
Internet Engineering Task Force Dipankar Roy
Internet-Draft Mike Eisler
Intended status: Standards Track Alex RN
Expires: October 9, 2011 NetApp
 April 7, 2011

 NFS Pathless Objects
 draft-dipankar-nfsv4-pathless-objects-02.txt

Abstract

 This document describes a set of NFS operations for creating,
 maintaining and searching filesystem objects independent of the
 traditional hierarchical namespace.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 9, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Dipankar Roy, et al. Expires October 9, 2011 [Page 1]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Terminology . 3
 2. Introduction . 3
 3. Protocol Overview . 4
 3.1. Pathless Objects and Object Sets 4
 3.2. Object Root Filehandle 5
 3.3. Optional Features . 6
 3.4. Interaction with stateful NFS operations 6
 4. New file types . 7
 5. Search Attributes . 7
 5.1. Search Attributes Definition 7
 5.2. Search Attributes usage 9
 5.3. Search Attributes Query 9
 6. New Operations . 12
 6.1. Operation 1: PUTOBJROOTFH - Set Object Root Filehandle . . 12
 6.2. Operation 2: PUTSRCHATTR: Search for an Object based
 on Search Attributes 12
 7. Modifications to existing NFSv4.1 operations 14
 7.1. CREATE: Modifications 14
 7.2. OPEN: Modifications 14
 7.3. LOOKUP: Modifications 14
 7.4. READDIR: Modifications 15
 8. Migration and Replication 15
 9. Acknowledgements . 15
 10. IANA Considerations . 15
 11. Security Considerations 15
 12. References . 16
 12.1. Normative References 16
 12.2. Informative References 16
 Authors’ Addresses . 16

Dipankar Roy, et al. Expires October 9, 2011 [Page 2]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

1. Terminology

 NFS: Used to refer to Network File System irrespective of the
 version.

 NFSv3: Network File System Version 3

 NFSv4: Network File System Version 4

 NFSv4.1: Network File System Version 4.1

 ACL: Access Control List

 HTTP: Hyper Text Transfer Protocol

 REST: Representational State Transfer

2. Introduction

 The NFS protocol is presently capable of interacting with objects
 which can be represented by a pathname and a filehandle, residing in
 a hierarchical namespace exported by the NFS server. However, such a
 hierarchical namespace which tries to resemble the UNIX filesystem
 layout and interface imposes restrictions on the filesystem object
 locations and does not scale well in the case we need to store
 billions of files inside a flat directory structure.

 The rapidly developing distributed web applications of today, such as
 those implementing the HTTP REST protocol, need to store billions of
 objects, which do not need any directory hierarchy and instead must
 have the capability to specify custom object attributes and quickly
 search for the objects based on these attributes. To facilitate
 this, an object needs to become independent of the filesystem
 directory hierarchy that has been mandated by the NFS server until
 now. In other words, the requirement is to have filesystem objects
 which can be created, queried for and destroyed without being
 associated with a pathname. These objects do not need to become
 visible under a standard NFS exported hierarchical pathname but need
 to be looked up based on tags or custom attributes. This RFC
 presents the operations that are required by the NFS protocol to
 implement such a feature of pathless filesystem objects.

 Separation of the pathname from the filesystem object provides the
 implementation greater flexibility on where to store the object,
 which can lead to an optimal distribution of the filesytem objects
 based on application requirements. Such an filesystem object is
 looked up by the client based on the attributes of the object, rather

Dipankar Roy, et al. Expires October 9, 2011 [Page 3]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

 than it’s location in a directory, and is accessed by it’s NFS
 filehandle directly. This new object, though it does not have a
 pathname, can still optionally have a name, which MAY be implemented
 as an attribute for the object. The existing set of NFS attributes
 needs to be extended to support a model where lookup of filesystem
 objects can be done based on attributes.

 With the introduction of NFSv4, the NFS protocol enforces
 statefulness for interacting with filesystem objects. There are many
 applications which require the stateful model of NFSv4. But there
 are also many web oriented object stores, which can be simultaneously
 accessed over other stateless protocols such as http, ftp etc. and
 hence are not very interested in statefulness. Rather, they would
 like to have the flexibility of using the stateless nature of NFSv3
 along with some interesting features of NFSv4 such as ACLs, Named
 Attributes, Compound Operations etc. which do not depend on the
 statefulness of the NFS server for functionality. Stateless
 operations provide the benefit of better performance as functional
 and maintenance costs for the implementations are significantly less.
 The object stores which will potentially handle billions of objects
 and have no need for state maintenance can greatly benefit from the
 improved performance of a stateless NFS implementation.

 In light of the above, anonymous states are RECOMMENDED to be used
 with this RFC, which means a stateid of all zeroes SHOULD be used for
 NFSv4 and NFSv4.1 READ, WRITE and SETATTR operations on pathless
 objects. At the same time, also keeping in mind the requirements of
 applications which need to maintain locks at the server, advisory
 locking SHOULD be supported. Delegations and shared locking support
 is OPTIONAL with the implementation of this RFC.

3. Protocol Overview

3.1. Pathless Objects and Object Sets

 To create an object independent of a pathname, the client sends a
 request to the server to create the object without specifying any
 name or pathname and the server returns the NFS filehandle for the
 object thus created. A new object type called NF4NOPATHOBJ is
 defined in this RFC, which SHOULD be used to create pathless objects.
 Since pathless objects cannot be looked up based on pathname, a new
 type of attribute, called Search Attribute is defined in this RFC,
 which SHOULD be used to lookup the pathless objects. The NFSv4.1
 READ and WRITE operations SHOULD be used to perform I/O on pathless
 objects and attributes, including search attributes, can be set using
 SETATTR and retrieved using GETATTR operations. A pathless object
 SHOULD support the mandatory set of attributes defined in RFC 5661

Dipankar Roy, et al. Expires October 9, 2011 [Page 4]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

 for a filesystem object.

 Along with creating objects which are independent of pathnames, it is
 REQUIRED to have a mechanism to classify together such objects, for
 accessibility and scoped access resolution. This RFC uses the term
 "Object Set" for representing such a collection of objects. An
 Object Set works as a container for pathless objects and MUST be
 defined and created before a pathless object is created. It is
 analogous to a directory, where the object is analogous to a file
 inside the directory. An Object Set contains objects and MAY
 OPTIONALLY also contain other Object Sets.

 When the client has created an Object Set or has access to an
 existing Object Set within the server, it can create pathless objects
 that are contained in the Object Set. The pathless object, even
 though it is contained in a Set, can be physically located anywhere.
 It is not necessary to implement a pathless object as a file. It can
 be any physical entity, which has a unique identifier in the form of
 a NFS filehandle. So the filehandle serves as an unique identifier
 for the object and there is no requirement that it SHOULD represent a
 file. The server is REQUIRED to maintain the linkage between the
 object and it’s Set and is free to distribute and store the objects
 in the best possible way to satisfy the needs of the application.

 An Object Set is expected to have certain access primitives
 associated with it, which are used by the server to provide access
 control for the objects contained in the Set. The server can
 implement a policy based mechanism to grant specific clients or
 groups of clients access to an Object Set. Such an implementation can
 be analogous to the exports mechanism commonly used with the NFS
 exported directories. The NFS server MUST keep track of all the
 Object Sets it has. The server SHOULD make visible all the exported
 Object Sets to the clients, subject to access control policies at the
 server. This RFC does not pose any other requirements on the
 implementation of an access policy for an Object Set.

 An Object Set MUST have a name, which MAY be implemented as an
 attribute of the Set. However, unlike the name of a pathless object,
 the name of an Object Set MUST be unique for the NFS server. When
 the client first creates an Object Set, it MUST specify a name for
 the Object Set. The server returns a filehandle for the Object Set to
 the client.

3.2. Object Root Filehandle

 The NFS server supporting the Object Set and pathless object creation
 MUST also have a well known public filehandle, hereby named as
 "Object Root Filehandle", in short form objrootfh. This public

Dipankar Roy, et al. Expires October 9, 2011 [Page 5]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

 filehandle is required for the purpose of informing the client that
 the server implements support for this RFC.The client SHOULD send an
 operation named PUTOBJROOTFH to set the current filehandle to
 objrootfh. The server which implements this RFC, MUST set the
 current filehandle to objrootfh and return NFS4_OK. This objrootfh
 filehandle SHOULD be different from the public filehandle that an
 NFSv4 server supports under the PUTROOTFH operation. The Object Root
 Filehandle serves as a master container for all the Object Sets. The
 client can send a query to the server to list all the Object Sets
 that are available to it for access under the Object Root Filehandle.
 Such a query can be specified as {PUTOBJROOTFH, READDIR}, where the
 requested attributes specified in the READDIR request would indicate
 if the server should reply with the Object Sets under the current
 filehandle.

3.3. Optional Features

 Since the pathless objects MAY not be implemented as files, and this
 RFC RECOMMENDS stateless operation as much as possible, the following
 features are explicitly being made OPTIONAL:

 1. Supporting the POSIX semantics for interaction with pathless
 objects.

 2. Specifying a name to create a pathless object. Note that Object
 Sets MUST have unique names.

 3. Support for either Exclusive Create or Soft and Hard links.

 4. Support for non-regular filesystem objects such as device files.

 5. Support for delegations and share locks

 If links are implemented, it SHOULD link to the object based on the
 object name attribute, rather than a pathname. So it is a matter of
 having multiple values for the attribute name, which is already a
 feature for the search attributes.

3.4. Interaction with stateful NFS operations

 The pathless objects are RECOMMENDED to be stateless. As such, the
 anonymous stateid of zero SHOULD be used for operations like READ,
 WRITE, SETATTR etc. However, if a server wants to implement stateful
 NFSv4.1 operations with pathless objects, it can do so given that it
 conforms to the specifications of NFSv4.1 RFC. So, existing NFSv4
 READ, WRITE operations will work with pathless objects without any
 changes to the operation definitions as stated in NFSv4.1 RFC. The
 NFSv4.1 locking model is applicable to pathless objects, but only

Dipankar Roy, et al. Expires October 9, 2011 [Page 6]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

 advisory locking MUST be supported. But if a server decides to
 implement support for share locks and delegations, it MUST follow the
 NFSv4.1 RFC locking semantics.

4. New file types

 The pathless objects are not necessarily files or any other
 filesystem object that can be defined with the existing nfs_fype4
 type as specified in RFC 5661. The same holds for Object Sets. So
 two new types are being introduced with this RFC, namely NF4NOPATH
 and NF4OBJSET. So the definition of nfs_ftype4 is changed to include
 the new file types and is as follows:

 enum nfs_ftype4 {
 NF4REG = 0x1;
 NF4DIR = 0x2;
 NF4BLK = 0x3;
 NF4CHR = 0x4;
 NF4LNK = 0x5;
 NF4SOCK = 0x6;
 NF4ATTRDIR = 0x7;
 NF4NAMEDATTR = 0x8;
 NF4NOPATHOBJ = 0x9;
 NF4OBJSET = 0x10;
 }

5. Search Attributes

5.1. Search Attributes Definition

 In a hierarchical filesystem, the NFS client can do LOOKUP operations
 based on pathname for a filesystem object but this will not work in
 the case of pathless objects. So with pathless objects, the server
 SHOULD support some kind of attributes which can be used to search
 for such objects. These attributes are hereby called "Search
 Attributes". These attributes have a name and a list of values. The
 values can be of type integer or string. Search attributes can be
 combined to form a query which looks up objects matching the
 attributes specified in the query, as per the query semantics.

 Two new attributes are added to the existing set of RECOMMENDED
 attributes for NFSv4.1. One is a boolean attribute called
 sattrsupport and the other is an array of strings called
 srchattrlist. The sattrsupport denotes whether the server supports
 search attributes. The srchattrlist contains the search attributes.

Dipankar Roy, et al. Expires October 9, 2011 [Page 7]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

 The GETATTR and SETATTR operations can be used to retrieve and set
 the search attributes. The sattrsupport applies to the filesystem
 and the srchattrlist applies to an object in that filesystem.

 The basic data types used in this RFC are same as the data types
 defined in RFC 5661 Section 3.2. Some new structured data types are
 added in this section to define the Search Attributes. One is a type
 specifier for the Search Attribute value i. whether it is a number or
 a string and is defined as "svaltype". The "sval" represents a
 single value for a Search Attribute, of type svaltype. The "svalist"
 is a set of such values for the Search Attribute. The Search
 Attribute itself is defined as "srchattr" and contains a name of type
 component4, the svaltype and svalist. A collection of Search
 Attributes is defined as srchattrlist.

 +----------------+----+--------------+-----+
 | Name | Id | Data Type | Acc |
 +----------------+----+--------------+-----+
 | sattrsupport | 75 | bool | R |
 | srchattrlist | 76 | srchattr<> | R W |
 +--+

 bool sattrsupport; /* indicates search attributes are supported */

 enum svaltype {
 SVAL_TYPE_NUM = 0; /* Search Attribute value is a number */
 SVAL_TYPE_STR = 1; /* Search Attribute value is a string */
 };

 /* single search attribute value */
 union sval switch (svaltype type) {
 case SVAL_TYPE_NUM:
 int64_t svalnum;
 case SVAL_TYPE_STR:
 component4 svalstr;
 default:
 void;
 };

 typedef struct sval svalist<>; /* array of attribute values */

 struct srchattr {
 component4 srchattrname; /* name of the search attribute */
 svaltype type; /* type of the search attribute */
 svalist srchvalist; /* list of values for this attr */
 };

 typedef struct srchattr srchattrlist<>;

Dipankar Roy, et al. Expires October 9, 2011 [Page 8]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

5.2. Search Attributes usage

 Since there is no pathname, we cannot use the NFSv4 LOOKUP operation
 to lookup a pathless object. Instead, the new search attributes are
 used to look up a pathless object. These are represented as name
 value pairs where the name is a string and the value is an array of
 numbers or strings. A search attribute can have multiple values for
 the same object. A search can be done for one or more of these
 values. For example, a pathless object can have the attribute name
 as "weather" and values can be "sunny", "cloudy", "rainy" etc. If
 there are no values specified for a search attribute, a search is
 made for the objects having the search attribute, with or without any
 values.

 Access control for a search attribute is governed by the access
 control for the corresponding object. The permissions to read or
 write the object’s attributes apply to search attributes as well.

 To lookup pathless objects, the client sends a list of the search
 attributes. A new operation PUTSRCHATTR is added to lookup objects
 based on search attributes. The search attributes as well as the
 operations are applicable to both pathless objects and Object Sets.
 To retrieve or set search attributes, GETATTR and SETATTR are used.

 The PUTSRCHATTR operation MUST be used in conjunction with the
 READDIR operation to make use of the features provided by the READDIR
 operation, namely, a reply cursor, requested set of object attributes
 and maximum count of bytes in the reply. The PUTSRCHATTR operation
 MUST be immediately followed by a READDIR operation in the same
 COMPOUND operation to this effect. The client MUST request the
 object filehandles in the bitmap for requested attributes in the
 READDIR request. The READDIR reply contains the filehandles of all
 the objects matching the search attributes specified in PUTSRCHATTR.

 A special search attribute with srchattrname as "objname" of type
 SVAL_TYPE_STR MUST always be present for a pathless object and
 denotes the name that the object was created with. For Object Sets,
 this should have a unique value in the NFS server. For pathless
 objects it defaults to an empty string i.e. "".

5.3. Search Attributes Query

 The Search Attributes can be queried using the semantics defined in
 this section. A simple query is based on the Search Attribute name
 and on whether the Search Attribute matches a set of Search Attribute
 values. The match can be based on whether the Search Attribute name
 has a value that equals the value specified in the query or the match
 can also be based on whether the Search Attribute has a value lesser

Dipankar Roy, et al. Expires October 9, 2011 [Page 9]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

 than or greater than the value in the query. The lesser than and
 greater than comparisons are more effective when the Search Attribute
 has a svaltype of a number. Such queries can be logically joined or
 chained together using logical primitives such as AND and OR. A NOT
 primitive is also present to provide a logical negation of the query,
 which will match those objects that do not match the Search Attribute
 values specified in the query. Each query has a priority assigned to
 it and queries with higher priority will execute earlier. For
 example, let’s say that there are 3 queries, which are joined like
 this: query 1 AND query 2 OR query 3". Suppose query 2 and query 3
 have a higher priority than query 1. So the server would execute
 this query like this : query 1 AND (query 2 OR query 3), where
 brackets indicate a logical grouping and execution of queries of the
 same priority.

 Some new structured data types are added in this section to define a
 Search Attribute query. The type "srelation" determines what is the
 nature of the match being done for the Search Attribute and it’s
 values i.e. whether a match is done for equals, lesser than or
 greater than. The type "srchqueryjointype" specifies how two queries
 can be logically chained together or if a query needs to be logically
 negated. A Search Attribute query is defined as a combination of:

 1. A srchattrlist, as defined in the section 5.1 of this RFC

 2. A srelation, which specifies how the match for the Search
 Attributes inside the srachattrlist and their corresponing values are
 done.

 3. A srchqueryjoinype called sqjtypenext which specified how the
 query should be chained with the next query. The last query in a
 chain of queries MUST have this set to SQUERY_NONE.

 4. A priority which determines an ordering of the queries. A
 priority of 0 SHOULD be considered as the highest priority, followed
 by 1 and so on.

 5. A flag which tells if the query is a logical NOT. A value of 1
 for this flag SHOULD be interpreted as a logical NOT.

Dipankar Roy, et al. Expires October 9, 2011 [Page 10]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

 enum srelation {
 SRELN_EQUALS = 0;
 SRELN_GREATER = 1;
 SRELN_LESSER = 2;
 };

 enum srchqueryjointype {
 SQUERY_NONE = 0;
 SQUERY_AND = 1;
 SQUERY_OR = 2;
 };

 struct srchquery {
 srchattrlist search_attrs;
 srelation search_relation;
 srchqueryjoinype sqjtypenext;
 uint32_t priority;
 uint32_t flag;
 };

 typedef struct srchquery srchquerylist<>;

 The flag in srchquery denotes whether the query is a NOT. A value of
 1 for the flag means it’s a NOT. For example, if a seach attribute
 list i.e. srchattrlist has 2 search attributes (A and B), each with
 multiple values, and if the flag has a value of 1, it can be
 described as NOT ((srchattrnameA (search_relation i.e. EQ, LT, GT)
 srchattrvalues) && (srchattrnameB (search_relation i.e. EQ, LT, GT)
 srchattrvalues))

 The priority in srchquery determines the precedance. For example, in
 the searchquery ((A == B) AND (C == D)) OR (F == G), we want A==B
 and C==D computed before F==G. So assign equal priorities to query 1
 and query 2, i.e. A==B and C==D and then assign a lower priority to
 query 3 i.e. F==G. Similarly to effect the query (A == B) AND ((C
 == D)) OR (F == G)), query 2 and query 3 are assigned a higher
 priority than query 1. Since each query has a priority number, we
 can group queries that need to be executed in the same priority
 bucket, the same priority number. If the precedance is expressed in
 the form of brackets, then the priority is directly proportional to
 the number of brackets enclosing a query.

 NOT combined with Greater gives us Lesser than or equal to.
 Similarly NOT combined with Lesser than gives us Greater than or
 equal to. So combining NOT with the search_relation gives the
 flexibility to specify these special relations in a query.

Dipankar Roy, et al. Expires October 9, 2011 [Page 11]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

6. New Operations

6.1. Operation 1: PUTOBJROOTFH - Set Object Root Filehandle

 SYNOPSIS

 - -> (cfh)

 ARGUMENT

 void;

 RESULT

 struct PUTOBJROOTFHres {
 /* CURRENT_FH: objrootfh */
 nfsstat4 status;
 };

 DESCRIPTION

 Replaces the current filehandle with the filehandle that
 represents the root of all the Objects Sets that the server
 contains.

 IMPLEMENTATION

 This is the first operator in a NFS request to set the
 context for the following operations. A READDIR following a
 PUTOBJROOTFH SHOULD list all the Object Sets with respect to
 this filehandle. The READDIR operation SHOULD list only Object
 Sets and not individual pathless objects.

 ERRORS

 NFS4ERR_BADSESSION
 NFS4ERR_DELAY
 NFS4ERR_NOTSUPP
 NFS4ERR_RESOURCE
 NFS4ERR_SERVERFAULT

6.2. Operation 2: PUTSRCHATTR: Search for an Object based on Search
 Attributes

 SYNOPSIS

Dipankar Roy, et al. Expires October 9, 2011 [Page 12]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

 (cfh), srchquerylist, -> (cfh)

 ARGUMENT

 struct PUTSRCHATTRargs {
 /* CURRENT_FH: Object Set filehandle */
 srchquerylist search_query;
 };

 RESULT

 struct PUTSRCHATTRres {
 /* CURRENT_FH: Object Set filehandle */
 nfsstat4 status;
 };

 DESCRIPTION

 The PUTSRCHATTR operation searches for objects matching
 the search attributes. The scope is the Object Set as
 specified in the current filehandle (cfh). Instead of
 returning the matching filehandles, it just returns a
 status and uses READDIR operation’s reply to construct
 the proper reply. The READDIR reply is used to return
 a variable list of filehandles of all the objects that
 matches the search query. The READDIR reply contains the
 filehandles for the matching objects in the set of
 attributes for the object. The object name is an empty
 string by default for pathless objects. A PUTSRCHATTR
 in a Compound request MUST be followed by a READDIR.
 If the PUTSRCHATTR is not followed by a READDIR, then
 NFS4ERR_OP_ILLEGAL MUST be returned by the NFS server.

 IMPLEMENTATION

 The compound operation for implementing the lookup
 based on search attributes is like this:
 PUTFH (filehandle of object set), PUTSRCHATTR (search
 attributes), READDIR (cookie, verifier, dircount,
 maxcount, requested_attrs). It is RECOMMENDED that
 dircount be set to a value for zero for this sequence
 of operations as clients are not supposed to implement
 "ls" based on search attribute lookup.

 ERRORS

 NFS4ERR_ACCESS
 NFS4ERR_ATTRNOTSUPP

Dipankar Roy, et al. Expires October 9, 2011 [Page 13]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

 NFS4ERR_BADCHAR
 NFS4ERR_BADNAME
 NFS4ERR_BADSESSION
 NFS4ERR_BADXDR
 NFS4ERR_DELAY
 NFS4ERR_INVAL
 NFS4ERR_IO
 NFS4ERR_NAMETOOLONG
 NFS4ERR_NOENT
 NFS4ERR_NOFILEHANDLE
 NFS4ERR_NOTSUPP
 NFS4ERR_REP_TOO_BIG
 NFS4ERR_RESOURCE
 NFS4ERR_SERVERFAULT
 NFS4ERR_STALE
 NFS4ERR_WRONG_TYPE

7. Modifications to existing NFSv4.1 operations

7.1. CREATE: Modifications

 Object Sets MUST be created with the CREATE call. Pathless objects
 are RECOMMENDED to be created with the CREATE call, though they can
 also be created with the OPEN call. For an Object Set, an unique
 objname is MANDATORY. For a pathless object, objname can be an empty
 string, namely, "". In case any other objname is supplied with the
 CREATE call for a pathless object, it MAY be allowed. The objname
 SHOULD become part of the search attributes for the pathless object
 or the Object Set.

7.2. OPEN: Modifications

 OPEN with a empty objname SHOULD create a pathless object under the
 current filehandle. The current filehandle MUST be the filehandle
 for an Object Set.

7.3. LOOKUP: Modifications

 Since pathless objects can have a name associated with them, LOOKUP
 of an objname under the current filehandle of an Object Set can
 return a filehandle which maps to the name. However, there can be
 multiple objects which map to the same name and in that case, it MAY
 not be correct to return the name of any one of them. So if an
 objname maps to a single object filehandle, the LOOKUP operation MAY
 return that filehandle. Otherwise, it SHOULD return
 NFS4ERR_WRONG_TYPE.

Dipankar Roy, et al. Expires October 9, 2011 [Page 14]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

7.4. READDIR: Modifications

 READDIR MUST be used immediately following a PUTSRCHATTR to lookup
 pathless objects. If the pathless objects do not have unique names
 READDIR will return empty names. If a READDIR operation is used
 standalone with current filehandle being set to the Object Set
 filehandle, the client MUST request filehandles in the requested set
 of attributes and the server SHOULD return filehandles for all the
 pathless objects in the Object Set. The READDIR following a
 PUTSRCHATTR MUST be used only to return the filehandles and
 attributes for the objects matching the query in PUTSRCHATTR. Any
 other intended use of READDIR following a PUTSRCHATTR SHOULD NOT be
 implemented.

8. Migration and Replication

 The RFC 5661 specifies the attributes fs_locations and
 fs_locations_info that can be used for migration and replication.
 For details, please refer to sections 11.9 and 11.10 of RFC 5661.
 Pathless objects can use the same attributes for migration and
 replication with some minor modifications. The Object Sets which act
 as containers for pathless objects are similar to the root path of a
 filesystem within a server. Hence, for pathless objects, "rootpath"
 and "fs-root" in fs_location4 SHOULD be Object Set names. Similarly
 the "fli_rootpath" and "fli_fs_root" for fs_locations_info4 SHOULD
 contain Object Set names.

9. Acknowledgements

 The authors would like to acknowledge Manjunath Shankararao for
 reviews of the various early versions of the draft. Thomas Haynes
 and Daniel Muntz have provided additional comments.

10. IANA Considerations

 This memo includes no request to IANA.

11. Security Considerations

 All considerations from RFC 3530 Section 16 [RFC3530]

12. References

Dipankar Roy, et al. Expires October 9, 2011 [Page 15]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

12.1. Normative References

 [RFC1813] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS
 Version 3 Protocol Specification", RFC 1813, June 1995.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://xml.resource.org/public/rfc/html/rfc2119.html>.

 [RFC3530] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R.,
 Beame, C., Eisler, M., and D. Noveck, "Network File System
 (NFS) version 4 Protocol", RFC 3530, April 2003.

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

 [RFC5378] Bradner, S. and J. Contreras, "Rights Contributors Provide
 to the IETF Trust", BCP 78, RFC 5378, November 2008.

 [RFC5531] Thurlow, R., "RPC: Remote Procedure Call Protocol
 Specification Version 2", RFC 5531, May 2009.

 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File
 System (NFS) Version 4 Minor Version 1 Protocol",
 RFC 5661, January 2010.

12.2. Informative References

 [RFC1094] Nowicki, B., "NFS: Network File System Protocol
 specification", RFC 1094, March 1989.

 [RFC2624] Shepler, S., "NFS Version 4 Design Considerations",
 RFC 2624, June 1999.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

Dipankar Roy, et al. Expires October 9, 2011 [Page 16]

Internet-Draft draft-dipankar-nfs-pathless-objects April 2011

Authors’ Addresses

 Dipankar Roy
 NetApp
 495 East Java Drive
 Sunnyvale, CA 94089
 USA

 Phone: +1-408-822-4931
 Email: dipankar@netapp.com

 Mike Eisler
 NetApp
 5765 Chase Point Circle
 Colorado Springs, CO 80919
 USA

 Phone: +1-719-599-9026
 Email: mike@eisler.com

 Alex RN
 NetApp
 3rd Floor, Fair Winds Block, EGL Software Park,
 Bangalore, Karnataka 560071
 IN

 Phone: +91-80-41843352
 Email: rnalex@netapp.com

Dipankar Roy, et al. Expires October 9, 2011 [Page 17]

