
Internet Engineering Task Force M. Eisler, Ed.
Internet-Draft NetApp
Intended status: Informational M. Susairaj, Ed.
Expires: April 17, 2011 Oracle
 October 14, 2010

 Extending NFS to Support Enterprise Applications
 draft-eisler-nfsv4-enterprise-apps-01

Abstract

 This document proposes a new operating to efficiently initialize
 files.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 17, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Eisler & Susairaj Expires April 17, 2011 [Page 1]

Internet-Draft Abbreviated Title October 2010

Table of Contents

 1. Introduction . 4
 1.1. Requirements Language 4
 2. Operation XX: INITIALIZE - Initialize File 4
 2.1. ARGUMENT . 4
 2.2. RESULT . 4
 2.3. MOTIVATION . 4
 2.4. DESCRIPTION . 5
 2.5. IMPLEMENTATION . 6
 3. Operation XX: IO_ADVISE - Advise server of client’s
 intended I/O access pattern 6
 3.1. ARGUMENT . 7
 3.2. RESULT . 7
 3.3. MOTIVATION . 7
 3.4. DESCRIPTION . 8
 4. Operation XX: READ_WITH_ADVICE - READ with advice 9
 4.1. ARGUMENT . 9
 4.2. RESULT . 10
 4.3. MOTIVATION . 10
 4.4. DESCRIPTION . 11
 5. Operation XX: WRITE_WITH_ADVICE - WRITE with advice 11
 5.1. ARGUMENT . 12
 5.2. RESULT . 13
 5.3. MOTIVATION . 13
 5.4. DESCRIPTION . 13
 6. Operation XX: SET_WORKFLOW_TAG - Sets the workflow tag of
 a given session . 14
 6.1. ARGUMENT . 15
 6.2. RESULT . 15
 6.3. MOTIVATION . 15
 6.4. DESCRIPTION . 15
 7. Operation XX: SESSION_CTL - Adjust session parameters 15
 7.1. ARGUMENT . 16
 7.2. RESULT . 16
 7.3. MOTIVATION . 16
 7.4. DESCRIPTION . 17
 8. Modification to Operation 42: EXCHANGE_ID - Instantiate
 Client ID . 18
 8.1. ARGUMENT . 18
 8.2. RESULT . 18
 8.3. MOTIVATION . 19
 8.4. DESCRIPTION . 19
 9. Acknowledgements . 19
 10. IANA Considerations . 20
 11. Security Considerations 20
 12. References . 20
 12.1. Normative References 20

Eisler & Susairaj Expires April 17, 2011 [Page 2]

Internet-Draft Abbreviated Title October 2010

 12.2. Informative References 20
 Authors’ Addresses . 21

Eisler & Susairaj Expires April 17, 2011 [Page 3]

Internet-Draft Abbreviated Title October 2010

1. Introduction

 Enterprise applications (such as databases) have requirements that go
 beyond the traditional use cases for NFS. The requirements falls
 into two broad categories: (1) data integrity and (2) quality of
 service. This document proposes a set of operatons for a future
 minor version of NFSv4 to support requirements of enterprise
 applications.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Operation XX: INITIALIZE - Initialize File

2.1. ARGUMENT

 struct INITIALIZE4args {
 /* CURRENT_FH: file */
 stateid4 ia_stateid;
 offset4 ia_offset;
 length4 ia_blocksize
 length4 ia_blockcount;
 length4 ia_reloff_pattern;
 length4 ia_reloff_blocknum;
 opaque ia_pattern<>;
 };

2.2. RESULT

 nfsstat4;

2.3. MOTIVATION

 Most enterprise applications that use files almost always need to
 initialize such files to a known state. Even with existing files,
 after such a file grows, the application needs to initialize the
 expanded region the file. The most trivial initial state is
 intialize every byte to zero. The problem with initializing to zero
 is that it is often difficult to distinguish a byte-range of
 initialized to all zeroes from data corruption, since a pattern of
 zeroes is a probable pattern for corruption. Instead, some
 applications, such as database management systems, use pattern
 consisting of bytes or words of non-zero values. Ideally one would

Eisler & Susairaj Expires April 17, 2011 [Page 4]

Internet-Draft Abbreviated Title October 2010

 like to efficiently initialize an entire file to a specified pattern
 without having to send WRITE requests for the entire file. The
 INITIALIZE operation is bandwidth conserving operation for
 initializing file state.

2.4. DESCRIPTION

 The INITIALIZE operation is used to initialize an open file to an
 iterated pattern. The pattern consists of a fixed string, and a
 block number. The pattern is defined by the arguments.

 o ia_offset: where to start the iterated pattern. This value is
 specified in bytes.

 o ia_blocksize: the size of each iteration of the pattern. Each
 iteration is called a block.

 o ia_reloff_pattern: the relative offset within a block where to
 write the specified pattern encoded in ia_pattern.

 o ia_reloff_blocknum: the relative offset within a block where to
 write a 64 bit block number. The block number is incremented once
 a block is written. The block number is always written in little
 endian order. If ia_reloff_blocknum is set to NFS4_UINT64_MAX,
 then this informs the server that no block number is to be
 written.

 o ia_pattern: a fixed string written to every block. If the length
 of ia_pattern is zero, then this informs the server that no string
 is to be written.

 The field ia_stateid is the stateid corresponding to the current
 filehandle’s share reservation, delegation, or byte range lock.

 An example will illustrate how the client uses INITIALIZE. Suppose
 the arguments (except for ia_stateid) are: { 0, 500, 1000, 8, 0,
 "DeadBeef" }. Then starting with offset zero, the content of the
 file will have these contents.

Eisler & Susairaj Expires April 17, 2011 [Page 5]

Internet-Draft Abbreviated Title October 2010

 offset value (decimal or ASCII)
 0 0 0 0 0 0 0 0 0
 8 ’D’ ’e’ ’a’ ’d’ ’B’ ’e’ ’e’ ’f’
 16-499 zeroes

 500 0 0 0 0 0 0 0 1
 508 ’D’ ’e’ ’a’ ’d’ ’B’ ’e’ ’e’ ’f’
 516-999 zeroes

 ...

 499500 0 0 0 0 0 0 3 231
 499508 ’D’ ’e’ ’a’ ’d’ ’B’ ’e’ ’e’ ’f’
 499516-499999 zeroes

2.5. IMPLEMENTATION

 When an NFS server receives this operation, instead of writing the
 iterated pattern over each block, it should de-allocate the data of
 affected range of the file and record the the values of ia_offset,
 ia_blocksize, ia_blockcount, ia_reloff_pattern, ia_reloff_blocknum,
 and ia_pattern<> in the file’s system metadata. When a client sends
 a READ request, instead of returning zeroes, it should construct a
 response corresponding to the pattern specified in the arguments to
 INITIALIZE.

 An application likely has a legacy pattern for initialized blocks
 which cannot be mapped to that specified for INITIALIZE. The
 application should modified to detect that the block corresponds to
 INITIALIZE’s pattern. When the application sees such a block, it can
 overwrite the block with the legacy pattern. Note that will cause
 the block to be allocated on the NFS server.

 When the length of ia_pattern is zero and the value of
 ia_reloff_blocknum is NFS4_UINT64_MAX, then the client is requesting
 that a hole be punched into the file.

3. Operation XX: IO_ADVISE - Advise server of client’s intended I/O
 access pattern

Eisler & Susairaj Expires April 17, 2011 [Page 6]

Internet-Draft Abbreviated Title October 2010

3.1. ARGUMENT

 enum io_advise_type {
 IO_ADVISE4_SEQUENTIAL_CACHE = 0,
 IO_ADVISE4_SEQUENTIAL_DONTCACHE = 1,
 IO_ADVISE4_RANDOM = 2,
 IO_ADVISE4_PREFETCH = 3,
 IO_ADVISE4_PREFETCH_OPPORTUNISTIC = 4,
 IO_ADVISE4_INTENT_TO_WRITE = 5,
 IO_ADVISE4_RECENTLY_USED = 6
 };

 struct io_directions {
 stateid4 iod_stateid;
 offset4 iod_offset;
 bitmap4 iod_flags;
 };

 struct IO_ADVISE4args {
 /* CURRENT_FH: file */
 io_directions ioaa_directions;
 length4 ioaa_count;
 };

3.2. RESULT

 struct IO_ADVISE4resok {
 bitmap4 ioar_flags;
 };

 union IO_ADVISE4res switch (nfsstat4 ioar_status) {
 case NFS4_OK:
 IO_ADVISE4resok ioar_resok4;
 default:
 void;
 };

3.3. MOTIVATION

 The client is in a better position to deduce the intended I/O pattern
 than the server, especially if the application provides this
 information. With this information, the server can optimize I/O to
 the file.

Eisler & Susairaj Expires April 17, 2011 [Page 7]

Internet-Draft Abbreviated Title October 2010

3.4. DESCRIPTION

 The IO_ADVISE operation is used advise the server as to how the
 holder of the stateid intends to access the file over the specified
 byte range (iod_offset through iod_offset + ioaa_count - 1).

 o IO_ADVISE4_SEQUENTIAL_CACHE: Sequential access to data expected.
 The server should leave data in its cache.

 o IO_ADVISE4_SEQUENTIAL_DONTCACHE: Sequential access to data
 expected. The server does not need to leave data in its cache.

 o IO_ADVISE4_RANDOM: Random access to data expected.

 o IO_ADVISE4_PREFETCH: Stateid holder expects to access the data
 soon; prefetch data in preparation.

 o IO_ADVISE4_PREFETCH_OPPORTUNISTIC: Stateid holder expects to
 access the data soon; prefetch if it can be done at a marginal
 cost.

 o IO_ADVISE4_INTENT_TO_WRITE: Byte range will be written soon so no
 point in caching data.

 o IO_ADVISE4_RECENTLY_USED: The client has recently accessed the
 byte range in its own cache. This informs the server that the
 data in the byte range remains important to the client. When the
 server reaches resource exhaustion, knowing which data is more
 important allows the server to make better choices about which
 data to, for example purge from a cache, or move to secondary
 storage. It also informs the server which delegations are more
 important, since if delegations are working correctly, once
 delegated to a client, a server might never receive another I/O
 request for the file.

 The results indicate which advice the server intends to follow. The
 server MUST NOT return an error if it does not recognize or does not
 support the requested advice. The server MAY return different advice
 than what the client requested. If it does, then this might be due
 to one of several conditions, including, but not limited to: another
 client advising of a different I/O access pattern; a different I/O
 access pattern from another client that that the server has
 heuristically detected; or the server is not able to support the
 requested I/O access pattern, perhaps due to a temporary resource
 limitation (for example, a request for IO_ADVISE4_SEQUENTIAL_CACHE
 might not be supported because the server cannot afford to cache
 data, and/or cannot afford to queue read-a-head requests).

Eisler & Susairaj Expires April 17, 2011 [Page 8]

Internet-Draft Abbreviated Title October 2010

4. Operation XX: READ_WITH_ADVICE - READ with advice

4.1. ARGUMENT

 enum io_advise_type {
 IO_ADVISE4_SEQUENTIAL_CACHE = 0,
 IO_ADVISE4_SEQUENTIAL_DONTCACHE = 1,
 IO_ADVISE4_RANDOM = 2,
 IO_ADVISE4_PREFETCH = 3,
 IO_ADVISE4_PREFETCH_OPPORTUNISTIC = 4,
 IO_ADVISE4_INTENT_TO_WRITE = 5,
 IO_ADVISE4_RECENTLY_USED = 6
 };

 struct io_directions {
 stateid4 iod_stateid;
 offset4 iod_offset;

 bitmap4 iod_flags;
 };

 struct READ_WITH_ADVICE4args {
 /* CURRENT_FH: file */
 io_directions rwaa_directions;
 length4 rwaa_count;
 };

Eisler & Susairaj Expires April 17, 2011 [Page 9]

Internet-Draft Abbreviated Title October 2010

4.2. RESULT

 const NFS4_TWO_GB = 0x80000000;

 typedef opaque twoGB_byte_array4[NFS4_INT32_MAX];

 struct fourGB_buffer4 {
 twoGB_byte_array4[2];
 }

 struct large_buffer4 {
 fourGB_buffer4 lb_big_buffers<>;
 opaque lb_small_buffer<>;
 }

 struct READ_WITH_ADVICE4resok {
 bool rwar_eof;
 bitmap4 rwar_flags;
 large_buffer4 rwar_data;

 };

 union READ_WITH_ADVICE4res switch (nfsstat4 rwar_status) {
 case NFS4_OK:
 READ_WITH_ADVICE4resok rwar_resok4;
 default:
 void;
 };

4.3. MOTIVATION

 Under some circumstances, the IO_ADVISE operation is insufficient
 when the client is also performing a READ operation. Some advice
 needs to be communicated atomically with the READ operation and an
 IO_ADVISE in the same COMPOUND operation as the READ operation would
 fail to provide the necessary advice. For example, if IO_ADVISE
 proceeded READ, and the server was given advice to not cache the data
 requested by READ, the IO_ADVISE would be too late, because the
 server might already have cached the data. If IO_ADVISE preceded
 READ, in order to be effective, the advice would have to be
 communicated across two operations in the same COMPOUND. This would
 complicate the server implementation.

Eisler & Susairaj Expires April 17, 2011 [Page 10]

Internet-Draft Abbreviated Title October 2010

4.4. DESCRIPTION

 The READ_WITH_ADVICE operation is used read from a file and to advise
 the server as to how the reader of intends to access the file over
 the specified byte range (iod_offset through iod_offset + rwaa_count
 - 1).

 o IO_ADVISE4_SEQUENTIAL_CACHE: Sequential access to data expected.
 The server should leave data in its cache.

 o IO_ADVISE4_SEQUENTIAL_DONTCACHE: Sequential access to data
 expected. The server does not need to leave data in its cache.

 o IO_ADVISE4_RANDOM: Random access to data expected.

 o IO_ADVISE4_PREFETCH: Not applicable.

 o IO_ADVISE4_PREFETCH_OPPORTUNISTIC: Not applicable.

 o IO_ADVISE4_INTENT_TO_WRITE: Byte range will be written soon so no
 point in caching data.

 o IO_ADVISE4_RECENTLY_USED: Explicit hint to keep data of byte range
 in cache.

 The results indicate which advice the server intends to follow. The
 server MUST NOT return an error if it does not recognize or does not
 support the requested advice.

 The intent is that READ_WITH_ADVICE is preferred over READ. In
 addition to providing I/O hints, READ_WITH_ADVICE uses 64 bit data
 lengths, which anticipates the expected improvements in average
 network speeds and network buffer capacities. Because the XDR
 standard does not support 64 bit array lengths, the large_buffer4
 data type is introduced to encode an array of zero or more buffers of
 fixed size of 2^32 bytes, followed by a variable length array of up
 to 2^32 - 1 bytes

5. Operation XX: WRITE_WITH_ADVICE - WRITE with advice

Eisler & Susairaj Expires April 17, 2011 [Page 11]

Internet-Draft Abbreviated Title October 2010

5.1. ARGUMENT

 enum stable_how4 { /* from NFSv4.0 */
 UNSTABLE4 = 0,
 DATA_SYNC4 = 1,
 FILE_SYNC4 = 2,
 LAYOUT_SYNC4 = 3 /* new */
 };

 enum io_advise_type {
 IO_ADVISE4_SEQUENTIAL_CACHE = 0,
 IO_ADVISE4_SEQUENTIAL_DONTCACHE = 1,
 IO_ADVISE4_RANDOM = 2,
 IO_ADVISE4_PREFETCH = 3,
 IO_ADVISE4_PREFETCH_OPPORTUNISTIC = 4,
 IO_ADVISE4_INTENT_TO_WRITE = 5,
 IO_ADVISE4_RECENTLY_USED = 6
 };

 struct io_directions {
 stateid4 iod_stateid;
 offset4 iod_offset;
 bitmap4 iod_flags;
 };

 struct WRITE_WITH_ADVICE4args {
 /* CURRENT_FH: file */
 stable_how4 wwaa_stable;
 io_directions wwaa_directions;
 large_buffer4 wwaa_data<>;
 };

Eisler & Susairaj Expires April 17, 2011 [Page 12]

Internet-Draft Abbreviated Title October 2010

5.2. RESULT

 struct WRITE_WITH_ADVICE4resok {
 length4 wwar_count;
 stable_how4 wwar_committed;
 bitmap4 wwar_flags;

 };

 union WRITE_WITH_ADVICE4res switch (nfsstat4 wwar_status) {
 case NFS4_OK:
 WRITE_WITH_ADVICE4resok wwar_resok4;
 default:
 void;
 };

5.3. MOTIVATION

 Under some circumstances, the IO_ADVISE operation is insufficient
 when the client is also performing a WRITE operation. Some advice
 needs to be communicated atomically with the WRITE operation and an
 IO_ADVISE in the same COMPOUND operation as the WRITE operation would
 fail to provide the necessary advice. For example, if IO_ADVISE
 proceeded WRITE and the server was given advice to not cache the data
 requested by WRITE the IO_ADVISE would be too late, because the
 server might already have cached the data. If IO_ADVISE preceded
 WRITE in order to be effective, the advice would have to be
 communicated across two operations in the same COMPOUND. This would
 complicate the server implementation.

 This operation adds a new enumerated value for stable_how4 called
 LAYOUT_SYNC4 in order to reduce the need for LAYOUT_COMMIT
 operations.

5.4. DESCRIPTION

 The WRITE_WITH_ADVICE operation is used write to a file and to advise
 the server as to how the writer intends to access the file over the
 specified byte range (iod_offset through iod_offset + amount of data
 in wwaa_data - 1).

 o IO_ADVISE4_SEQUENTIAL_CACHE: Sequential access to data expected.
 The server should leave data in its cache.

Eisler & Susairaj Expires April 17, 2011 [Page 13]

Internet-Draft Abbreviated Title October 2010

 o IO_ADVISE4_SEQUENTIAL_DONTCACHE: Sequential access to data
 expected. The server does not need to leave data in its cache.

 o IO_ADVISE4_RANDOM: Random access to data expected.

 o IO_ADVISE4_PREFETCH: Not applicable.

 o IO_ADVISE4_PREFETCH_OPPORTUNISTIC: Not applicable.

 o IO_ADVISE4_INTENT_TO_WRITE: Byte range will be over-written soon
 so no point in caching data.

 o IO_ADVISE4_RECENTLY_USED: Explicit hint to keep data of byte range
 in cache.

 The results indicate which advice the server intends to follow. The
 server MUST NOT return an error if it does not recognize or does not
 support the requested advice.

 The intent is that WRITE_WITH_ADVICE is preferred over WRITE. In
 addition to providing I/O hints, WRITE_WITH_ADVICE uses 64 bit data
 lengths, which anticipates the expected improvements in average
 network speeds and network buffer capacities. Because the XDR
 standard does not support 64 bit array lengths, the large_buffer4
 data type is introduced to encode an array of zero or more buffers of
 fixed size of 2^32 bytes, followed by a variable length array of up
 to 2^32 - 1 bytes

 If general, if the value of wwaa_stable is valid, then the value of
 wwar_committed in the reply MUST NOT be less than the value of
 wwaa_stable. The exception is if the wwaa_stable is LAYOUT_SYNC4.
 LAYOUT_SYNC4 is an enumerated value that can be used by the client
 when the server is an pNFS data server, and the client has a layout
 that covers the byte range specified by iod_offset and the amlount of
 data in wwaa_data. If the client sends a WRITE_WITH_ADVICE to a data
 server with wwaa_stable set to LAYOUT_SYNC4, then a successful reply
 MUST return value of wwar_committed equal to LAYOUT_SYNC4 or
 FILE_SYNC4. Regardless what value wwaa_stable is, if the server is a
 pNFS data server, it MAY return a value of wwar_committed equal to
 LAYOUT_SYNC4. Whenever wwar_committed is LAYOUT_SYNC4, this
 indicates that range of the layout covered by iod_offset and
 wwar_count has been committed to the metadata server, and there is
 not need to send a LAYOUT_COMMIT for that range.

6. Operation XX: SET_WORKFLOW_TAG - Sets the workflow tag of a given
 session

Eisler & Susairaj Expires April 17, 2011 [Page 14]

Internet-Draft Abbreviated Title October 2010

6.1. ARGUMENT

 struct SET_WORKFLOW_TAG 4args {

 uint64_t swta_tag;
 };

6.2. RESULT

 nfsstat4

6.3. MOTIVATION

 Enterprise applications require guarantees of quality and/or priority
 of service Providing end-to-end guarantees requires awareness at the
 file services level of the necessary quality and/or priority.

6.4. DESCRIPTION

 Sets the workflow tag of a given session. All operations in progress
 before the server receives SET_WORKFLOW_TAG use the previous tag (if
 any). All operations received after the server receives
 SET_WORKFLOW_TAG use the new tag.

7. Operation XX: SESSION_CTL - Adjust session parameters

Eisler & Susairaj Expires April 17, 2011 [Page 15]

Internet-Draft Abbreviated Title October 2010

7.1. ARGUMENT

 struct channel_attrs4 { /* from NFSv4.1 */
 count4 ca_headerpadsize;
 count4 ca_maxrequestsize;
 count4 ca_maxresponsesize;
 count4 ca_maxresponsesize_cached;
 count4 ca_maxoperations;
 count4 ca_maxrequests;
 uint32_t ca_rdma_ird<1>;
 };

 /* from NFSv4.1 */

 const CREATE_SESSION4_FLAG_PERSIST = 0x00000001;
 const CREATE_SESSION4_FLAG_CONN_BACK_CHAN = 0x00000002;
 const CREATE_SESSION4_FLAG_CONN_RDMA = 0x00000004;

 struct session_ctl4 {
 uint32_t sc_flags;
 channel_attrs4 sc_fore_chan_attrs;
 channel_attrs4 sc_back_chan_attrs;
 };

 typedef session_ctl SESSION_CTL4args;

7.2. RESULT

 union SESSION_CTL4res switch (nfsstat4 scr_status) {
 case NFS4_OK:
 session_ctl4 scr_resok4;
 default:
 void;
 };

7.3. MOTIVATION

 The introduction of the session model in NFSv4.1 imposes an explicit
 limitation on the number of outstanding requests a client can make of
 an NFS server. In enterprise applications, it is possible each NFS
 request corresponds to a single application request. Thus, the size
 of the slot table can bound the number of outstanding application

Eisler & Susairaj Expires April 17, 2011 [Page 16]

Internet-Draft Abbreviated Title October 2010

 requests. While there are workarounds (examples include (1)implement
 a mapping layer between application’s request slot list and the
 client’s slot table (2) create additional sessions in order to
 preserve a one-to-one mapping between application and client slots),
 these workarounds introduce complexity. The application’s needs for
 more slots are dynamic. The NFSv4.1 model assumes a dynamic slot
 table, but the size of the slot table is driven by the server via the
 reply to the SEQUENCE operation and the CB_RECALL_SLOT operation.
 What is missing is a method for the client to request a larger slot
 table.

7.4. DESCRIPTION

 This operation allows the client to request changes to the session’s
 parameters. There are three major fields in the arguments and
 results:

 o sc_flags. These flags correspond to the csa_flags and csr_flags
 argument and result of CREATE_SESSION. In the result, the value
 of a bit in sc_flags MUST be one of:

 * The corresponding bit in sc_flags of the arguments to
 SESSION_CTL.

 * The corresponding bit in sc_flags of the result of the previous
 SESSION_CTL that the server executed.

 * If the server has not executed a previous SESSION_CTL, then the
 corresponding bit in the csr_flags field of the reply the
 CREATE_SESSION operation that created the session.

 o sc_fore_chan_attrs. In the arguments of SESSION_CTL, the fields
 within sc_fore_chan_attrs correspond to the fields of the argument
 csa_fore_chan_attrs in the arguments of CREATE_SESSION. In the
 results of SESSION_CTL, the values fields within
 sc_fore_chan_attrs correspond to the fields of the result
 csr_fore_chan_attrs in the response to CREATE_SESSION. The values
 of the fields in the result sc_fore_chan_attrs are governed
 according to the same rules that govern the values of the fields
 of csr_fore_chan_attrs.

 o sc_back_chan_attrs. In the arguments of SESSION_CTL, the fields
 within sc_back_chan_attrs correspond to the fields of the argument
 csa_back_chan_attrs in the arguments of CREATE_SESSION. In the
 results of SESSION_CTL, the values fields within
 sc_back_chan_attrs correspond to the fields of the result
 csr_back_chan_attrs in the response to CREATE_SESSION. The values
 of the fields in the result sc_back_chan_attrs are governed

Eisler & Susairaj Expires April 17, 2011 [Page 17]

Internet-Draft Abbreviated Title October 2010

 according to the same rules that govern the values of the fields
 of csr_back_chan_attrs.

 The SESSION_CTL operation MUST be sent on a COMPOUND operation
 prefixed by a SEQUENCE operation with the sa_slotid argument set to
 zero. If SESSION_CTL requests a smaller slot table on the fore
 channel, and there are operations in progress on other slots of the
 fore channel, the server MUST do one of (1) return
 NFS4ERR_FORE_CHAN_BUSY (a new error); (2) allow SESSION_CTL to
 succeed, wait for the in progress operations to complete and reply to
 those operations before replying to SESSION_CTL; or (3) if all the in
 progress operations allow the one or both of the errors NFS4ERR_DELAY
 or NFS4ERR_SERVERFAULT, allow SESSION_CTL to succeed, abort the in
 progress operations, reply with to those operations with either
 NFS4ERR_DELAY or NFS4ERR_SERVERFAULT, and then reply to SESSION_CTL.
 Because a server is free to return NFS4ERR_FORE_CHAN_BUSY, it is
 strongly RECOMMENDED that when a client sends a SESSION_CTL operation
 that it have no other requests in progress.

 If SESSION_CTL request a smaller slot table on the backchannel and
 there are operations in progress on other slots of the backchannel,
 the server MUST do one of (1) return NFS4ERR_BACK_CHAN_BUSY; (2)
 allow SESSION_CTL to succeed, and for wait replies to the in progress
 backchannel operations before replying to SESSION_CTL; or (3) if all
 the in progress operations allow the one or both of the errors
 NFS4ERR_DELAY or NFS4ERR_SERVERFAULT, allow SESSION_CTL to succeed,
 abort the in progress operations, reply with to those operations with
 either NFS4ERR_DELAY or NFS4ERR_SERVERFAULT, and then reply to
 SESSION_CTL. Before a client sends a SESSION_CTL operation, it
 SHOULD reply to all in progress backchannel requests of the same
 session as the SESSION_CTL operation.

8. Modification to Operation 42: EXCHANGE_ID - Instantiate Client ID

8.1. ARGUMENT

 /* new */
 const EXCHGID4_FLAG_SUPP_FENCE_OPS = 0x00000004;

8.2. RESULT
 Unchanged

Eisler & Susairaj Expires April 17, 2011 [Page 18]

Internet-Draft Abbreviated Title October 2010

8.3. MOTIVATION

 Enterprise applications require guarantees that an operation has
 either aborted or completed. NFSv4.1 provides this guarantee as long
 as the session is alive: simply send a SEQUENCE operation on the same
 slot with a new sequence number, and the successful return of
 SEQUENCE indicates the previous operation has completed. However, if
 the session is lost, there is no way to know when any in progress
 operations have aborted or completed. In hindsight, the NFSv4.1
 specification should have mandated that DESTROY_SESSION abort/
 complete all outstanding operations.

8.4. DESCRIPTION

 A client SHOULD request the EXCHGID4_FLAG_SUPP_FENCE_OPS capability
 when it sends an EXCHANGE_ID operation. The server SHOULD set this
 capability in the EXCHANGE_ID reply whether the client requests it or
 not. If the client ID is created with this capability then the
 following will occur:

 o The server will not reply to DESTROY_SESSION until all operations
 in progress are completed or aborted.

 o The server will not reply to subsequent EXCHANGE_ID invoked on the
 same Client Owner with a new verifier until all operations in
 progress on the Client ID’s session are completed or aborted.

 o When DESTROY_CLIENTID is invoked, if there are sessions (both idle
 and non-idle), opens, locks, delegations, layouts, and/or wants
 (Section 18.49) associated with the client ID are removed.
 Pending operations will be completed or aborted before the
 sessions, opens, locks, delegations, layouts, and/or wants are
 deleted.

 o The NFS server SHOULD support client ID trunking, and if it does
 and the EXCHGID4_FLAG_SUPP_FENCE_OPS capability is enabled, then a
 session ID created on one node of the storage cluster MUST be
 destroyable via DESTROY_SESSION. In addition, DESTROY_CLIENTID
 and an EXCHANGE_ID with a new verifier affects all sessions
 regardless what node the sessions were created on.

9. Acknowledgements

 Contributors to this document include: Sumanta Chatterjee, Steve
 Daniel, Mike Eisler, Jeff Kimmel, Akshay Shah, Margaret Susairaj, and
 Lynne Thieme. Reviewers of this document include: Dave Noveck.

Eisler & Susairaj Expires April 17, 2011 [Page 19]

Internet-Draft Abbreviated Title October 2010

10. IANA Considerations

 The IO_ADVISE4 flags are considered extendable. Values 32 through 63
 are reserved for private use. All others are standards track.

11. Security Considerations

 None.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

12.2. Informative References

 [I-D.eisler-nfsv4-pnfs-dedupe]
 Eisler, M., "Storage De-Duplication Awareness in NFS",
 draft-eisler-nfsv4-pnfs-dedupe-00 (work in progress),
 October 2008.

 [I-D.eisler-nfsv4-pnfs-metastripe]
 Eisler, M., "Metadata Striping for pNFS",
 draft-eisler-nfsv4-pnfs-metastripe-01 (work in progress),
 October 2008.

 [I-D.faibish-nfsv4-pnfs-access-permissions-check]
 Faibish, S., Black, D., Eisler, M., and J. Glasgow, "pNFS
 Access Permissions Check",
 draft-faibish-nfsv4-pnfs-access-permissions-check-03 (work
 in progress), July 2010.

 [I-D.ietf-nfsv4-minorversion1]
 Shepler, S., Eisler, M., and D. Noveck, "NFS Version 4
 Minor Version 1", draft-ietf-nfsv4-minorversion1-29 (work
 in progress), December 2008.

 [I-D.lentini-nfsv4-server-side-copy]
 Lentini, J., Eisler, M., Kenchammana, D., Madan, A., and
 R. Iyer, "NFS Server-side Copy",
 draft-lentini-nfsv4-server-side-copy-05 (work in
 progress), July 2010.

 [I-D.myklebust-nfsv4-pnfs-backend]

Eisler & Susairaj Expires April 17, 2011 [Page 20]

Internet-Draft Abbreviated Title October 2010

 Myklebust, T., "Network File System (NFS) version 4 pNFS
 back end protocol extensions",
 draft-myklebust-nfsv4-pnfs-backend-00 (work in progress),
 July 2009.

 [I-D.quigley-nfsv4-sec-label]
 Quigley, D. and J. Morris, "MAC Security Label Support for
 NFSv4", draft-quigley-nfsv4-sec-label-01 (work in
 progress), February 2010.

 [RFC3530] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File System
 (NFS) version 4 Protocol", RFC 3530, April 2003.

Authors’ Addresses

 Michael Eisler (editor)
 NetApp
 5765 Chase Point Circle
 Colorado Springs, CO 80919
 US

 Phone: +1 719 599 9026
 Email: mike@eisler.com

 Margaret Susairaj (editor)
 Oracle
 7806 Garden Bend
 Sugar Land, TX 77479
 US

 Phone: +1 408 431 7405
 Email: Margaret.Susairaj@oracle.com

Eisler & Susairaj Expires April 17, 2011 [Page 21]

