
NFSv4 M. Eisler
Internet-Draft NetApp
Intended status: Standards Track October 18, 2010
Expires: April 21, 2011

 Storage De-Duplication Awareness and Sub-File Caching in NFS
 draft-eisler-nfsv4-pnfs-dedupe-01.txt

Abstract

 This Internet-Draft describes a means to add awareness of de-
 duplication storage to NFS in order to save resources on NFS client
 and to reduce bandwidth for servicing READ and WRITE operations. The
 means presented leads to a second benefit of providing sub-file,
 block-granular caching.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Eisler Expires April 21, 2011 [Page 1]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction and Motivation 3
 2. Terminology . 5
 3. De-Duplication . 5
 3.1. Scope of De-Duplication 5
 3.2. READ Optimization via De-Duplication and pNFS 6
 3.2.1. The Definition of De-Duplication Layouts 6
 3.2.2. Negotiation . 22
 3.2.3. Operational Recommendation for Deployment 22
 3.3. WRITE Optimization When De-Duplication Is Present 23
 4. Sub-File Caching . 23
 4.1. Value of the Sub-File Caching Layout Type 24
 4.2. Sub-File Caching Indirect Layouts 24
 4.3. Sub-File Caching Leaf Layouts 24
 5. Acknowledgements . 25
 6. Security Considerations 25
 7. IANA Considerations . 25
 8. Normative References . 27
 Author’s Address . 27

Eisler Expires April 21, 2011 [Page 2]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

1. Introduction and Motivation

 De-duplication is an emerging trend in the data storage. De-
 duplication means that two files that have common content derive that
 content from a common location on the same storage device. As a
 result, the total storage used is less than the total length of each
 file. De-duplication is also called folding.

 Some file systems have the capability to avoid allocation of storage
 space when the value of each byte in a contiguous range is zero.
 Such a range of a file in such a file system is called a "hole", and
 a file with one or more holes is called a "sparse" file. Sparse
 files represent a trivial form of de-duplication since the value of
 every hole of X bytes in length is the common.

 De-duplication is accomplished in several ways including,

 o Hierarchical de-duplication, where one file is derived from
 another, usually by one file starting of as copy of another, but
 zero, or nearly zero bytes of data are actually copied or moved.
 Instead, the two files share common blocks of data storage. An
 example is a snapshot, where a snapshot is made of a file system,
 such that the snapshot and active file system are equal at the
 time snapshot is taken, and share the same data storage, and thus
 are effectively copies that involve zero or near zero movement of
 data. As the source file system changes, the number of shared
 blocks of data storage reduces. A variation of this is a writable
 snapshot (aka clone) which is taken of a file system. In this
 variation as the source and cloned file systems each change, there
 are fewer shared blocks.

 o In-line de-duplication, where a storage access protocol initiator
 (e.g. an NFS client) creates content via write operations, and the
 target of the storage access protocol checks if the content being
 written is duplicated some where else on the target’s storage. If
 so, the data is not written, but instead the logical content
 refers to the duplicate.

 o Background de-duplication, where a background task on the storage
 access protocol target scans for duplicate blocks, and frees all
 but one of the duplicates, mapping the pointers to the now free
 blocks to the remaining duplicate.

 The use of de-duplicated storage does not require changes to the NFS
 protocol. However if the NFS client is caching content from an NFS
 server that provides access to de-duplicated files, without changes
 to the protocol, inefficient use of the resources like memory and
 network bandwidth will result. E.g., two files of length 1024 bytes

Eisler Expires April 21, 2011 [Page 3]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 are exactly the same and are de-duplicated. The client reads, and
 caches the first file. A process on the client requests to read the
 second file. If the client were aware the second file was a
 duplicate of the first, it would not have read the second file, nor
 would it have to cache the second file. A classic use case is
 hypervisors, which switch between multiple guest operating systems on
 a single physical computer. If each of these guest operating systems
 were cloned from a single source, or if each guest was installed from
 the same operating system installation image, then much of the data
 of each guest might be highly de-duplicated. De-duplication
 awareness is consistent with the typical reasons for deploying a
 hypervisor: reducing costs by reducing utilization of memory,
 computer cycles, and network.

 Sub-file caching is most useful when two conditions are met:

 o Multiple NFS clients need to access the same file.

 o At least one client is modifying the same file, provided this
 client updates a relatively small subset of the file.

 Under these two conditions many situations can occur where whole file
 caching, as enabled by NFSv4 delegations, at best provides no benefit
 and at worst presents a drawback. Examples include:

 o One client frequently updates range X of a file, and another
 client frequently reads range Y of a file where X and Y do not
 overlap. With whole file delegations, each client enters a cycle
 of obtain a delegation, process a recall, perform a READ or WRITE
 to the server, with delegations providing no benefit, and thus
 resources being unnecessarily consumed on the client and server.

 o Two clients randomly read and write different ranges of the same
 file, and for a sufficiently large file, the probability that they
 need the to access overlapping ranges is very small. Again, with
 whole file delegations, the clients are locked in the same cycle
 as above.

 This document describes a method by which NFSv4.1 clients can be
 aware of de-duplicated storage for optimizing READ requests. As
 proposed, optimization of READ requests not require a new minor
 version of NFSv4. Instead, it requires several new layout types, and
 thus uses the pNFS protocol [2]. The approach presented here for de-
 duplication awareness is easily extended to support sub-file caching
 at arbitrary granularities and for abitrary sets of byte ranges of a
 file.

 This document also describes a method by which NFSv4.x clients can

Eisler Expires April 21, 2011 [Page 4]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 optimize WRITE requests. The method does require a minor version of
 NFS.

 The XDR description is provided in this document in a way that makes
 it simple for the reader to extract into a ready to compile form.
 The reader can feed this document into the following shell script to
 produce the machine readable XDR description of the de-duplication
 layout:

 #!/bin/sh
 grep "^ *///" | sed ’s?^ */// ??’ | sed ’s?^.*///??’

 I.e. if the above script is stored in a file called "extract.sh", and
 this document is in a file called "spec.txt", then the reader can do:

 sh extract.sh < spec.txt > dd.x

 The effect of the script is to remove leading white space from each
 line of the specification, plus a sentinel sequence of "///".

2. Terminology

 o Source file, the file that contains the de-duplicated data.

 o Target file, the file the client has opened.

 o Block, the smallest unit of de-duplication or caching that the
 server is willing to support.

 o Slab, a byte range that refers to lists of other byte ranges that
 contain de-duplicated data (either in whole, or part). A slab can
 refer to a lists of smaller slabs, or lists of blocks.

 o Regular file: An object of file type NF4REG or NF4NAMEDATTR.

3. De-Duplication

3.1. Scope of De-Duplication

 This document only de-duplicates the data contents of regular files.
 Everything else is considered metadata, and de-duplication of
 metadata is not considered in this document. [[Comment.1: Some
 metadata, including the contents of directories and symbolic links,
 as well as attributes (e.g. ACLs) are practical to de-duplicate, but
 not at the granularity of fixed sized blocks. A future revision of

Eisler Expires April 21, 2011 [Page 5]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 this document might address de-duplication of metadata.]]

 De-duplication awareness of regular file content in NFS has two
 aspects:

 o Optimizing READ requests. Here the goal is to avoid reading a
 pattern of data the client might already have cached.

 o Optimizing WRITE requests. Here the goal is to avoid writing a
 pattern of data the server might already have elsewhere, such that
 the pattern can be de-duplicated.

3.2. READ Optimization via De-Duplication and pNFS

 Providing awareness of de-duplication to clients needs to be
 practical. If the data structures the server provides to the client
 are not compact, or require expensive processing and/or network
 bandwidth, then de-duplication awareness is not practical. The
 approach presented in this document uses leaf bitmaps to indicate
 whether a byte range of a file has been de-duplicated, and if so from
 what offset of what file. Since the granularity of de-duplication
 will vary by implementation, and by file, the NFS server has the
 option of providing indirect bitmaps that refer to bitmaps of finer
 grained byte ranges. An indirect bitmap can refer to another
 indirect bitmap or a leaf bitmap.

 As noted in Section 1, de-duplication can be the result of
 hierarchical, inline, or background processes. This document
 presents an approach to providing awareness of de-duplication allows
 servers to optimize for any approach.

 NFSv4.1 introduces pNFS, which allows clients to access data from
 multiple storage devices. This means that the NFS server is
 distributed across a set of nodes on a network. Such a server might
 be capable of de-duplication among the server’s nodes. The de-
 duplication awareness feature will allow servers to present awareness
 of cross-node de-duplication to NFS clients.

3.2.1. The Definition of De-Duplication Layouts

3.2.1.1. Name of De-Duplication Striping Layout Type

 There are multiple de-duplication layout types, in order to support
 multiple levels of indirection plus a leaf level. Since the maximum
 sized file in pNFS is 2^64 - 1 bytes, a total of 63 levels of
 indirection are provided.

 There are two sets of de-duplication layout types.

Eisler Expires April 21, 2011 [Page 6]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 o Within the first set, the name of the top-level de-duplication
 layout type is LAYOUT4_DEDUP_TOP. The names of the remaining de-
 duplication layout types are in this set LAYOUT4_DEDUP_LEVEL_<xx>,
 where <xx> is a two digit decimal number that ranges between 02
 and 64. The server MUST NOT return LAYOUT4_DEDUP_LEVEL_<xx> in
 the response to a GETATTR request for the fs_layout_type
 attribute.

 o Within the second set, the name of the top-level de-duplication
 layout type is LAYOUT4_DEDUP_ROC_TOP. The names of the remaining
 de-duplication layout types are in this set
 LAYOUT4_DEDUP_ROC_LEVEL_<xx>, where <xx> is a two digit decimal
 number that ranges between 02 and 64. The server MUST NOT return
 LAYOUT4_DEDUP_LEVEL_<xx> in the response to a GETATTR request for
 the fs_layout_type attribute.

3.2.1.2. Value of De-Duplication Striping Layout Type

 See Section 7.

3.2.1.3. Definition of the da_addr_body Field of the device_addr4 Data
 Type

 /// %#include "nfs4_prot.h"
 ///
 /// %/* Encoded in the da_addr_body field. */
 ///
 /// union dd_layout_addr switch (bool ddla_simple) {
 /// case TRUE:
 /// multipath_list4 ddla_simple_addr;
 /// case FALSE:
 /// layouttype4 ddla_complex_addr;
 /// };

 Figure 1

 The device address is only used in leaf layouts, and even then, only
 when cross server-node de-duplication is in effect. There are two
 types of device addresses, a simple network address, with zero or
 more alternate addresses for multipathing, or a complex address which
 is the value of another layout type. The value of
 ddla_complex_addr.ddldp_ltype MUST NOT be LAYOUT4_DEDUP_TOP or any of
 LAYOUT4_DEDUP_LEVEL_<xx>.

Eisler Expires April 21, 2011 [Page 7]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

3.2.1.4. Definition of the loh_body Field of the layouthint4 Data Type

 /// enum dd_layout_hint_care4 {
 ///
 /// DD4_CARE_STRIPE_UNIT_SIZE = 0x040,
 /// DD4_CARE_STRIPE_UNIT_ALIGN = 0x100
 /// };
 /// %
 /// %/* Encoded in the loh_body field of type layouthint4: */
 /// %
 /// struct dd_layouthint4 {
 /// uint32_t ddlh_care;
 /// length4 ddlh_stripe_unit_size;
 /// length4 ddlh_stripe_unit_align;
 /// };

 Figure 2

 The layout-type specific content for the LAYOUT4_DEDUP_TOP layout
 type is composed of three fields. The first field, ddlh_care, is a
 set of flags indicating which values of the hint the client cares
 about. If DD4_CARE_STRIPE_UNIT_SIZE is set, then the client
 indicates in the second field, preferred unit of granularity for de-
 duplication in bytes. If DD4_CARE_STRIPE_UNIT_ALIGN is set, then the
 client indicates in the third field, the preferred minimum alignment
 de-duplicated units. For example, if the client specifies
 ddlh_stripe_unit_size as 1024, and ddlh_stripe_unit_align as 128,
 then if two files have in common content a string of bytes that is
 1024 bytes long, and the string is at offset zero in the first file,
 and offset 1024 + 128 = 1152 in the second file, then the client
 would like the server to de-duplicate the common 1024 byte string.
 Note that the leaf layouts returned by the server are unable to
 indicate byte ranges that are not whole multiples of the unit size
 the server uses, so if the server accepts a layout hint with
 ddlh_stripe_unit_align less than ddlh_stripe_unit_size, it will
 report units that are equal to ddlh_stripe_unit_align. If the client
 specifies a value in ddlh_stripe_unit_align that is greater than the
 value of ddlh_stripe_unit_size, the server will ignore the
 ddlh_stripe_unit_align hint.

Eisler Expires April 21, 2011 [Page 8]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

3.2.1.5. Definition of the loc_body Field of the layout_content4 Data
 Type

 /// %/*
 /// %/* How the bits of each element
 /// % * of ddll_blockmap are split up
 /// % */
 /// const DDLL4_BLKMAP_MASK_ACTIVE = 0x8000000000000000;
 ///
 /// %/* The remain bits follow DDLL4_BITS_* */
 /// const DDLL4_BLKMAP_MASK_PARTITIONED = 0x7FFFFFFFFFFFFFFF;
 ///
 /// %/* These constants index into ddll_bmap_partition */
 /// const DDLL4_BITS_FOR_DEVID_IDX = 0;
 /// const DDLL4_BITS_FOR_FH_IDX = 1;
 /// const DDLL4_BITS_FOR_BLK_NUM_IDX = 2;
 ///
 /// struct dd_layout_leaf4 {
 /// length4 ddll_block_size;
 ///
 /// % /* ddll_blockmap_partition[0-2] MUST add up to 63 */
 ///
 /// opaque ddll_blockmap_partition[4];
 /// verifier4 ddll_fhsuffix;
 /// nfs_fh4 ddll_fhlist<>;
 /// uint64_t ddll_change_attr<>;
 /// deviceid4 ddll_devlist<>;
 /// uint64_t ddll_blockmap<>;
 /// };
 ///
 /// struct dd_layout_indirect4 {
 /// length4 ddli_slab_size;
 /// layouttype4 ddli_next_level;
 /// bitmap4 ddli_bitmap;
 /// };
 ///
 /// union dd_layout4_u switch (bool ddl_is_leaf) {
 /// case TRUE:
 /// dd_layout_leaf4 ddl_leaf;
 /// case FALSE:
 /// dd_layout_indirect4 ddl_indirect;
 /// };
 /// struct dd_layout4 {
 /// offset4 ddl_firstoff;
 /// offset4 ddl_lastoff;
 /// dd_layout4_u ddl_u;
 /// };

Eisler Expires April 21, 2011 [Page 9]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 Figure 3

 The first fields further bound the layout.

 o ddl_firstoff, the first offset in the file that the layout has de-
 duplication information for. The relationship between the
 lo_offset field of the layout4 data type that envelops the de-
 duplication layout and ddl_firstoff is that ddl_firstoff MUST be
 greater than or equal to lo_offset. If ddl_firstoff is not equal
 to lo_offset, then this means that the byte range from lo_offset
 through ddl_firstoff - 1 inclusive either has not been de-
 duplicated or the server has decided to not provide the
 information. The value of the field ddl_firstoff MUST be a whole
 multiple of ddli_slab_size or ddll_block_size.

 o ddl_lastoff, the last offset in the file that the layout has de-
 duplication information for. Field ddl_lastoff MUST be greater
 than or equal to ddl_firstoff. Field ddl_lastoff MUST be less
 than or equal to lo_offset + lo_length - 1. If the difference
 between ddl_lastoff and lo_offset + lo_length - 1 exceeds zero,
 then this means that byte range from offset ddl_lastoff + 1
 through lo_offset + lo_length - 1 inclusive either has not be been
 de-duplicated or the server has decided to not provide the
 information. The value of the ddl_lastoff + 1 MUST be a whole
 multiple of ddli_slab_size or ddll_block_size, even if this means
 ddl_lastoff goes beyond the end of file.

 The remainder of the de-duplication layout is either a leaf layout or
 an indirect layout.

 An indirect layout consists of,

 o ddli_slab_size is the length, in bytes of each slab represented by
 the ddli_bitmap bitmap array.

 o ddli_next_level is the layout type the NFS client MUST use when
 using LAYOUTGET to get finer grained de-duplication information
 about the de-duplication of one or more slabs. This field SHOULD
 be one of LAYOUT4_DEDUP_LEVEL_<xx>. The use of ddli_next_level
 provides a hint to the server for what slab or block size to use
 on the next level of de-duplication.

 o ddli_bitmap is a bitmap. If bit N is set in ddli_bitmap, then
 this means that slab N has de-duplicated content. Each bit
 respects a byte range (a slab) of size ddli_slab_size, such that
 ddl_firstoff is the start of the first slab (slab zero, relative
 to ddl_firstoff). Slab N represents the byte range ddl_firstoff +
 N * ddli_slab_size to ddl_firstoff + (N + 1) * ddli_slab_size - 1,

Eisler Expires April 21, 2011 [Page 10]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 inclusive. The field ddli_bitmap is an array of elements each
 consisting of a 32 bit unsigned integer. The number of elements
 in ddli_bitmap MUST be greater than or equal to ((((ddl_lastoff -
 ddl_firstoff) + 1) / ddli_slab_size) / 32) rounded up to the next
 whole number.

 A leaf layout consists of,

 o ddll_block_size is the length, in bytes of each slab represented
 by the ddll_blockmap array.

 o ddll_blockmap_partition is an array of bytes, the first three of
 which are inspected by the client. This array indicates how each
 element of ddll_blockmap is partitioned.

 o ddll_fhlist is an array of zero or more filehandles. Each element
 of ddll_blockmap can correspond to a filehandle in ddll_fhlist.
 Each filehandle represents a source file that has a de-duplicated
 block that it shares with the target file. If the array is of
 zero length, then the source file for all de-duplicated blocks is
 the target file.

 o ddll_fhsuffix MUST be appended to each filehandle in ddll_fhlist
 that the client uses for READ or LAYOUTGET operations. This
 allows the server to detect if the client is using an invalid
 layout.

 o ddll_change_attr is an array of zero or more change attributes.
 If the value of the layout type is between LAYOUT4_DEDUP_TOP and
 LAYOUT4_DEDUP_LEVEL_64, inclusive, then the length of
 ddll_change_attr MUST be greater than or equal to 1. If the value
 of the layout type is between LAYOUT4_DEDUP_ROC_TOP and
 LAYOUT4_CACHE_LEVEL_64, inclusive, then the length of
 ddll_change_attr MUST be zero.

 o If ddll_change_attr is not zero in length, then each element
 corresponds an element in ddll_fhlist with the same position in
 the array. I.e. ddll_change_attr[i] is the change attribute for
 the source file identified by ddll_fhlist[i]. If the array is of
 zero length, then for each byte range represented by an element of
 ddl_blockmap that has DDLL4_BLKMAP_MASK_ACTIVE set, the server
 promises to recall the layout of the byte range before the data on
 the range mapped from the source file (represented by an element
 of ddl_fhlist) is changed and before data on range of the target
 file changed. If the ddll_fhlist array is of zero length, and the
 ddll_change_attr array has one element, then ddll_change_attr[0]
 is the change attribute for the source file, which also happens to
 be the target file.

Eisler Expires April 21, 2011 [Page 11]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 o ddll_devlist is an array of zero or more device IDs, for the
 purpose of enabling cross-node de-duplication. Each element of
 ddll_blockmap can correspond to a device ID in ddll_devlist. Each
 device ID represents a device that has a source file with a de-
 duplicated block. The device ID is always for a LAYOUT4_DEDUP_TOP
 device, and can either map to a network address of an MDS, or a
 non-de-duplication layout type. The device ID will map to an MDS
 network address if the source file has not been striped.
 Otherwise, the device ID will be the layout type used for striping
 the file. By providing the layout type, the client does not have
 to send a GETATTR request on the source file for fs_layout_type
 attribute.

 o ddll_blockmap is an array of elements, each a 64 bit unsigned
 integer. Each element corresponds to a block of size
 ddll_block_size. E.g., the first element, ddll_blockmap[0]
 corresponds to the byte range, ddl_firstoff through ddl_firstoff +
 ddll_block_size - 1 inclusive.

 * If ddll_blockmap[i] & DDLL4_BLKMAP_MASK_ACTIVE is non-zero,
 then this element corresponds to a block that is de-duplicated.
 Otherwise, the element does not correspond to a de-duplicated
 block, and the rest of the element is undefined.

 * The mask ddll_blockmap[i] & DDLL4_BLKMAP_MASK_PARTITIONED
 represents a bit field that is partitioned according to the
 content of ddll_blockmap_partition.

 The element ddll_blockmap_partition[DDLL4_BITS_FOR_DEVID_IDX]
 indicates how many bits at the start of the bit field are for
 indexing into the ddll_devlist array. The number of elements
 in ddll_devlist MUST be less than or equal to
 2^ddll_blockmap_partition[DDLL4_BITS_FOR_DEVID_IDX]. If
 ddll_blockmap_partition[DDLL4_BITS_FOR_DEVID_IDX] is zero, then
 this means that the blocks of the source file come from the
 same MDS as the target file.

 The element ddll_blockmap_partition[DDLL4_BITS_FOR_FH_IDX]
 indicates how many bits in the middle of the bit field are for
 indexing into the ddll_fhlist array. The number of elements in
 ddll_fhlist MUST ne less than or equal to
 2^ddll_blockmap_partition[DDLL4_BITS_FOR_FH_IDX]. If
 ddll_blockmap_partition[DDLL4_BITS_FOR_FH_IDX] is zero, this
 means that the source file is the same as the target file in
 every element of ddll_blockmap_partition.

 The element ddll_blockmap_partition[DDLL4_BITS_FOR_BLK_NUM_IDX]
 indicates how many bits at the end of the bit field correspond

Eisler Expires April 21, 2011 [Page 12]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 to an absolute block number into the source file. The absolute
 offset is calculated by computing the product of
 ddll_block_size and the absolute block number. If
 ddll_blockmap_partition[DDLL4_BITS_FOR_BLK_NUM_IDX] is zero,
 then this means the absolute block number of the source is the
 same as the absolute block number of the target.

 The dynamic partitioning of the ddll_blockmap element allows
 for several optimizations. If the de-duplication in the range
 identified by the layout is due to hierarchical de-duplication,
 then there is no need for a block number, so
 ddll_blockmap_partition[DDLL4_BITS_FOR_BLK_NUM_IDX] will be
 zero. If there is no cross node de-duplication in the range
 then ddll_blockmap_partition[DDLL4_BITS_FOR_DEVID_IDX] will be
 zero. If all the de-duplication in the range is confined to
 the target file, i.e. the duplicate blocks were only in the
 target file and no other file, then
 ddll_blockmap_partition[DDLL4_BITS_FOR_FH_IDX] will be zero.

 An outline for an algorithm for processing a read() system call when
 the potential for de-duplicated data exists follows. This algorithm
 illustrates how the layout is interpreted. In this algorithm, we
 assume that the client always starts with a layout that spans the
 entire file.

 /*
 * Returns a vector call "result" of elements
 * containing key / value pairs of ((offset,
 * length), (status, source_mds, source_fh,
 * source_offset)).
 */

 dedupe_read(read_offset, read_length, target_fh,
 layout4 logr_layout[]) {

 if (number of elements in logr_layout == zero) {
 result[(read_offset, read_length)] =
 NO_DEDUP_AVAILABLE;

 return result;
 }

 for i from the end of logr_layout to start {
 if (logr_layout[i].lo_offset > read_offset) {
 continue;
 }

Eisler Expires April 21, 2011 [Page 13]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 /* check for range split across segments */
 if (logr_layout[i].lo_length <
 read_length) {

 read_offset_A = read_offset;
 read_length_A = logr_layout[i].lo_length;
 read_offset_B = logr_layout[i+1].lo_offset;
 read_length_B = read_length -
 read_length_A;

 result[(read_offset_A, read_length_A)] =
 dedupe_read(read_offset_A, read_length_A,
 target_fh, logr_layout);

 result[(read_offset_B, read_length_B)] =
 dedupe_read(read_offset_B, read_length_B,
 target_fh, logr_layout);

 return result;
 }

 /*
 * If requested offset exceeds last offset of this layout
 * segment, then we have no de-dupe opportunity.
 */
 if (read_offset > ddl_lastoff) {
 result[(read_offset, read_length)] =
 NO_DEDUP_AVAILABLE;
 return result;
 }

 last_offset = read_offset + read_length - 1;

 if (last_offset > ddl_lastoff) {
 /* we cannot de-dupe the entire range */

 result[(ddl_lastoff + 1, last_offset -
 ddl_lastoff)] = NO_DEDUP_AVAILABLE;
 last_offset = ddl_lastoff;
 }
 if (read_offset < ddl_firstoff) {
 /* we cannot de-dupe the entire range */

 result[(read_offset, ddl_firstoff -
 read_offset)] = NO_DEDUP_AVAILABLE;
 read_offset = ddl_firstoff;
 }

Eisler Expires April 21, 2011 [Page 14]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 if (ddl_is_leaf == FALSE) {
 /*
 * Indirect layout. See if the slabs that correspond
 * to the affected range are de-duplicated.
 */

 let trunc_read_off = read_offset truncated
 to next lowest multiple of
 ddli_slab_size;

 let round_last_off = (last_offset rounded
 to next highest multiple of
 ddli_slab_size) - 1;

 first_bit = trunc_read_off /
 ddli_slab_size;
 last_bit =
 (round_last_off + 1) / ddli_slab_size;

 for (j = first_bit; j++; j <= last_bit) {
 k = j / 32;
 l = j mod 32;
 bit = l << 1;

 if (j == first_bit) {
 read_offset_A = read_offset;
 read_length_A = trunc_read_off +
 ddli_slab_size - read_offset;

 } else {
 read_offset_A = ddl_firstoff + (j *
 ddli_slab_size);
 read_length_A = ddli_slab_size;
 }

 if ((ddli_bitmap[k] & bit) == 1) {
 next_layout_off = j * ddli_slab_size +
 trunc_read_off;

 next_layout_length = ddli_slab_size;
 next_layout_type = ddli_next_level;

 if (client does not have layout for
 (next_layout_off,
 next_layout_length, and
 ddli_next_level) {

 send a LAYOUTGET request;

Eisler Expires April 21, 2011 [Page 15]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 }
 let logr_layout_A = logr_layout array
 of layout for (next_layout_off,
 next_layout_length,
 next_layout_type);

 result[(read_offset_A, read_length_A)]
 = dedupe_read(read_offset_A,
 read_length_A, target_fh,
 logr_layout_A);

 } else {
 result[(read_offset_A, read_length_A)]
 = NO_DEDUP_AVAILABLE;

 }
 }
 } else {
 /* process a leaf layout */

 /*
 * determine the masks for block number, filehandle index, and
 * device ID index.
 */
 let trunc_read_off = read_offset truncated
 to next lowest multiple of
 ddll_block_size;

 let round_last_off = (last_offset rounded
 to next highest multiple of
 ddll_block_size) - 1;

 bits_for_blknum = ddll_blockmap_partition
 [DDLL4_BITS_FOR_BLK_NUM_IDX];

 mask_for_blknum = 0;
 for (j = 0; j < bits_for_blknum; j++) {
 mask_for_blknum = (mask_for_blknum
 << 1) | 1;
 }

 bits_for_fh = ddll_blockmap_partition
 [DDLL4_BITS_FOR_FH_IDX];

 mask_for_fh = 0;
 for (j = 0; j < bits_for_fh; j++) {
 mask_for_fh = (mask_for_blknum <<
 1) | 1;

Eisler Expires April 21, 2011 [Page 16]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 }

 mask_for_fh = mask_for_fh <<
 bits_for_blknum;

 bits_for_dev = ddll_blockmap_partition
 [DDLL4_BITS_FOR_DEVID_IDX];

 mask_for_dev = 0;
 for (j = 0; j < bits_for_dev; j++) {
 mask_for_dev = (mask_for_dev << 1)
 | 1;
 }
 mask_for_dev = mask_for_dev <<
 (bits_for_blknum + mask_for_fh);

 if ((bits_for_blknum + bits_for_fh +
 bits_for_dev) != 63) {

 result[(read_offset, read_length)] =
 CORRUPT_LAYOUT;

 return result;
 }

 first_block = trunc_read_off /
 ddll_block_size;
 last_block = (round_last_off + 1) /
 ddll_block_size;
 slopoff = read_offset - trunc_read_off;
 sloplen = round_last_off - last_offset;

 read_offset_A = trunc_read_off;

 for (j = first_block; j++, read_offset_A +=
 ddll_block_size; j <= last_block) {

 if (ddll_blockmap[j] &
 DDLL4_BLKMAP_MASK_ACTIVE) {

 blockmap = ddll_blockmap[j] &
 DDLL4_BLKMAP_MASK_PARTITIONED;

 source_length = ddll_block_size;
 source_change = 0;
 source_dev = 0;

 if (mask_for_blknum == 0) {

Eisler Expires April 21, 2011 [Page 17]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 source_offset = ddl_firstoff + j *
 ddll_block_size;
 } else {
 source_offset = (blockmap &
 mask_for_blknum) * ddll_block_size;
 }

 if (j == first_block) {
 source_offset += slopoff;
 read_offset_B = read_offset;
 } else {
 read_offset_B = read_offset_A;
 }

 if (j == last_block) {
 source_length -= sloplen;
 }

 if (mask_for_fh == 0) {
 source_fh = target_fh;

 if (number of elements in
 ddll_change_attr > 0) {
 source_change = ddll_change_attr[0];
 }
 } else {
 fhidx = (blockmap & mask_for_fh) >>
 bits_for_blknum;
 source_fh = ddll_fhlist[fhidx];
 if (number of elements in
 ddll_change_attr > 0) {
 source_change =
 ddll_change_attr[fhidx];
 }
 }
 read_source_fh = source_fh concatenated
 with ddll_fhsuffix;
 source_ltype = 0;
 source_mds = MDS of target_fh;
 if (mask_for_dev != 0) {
 devidx = (blockmap & mask_for_dev) >>
 bits_for_blknum;
 source_dev = ddll_devlist[devidx];

 if (client does not have device
 address for source_dev) {
 send a GETDEVICEINFO
 (LAYOUT4_DEDUP_TOP, source_dev);

Eisler Expires April 21, 2011 [Page 18]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 }

 if (ddla_simple from GETDEVICEINFO is
 TRUE) {
 let source_mds be an element of
 ddla_simple_addr;
 } else {
 source_ltype = ddldp_ltype;

 if (client does not have layout for
 (source_mds, source_fh,
 source_ltype, source_offset,
 source_length)) {

 send a LAYOUTGET request for
 (read_source_fh, source_ltype,
 source_dev, source_offset,
 source_length) to target_fh’s
 MDS;

 cache LAYOUTGET result;
 }

 if (client still does not have
 layout for (source_mds, source_fh,
 source_ltype, source_offset,
 source_length)) {
 source_ltype = 0;
 } else {
 let source_layout = the layout
 from cache;
 }
 }
 }

 if (source_change == 0 || client has
 delegation on source_fh) {

 if ({source_fh, source_mds,
 source_offset, source_length} in
 cache) {

 result[(read_offset_B,
 source_length)] =

 (SATISFY_READ_FROM_CACHE,
 source_mds, source_fh,
 source_offset;)

Eisler Expires April 21, 2011 [Page 19]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 } else {
 if (source_ltype == 0) {
 if (read_source_fh not yet open)
 {
 send an OPEN request for
 read_source_fh;
 }
 send a { PUTFH read_source_fh,
 READ source_offset,
 source_length } request to
 source_mds;

 enter results in cache;

 } else {
 read from read_source_fh,
 source_offset, source_length
 according to source_layout;

 enter results in cache;
 }
 result[(read_offset_B,
 source_length)] =
 (SATISFY_READ_FROM_CACHE,
 source_mds, source_fh,
 source_offset);

 }
 } else {
 if ({source_mds, source_fh,
 source_offset, source_length} in
 cache) {

 send a { PUTFH source_fh, GETATTR
 change } request to source_mds;

 if (change attribute ==
 source_change) {

 result[(read_offset_B,
 source_length)] =
 (SATISFY_READ_FROM_CACHE,
 source_mds, source_fh,
 source_offset);

 } else {
 result[(read_offset_B,
 source_length)] =

Eisler Expires April 21, 2011 [Page 20]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 (STALE_DEDUP_LAYOUT,
 source_mds, source_fh,
 source_offset);

 }
 }
 }
 }
 }
 }
 return result;
 }

 /* should never get here */
 result[(read_offset, read_length)] =
 CORRUPT_LAYOUT;

 return result;
 }

 Figure 4

 There is a trade off between resources (space and time) used for
 providing de-duplication layouts (especially leaf layouts) and
 resources for redundant caching of de-duplicated storage. E.g., if a
 client has to descend through 52 levels of caching to avoid caching a
 single 4096 byte block twice, then it is not cost effective for the
 server to return a layout. On the other hand, if 99% of a file is
 using de-duplicated storage, then having a complete block map for a
 one gigabyte file, or at least the parts of the file the client wants
 to cache, is more effective than redundantly caching nearly one
 gigabyte of storage.

3.2.1.6. Definition of the lou_body Field of the layoutupdate4 Data
 Type

 /// %/*
 /// % * LAYOUT4_DEDUP_TOP or any of LAYOUT4_DEDUP_LEVEL_<xx>.
 /// % * Encoded in the lou_body field of type layoutupdate4:
 /// % * Nothing. lou_body is a zero length array of octets.
 /// % */
 /// %

 Figure 5

 The LAYOUT4_DEDUP_TOP and LAYOUT4_DEDUP_LEVEL_<xx> layout types have
 no content for lou_body filed of the layoutupdate4 data type.

Eisler Expires April 21, 2011 [Page 21]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

3.2.1.7. Storage Access Protocols

 The LAYOUT4_DEDUP_TOP and LAYOUT4_DEDUP_LEVEL_<xx> layout types use
 NFSv4.1 operations (and potentially, operations of higher minor
 versions of NFSv4, subject to the definition of a minor version of
 NFSv4) to access de-duplicated data. The de-duplication layout types
 do not affect access to storage devices. Thus a client might be able
 to obtain both a de-duplication layout type and a non-de-duplication
 layout type (e.g., LAYOUT4_NFSV4_1_FILES, LAYOUT4_OSD2_OBJECTS, or
 LAYOUT4_BLOCK_VOLUME) on the same regular file.

3.2.1.8. Revocation of Layouts

 Servers MAY revoke de-duplication layouts. A client using a de-
 duplication layout SHOULD check if the change attribute of the source
 file has changed. The use of the ddll_fhsuffix will prevent clients
 using revoked de-duplication layouts from using potentially stale
 information. Attempts to use filehandles with the value of
 ddll_fhsuffix appended, will result in NFS4ERR_STALE.

3.2.1.9. Recovery

 [[Comment.2: it is likely this section will follow that of the files
 layout type specified in the NFSv4.1 specification.]]

3.2.1.9.1. Failure and Restart of Client

 TBD

3.2.1.9.2. Failure and Restart of Server

 TBD

3.2.1.9.3. Failure and Restart of Storage Device

 TBD

3.2.2. Negotiation

 A pNFS client sends a GETATTR request for the fs_layout_type
 attribute to see if the LAYOUT4_DEDUP_TOP layout type is supported.

3.2.3. Operational Recommendation for Deployment

 Deploy the de-duplication layouts when it a significant fraction of
 data storage is de-duplicated.

Eisler Expires April 21, 2011 [Page 22]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

3.3. WRITE Optimization When De-Duplication Is Present

 There are two goals

 o Avoid a WRITE of a pattern if client knows that server has stored
 that pattern somewhere else besides the combination of target file
 and byte range. the server

 o Even if the client does not know if the pattern is stored
 somewhere, provide a hint to the server that allows it to quickly
 determine if the pattern is present.

 Accomplishing the former merely requires an operation that refers the
 server to a byte of a file it has stored. One way to is to leverage
 the proposed COPY operation [3]. Accomplishing the latter can be
 done by the client providing checksums of byte range it would like to
 avoid writing. However, to do so would require that client and
 server agree on checksum algorithm, which has the practical problem
 that clients and servers with pre-existing de-duplication features
 are likely to not agree on the checksum algorithm. For this reason,
 this version of the document does not pursue the second goal.

 One caveat using COPY to achieve the first goal (avoiding a WRITE
 when the client knows the server has stored the pattern elsewhere) is
 that there is a window between the time the client has cached a byte
 range of the source file and the time the server receives the COPY
 request. The use of a de-duplication layout that guarantees a recall
 before the relevant byte range of the source file is changed. Note
 that this guarantee is only present if ddll_change_attr is of zero
 length. The client requires a way to force the server to return such
 de-duplication layouts. When the client requests the top level de-
 duplication layout with a type equal to LAYOUT4_DEDUP_TOP |
 LAYOUT4_DEDUP_RECALL_ON_CHANGE. The value of
 LAYOUT4_DEDUP_RECALL_ON_CHANGE is mask with one bit set:

 /// const LAYOUT4_DEDUP_RECALL_ON_CHANGE = 0x40;

 Figure 6

4. Sub-File Caching

 Sub-file caching is built using the concepts and data structures
 defined in Section 3.2, which introduces a set of layout types that
 allow customers to optimize READ operations when the NFS client and
 server support de-duplication. Sub-file caching provides a subset of
 the functionality defined by the LAYOUT4_DEDUP_ROC_TOP layout type
 (and layout types LAYOUT4_DEDUP_ROC_LEVEL_02 through

Eisler Expires April 21, 2011 [Page 23]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 LAYOUT4_DEDUP4_ROC_LEVEL_64 inclusive). The primary similarity is
 that a sub-file cache leaf layout provides a guarantee that if a
 block is mapped in the bitmap, then the server will recall a layout
 covering that block before allowing the block to be modified. The
 primary difference is that sub-file cache leaf layout does not have
 de-duplication references.

4.1. Value of the Sub-File Caching Layout Type

 See Section 7.

4.2. Sub-File Caching Indirect Layouts

 Indirect layouts for sub-file caching have the same format and data
 types as indirect layouts for de-duplication.

4.3. Sub-File Caching Leaf Layouts

 Leaf layouts for sub-file caching have the same format and data types
 as indirect layouts for de-duplication. However, there are the
 following restrictions:

 o The value of ddll_blockmap_partition[DDLL4_BITS_FOR_DEVID_IDX]
 MUST be zero.

 o The value of ddll_blockmap_partition[DDLL4_BITS_FOR_FH_IDX] MUST
 be zero.

 o The value of ddll_blockmap_partition[DDLL4_BITS_FOR_BLK_NUM_IDX]
 MUST be 63.

 o The length of ddll_fhlist MUST be zero.

 o The length of ddll_change_attr MUST be zero.

 o The length of ddll_devlist MUST be zero.

 The effect of the length of ddll_change_attr being of zero length is
 that server will recall the layout of a block before allowing that
 block to be modified. Except for the restriction that
 ddll_change_attr is of zero length, the effect of the above
 restrictions is to disable de-duplication when using the sub-file
 caching layout types. If client wants both sub-file caching and de-
 duplication awareness, it can request the LAYOUT4_DEDUP_ROC_TOP
 layout type.

 Note that the client can safely cache a block of file only if block’s
 corresponding element in the ddll_blockmap array has the

Eisler Expires April 21, 2011 [Page 24]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 DDLL4_BLKMAP_MASK_ACTIVE bit set. The rest of the bits of the
 element of ddll_blockmap MUST be equal to the array index of the
 element.

5. Acknowledgements

 Thanks to Pranoop Erasani, Arthur Lent, and Dave Noveck for
 validating the strategy described in this document.

6. Security Considerations

 If an ACCESS operation by the principal on the source file would
 fail, then the server has take care when processing requests for de-
 duplication layouts of the target file. If the server is unable to
 perform access control at the granularity of the a byte-range, then
 the server MUST NOT allow the principal to read the source file. A
 related concern is that if the server can provide per-byte-range
 access, then the server will need to allow an OPEN operation of the
 source file by the principal. The server will need to reject READ
 operations for the non-de-duplicated data. The reader should adjust
 the algorithm in Figure 4 accordingly.

7. IANA Considerations

 This specification requires 196 additions to the Layout Types
 registry described in Section 22.4 of [2]. Each added entry has five
 fields. The first entry is:

 1. Name of layout type: LAYOUT4_DEDUP_TOP.

 2. Value of layout type: TBD1. [[Comment.3: Note to IANA. Assign
 LAYOUT4_DEDUP_TOP a value that is a whole multiple of 64.]]

 3. Standards Track RFC that describes this layout: RFCTBD65, which
 is the RFC of this document.

 4. How the RFC Introduces the specification: L.

 5. Minor versions of NFSv4 that can use the layout type: 1.

 The second through 64th additions to the Layout Types registry each
 have the following form, where <xx> is a decimal number between 02
 and 64, inclusive:

Eisler Expires April 21, 2011 [Page 25]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 1. Name of layout type: LAYOUT4_DEDUP_LEVEL_<xx>.

 2. Value of layout type: The result of the expression: <xx> - 1 +
 LAYOUT4_DEDUP_TOP.

 3. Standards Track RFC that describes this layout: RFCTBD65, which
 is the RFC of this document.

 4. How the RFC Introduces the specification: L.

 5. Minor versions of NFSv4 that can use the layout type: 1.

 The 65th entry is:

 1. Name of layout type: LAYOUT4_DEDUP_ROC_TOP

 2. Value of layout type: The value assigned to LAYOUT4_DEDUP_TOP
 logically ORed with LAYOUT4_DEDUP_RECALL_ON_CHANGE.

 3. Standards Track RFC that describes this layout: RFCTBD65, which
 is the RFC of this document.

 4. How the RFC Introduces the specification: L.

 5. Minor versions of NFSv4 that can use the layout type: 1.

 The 66th through 128th additions to the Layout Types registry each
 have the following form, where <xx> is a decimal number between 2 and
 64, inclusive:

 1. Name of layout type: LAYOUT4_DEDUP_ROC_LEVEL_<xx>.

 2. Value of layout type: The result of the expression: <xx> - 1 +
 LAYOUT4_DEDUP_ROC_TOP.

 3. Standards Track RFC that describes this layout: RFCTBD65, which
 is the RFC of this document.

 4. How the RFC Introduces the specification: L.

 5. Minor versions of NFSv4 that can use the layout type: 1.

 The 129th entry is:

 1. Name of layout type: LAYOUT4_CACHE_TOP

 2. Value of layout type: The value assigned to LAYOUT4_DEDUP_TOP + 2
 * LAYOUT4_DEDUP_RECALL_ON_CHANGE.

Eisler Expires April 21, 2011 [Page 26]

Internet-Draft NFS De-Duplication and Sub-File Caching October 2010

 3. Standards Track RFC that describes this layout: RFCTBD65, which
 is the RFC of this document.

 4. How the RFC Introduces the specification: L.

 5. Minor versions of NFSv4 that can use the layout type: 1.

 The 130th through 192nd additions to the Layout Types registry each
 have the following form, where <xx> is a decimal number between 2 and
 64, inclusive:

 1. Name of layout type: LAYOUT4_CACHE_LEVEL_<xx>.

 2. Value of layout type: The result of the expression: <xx> - 1 +
 LAYOUT4_CACHE_TOP.

 3. Standards Track RFC that describes this layout: RFCTBD65, which
 is the RFC of this document.

 4. How the RFC Introduces the specification: L.

 5. Minor versions of NFSv4 that can use the layout type: 1.

8. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", RFC 2119, March 1997.

 [2] Shepler, S., Eisler, M., and D. Noveck, "NFS Version 4 Minor
 Version 1", RFC RFC5661, Jan 2010.

 [3] Lentini, J., Eisler, M., and D. Kenchammana, "NFS Version 4
 Minor Version 1", draft-lentini-nfsv4-server-side-copy-05.txt
 (work in progress), Jul 2010.

Author’s Address

 Mike Eisler
 NetApp
 5765 Chase Point Circle
 Colorado Springs, CO 80919
 US

 Phone: +1-719-599-9026
 Email: mike@eisler.com

Eisler Expires April 21, 2011 [Page 27]

