREATE,
 DELEGRETURN, GETATTR, LINK, LOCK, LOCKT, LOCKU, LOOKUP, LOOKUPP,
 NVERIFY, OPEN, OPENATTR, OPEN_DOWNGRADE, READ, READDIR, READLINK,
 REMOVE, RENAME, SECINFO, SETATTR, VERIFY, WRITE, GET_DIR_DELEGATION,
 SECINFO, SECINFO_NO_NAME, and WANT_DELEGATION.

4.9. Stateids

 The pNFS specification for LAYOUT4_NFSV4_1_FILES states data servers
 MUST be aware of the stateids granted by MDS so that the stateids
 passed to READ and WRITE can be properly validated. This requirement
 extends to the LAYOUT4_METADATA layout type: the L-MDS MUST be aware
 of any non-layout stateids granted by the I-MDS, if and only if the
 client is in contact the L-MDS under direction of a metadata layout
 returned by the I-MDS, and the I-MDS has not recalled or revoked that
 layout. In addition, because an L-MDS can accept operations like
 OPEN and LOCK that create or modify stateids, the I-MDS MUST be aware
 of stateids that an L-MDS has returned to a client, if and only if
 the I-MDS granted the client a metadata layout that directed the
 client to the L-MDS.

 In some cases, one L-MDS MUST be aware of a stateid generated by
 another L-MDS. For example a client can obtain a stateid from the
 L-MDS serving as the destination of name-based operations, which
 includes OPEN. However operations that use the stateid will be
 filehandle-only operations, and the L-MDS the OPEN operation is sent
 to might differ from the L-MDS the LOCK operation for the same target
 file is sent to.

4.10. Lease Terms

 Any state the client obtains from an I-MDS or L-MDS is guaranteed to
 last for an interval lasting as long as the maximum of the lease_time
 attribute of the the I-MDS, and any L-MDS the client is directed to
 as the result of a metadata layout. The client has a lease for each

Eisler Expires April 21, 2011 [Page 15]

Internet-Draft pNFS Metadata Striping October 2010

 client ID it has with an I-MDS or L-MDS, and each lease MUST be
 renewed separately for each client ID.

4.11. Layout Operations Sent to an L-MDS

 An L-MDS MAY allow a LAYOUTGET operation. One reason the L-MDS might
 allow a LAYOUTGET operation is to allow hierarchical striping. For
 example, for name-based operations, the pNFS server might use a radix
 tree, (which the field mdln_namebased_alg would indicate). The first
 four bytes of the component name would be combined to form a 32 bit
 stripe_unit_number. Once the client contacted the L-MDS, it would
 repeat the algorithm on the second four bytes of the component, and
 so on until the component name was exhausted.

 One an L-MDS grants a layout, the client MUST use only the L-MDS that
 granted to the layout to send LAYOUTUPDATE, LAYOUTCOMMIT, and
 LAYOUTRETURN.

4.12. Filehandles in Metadata Layouts

 The filehandles returned in a metadata layout are subject to becoming
 stale at any time. The L-MDS SHOULD NOT return NFS4ERR_STALE unless
 the I-MDS has recalled or revoked the corresponding layout.

4.13. READ and WRITE Operations

 READ and WRITE are filehandle-only operations, and thus the pNFS
 client SHOULD attempt to obtain a non-metadata layout for a regular
 file. If it cannot, then it MAY use the metadata layout to send READ
 and WRITE operations to an L-MDS. An L-MDS MUST accept a READ or
 WRITE operation if the layout the I-MDS returned to the client
 included a filehandle-only layout.

4.14. Recovery

 [[Comment.1: it is likely this section will follow that of the files
 layout type specified in the NFSv4.1 specification.]]

4.14.1. Failure and Restart of Client

 TBD

4.14.2. Failure and Restart of Server

 TBD

Eisler Expires April 21, 2011 [Page 16]

Internet-Draft pNFS Metadata Striping October 2010

4.14.3. Failure and Restart of Storage Device

 TBD

5. Negotiation

 An pNFS client sends a GETATTR operation for attribute
 fs_layout_type. If the reply contains the metadata layout type, then
 metadata striping is supported, subject to further verification by a
 LAYOUTGET operation. If not, the client cannot use metadata
 striping.

6. Operational Recommendation for Deployment

 Deploy the metadata striping layout when it is anticipated that the
 workload will involve a high fraction of non-I/O operations on
 filehandles.

7. Acknowledgements

 Brent Welch had the idea of returning a separate device ID for
 filehandle-only operations in the metadata layout. Pranoop Erasani,
 Dave Noveck, and Richard Jernigan provided valuable feedback.

8. Security Considerations

 The security considerations of Section 13.12 of [2] which are
 specific to data servers apply to lMDSes. In addition, each lMDS
 server and client are, respectively, a complete NFSv4.1 server and
 client, and so the security considerations of [2] apply to any client
 or server using the metadata layout type.

9. IANA Considerations

 This specification requires an addition to the Layout Types registry
 described in Section 22.4 of [2]. The five fields added to the
 registy are:

 1. Name of layout type: LAYOUT4_METADATA

 2. Value of layout type: TBD1.

Eisler Expires April 21, 2011 [Page 17]

Internet-Draft pNFS Metadata Striping October 2010

 3. Standards Track RFC that describes this layout: RFCTBD2, which is
 the RFC of this document.

 4. How the RFC Introduces the specification: L.

 5. Minor versions of NFSv4 that can use the layout type: 1.

 This specification requires the creation of a registry of hash
 algorithms for supporting the field mdln_namebased_alg. Details TBD.

10. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, March 1997.

 [2] Shepler, S., Eisler, M., and D. Noveck, "NFS Version 4 Minor
 Version 1", draft-ietf-nfsv4-minorversion1-26 (work in
 progress), Sep 2008.

Author’s Address

 Mike Eisler
 NetApp
 5765 Chase Point Circle
 Colorado Springs, CO 80919
 US

 Phone: +1-719-599-9026
 Email: mike@eisler.com

Eisler Expires April 21, 2011 [Page 18]

