
nfsv4 D. Noveck
Internet-Draft EMC
Expires: September 15, 2011 P. Erasani
 L. Bairavasundaram
 NetApp
 P. Dai
 C. Karamonolis
 Vmware
 March 14, 2011

 Storage Control Extensions for NFS Version 4
 draft-dnoveck-storage-control-01

Abstract

 Developments in storage systems have made it important for
 applications to have control over the characteristics of the storage
 that will be used for their particular files. The development of
 pNFS has added to the usefulness of such control mechanisms as it has
 created the opportunity for the hierarchical organization of file
 names to be separated from the control of storage characteristics for
 individual files, including the assignment to storage locations to
 reflect the performance or other needs of those specific files. This
 document proposes extensions to NFS version 4 to allow storage
 requirements to be communicated to the NFS version 4 server.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 15, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Noveck, et al. Expires September 15, 2011 [Page 1]

Internet-Draft storage_ctl March 2011

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Noveck, et al. Expires September 15, 2011 [Page 2]

Internet-Draft storage_ctl March 2011

Table of Contents

 1. Storage Control Issues . 4
 2. Storage Choice and API Definition 6
 3. Modes of Storage Choice 7
 4. Assuring Extensability . 8
 4.1. Requirements for Extensability 8
 4.2. XDR Encoding for Extensability 9
 5. Storage Control . 11
 5.1. Property Types . 11
 5.1.1. Informative Properties 11
 5.1.2. Enforceable Properties 12
 5.2. Base Property Specifications 14
 5.2.1. Storage Size . 15
 5.2.2. Storage Use Duration 16
 5.2.3. Storage Device Failure Limit 16
 5.2.4. Storage System Failure Limit 17
 5.2.5. Storage System Failure RPO 17
 5.2.6. Storage System Failure RTO Properties 17
 6. Uses of the Attribute storage_ctl 19
 6.1. Use of storage_ctl when creating a file 19
 6.2. Use of storage_ctl in SETATTR 20
 6.3. Use of storage_ctl in GETATTR/READDIR 21
 6.4. Use of storage_ctl in VERIFY/NVERIFY 21
 7. The FETCH_SCNOTE Operation 23
 8. Attribute Extension . 25
 8.1. Experimental and Other Non-standardized Extensions 25
 8.2. Standardized Extensions 26
 8.3. The storage_ext attribute 26
 9. Summary . 27
 9.1. Errors . 27
 9.2. Semantic constraints 28
 10. Possible Future Work . 30
 11. Acknowledgments . 31
 Authors’ Addresses . 32

Noveck, et al. Expires September 15, 2011 [Page 3]

Internet-Draft storage_ctl March 2011

1. Storage Control Issues

 Storage to which files may be assigned can differ in a number of
 ways, raising the issue of how to control the choice of storage for
 specific files. The range of such choices is not static but can be
 expected to increase as flash memory becomes an option whose use
 needs to be controlled, or various choices of types of local caching
 need to be made. Although all files may well be helped by such
 approaches, the degree to which they will be helped will vary with
 the type of file and the typical application reference pattern for
 it. In addition, the value of improved access will differ with quick
 access to certain files being of much greater value, thereby
 justifying the allocation of more expensive storage resources to such
 files.

 The traditional way that user decisions regarding assignment of
 storage resources have been effected is by assigning specific file
 systems to specific disks or sets of disks. Files placed in that
 file system thereby get the storage characteristics assigned to that
 file system. Where file systems contain storage of various types,
 various heuristics are used to assign files or pieces thereof, to
 storage of various types, generally without any external input about
 application needs.

 The creation of pNFS modifies this pattern in that data and metadata
 are separated. Where pNFS is used, assigning a file to a specific
 file system now controls only where the metadata is located.
 Different files may have their data assigned to different sorts of
 storage, potentially located on different servers. This gives rise
 to the need for a means by which the storage choice for a particular
 file may be made.

 NFS version 4.1 contains a layouthint attribute but this does not
 really address the problem. The focus of the layouthint attribute is
 on the striping configuration, but there is a need to control storage
 characteristics other than this. This is the case even when there is
 only a single stripe (that is, no striping). Even though this is not
 "parallel NFS," using pNFS in this way to provide a separation of
 data and metadata, with the ability to choose locations for data
 based on its characteristics subject to later change in a user-
 transparent manner is very powerful, particularly if the storage
 location is subject to intelligent management.

 Additionally, more sophisticated storage management arrangements make
 it desirable to have a way to specify details for storage handling,
 even when pNFS is not used. When a file system contains different
 sorts of storage, input regarding desired or necessary storage
 characteristics can be used to make storage assignment choices more

Noveck, et al. Expires September 15, 2011 [Page 4]

Internet-Draft storage_ctl March 2011

 in line with application needs.

 As a result, the ability to specify desired storage characteristics
 can provide benfits, both when pNFS is used and when it is not,
 although pNFS has the most immediate set of needs for means by which
 to control storage selection.

Noveck, et al. Expires September 15, 2011 [Page 5]

Internet-Draft storage_ctl March 2011

2. Storage Choice and API Definition

 It needs to be noted that existing API’s may not provide means by
 which some of the storage characteristics described herein may be
 communicated to NFSv4 in-kernel clients and from there, to NFSv4
 servers. Nevertheless, definition of a means by which these storage
 characteristics may be communicated to the NFSv4 server is still
 useful for a number of reasons:

 Embedded clients for particular applications may specify this
 information even without any API deinition.

 Client implementations may use various less-than-perfect ways of
 specifying storage characteristics, assigning storage
 chatcteristics based on file ownership or other nominally
 unrealated characteristics that that corelate well with customer
 intentions.

 Note that if the absence of a standard kernel API were sufficient to
 stop this work, it also probably be the case that the absence of a
 means to communicate the information to remote servers might make the
 definition of that API not worth the effort. By defining some
 storage characteristics and a general means of communicating them and
 others (via an extension mechanism) we allow for either:

 The later development of API’s to specify these storage
 characteristics.

 The developemt of API’s to specify different sets of storage
 characteristics that can then be easily assimilated to this
 mechanism as extensions.

Noveck, et al. Expires September 15, 2011 [Page 6]

Internet-Draft storage_ctl March 2011

3. Modes of Storage Choice

 There are a number of different ways in which storage choices may be
 indicated:

 o The specific file system location(s) might be specified.

 o Specific types of storage might be specified with selection of
 such choices as SSD, SATA, or fiber channel SAN drives being made
 by the client and effected by the MDS.

 o Desired characteristics of storage including speed (latency and/or
 throughput), amount of storage that will be needed, safety (raid-
 level). Available storage would be selected to meet the required
 characteristics and would be subject to active management as the
 environment changes.

 These different modes of storage choice are all useful in different
 environments. Specification of a specific file system imposes the
 least need for a storage management infrastructure but it requires
 user/application knowledge.

 The other modes imply a sequence of progressively greater
 infrastructure requirements to map specifications to specific storage
 systems and a correspondingly smaller need for user/application
 knowledge of the storage environment. However, such modes of
 operation are very different from existing storage management
 paradigms and the precise ways in which applications and storage
 might communicate are not fully understood.

Noveck, et al. Expires September 15, 2011 [Page 7]

Internet-Draft storage_ctl March 2011

4. Assuring Extensability

4.1. Requirements for Extensability

 As the examples of different modes of storage choice suggest, there
 are potentially a large number of specific items that might be
 specified in order to effect storage choice. Further, in many cases,
 expected future developments in the area of storage can be expected
 to extend and otherwise modify the characteristics which might be
 specified.

 The need for extensibility is important as one might expect many
 ongoing developments, including those in the areas of storage
 hardware, and file systems, to create corresponding needs to specify
 relevant storage chatacteristics.

 For example, local caching, including writeback caching using flash,
 creates the opportunity for greatly improved performance, at the risk
 of greater complexity in dealing with network failures. This raises
 the issue of allowing the user to make the choice of whether this
 greater performance is worth the risks and difficulties.

 Similarly, the development of distributed file systems raises many
 choices where performance will need to be balanced against various
 forms of safety issues, with specific choices reflecting the specific
 needs of applications dealing with the storage.

 These situations and others that we may not be able to predict,
 require that any attribute scheme in this area allow the
 specification of multiple storage characteristics with the ability to
 easily extend the specification so that it incorporates new
 characteristics to govern storage selection. Further, the need for
 actual use testing before incorporation in an IETF standard, imposes
 new requirements as far as organizing specification of the
 characteristics.

 Having "working code" to effect characteristic selection is not
 sufficient to demonstrate usefulness. The working code may be
 trivial while finding out whether this set of characteristics make
 sense for applications to use or requires extension or modification
 before assuming its final form is not trivial. This may require
 significant trial use among a large set of users running different
 applications, before the details are ready to be standardized.

 These factors increase the need for flexibility, including non-
 private use of characteristics not yet standardized. Accommodating
 this need for flexibility has the potential for unduly interfering
 with interoperability and the design of this feature will need to

Noveck, et al. Expires September 15, 2011 [Page 8]

Internet-Draft storage_ctl March 2011

 avoid that.

4.2. XDR Encoding for Extensability

 While each storage property could conceivably be made its own
 attribute, the burden that this would place on the IETF process would
 be immense. There would be necessary co-ordination (and almost
 certain confusion) as individual experimental properties needed
 temporary attribute numbers and then had to shift them to other more
 permanent numbers. Further, and even more of an issue, storage
 property definition would seem to require a minor version, which
 seems too heavyweight. This would slow down the process beyond what
 should be for something which was its own standard-track RFC.

 In order to address these issues, individual properties will be
 treated as sub-attributes within a single storage_ctl attribute. To
 simplify assignment of sub-attribute numbers, mainly in support of
 experimental use, multiple sub-attribute spaces will be supported, to
 allow independent development of features each involving multiple
 storage properties. Once such a feature is standardized, the
 definition of the specific sub-atribute space could simply be made
 the subject of a standards-track RFC, with no change to those using
 it.

 typedef uin32_t spacenum_sc; /* Individual property space id. */
 typedef uint32_t bitmap_sc<*>; /* Bit map for the presence or
 absence of individual properties
 using bit numbers assigned for
 the space. Like bitmap4. */
 typedef opaque proplist_sc<*>; /* Data associated with each of the
 properties in the bitmap_sc.
 Like attrlist4. */

 struct section_sc {
 spacenum_sc SpaceSection; /* Section number. */
 bitmap_sc WhichProperties;/* Bit map of properties present. */
 proplist_sc PropertyData; /* Data for each of the properties
 specified in this section. */
 };

 typedef section_sc fattr4_storage_ctl<*>;
 /* The attribute may have one or
 more property sections. */

 This form of property encoding allows the property set to be extended
 without requiring a new minor version. Also, by allowing property

Noveck, et al. Expires September 15, 2011 [Page 9]

Internet-Draft storage_ctl March 2011

 space numbers to be assigned, property sets can be developed
 independently, and converted to a standard state without undue
 interruption to those using the earlier form.

Noveck, et al. Expires September 15, 2011 [Page 10]

Internet-Draft storage_ctl March 2011

5. Storage Control

 Storage, along with compute, memory, and network, is an integral part
 of an application’s resources. Much like the other types of
 resources consumed by an application, storage needs can be described
 using a set of properties. These properties may serve to describe
 the characteristics of the storage, the intended usage both temporal
 and spatial, quality of service expectations, physical layout over
 available storage media, data access locations, geographical
 distribution, just to name a few. The collection of such properties
 together define the control an application ultimately wants to have
 on storage; conversely, they enable the storage system to more
 effectively and dynamically meet the application’s needs as
 specifically expressed, rather than inferred, based on fallible
 heuristics. Henceforth, we will use the term control to refer to the
 property collection.

 It is not difficult to conceive various storage properties. In fact,
 there are numerous of them, due to the diversity of applications and
 the corresponding workload characteristics, the ever increasing
 storage value-adds in the form of data services, and the fast
 changing business requirements. It is an impossible task to capture
 all of them here. Rather, the goal of this document is to define a
 framework in which new properties can be easily added and new
 semantics of the properties can be introduced as necessary without
 disruption. It is desired that they be capable of being used in more
 limited situations, refined as necessary.

5.1. Property Types

 There may be numerous storage properties as mentioned above. We
 need, however, to distinguish at least two types, namely, informative
 properties and enforceable properties. There may very well be other
 systems or criteria when it comes to the classification of storage
 properties; and extensibility shall apply in this case just as it
 does to adding new storage properties. However, there is a need to
 explicitly capture the distinctions between informative and
 enforceable properties in the data model, due to the impact on the
 storage protocol semantics.

5.1.1. Informative Properties

 An informative property, as the name suggests, provides some
 descriptive information about the storage in question. Such
 information is furnished in a single direction from the application
 to the storage system with absolutely no "contractual" implications.
 The storage system may use the information captured in such a
 property for storage optimization. But it is not obligated to do so.

Noveck, et al. Expires September 15, 2011 [Page 11]

Internet-Draft storage_ctl March 2011

 More importantly, the application is not offered any transparency as
 to how the storage system may utilize this information. As such, the
 information flow is strictly one-way without the prospect for any
 feedback. Examples of informative properties are the access pattern
 of the storage in use, the expected capacity need, and the estimated
 growth rate.

5.1.2. Enforceable Properties

 In contrast, an enforceable property may have embedded in it varying
 degrees of binding effect. By that, it means the application
 specifying the property has expectations that the storage system not
 only acts upon but also conveys the action status back in some way.
 Unlike the case of an informative property, the information flow in
 this case is truly bi-directional, with the backward direction for
 monitoring property status, including information on whether a
 property has been satisfied or is in the process of being satisfied.
 In that sense, an enforceable property has a resemblance to an
 agreement, where one might monitor the performance of the other
 party.

 Applications seeking tighter control of the storage may resort to the
 enforceable properties. Examples of enforceable properties could
 include the type and speed of sorage but could also include the
 availability, reliability, and average throughput and latency.

5.1.2.1. Enforcement Level

 To allow varying degrees of control, an enforcement level may be
 associated with an enforceable property. There are two levels of
 control possible, namely, advisory and mandatory. Regardless of the
 level, the storage system should strive to fulfill an enforceable
 property. The difference lies in the treatment of an inability to do
 so. With an advisory enforcement level, the storage system shall
 continue to carry out the operation even if the property could not be
 fulfilled; whereas with mandatory, the storage shall fail the
 operation without making any modification. In any case, the failure
 to fulfill an enforceable property can be communicated to the
 application.

5.1.2.2. Compliance Status

 While control may suffice to describe the ultimate storage
 requirements, i.e., the intended behavior once it has been fully
 implemented, it does not by itself capture the dynamic aspects of the
 implementation process. This is encompassed by the concept of
 "compliance" which indicates the extent to which requested storage
 properties have or have not been provided or whether they are still

Noveck, et al. Expires September 15, 2011 [Page 12]

Internet-Draft storage_ctl March 2011

 in the process of being provided. Note that the word "compliance" as
 used here has no connection with this word as used to describe issues
 conformance with a set of legal requirements for record-keeping,
 among other matters.

 Control implementation can be a fairly heavyweight process by nature
 due to the data intensity involved. This may be true whether it is
 during the initial provisioning of storage, or the subsequent change
 management, or the remediation of compliance violation. The data
 intensive nature of the control implementation process implies that
 the transition from non-compliance to compliance will not be
 instantaneous in the general case. In other words, the
 implementation process remains asynchronous relative to the operation
 that triggers it.

 The asynchronous nature of the control implementation process may be
 captured by the compliance status. The compliance status may have
 three different values, namely, Current, Complying, and Failed. The
 value Current represents a fully compliant state. The value
 Complying refers to a transient state in which the transition to
 current is in progress.

 The value Failed represents an indefinite state of non-compliance.
 In the last case, the storage system may have made the determination
 that it is unable to fulfill some or all of the storage properties
 given the physical resources available. The application will work
 without, but its performance may not be what is desired.

 The compliance status describes the state of the control fulfillment
 as it pertains to each property. It applies to an enforceable
 property only. Its presence is not a syntactic requirement as
 defined by the XDR specification. Depending on the operational
 context in which the enforceable property is specified, specification
 of compliance status may be either invalid, required, or optional
 with the specification of more that one such status values possible
 in some cases.

5.1.2.3. XDR Encoding for Enforceable Properties

 Enforceable properties contain a word which is of type enforce_sc and
 allows the enforcement level and compliance status to be specified.
 To allow greatest flexibility, all enforcement statuses and
 compliance status values are specified as bit values, allowing sets
 of enforcement levels and complicance status, to be specified, as
 appropriate.

Noveck, et al. Expires September 15, 2011 [Page 13]

Internet-Draft storage_ctl March 2011

 typedef uint32_t enforce_sc;

 const enforce_sc ENFORCE_MANDATORY = 0x1;
 const enforce_sc ENFORCE_ADVISORY = 0x2;
 const enforce_sc ENFORCE_CURENT = 0x10;
 const enforce_sc ENFORCE_COMPLYING = 0x20;
 const enforce_sc ENFORCE_FAILED = 0x40;

 For most purposes, enforcement words should have a single enforcement
 level, either ENFORCE_MANDATORY ENFORCE_ADVISORY. Any enforcement
 word containing both bits will result in NFS4ERR_SCTL_BADENF being
 returned. Specification of an enforcement word containing neither
 will generally result in in NFS4ERR_SCTL_BADENF being returned.
 However, it may be specified, when doing a SETATTR that specifies a
 reserved empty parameter value to remove a property specification.
 Also, it may be specified when doing an VERIFY or NVERIFY to specify
 a property without a defined enforcement level.

 When specifying a storage property as part of a OPEN, CREATE. or
 SETATTR, no enforcement level bits should be specified. If they are,
 the error NFS4ERR_SCTL_BADENF is returned. For values returned by
 the server in response to GETATTR, enforcement words, containing
 exactly one compliance status bit will be returned. When using
 storage properties as part of VERIFY or NVERIFY compliance words
 containing no compliance bits or any subset of the valid compliance
 status bits may be specified.

5.2. Base Property Specifications

 The goal for initial inclusion in an NFS version 4 minor version is
 to define a small set of property specifications that are generally
 useful and do not require a large management infrastructure to
 implement. The following are the three property specifications that
 fit the description.

Noveck, et al. Expires September 15, 2011 [Page 14]

Internet-Draft storage_ctl March 2011

 const spacenum_sc SCNUM_BASE = 1; /* Base property space id for
 all properties in this
 group. */

 const uint32_t SCBASE_SIZE = 0; /* Informative property for
 size. */
 const uint32_t SCBASE_DURATION = 1; /* Informative property for
 duration. */
 const uint32_t SCBASE_DEVFAIL = 2; /* Enforceable property for
 a device failure limit. */
 const uint32_t SCBASE_SYSFAIL = 3; /* Enforceable property for
 a system failure limit. */
 const uint32_t SCBASE_FAIL_RPO = 4; /* Enforceable property for
 a recovery point objective
 in the event of failure. */
 const uint32_t SCBASE_SFAIL_RTO = 5;/* Enforceable property for
 a recovery time objective
 in the event of system
 failure. */
 const uint32_t SCBASE_DLOSS_RTO = 6;/* Enforceable property for
 a recovery time objective
 in the event of data loss. */
 const uint32_t SCBASE_DISASTER_RTO = 7;/* Enforceable property for a
 recovery time objective in
 the event of disaster. */

5.2.1. Storage Size

 The storage size is an informative property that allows the
 specification of the expected amount of storage to be needed. It may
 be used by the server in seeing if appropriate space is available and
 in reserving space. It is specified as a 64-bit unsigned value
 giving a quantity of storage expressed in bytes.

 typedef uint64_t propbase_size;

 This value may be different from the expected file size. Areas not
 allocated, because of holes for example, are not included. This
 amount of storage may not be required immediately if the file starts
 small and grows. Any derating of specified values is purely a matter
 of server implementation choice and will typically reflect the
 ability to move data to respond to storage overcommitment.

 A value of zero is invalid and would result in the error
 NFS4ERR_SCTL_BADPARM when used in an OPEN or CREATE. When used in
 SETATTR, it causes deletion of a previous storage size specification.

Noveck, et al. Expires September 15, 2011 [Page 15]

Internet-Draft storage_ctl March 2011

5.2.2. Storage Use Duration

 The storage use duration is an informative property that allows the
 specification of the amount of time that the storage is expected to
 be needed. It may be used in assigning files to storage so that
 space conflicts are reduced. It is specified as a 64-bit unsigned
 value giving a duration in milliseconds.

 typedef uint64_t propbase_duration;

 This allows times from 1 millisecond up to approximately 500 million
 years to be specified. A value of zero is invalid and would result
 in the error NFS4ERR_SCTL_BADPARM when used in an OPEN or CREATE.
 When used in SETATTR, it causes deletion of a previous storage
 duration specification.

5.2.3. Storage Device Failure Limit

 The storage device failure limit is an enforceable property that
 allows the specification of a number of disk drives (or other
 devices) that can fail simultaneously with no data loss and that
 incurs zero recovery time. It must be the case that any set of
 devices of the specified can fail without data loss and with zero
 recovery time.

 Even though there is no recovery time, there may be a significant
 recovery period of modestly reduced performance while adaptation to
 the failure is done and until the completion of which, additional
 device failures will be considered simultaneous.

 The limit is specified as a 32-bit unsigned value giving the minimum
 count of simultaneous failures that can result in data loss to
 clients accessing the file. Storage is assigned which either matches
 this specification or provides a greater value. When pNFS is
 involved the specification applies to storage for the MDS and each
 DS.

 typedef uint32_t prop_dev_fail_lim;

 struct propbase_device_failure_limit {
 enforce_sc DflEnforce;
 prop_dev_fail_lim DflLimit;
 };

 This allows values from zero to approximately 4 billion to be
 specified. A value of zero is valid and specifies that data loss is
 tolerable in the event of single device failure. (e.g. RAID-0)

Noveck, et al. Expires September 15, 2011 [Page 16]

Internet-Draft storage_ctl March 2011

5.2.4. Storage System Failure Limit

 The storage system failure limit is an enforceable property that
 allows the specification of the number of storage systems that must
 be able to fail simultaneously without complete data loss. Storage
 is assigned which either matches this specification or provides a
 greater value. When pNFS is involved the specification applies to
 storage for the MDS and DS’s as a unit.

 typedef uint32_t prop_sys_fail_lim;

 struct propbase_system_failure_limit {
 enforce_sc SflEnforce;
 prop_sys_fail_lim SflLimit;
 };

 This allows values from zero to approximately four billion to be
 specified. A value of zero is valid and specifies data loss in the
 event of a single storage system failure is tolerable.

5.2.5. Storage System Failure RPO

 The recovery point objective (RPO) is the age of files that must be
 recovered from backup storage for normal operations to resume if a
 computer, system, device, or network failure results in data loss.
 The RPO is expressed backward in time (that is, into the past) from
 the instant at which the failure occurs, and can be specified in
 seconds. It is an important consideration in disaster recovery
 planning.

 typedef uint64_t prop_sys_fail_RPO;

 struct propbase_system_failure_RPO {
 enforce_sc SfrpoEnforce;
 prop_sys_fail_RPO SfrpoTime;
 };

 This allows values from zero seconds to a value far beyond the age of
 the universe to be specified. A value of zero is valid and indiactes
 that a real-time backup that reflects changes immediately as made is
 required.

5.2.6. Storage System Failure RTO Properties

 Recovery time objective (RTO) properties specify is the maximum
 tolerable length of time that storage assigned may be unavailable in
 the event of various classes of failures. There are three associated
 properties, each of which specifies this value for a particular class

Noveck, et al. Expires September 15, 2011 [Page 17]

Internet-Draft storage_ctl March 2011

 of failure:

 The system failure RTO property, with the property id
 SCBASE_SFAIL_RTO, defines the recovery time objective in the event
 of failures that do not not involve data loss or data corruption.

 The data loss RTO property, with the property id SCBASE_DLOSS_RTO,
 defines the recovery time objective in the event of failures that
 do not not involve the occurrence of a disaster, defined as a
 major environmental event such as a hurricane, earthquake, or
 flood, etc.

 The system failure RTO property, with the property id
 SCBASE_DISASTER_RTO, defines the recovery time objective in the
 event of any falure including disasters.

 The actual RTO is a function of the extent to which the interruption
 disrupts normal operations and the provisions made to ameliorate this
 situation. The desired RTO is a function of the urgency to re-
 establish operations and the consequences of failure to promptly do
 so. It is an important consideration in recovery planning.

 typedef uint64_t propbase_sys_fail_RTO;

 struct propbase_system_failure_RTO {
 enforce_sc SfrtoEnforce;
 prop_sys_fail_RTO SfrtoTime;
 };

 RTO values for all of these properties is specified as a 64-bit
 integer which specifies a number of microseconds. Although sub-
 second RTO values may be difficult, the specification allows small
 values which might be useful in the future. The maximum value is
 approximately five-hundred thousand years.

Noveck, et al. Expires September 15, 2011 [Page 18]

Internet-Draft storage_ctl March 2011

6. Uses of the Attribute storage_ctl

 There are four occasions in which the storage_ctl attribute is
 referred to as part of an fattr4 when the storage_ctl mask is
 present.

 o As an attribute specified when creating a file or similar object
 by means of an OPEN or CREATE operation, in order to specify the
 specific storage properies to control the locations on which the
 data is to be put and other associated properties.

 o As an attribute set in a SETATTR operation to change the requested
 location properties. Servers may or may not have the ability to
 change locations on request, but the operation structure will
 indicate whether the server has or doesn’t have this ability when
 it is requested.

 o As an attribute read in a GETATTR or READDIR operation to
 determine the currently requested storage properties and the
 degree to which they are current being complied with.

 o As an attribute specified in VERIFY or NVERIFY to test for current
 location property compliance status.

 In addition to the above, a fattr4_storage_ctl of the of the same
 structure as storage_ctl attribute (although not within an fattr)
 also appears within the response data in the following situations.

 For the OPEN, CREATE, and SETATTR operations, when the error
 returned is NFS4ERR_SCTL_FAIL. (See Use of storage_ctl when
 creating a file and Use of storage_ctl in SETATTR for details).

 For the response to the FETCH_SCNOTE operation, when there is a
 pending storage control note to be reported.

 For most purposes, a fattr4_storage_ctl which appears in OPEN,
 CREATE, and SETATTR requests are handled the same and a
 fattr4_storage_ctl which appears in the responses for OPEN, CREATE,
 and SETATTR are handled similarly, while the VERIFY and NVERIFY
 requests form a third similarity group.

6.1. Use of storage_ctl when creating a file

 When the storage_ctl attribute is specified when creating a file, it
 helps decide on the location selected for the file data. If all
 enforceable properties can be immediately satisfied, then the
 operation proceeds normally.

Noveck, et al. Expires September 15, 2011 [Page 19]

Internet-Draft storage_ctl March 2011

 If an enforceable property specified as with the manadatory
 enforcement level cannot be satisfied then the operation fails with
 the error NFS4ERR_SCTL_FAIL. The response contains, for the case
 NFS4ERR_SCTL_FAIL, a fattr4_storage_ctl value which consists all such
 enforceable properties which could not be satisfied.

 If there is a situation which is not as serious as the failure above,
 but still of note, then information relevant to that situation is
 stored as a pending storage control note, where it can be fetched (in
 the same COMPOUND) by the FETCH_SCNOTE operation.

 The following three classes of items are included in situations
 leading to a pending storage control note being created.

 o An enforceable property of the advisory enforcment level which
 could not be satisfied, i.e its compliance status is indicated as
 failed.

 o An enforceable property of the advisory enforcement level which
 could not be immediately satisfied, i.e. its compliance status is
 indicated as Complying.

 o An enforceable property of the mandatory enforcement level which
 could not be immediately satisfied, i.e. its compliance status is
 indicated as Complying.

6.2. Use of storage_ctl in SETATTR

 A value of the storage_ctl attribute with a structure similar to the
 OPEN case is used to change properties for an existing file.
 Existing elements properties, not changed by the storage_ctl
 attribute remain in effect.

 An enforceable property type and the same enforcement level status is
 overridden by a corresponding one in the new attributes. To delete
 such an enforceable property element without setting a new one, an
 enforceable property with no parameter values is used. Similarly, an
 informative property will override an existing one of the same type
 and use of the that property specification with no parameters is used
 to delete an existing informative propety specification without
 replacing it.

 Failures and notifications are indicated via the error code
 NFS4ERR_SCTL_FAILED and creation of pending storage control notes,
 just as in the case of OPEN.

Noveck, et al. Expires September 15, 2011 [Page 20]

Internet-Draft storage_ctl March 2011

6.3. Use of storage_ctl in GETATTR/READDIR

 When the storage_ctl attribute is requested as part of GETATTR or
 READDIR, the fattr4_storage_ctl returned within the file attributes
 reflects the current informative properties together with the
 enforceable properties and together with its current compliance
 status.

 The order of the elements need not reflect that used when the
 attribute was first set. When enforceable properties specify a range
 of multiple possible values, the one returned in the attribute will
 reflect the value actually assigned.

6.4. Use of storage_ctl in VERIFY/NVERIFY

 The storage_ctl attribute presented to VERIFY or NVERIFY is
 interpreted as a series of properties each of which results in a
 truth value. When the truth value for all properties presented is
 true, VERIFY succeeds and NVERIFY fails. Conversely when not all
 properties have that truth value, VERIFY fails and NVERIFY succeeds.

 When informative properties are present they are compared to the
 value set at OPEN, CREATE, or the last SETATTR. If no such value had
 been previously set, the result is treated as non-matching.

 Enforceable properties are classified according to three criteria:

 o Whether they have parameters that indicate specific values
 (With-P) or are the special values defined for that purpose for
 each parameter, which are treated as without parameters (Non-P)
 where the parameter values taken are those specified in the
 corresponding property within the file’s attributes.

 o Whether they are, an enforcement level specified (With-Enf) or not
 (Non-Enf).

 o Whether they are together with one or more compliance level levels
 specified (With-Comp) or not (Non-Comp).

 Given the above classifications, the following sets of
 characteristics for enforceable properties in the context of
 storage_ctl for VERIFY, NVERIFY are treated as errors and should
 cause the return of the error NFS4ERR_SCTL_BAD.

 o Non-Comp/Non-Enf/Non-P

 o Non-Comp/Non-Enf/With-P

Noveck, et al. Expires September 15, 2011 [Page 21]

Internet-Draft storage_ctl March 2011

 o With-Comp/non-Enf/Non-P

 o With-Comp/With-Enf/With-P

 Given the above classifications, the following sets of
 characteristics for enforceable properties in the context of
 storage_ctl for VERIFY, NVERIFY are handled as discussed below.

 Non-Comp/With-Enf/Non-P: is true iff there exists an enforceable
 property containing elements of the associated enforcement status
 as part of the storage_ctl attribute of the file.

 Non-Comp/With-Enf/With-P: is true iff the enforceable proeprty
 specified is compatible with the corresponding enforceable
 property of the associated enforcement level, i.e. if it is
 possible to satisfy both at the same time, without reference to
 whether both or either actually is satisfied.

 With-Comp/Non-Enf/With-P: is true iff the enforceable property
 (including a set of of property specifications of the same type)
 which appear in the storage_ctl attribute passed to the op is
 consistent with the set of compliance levels (often a single level
 but sometimes two) in the specification. That is, the actual
 compliance level must be one of the ones that is specified.

 With-CompB/With-Enf/Non-P: is true iff the enforceable property
 designated by this specification (i.e. that being of the same type
 of specification and the same enforcement level) is consistent
 with the set of compliance levels (often a single level but
 sometimes two) in this specification. That is, the actual
 compliance level must be one of the ones that is specified.

Noveck, et al. Expires September 15, 2011 [Page 22]

Internet-Draft storage_ctl March 2011

7. The FETCH_SCNOTE Operation

7.1. SYNOPSIS

 (cfh) -> note_pres, note_fattr

7.2. ARGUMENT

 /* CURRENT_FH: */
 void;

7.3. RESULT

 enum SCFres_type {
 SCFres_ABSENT = 0,
 SCFres_PRESENT = 1
 };

 union SCFresok switch (SCFres_type note_pres) {
 case FETCH_PRES:
 fattr4_storage_ctl note_attr;

 case FETCH_ABS:
 void;
 };

 union FETCHres switch (nfsstat4 status) {
 case NFS4_OK:
 /* CURRENT_FH: opened file */
 FETCH4resok resok4;
 default:
 void;
 };

7.4. DESCRIPTION

 The FETCH_SCNOTE operation is used to fetch a pending storage control
 note for a specified file handle (the current file handle). Note
 that these notes are stored according to the current file handle when
 the operation which gave rise to them was executed. Thus it will be
 the directory on (most) OPENs, and the specific file in the event of
 SETATTR.

 This operation uses the current filehandle value to identify the
 storage control note being sought.

 The operation returns an indication of whether the note is present

Noveck, et al. Expires September 15, 2011 [Page 23]

Internet-Draft storage_ctl March 2011

 and if it is a fattr4_storage_ctl value which consists all
 enforceable properties where there is a lack of adequate compliance
 to be noted. The use of the the enum scnote_respval rather than a
 boolean value allows later extension.

 If the note is present, it ceases to be so once the operation is
 executed.

7.5. IMPLEMENTATION

 Storage control note items are maintained on a per-COMPOUND-request
 basis and cease to exist when a COMPOUND fails due to completion or
 an the occurrence of an error. This makes it desirable to place the
 FETCH_SCNOTE operation close to, generally immediately after the
 operation capable of generating the storage control note.

Noveck, et al. Expires September 15, 2011 [Page 24]

Internet-Draft storage_ctl March 2011

8. Attribute Extension

8.1. Experimental and Other Non-standardized Extensions

 In order to support development of extensions to allow control of new
 file system support attributes, extensions may be defined, each with
 their own proper space id. The goal is to allow quick deployment of
 new features, including those that are vendor-specific at the time
 with the definitions of extensions being publicly available.

 Each such extension set should be registered with IANA. The
 registration will include

 o A short name (a few words) by which the extension will be known.

 o The name or corporate identity of the owner of the extension.

 o Data for the first version of the namespace extension, as
 described below.

 IANA will assign a space id by which the extension will be known.

 Successive versions of spaceid properties should be registered by the
 owner of the extension. The registration should include:

 o The namespace name and number.

 o The namespace version number. The version number is in the form a
 series of small (< 256) integers. The length of the series will
 probably be restricted to something between four and six. The
 version numbers will not be checked for order but only that they
 are unique for a given extension.

 o A document in the form of an internet draft with information on
 the namespace elements paralleling this one. The document will
 contain definitions and property numbers with the space id for all
 of properties within the extension.

 Successive version may add properties but may not delete them,
 clarifications to the semantics of existing properties may be made
 but substantive changes in their semantics should not be made.

 Existing properties may not be defines as invalid or mandatory-to-
 not-implement but they may be defined as incompatible with some
 set of new properties.

 The definitional document should be subject to expert review but the
 purpose of the review is to ensure that the document describes the

Noveck, et al. Expires September 15, 2011 [Page 25]

Internet-Draft storage_ctl March 2011

 extension adequately. It should not be rejected simply because the
 expert would do things differently or believe the specified
 properties are useful.

8.2. Standardized Extensions

 Storage properties may be extended via a standards-track document in
 a number of ways. Such an extension may be part of a new minor
 version, but may also be done independent of in a standards-track
 document other than for a new NFSv4 minor version. When the
 extension occurs in a new minor version the document should make
 clear whether the additional properties are recommended (as is
 normally the case) or mandatory.

 The following forms of extension are all valid options:

 Adding additional properties to existing standardized property set
 such as PROP_BASE.

 Creating a new property set its own property set id.

 Converting a previous experimental property set to standards-track
 status based on the publication of the RFC [Need to clarify any
 possible transfer of ownership issues.]

8.3. The storage_ext attribute

 The storage_ext attribute is a per-fs attribute which contains
 information on the storage_ctl extensions suported by the server when
 used on the associated file system. Servers will often report the
 same value of the storage_ext attribute for all file systems, but
 client should not assume that this is the case.

 struct section_se {
 spacenum_sc SpaceSction; /* Section number. */
 bitmap_sc WhichProperties;/* Supported properties. */
 };

 typedef section_se fattr4_storage_ext<�>;

 The storage_ext attribute consists of section_se arrays, each of
 which specify the supported properties for a specific space_id. The
 section_se arrays should be reported in ascending numeric order of
 spacenum_sc values.

Noveck, et al. Expires September 15, 2011 [Page 26]

Internet-Draft storage_ctl March 2011

9. Summary

 This chapter serves a reference guide to things discussed above. For
 a more discursive treatment, with less attention due syntax details,
 see above.

9.1. Errors

 This proposal would involve adding the following new errors to the
 NFS version 4 minor version in which it is included.

 NFS4ERR_SCTL_BADPROP Returned when the storage_ctl attribute
 contains properties with a space id unknown to the server, or with
 property bits whose diplacement in the bitmap corresponds to
 property numbers not known to the server as being associated with
 the current space id.

 This error is returnable by OPEN, CREATE, SETATTR, VERIFY, and
 NVERIFY.

 NFS4ERR_SCTL_BADPARM Returned when the storage_ctl attribute
 contains parameters defined as not valid in connection with the
 current property. This includes situations in which multiple
 properties contain values that are defined as inconsistent (as
 opposed to not being satisfiable).

 This error is returnable by OPEN, CREATE, SETATTR, VERIFY, and
 NVERIFY.

 NFS4ERR_SCTL_BADENF Returned when the the storage_ctl attribute
 contains a enforceable property whose enforce_sc is invalid, in
 that it contain multiple enforcement level bits, contains no
 enforcement level bits, in a context in which that is not allowed
 or contains a set of compliance specification bits that is not
 appropriate in the current context.

 This error is returnable by OPEN, CREATE, SETATTR, VERIFY, and
 NVERIFY.

 NFS4ERR_SCTL_BADDATA Returned when the storage_ctl contains a
 section_sc whose PropertyData array does not match the length of
 the properties specified in the associated WhichProperties.

 This error is returnable by OPEN, CREATE, SETATTR, VERIFY, and
 NVERIFY.

Noveck, et al. Expires September 15, 2011 [Page 27]

Internet-Draft storage_ctl March 2011

 NFS4ERR_SCTL_FAIL Returned when a required storage_ctl element
 cannot be satisfied. This is as opposed to the case in which it
 is not being able to be satisfied immediately but is in the
 process of being satisfied.

 This error is returnable by OPEN, CREATE, and SETATTR only.

9.2. Semantic constraints

 This section lists the semantic contraints on property
 specifications. We will have situations in which the attribute will
 fully match specified XDR specification but the specification will
 not be in line with appropriate contextual constraints. This section
 will list those constraints, in order to complement the XDR
 definition above.

 There are four categories of constraints that need to be dealt with:

 o Whether the properties have the associated parameters specified.

 o Whether the properties have an associated enforcement level
 specified.

 o Whether the properties have associated compliance level(s)
 specified.

 o Constraints that involve the validity of combinations of what are
 otherwise allowed situations with regard to the above.

 Each property specifies a particuar value which is invalid and is to
 be treated as inicateing the absence of property parameters (zero
 values, zero-length arays, etc.). Specification of the parameters
 associated with storage properties are generally required and so
 these special value result in NFS4ERR_SCTL_BADPARM being returned.
 The only exceptions are SETATTR, for which a storage property without
 parameters serves to delete the corresponding storage propery in the
 existing attribute, and VERIFY/NVERIFY where it is allowed under some
 circumstances, to be discussed below.

 Specification of the enforcement level is generally required for
 enforceable properties. The only exception is VERIFY/NVERIFY where
 it is allowed under some circumstances, to be discussed below.

 Specification of the compliance status for enforceable properties
 depends on the context in which the properties appears. For OPEN,
 CREATE, and SETATTR, specification of compliance status is not
 allowed. VERIFY/NVERIFY specification of multiple compliance status
 values is allowed, subject to the specific combination constraints

Noveck, et al. Expires September 15, 2011 [Page 28]

Internet-Draft storage_ctl March 2011

 appropriate to VERIFY and NVERIFY as listed below. For all other
 contexts, whether in GETATTR, READDIR, the responses in the
 NFS4ERR_SCTL_FAIL case, or in the response to the FETCH_SCNOTE
 operation, specification of compliance status is required but only a
 single compliance status must appear.

 In addition to the constraints listed above, in the case of a
 storage_ctl attribute within VERIFY/NVERIFY, the properties within
 the attribute must meet the additional constraints described in the
 section Use of storage_ctl in VERIFY/NVERIFY

 When sending responses to GETATTR, READDIR, OPEN, CREATE, and
 SETATTR, the server MUST obey these constraints. When receiving
 OPEN, SETATTR, VERIFY, and NVERIFY requests that contain the
 storage_ctl attribute, the server MUST return the error
 NFS4ERR_SCTL_BADENF if the attribute does not follow the specified
 constraints and is otherwise valid (matching the XDR property
 deinition).

 These constraints apply to properties introduced by extensions to the
 storage_ctl attirbute unless explicitly overridden in the document
 defining the extension. Such a document may add other contextual
 constraints that apply to the properties defined by that extension.

Noveck, et al. Expires September 15, 2011 [Page 29]

Internet-Draft storage_ctl March 2011

10. Possible Future Work

 This document describes a basic framework for storage control and a
 basic set of properties. It is a base for development of this
 feature and could have considerable additions before incorporation in
 NFSv4 an minor version. On the other hand, the feature is intended
 to be defined with sufficient flexibility that many of these
 additions to the feature might be done as subsequent extensions,
 after the basic feature is made part of an NFSv4 minor version.

 The question of which additions are required for an initial version
 of the feature, which are best deferred to later and which proposed
 extensions don’t really belong is a complex one and will be a major
 subject of the development of the feature.

 The following list, illustrates some of the possible additions that
 have had some preliminary discussion. It is not intended to be
 exhaustive, and the examination of other additions not yet thought of
 is definitely part of the work to be done:

 Addition of other properties to those in this document, that make
 sense as a basic set of properties, both informative and
 enforceable, for an initial set to be part of an NFSv4 minor
 version.

 Mechanisms to allow a set of properties to be applied to a large
 set of files, including those that are directory-based (with
 inheritance a possible part of the mix), by bulk attribute change
 on a client-specified set of files, or by allowing the client to
 store some set of properties as a persistent object in file
 system, and allowing subsequent storage control attributes to
 reference that persistent object.

 Mechanisms to enable the client to determine possible choices (or
 ranges) for some properties within the context of a given server.
 This would be to simplify and streamline property negotation.

 Mechanisms by which a server could advertise various possible sets
 of property choices to deal with environments where there only
 exists a small set of possible choices each effecting a particular
 choice for many properties, as opposed to a case where multiple
 independent property choices are possible.

Noveck, et al. Expires September 15, 2011 [Page 30]

Internet-Draft storage_ctl March 2011

11. Acknowledgments

 Mike Eisler reviewed early drafts of this work and made important
 contributions in helping define the direction of the effort.

 David Black reviewed many drafts of this work and made many helpful
 suggestions that improved the quality of the result.

Noveck, et al. Expires September 15, 2011 [Page 31]

Internet-Draft storage_ctl March 2011

Authors’ Addresses

 David Noveck
 EMC
 228 South St.
 Hopkinton, MA 01748
 US

 Phone: +1 508 249 5748
 Email: david.noveck@emc.com

 Pranoop R. Erasani
 NetApp
 48980 Oat Grass Terrace
 Fremont, CA 94539
 US

 Phone: +1 408 822 3282
 Email: pranoop@netapp.com

 Lakshmi N. Bairavasundaram
 NetApp
 475 East Java Drive
 Sunnyvale, CA 94089
 US

 Phone: +1 408 419 5616
 Email: lakshmib@netapp.com

 Peng Dai
 Vmware
 5 Cambridge Center
 Cambridge, MA 02142
 US

 Phone: +1 617 528 7592
 Email: pdai@vmware.com

Noveck, et al. Expires September 15, 2011 [Page 32]

Internet-Draft storage_ctl March 2011

 Christos Karamonolis
 Vmware
 3401 Hillview Ave.
 Palo Alto, CA 94304
 US

 Phone: +1 650 427 2329
 Email: ckaramonolis@vmware.com

Noveck, et al. Expires September 15, 2011 [Page 33]

