
NFSv4 M. Eisler
Internet-Draft D. Kenchammana
Intended status: Standards Track J. Lentini
Expires: August 27, 2011 M. Shankararao
 NetApp
 R. Iyer
 February 23, 2011

 NFS space reservation operations
 draft-iyer-nfsv4-space-reservation-ops-02.txt

Abstract

 This document describes a set of NFS attributes and operations that
 are useful for applications like hypervisors to manage storage in a
 better manner.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 27, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

Eisler, et al. Expires August 27, 2011 [Page 1]

Internet-Draft NFS space reservation operations February 2011

 described in the Simplified BSD License.

Table of Contents

 1. Requirements notation . 3
 2. Introduction . 3
 3. Use Cases . 4
 3.1. Space Reservation . 4
 3.2. Space freed on deletes 4
 4. Operations and attributes 5
 4.1. Attribute X: space_reserve 5
 4.2. Attribute Y: space_freed 6
 4.3. Attribute Z: max_hole_punch 6
 4.4. Operation A: HOLE_PUNCH - Zero and deallocate blocks
 backing the file in the specified range. 6
 5. Security Considerations . 8
 6. IANA Considerations . 8
 7. Normative References . 8
 Authors’ Addresses . 8

Eisler, et al. Expires August 27, 2011 [Page 2]

Internet-Draft NFS space reservation operations February 2011

1. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction

 This document describes a set of operations that allow applications
 such as hypervisors to reserve space for a file, report the amount of
 actual disk space a file occupies and freeup the backing space of a
 file when it is not required.

 In virtualized environments, virtual disk files are often stored on
 NFS mounted volumes. Since virtual disk files represent the hard
 disks of virtual machines, hypervisors often have to guarantee
 certain properties for the file.

 One such example is space reservation. When a hypervisor creates a
 virtual disk file, it often tries to preallocate the space for the
 file so that there are no future allocation related errors during the
 operation of the virtual machine. Such errors prevent a virtual
 machine from continuing execution and result in downtime.

 Another useful feature would be the ability to report the number of
 blocks that would be freed when a file is deleted. Currently, NFS
 reports two size attributes:

 o size - The logical file size of the file.

 o space_used - The size in bytes that the file occupies on disk

 While these attributes are sufficient for space accounting in
 traditional filesystems, they prove to be inadequate in modern
 filesystems that support block sharing. Having a way to tell the
 number of blocks that would be freed if the file was deleted would be
 useful to applications that wish to migrate files when a volume is
 low on space.

 Since virtual disks represent a hard drive in a virtual machine, a
 virtual disk can be viewed as a filesystem within a file. Since not
 all blocks within a filesystem are in use, there is an opportunity to
 reclaim blocks that are no longer in use. A call to deallocate
 blocks could result in better space efficiency. Lesser space MAY be
 consumed for backups after block deallocation.

 We propose the following operations and attributes for the

Eisler, et al. Expires August 27, 2011 [Page 3]

Internet-Draft NFS space reservation operations February 2011

 aforementioned use cases:

 space_reserve: This attribute specifies whether the blocks backing
 the file have been preallocated.

 space_freed: This attribute specifies the space freed when a file is
 deleted, taking block sharing into consideration.

 HOLE_PUNCH: This operation zeroes and/or deallocates the blocks
 backing a region of the file.

 max_hole_punch: This attribute specifies the maximum sized hole that
 can be punched on the filesystem.

3. Use Cases

3.1. Space Reservation

 Some applications require that once a file of a certain size is
 created, writes to that file never fail with an out of space
 condition. One such example is that of a hypervisor writing to a
 virtual disk. An out of space condition while writing to virtual
 disks would mean that the virtual machine would need to be frozen.

 Currently, in order to achieve such a guarantee, applications zero
 the entire file. The initial zeroing allocates the backing blocks
 and all subsequent writes are overwrites of already allocated blocks.
 This approach is not only inefficient in terms of the amount of I/O
 done, it is also not guaranteed to work on filesystems that are log
 structured or deduplicated. An efficient way of guaranteeing space
 reservation would be beneficial to such applications.

 If the space_reserved attribute is set on a file, it is guaranteed
 that writes that do not grow the file will not fail with
 NFSERR_NOSPC.

3.2. Space freed on deletes

 Currently, files in NFS have two size attributes:

 o size - The logical file size of the file.

 o space_used - The size in bytes that the file occupies on disk.

 While these attributes are sufficient for space accounting in
 traditional filesystems, they prove to be inadequate in modern
 filesystems that support block sharing. In such filesystems,

Eisler, et al. Expires August 27, 2011 [Page 4]

Internet-Draft NFS space reservation operations February 2011

 multiple inodes can point to a single block with a block reference
 count to guard against premature freeing.

 If space_used of a file is interpreted to mean the size in bytes of
 all disk blocks pointed to by the inode of the file, then shared
 blocks get double counted, over-reporting the space utilization.
 This also has the adverse effect that the deletion of a file with
 shared blocks frees up less than space_used bytes.

 On the other hand, if space_used is interpreted to mean the size in
 bytes of those disk blocks unique to the inode of the file, then
 shared blocks are not counted in any file, resulting in under-
 reporting of the space utilization.

 For example, two files A and B have 10 blocks each. Let 6 of these
 blocks be shared between them. Thus, the combined space utilized by
 the two files is 14 * BLOCK_SIZE bytes. In the former case, the
 combined space utilization of the two files would be reported as 20 *
 BLOCK_SIZE. However, deleting either would only result in 4 *
 BLOCK_SIZE being freed. Conversely, the latter interpretation would
 report that the space utilization is only 8 * BLOCK_SIZE.

 Adding another size attribute, space_freed, is helpful in solving
 this problem. space_freed is the number of blocks that are allocated
 to the given file that would be freed on its deletion. In the
 example, both A and B would report space_freed as 4 * BLOCK_SIZE and
 space_used as 10 * BLOCK_SIZE. If A is deleted, B will report
 space_freed as 10 * BLOCK_SIZE as the deletion of B would result in
 the deallocation of all 10 blocks.

 The addition of this problem doesn’t solve the problem of space being
 over-reported. However, over-reporting is better than under-
 reporting.

4. Operations and attributes

 In the sections that follow, one operation and three attributes are
 defined that together provide the space management facilities
 outlined earlier in the document. The operation is intended to be
 OPTIONAL and the attributes RECOMMENDED as defined in section 17 of
 [RFC5661].

4.1. Attribute X: space_reserve

 The space_reserve attribute is a read/write attribute of type
 boolean. It is a per file attribute. When the space_reserved
 attribute is set via SETATTR, the server must ensure that there is

Eisler, et al. Expires August 27, 2011 [Page 5]

Internet-Draft NFS space reservation operations February 2011

 disk space to accommodate every byte in the file before it can return
 success. If the server cannot guarantee this, it must return
 NFS4ERR_NOSPC.

 If the client tries to grow a file which has the space_reserved
 attribute set, the server must guarantee that there is disk space to
 accommodate every byte in the file with the new size before it can
 return success. If the server cannot guarantee this, it must return
 NFS4ERR_NOSPC.

 It is not required that the server allocate the space to the file
 before returning success. The allocation can be deferred, however,
 it must be guaranteed that it will not fail for lack of space.

 The value of space_reserved can be obtained at any time through
 GETATTR.

 In order to avoid ambiguity, the space_reserve bit cannot be set
 along with the size bit in SETATTR. Increasing the size of a file
 with space_reserve set will fail if space reservation cannot be
 guaranteed for the new size. If the file size is decreased, space
 reservation is only guaranteed for the new size and the extra blocks
 backing the file can be released.

4.2. Attribute Y: space_freed

 space_freed gives the number of bytes freed if the file is deleted.
 This attribute is read only and is of type length4. It is a per file
 attribute.

4.3. Attribute Z: max_hole_punch

 max_hole_punch specifies the maximum size of a hole that the
 HOLE_PUNCH operation can handle. This attribute is read only and of
 type length4. It is a per filesystem attribute. This attribute MUST
 be implemented if HOLE_PUNCH is implemented.

4.4. Operation A: HOLE_PUNCH - Zero and deallocate blocks backing the
 file in the specified range.

 ARGUMENTS

 struct HOLE_PUNCH4args {
 /* CURRENT_FH: file */
 offset4 hpa_offset;
 length4 hpa_count;
 };

Eisler, et al. Expires August 27, 2011 [Page 6]

Internet-Draft NFS space reservation operations February 2011

 RESULTS

 struct HOLEPUNCH4res {
 nfsstat4 hpr_status;
 };

 DESCRIPTION

 Whenever a client wishes to deallocate the blocks backing a
 particular region in the file, it calls the HOLE_PUNCH operation with
 the current filehandle set to the filehandle of the file in question,
 start offset and length in bytes of the region set in hpa_offset and
 hpa_count respectively. All further reads to this region MUST return
 zeros until overwritten. The filehandle specified must be that of a
 regular file.

 Situations may arise where hpa_offset and/or hpa_offset + hpa_count
 will not be aligned to a boundary that the server does allocations/
 deallocations in. For most filesystems, this is the block size of
 the file system. In such a case, the server can deallocate as many
 bytes as it can in the region. The blocks that cannot be deallocated
 MUST be zeroed. Except for the block deallocation and maximum hole
 punching capability, a HOLE_PUNCH operation is to be treated similar
 to a write of zeroes.

 The server is not required to complete deallocating the blocks
 specified in the operation before returning. It is acceptable to
 have the deallocation be deferred. In fact, HOLE_PUNCH is merely a
 hint; it is valid for a server to return success without ever doing
 anything towards deallocating the blocks backing the region
 specified. However, any future reads to the region MUST return
 zeroes.

 HOLE_PUNCH will result in the space_used attribute being decreased by
 the number of bytes that were deallocated. The space_freed attribute
 may or may not decrease, depending on the support and whether the
 blocks backing the specified range were shared or not. The size
 attribute will remain unchanged.

 The HOLE_PUNCH operation MUST NOT change the space reservation
 guarantee of the file. While the server can deallocate the blocks
 specified by hpa_offset and hpa_count, future writes to this region
 MUST NOT fail with NFSERR_NOSPC.

 The HOLE_PUNCH operation may fail for the following reasons (this is
 a partial list):

Eisler, et al. Expires August 27, 2011 [Page 7]

Internet-Draft NFS space reservation operations February 2011

 NFS4ERR_NOTSUPP: The Hole punch operations is not supported by the
 NFS server receiving this request.

 NFS4ERR_DIR: The current filehandle is of type NF4DIR.

 NFS4ERR_SYMLINK: The current filehandle is of type NF4LNK.

 NFS4ERR_WRONG_TYPE: The current filehandle does not designate an
 ordinary file.

5. Security Considerations

 There are no security considerations.

6. IANA Considerations

 This document has no actions for IANA.

7. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5661] Shepler, S., Eisler, M., and D. Noveck, "Network File
 System (NFS) Version 4 Minor Version 1 Protocol",
 RFC 5661, January 2010.

Authors’ Addresses

 Mike Eisler
 NetApp
 5765 Chase Point Circle
 Colorado Springs, CO 80919
 USA

 Phone: +1 719 599 9026
 Email: mike@eisler.com
 URI: http://www.eisler.com

Eisler, et al. Expires August 27, 2011 [Page 8]

Internet-Draft NFS space reservation operations February 2011

 Deepak Kenchammana
 NetApp
 475 East Java Drive
 Sunnyvale, CA 94089
 USA

 Phone: +1 408 822 4765
 Email: kencham@netapp.com

 James Lentini
 NetApp
 1601 Trapelo Rd, Suite 16
 Waltham, MA 02451
 USA

 Phone: +1 781 768 5359
 Email: jlentini@netapp.com

 Manjunath Shankararao
 NetApp
 3rd Floor, Fair Winds Block, EGL Software Park
 Bangalore, Karnataka 560085
 INDIA

 Phone: +91 80 4184 3397
 Email: rudra@netapp.com

 Rahul Iyer
 655 S Fair Oaks Ave Apt #I-314
 Sunnyvale, CA 94086
 USA

 Email: rahulair@yahoo.com

Eisler, et al. Expires August 27, 2011 [Page 9]

