nf sv4 D. Noveck

Internet-Draft EMC
Expi res: Septenmber 15, 2011 P. Erasan
L. Bai ravasundar am
Net App

P. Dai

C. Karanonolis

Vmwar e

March 14, 2011

St orage Control Extensions for NFS Version 4
draft-dnoveck- st orage-control -01

Abstract

Devel opnents in storage systens have nade it inportant for
applications to have control over the characteristics of the storage
that will be used for their particular files. The devel opnent of
pPNFS has added to the useful ness of such control nechanisns as it has
created the opportunity for the hierarchical organization of file
nanes to be separated fromthe control of storage characteristics for
i ndividual files, including the assignnent to storage |ocations to
reflect the perfornmance or other needs of those specific files. This
docunent proposes extensions to NFS version 4 to allow storage
requirenents to be communicated to the NFS version 4 server

Status of this Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunments of the Internet Engineering
Task Force (1ETF). Note that other groups may also distribute
wor ki ng docunents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and may be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress."
This Internet-Draft will expire on Septenber 15, 2011

Copyright Notice

Copyright (c) 2011 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Noveck, et al. Expi res Septenber 15, 2011 [Page 1]

Internet-Draft storage_ctl March 2011

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

This docunment may contain material from | ETF Docunents or | ETF
Contri butions published or nmade publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in some of this
materi al may not have granted the | ETF Trust the right to allow
nmodi fi cations of such material outside the | ETF Standards Process.
W thout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
outside the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to format
it for publication as an RFC or to translate it into |anguages other
than Engli sh.

Noveck, et al. Expi res Septenber 15, 2011 [Page 2]

Internet-Draft storage_ctl

Tabl e of Contents

PwONE

00 00 00

10.
11.
Aut hors’ Addr esses .

Novec

ku

SRS

St orage Control |ssues . Coe
St orage Choice and APl Definition
Modes of Storage Choice .
Assuring Extensability .

.1. Requirenents for Ext ensabl li ty
.2. XDR Encoding for Extensability .

St orage Control

.1. Property Types . .

5.1.1. Informative Propertles .

5.1.2. Enforceable Properties .

2. Base Property Specifications .

5.2.1 St orage Size . .

5.2.2 St orage Use Durati on . .

5.2.3 St orage Device Failure L|mt

5.2.4 Storage System Failure Limt

5.2.5 St orage System Failure RPO .

5.2.6. Storage System Failure RTO Pr opertl es
Uses of the Attribute storage_ctl .
1. Use of storage_ctl when creating a f|Ie
2. Use of storage_ctl in SETATTR . . .

3. Use of storage ctl in CGETATTR/ READDI R

4.

Use of storage ctl in VERI FY/ NVERI FY .
The FETCH_SCNOTE Operation . o
Attribute Extension

.1. Experimental and O her Non—st andar di zed Extensions .
.2. Standardi zed Extensions
.3. The storage_ext attribute

Sunmary

1. Errors . .
. 2. Semanti c constral nts .

Possi bl e Future Work .
Acknowl edgnent s

et al. Expi res Septenber 15, 2011

March 2011

©o0oo~NO® M

11

11
12
14
15
16
16
17
17
17
19
19
20
21

23
25
25

26
27
27
28
30
31
32

[Page 3]

Internet-Draft storage_ctl March 2011

1.

St orage Control |ssues

Storage to which files may be assigned can differ in a nunber of

ways, raising the issue of howto control the choice of storage for
specific files. The range of such choices is not static but can be
expected to increase as flash nenory beconmes an option whose use
needs to be controlled, or various choices of types of local caching
need to be made. Although all files may well be hel ped by such
approaches, the degree to which they will be helped will vary with
the type of file and the typical application reference pattern for

it. In addition, the value of inproved access will differ with quick
access to certain files being of nuch greater val ue, thereby
justifying the allocation of nore expensive storage resources to such
files.

The traditional way that user decisions regardi ng assi gnnment of
storage resources have been effected is by assigning specific file
systens to specific disks or sets of disks. Files placed in that
file systemthereby get the storage characteristics assigned to that
file system \ere file systens contain storage of various types,
various heuristics are used to assign files or pieces thereof, to
storage of various types, generally w thout any external input about
appl i cati on needs.

The creation of pNFS nodifies this pattern in that data and netadata
are separated. \Where pNFS is used, assigning a file to a specific
file systemnow controls only where the netadata is | ocated.
Different files may have their data assigned to different sorts of
storage, potentially located on different servers. This gives rise
to the need for a nmeans by which the storage choice for a particul ar
file may be made

NFS version 4.1 contains a layouthint attribute but this does not
really address the problem The focus of the layouthint attribute is
on the striping configuration, but there is a need to control storage
characteristics other than this. This is the case even when there is
only a single stripe (that is, no striping). Even though this is not
"parallel NFS," using pNFS in this way to provide a separation of
data and netadata, with the ability to choose |ocations for data
based on its characteristics subject to |later change in a user-
transparent manner is very powerful, particularly if the storage
location is subject to intelligent nanagenent.

Addi tionally, nore sophisticated storage managenent arrangenments make
it desirable to have a way to specify details for storage handling,
even when pNFS is not used. Wen a file systemcontains different
sorts of storage, input regarding desired or necessary storage
characteristics can be used to nmake storage assignment choices nore

Noveck, et al. Expi res Septenber 15, 2011 [Page 4]

Internet-Draft storage_ctl March 2011

inline with application needs.

As a result, the ability to specify desired storage characteristics
can provide benfits, both when pNFS is used and when it is not,

al t hough pNFS has the nopst i medi ate set of needs for nmeans by which
to control storage sel ection.

Noveck, et al. Expi res Septenber 15, 2011 [Page 5]

Internet-Draft storage_ctl March 2011

2

St orage Choice and APl Definition

It needs to be noted that existing API’s may not provi de neans by
whi ch sone of the storage characteristics described herein nmay be
communi cated to NFSv4 in-kernel clients and fromthere, to NFSv4
servers. Nevertheless, definition of a neans by which these storage
characteristics may be conmunicated to the NFSv4 server is stil
useful for a nunber of reasons:

Enbedded clients for particular applications may specify this
i nformati on even wi thout any APl deinition

Client inplenentations nay use various |ess-than-perfect ways of
speci fying storage characteristics, assigning storage
chatcteristics based on file ownership or other nomnally

unreal ated characteristics that that corelate well w th custoner
i ntentions.

Note that if the absence of a standard kernel APl were sufficient to
stop this work, it also probably be the case that the absence of a
means to comunicate the information to renote servers m ght make the
definition of that APl not worth the effort. By defining sone
storage characteristics and a general neans of conmunicating them and
others (via an extension nechanism) we allow for either

The | ater devel opment of APlI’'s to specify these storage
characteristics.

The devel opent of API's to specify different sets of storage
characteristics that can then be easily assinilated to this
mechani sm as ext ensi ons.

Noveck, et al. Expi res Septenber 15, 2011 [Page 6]

Internet-Draft storage_ctl March 2011

3.

Modes of Storage Choice

There are a nunber of different ways in which storage choices may be
i ndi cat ed:

o0 The specific file systemlocation(s) mght be specified.

o Specific types of storage m ght be specified with selection of
such choi ces as SSD, SATA, or fiber channel SAN drives being nade
by the client and effected by the MDS

0 Desired characteristics of storage including speed (latency and/or
t hr oughput), ampbunt of storage that will be needed, safety (raid-
I evel). Available storage would be selected to neet the required
characteristics and woul d be subject to active managenent as the
envi ronnment changes.

These different nodes of storage choice are all useful in different
environnments. Specification of a specific file systeminposes the
| east need for a storage nmanagenent infrastructure but it requires
user/applicati on know edge.

The ot her nodes inply a sequence of progressively greater
infrastructure requirenments to nmap specifications to specific storage
systens and a correspondingly smaller need for user/application

know edge of the storage environment. However, such nodes of
operation are very different fromexisting storage managenent

par adi gns and the precise ways in which applications and storage

m ght communi cate are not fully understood.

Noveck, et al. Expi res Septenber 15, 2011 [Page 7]

Internet-Draft storage_ctl March 2011

4. Assuring Extensability
4.1. Requirenents for Extensability

As the exanples of different nodes of storage choice suggest, there
are potentially a large nunber of specific itens that mi ght be
specified in order to effect storage choice. Further, in many cases,
expected future devel opments in the area of storage can be expected
to extend and otherwi se nodify the characteristics which mght be
speci fi ed.

The need for extensibility is inportant as one m ght expect nany
ongoi ng devel opnents, including those in the areas of storage
hardware, and file systens, to create correspondi ng needs to specify
rel evant storage chatacteristics.

For exanple, local caching, including witeback caching using flash
creates the opportunity for greatly inproved perfornmance, at the risk
of greater conplexity in dealing with network failures. This raises
the issue of allowing the user to make the choice of whether this
greater performance is worth the risks and difficulties.

Sinmlarly, the devel opnent of distributed file systens rai ses nany
choi ces where performance will need to be bal anced agai nst vari ous
forns of safety issues, with specific choices reflecting the specific
needs of applications dealing with the storage.

These situations and others that we may not be able to predict,
require that any attribute schenme in this area allow the
specification of nultiple storage characteristics with the ability to
easily extend the specification so that it incorporates new
characteristics to govern storage selection. Further, the need for
actual use testing before incorporation in an | ETF standard, imnposes
new requirenents as far as organi zi ng specification of the
characteristics.

Havi ng "working code" to effect characteristic selection is not
sufficient to denonstrate useful ness. The working code may be
trivial while finding out whether this set of characteristics nmake
sense for applications to use or requires extension or nodification
before assuning its final formis not trivial. This may require
significant trial use anpbng a |arge set of users running different
applications, before the details are ready to be standardi zed.

These factors increase the need for flexibility, including non-
private use of characteristics not yet standardi zed. Accompdati ng
this need for flexibility has the potential for unduly interfering
with interoperability and the design of this feature will need to

Noveck, et al. Expi res Septenber 15, 2011 [Page 8]

Internet-Draft storage_ctl March 2011

avoi d that.
4.2. XDR Encoding for Extensability

Whi | e each storage property could conceivably be nade its own
attribute, the burden that this would place on the | ETF process would
be i mmense. There would be necessary co-ordination (and al nost
certain confusion) as individual experinmental properties needed
tenporary attribute nunbers and then had to shift themto other nore
per manent nunbers. Further, and even nore of an issue, storage
property definition would seemto require a nminor version, which
seens too heavyweight. This would sl ow down the process beyond what
shoul d be for something which was its own standard-track RFC

In order to address these issues, individual properties will be
treated as sub-attributes within a single storage ctl attribute. To
simplify assignnment of sub-attribute nunbers, nmainly in support of
experinental use, multiple sub-attribute spaces will be supported, to
al | ow i ndependent devel opment of features each involving multiple
storage properties. Once such a feature is standardi zed, the
definition of the specific sub-atribute space could sinply be made
the subject of a standards-track RFC, with no change to those using
it.

typedef uin32_t spacenum sc; /* Individual property space id. */
typedef uint32_t bitmap_sc<*>; /* Bit map for the presence or
absence of individual properties
usi ng bit nunbers assigned for
t he space. Like bitmap4. */
typedef opaque proplist_sc<*>; /* Data associated with each of the
properties in the bitmp_sc.

Li ke attrlist4. */
struct section_sc {
spacenum sc SpaceSecti on; /* Section nunber. */
bi t map_sc Whi chProperties;/* Bit map of properties present. */
proplist_sc Pr opert yDat a; /* Data for each of the properties
specified in this section. */

|
typedef section_sc fattr4 _storage ctl<*>;

/[* The attribute may have one or
nmore property sections. */

This formof property encoding allows the property set to be extended
wi thout requiring a new mnor version. Also, by allow ng property

Noveck, et al. Expi res Septenber 15, 2011 [Page 9]

Internet-Draft storage_ctl March 2011

space nunbers to be assigned, property sets can be devel oped
i ndependently, and converted to a standard state w thout undue
interruption to those using the earlier form

Noveck, et al. Expi res Septenber 15, 2011 [Page 10]

Internet-Draft storage_ctl March 2011

5.

5.

5.

St orage Control

Storage, along with conpute, menory, and network, is an integral part
of an application’s resources. Mich |like the other types of
resources consuned by an application, storage needs can be descri bed
using a set of properties. These properties may serve to describe
the characteristics of the storage, the intended usage both tenporal
and spatial, quality of service expectations, physical |ayout over
avai |l abl e storage nedi a, data access |ocations, geographica
distribution, just to nane a few. The collection of such properties
together define the control an application ultimtely wants to have
on storage; conversely, they enable the storage systemto nore
effectively and dynamically nmeet the application’s needs as
specifically expressed, rather than inferred, based on fallible
heuristics. Henceforth, we will use the termcontrol to refer to the
property collection.

It is not difficult to conceive various storage properties. In fact,
there are numerous of them due to the diversity of applications and
the correspondi ng workl oad characteristics, the ever increasing
storage value-adds in the formof data services, and the fast
changi ng business requirenents. It is an inpossible task to capture
all of themhere. Rather, the goal of this docunent is to define a
framework in which new properties can be easily added and new
semantics of the properties can be introduced as necessary w thout
disruption. It is desired that they be capable of being used in nore
limted situations, refined as necessary.

1. Property Types

There may be numerous storage properties as nentioned above. W
need, however, to distinguish at |east two types, nanely, informative
properties and enforceable properties. There may very well be other
systens or criteria when it cones to the classification of storage
properties; and extensibility shall apply in this case just as it
does to addi ng new storage properties. However, there is a need to
explicitly capture the distinctions between informative and
enforceabl e properties in the data nodel, due to the inpact on the
storage protocol senantics

1.1. Informative Properties

An informative property, as the name suggests, provides sone
descriptive information about the storage in question. Such
information is furnished in a single direction fromthe application
to the storage systemw th absolutely no "contractual" inplications.
The storage system nay use the information captured in such a
property for storage optinization. But it is not obligated to do so.

Noveck, et al. Expi res Septenber 15, 2011 [Page 11]

Internet-Draft storage_ctl March 2011

More inportantly, the application is not offered any transparency as
to how the storage systemmay utilize this information. As such, the
information flowis strictly one-way w thout the prospect for any
feedback. Exanples of infornmative properties are the access pattern
of the storage in use, the expected capacity need, and the estinmated
growt h rate.

5.1.2. Enforceable Properties

In contrast, an enforceable property nmay have enbedded in it varying
degrees of binding effect. By that, it neans the application
specifying the property has expectations that the storage system not
only acts upon but al so conveys the action status back in some way.
Unli ke the case of an informative property, the information flow in
this case is truly bi-directional, with the backward direction for
nmoni toring property status, including information on whether a
property has been satisfied or is in the process of being satisfied.
In that sense, an enforceabl e property has a resenblance to an
agreenment, where one might nonitor the perfornmance of the other

party.

Applications seeking tighter control of the storage may resort to the
enforceabl e properties. Exanples of enforceable properties could

i nclude the type and speed of sorage but could al so include the
availability, reliability, and average throughput and | atency.

5.1.2.1. Enf or cenent Level

To all ow varyi ng degrees of control, an enforcenent |evel nay be
associated with an enforceabl e property. There are two | evels of
control possible, nanely, advisory and mandatory. Regardless of the
| evel, the storage system should strive to fulfill an enforceable
property. The difference lies in the treatnent of an inability to do
so. Wth an advisory enforcenent |level, the storage system shal
continue to carry out the operation even if the property could not be
fulfilled; whereas with nandatory, the storage shall fail the
operation w thout making any nodification. 1In any case, the failure
to fulfill an enforceable property can be comunicated to the
appl i cation.

5.1.2.2. Conpliance Status

Whil e control may suffice to describe the ultimte storage
requirenents, i.e., the intended behavior once it has been fully

i npl emented, it does not by itself capture the dynam c aspects of the
i npl ementation process. This is enconpassed by the concept of
"conpliance" which indicates the extent to which requested storage
properties have or have not been provided or whether they are stil

Noveck, et al. Expi res Septenber 15, 2011 [Page 12]

Internet-Draft storage_ctl March 2011

in the process of being provided. Note that the word "conpliance" as
used here has no connection with this word as used to describe issues
conformance with a set of legal requirenments for record-keeping,
anong other matters.

Control inplementation can be a fairly heavywei ght process by nature
due to the data intensity involved. This nmay be true whether it is
during the initial provisioning of storage, or the subsequent change
managenent, or the remediation of conpliance violation. The data

i ntensive nature of the control inplenentation process inplies that
the transition from non-conpliance to conpliance will not be

i nstantaneous in the general case. |In other words, the

i mpl erent ati on process remnains asynchronous relative to the operation
that triggers it.

The asynchronous nature of the control inplenentation process nay be
captured by the conpliance status. The conpliance status may have
three different values, nanely, Current, Conplying, and Failed. The
value Current represents a fully conpliant state. The val ue
Conplying refers to a transient state in which the transition to
current is in progress.

The value Failed represents an indefinite state of non-conpliance.
In the last case, the storage system nmay have nmade the determ nation
that it is unable to fulfill some or all of the storage properties
gi ven the physical resources available. The application will work
wi thout, but its performance nay not be what is desired.

The conpliance status describes the state of the control fulfill nent
as it pertains to each property. It applies to an enforceable
property only. |Its presence is not a syntactic requirenent as
defined by the XDR specification. Depending on the operationa
context in which the enforceable property is specified, specification
of conpliance status nmay be either invalid, required, or optiona

with the specification of nore that one such status val ues possible
in sonme cases

5.1.2.3. XDR Encoding for Enforceable Properties

Enf orceabl e properties contain a word which is of type enforce sc and
all ows the enforcenent |evel and conpliance status to be specified.
To allow greatest flexibility, all enforcenent statuses and
compliance status values are specified as bit values, allow ng sets
of enforcement |evels and conplicance status, to be specified, as
appropri at e.

Noveck, et al. Expi res Septenber 15, 2011 [Page 13]

Internet-Draft storage_ctl March 2011

typedef uint32_t enforce_sc;

const enforce_sc ENFORCE_MANDATORY = O0Ox1;
const enforce_sc ENFORCE _ADVI SORY = 0x2;
const enforce_sc ENFORCE CURENT = 0x10;
const enforce_sc ENFORCE COWPLYI NG = 0x20;
const enforce_sc ENFORCE FAI LED = 0x40;

For nost purposes, enforcenent words shoul d have a single enforcenent
| evel , either ENFORCE MANDATORY ENFORCE_ADVI SCRY. Any enforcenent
word containing both bits will result in NFS4ERR SCTL_BADENF bei ng
returned. Specification of an enforcement word containing neither
will generally result in in NFS4ERR _SCTL_BADENF bei ng returned.
However, it may be specified, when doing a SETATTR that specifies a
reserved enpty paraneter value to renpve a property specification
Al'so, it may be specified when doing an VERI FY or NVERIFY to specify
a property without a defined enforcenent |evel

When specifying a storage property as part of a OPEN, CREATE. or
SETATTR, no enforcenent |evel bits should be specified. |If they are,
the error NFS4ERR SCTL_BADENF is returned. For values returned by
the server in response to GETATTR, enforcenent words, containing
exactly one conpliance status bit will be returned. Wen using
storage properties as part of VERI FY or NVERI FY conpliance words
cont ai ni ng no conpliance bits or any subset of the valid conpliance
status bits may be specified.

5.2. Base Property Specifications

The goal for initial inclusion in an NFS version 4 ninor version is
to define a small set of property specifications that are generally
useful and do not require a | arge managenent infrastructure to

i mpl ement. The following are the three property specifications that
fit the description.

Noveck, et al. Expi res Septenber 15, 2011 [Page 14]

Internet-Draft storage_ctl March 2011

const spacenum sc SCNUM BASE = 1; /* Base property space id for
all properties in this

group. */
const uint32_t SCBASE SIZE = 0; /* Informative property for
size. */
const uint32_t SCBASE DURATION = 1; /* Informative property for
duration. */
const uint32_t SCBASE DEVFAIL = 2; /* Enforceable property for
a device failure limt. */
const uint32_t SCBASE SYSFAIL = 3; [/* Enforceable property for
a systemfailure Iimt. */
const uint32_t SCBASE FAIL_RPO = 4; /* Enforceable property for
a recovery point objective
in the event of failure. */
const uint32_ t SCBASE SFAIL _RTO = 5;/* Enforceable property for
a recovery tinme objective
in the event of system
failure. */
const uint32_t SCBASE DLOSS RTO = 6;/* Enforceable property for
a recovery time objective
in the event of data | oss. */
const uint32_t SCBASE DI SASTER RTO = 7;/* Enforceable property for a

recovery tine objective in
the event of disaster. */

5.2.1. Storage Size

The storage size is an informative property that allows the

specification of the expected anount of storage to be needed. It may
be used by the server in seeing if appropriate space is avail able and
in reserving space. It is specified as a 64-bit unsigned val ue

giving a quantity of storage expressed in bytes.
typedef uint64_t propbase_si ze;

This value may be different fromthe expected file size. Areas not
al | ocat ed, because of holes for exanple, are not included. This
anount of storage may not be required imediately if the file starts
smal |l and grows. Any derating of specified values is purely a nmatter
of server inplementation choice and will typically reflect the
ability to nove data to respond to storage overconmtnent.

A value of zerois invalid and would result in the error

NFS4ERR_SCTL_BADPARM when used in an OPEN or CREATE. When used in
SETATTR, it causes deletion of a previous storage size specification

Noveck, et al. Expi res Septenber 15, 2011 [Page 15]

Internet-Draft storage_ctl March 2011

5.2.2. Storage Use Duration

The storage use duration is an informative property that allows the
specification of the anbunt of tinme that the storage is expected to

be needed. It nay be used in assigning files to storage so that
space conflicts are reduced. It is specified as a 64-bit unsigned
val ue giving a duration in nilliseconds.

typedef uint64_t propbase_duration;

This allows tines from1 mllisecond up to approximately 500 nillion
years to be specified. A value of zero is invalid and would result
in the error NFSAERR SCTL_BADPARM when used in an OPEN or CREATE
When used in SETATTR, it causes deletion of a previous storage
duration specification.

5.2.3. Storage Device Failure Limt

The storage device failure limt is an enforceable property that
all ows the specification of a nunber of disk drives (or other
devices) that can fail sinultaneously with no data | oss and that
incurs zero recovery tine. It nust be the case that any set of
devices of the specified can fail without data loss and with zero
recovery tinme.

Even though there is no recovery tinme, there may be a significant
recovery period of nodestly reduced performance whil e adaptation to
the failure is done and until the conpletion of which, additiona
device failures will be considered sinultaneous.

The linmit is specified as a 32-bit unsigned val ue giving the m ni num
count of sinmultaneous failures that can result in data loss to
clients accessing the file. Storage is assigned which either matches
this specification or provides a greater value. Wen pNFS is

i nvol ved the specification applies to storage for the MDS and each
DS.

typedef uint32_t prop_dev_fail _lim
struct propbase device failure limt {
enforce_sc Df | Enf or ce;
prop_dev_fail _limDfILimt;
This allows values fromzero to approximately 4 billion to be

specified. A value of zero is valid and specifies that data loss is
tolerable in the event of single device failure. (e.g. RAIDO0)

Noveck, et al. Expi res Septenber 15, 2011 [Page 16]

Internet-Draft storage_ctl March 2011

5.2.4. Storage System Failure Limt

The storage systemfailure Iimt is an enforceable property that

all ows the specification of the nunber of storage systens that nust
be able to fail simnultaneously without conplete data | oss. Storage
i s assigned which either matches this specification or provides a
greater value. Wien pNFS is involved the specification applies to
storage for the MDS and DS's as a unit.

typedef uint32_t prop_sys fail |lim
struct propbase systemfailure limt {
enf orce_sc Sfl Enf orce
prop_sys fail _limSflLinmt;
This allows values fromzero to approximtely four billion to be

specified. A value of zero is valid and specifies data loss in the
event of a single storage systemfailure is tolerable.

5.2.5. Storage System Failure RPO

The recovery point objective (RPO is the age of files that nust be
recovered from backup storage for nornmal operations to resune if a
comput er, system device, or network failure results in data | oss
The RPO is expressed backward in time (that is, into the past) from
the instant at which the failure occurs, and can be specified in
seconds. It is an inportant consideration in disaster recovery

pl anni ng.

typedef uint64_t prop_sys fail RPQ

struct propbase_system fail ure_RPO {
enforce_sc Sfr poEnf orce;
prop_sys fail RPO SfrpoTi ne;

This allows values fromzero seconds to a value far beyond the age of
the universe to be specified. A value of zero is valid and indiactes
that a real-tinme backup that reflects changes i mediately as nmade is
required.

5.2.6. Storage System Failure RTO Properties
Recovery time objective (RTO properties specify is the maxi num
tolerable length of time that storage assigned may be unavailable in

the event of various classes of failures. There are three associ ated
properties, each of which specifies this value for a particular class

Noveck, et al. Expi res Septenber 15, 2011 [Page 17]

Internet-Draft storage_ctl March 2011

of failure:

The system failure RTO property, with the property id
SCBASE _SFAI L_RTO, defines the recovery tine objective in the event
of failures that do not not involve data | oss or data corruption

The data | oss RTO property, with the property id SCBASE DLOSS RTO
defines the recovery time objective in the event of failures that
do not not involve the occurrence of a disaster, defined as a
maj or environnental event such as a hurricane, earthquake, or
flood, etc.

The system failure RTO property, with the property id
SCBASE_DI SASTER RTO, defines the recovery tinme objective in the
event of any falure including disasters.

The actual RTOis a function of the extent to which the interruption
di srupts nornmal operations and the provisions nade to aneliorate this
situation. The desired RTOis a function of the urgency to re-
establish operations and the consequences of failure to pronptly do
so. It is an inportant consideration in recovery planning.

typedef uint64_t propbase sys fail RTQ

struct propbase_systemfailure_RTO {
enforce_sc Sfrt oEnf or ce;
prop_sys_fail RTO SfrtoTi ne;

RTO values for all of these properties is specified as a 64-bit

i nteger which specifies a nunber of microseconds. Although sub-
second RTO values may be difficult, the specification allows small
val ues which mght be useful in the future. The maxi numvalue is
approxi mately five-hundred thousand years.

Noveck, et al. Expi res Septenber 15, 2011 [Page 18]

Internet-Draft storage_ctl March 2011

6. Uses of the Attribute storage_ctl

There are four occasions in which the storage_ctl attribute is
referred to as part of an fattr4 when the storage ctl nmask is
present.

0 As an attribute specified when creating a file or simlar object
by means of an OPEN or CREATE operation, in order to specify the
specific storage properies to control the locations on which the
data is to be put and other associated properties.

0 As an attribute set in a SETATTR operation to change the requested
| ocation properties. Servers may or may not have the ability to
change | ocations on request, but the operation structure wll
i ndi cate whether the server has or doesn’'t have this ability when
it is requested.

0 As an attribute read in a CETATTR or READDI R operation to
determine the currently requested storage properties and the
degree to which they are current being conplied wth.

0 As an attribute specified in VERIFY or NVERI FY to test for current
| ocation property conpliance status.

In addition to the above, a fattr4_storage_ctl of the of the sane
structure as storage_ctl attribute (although not within an fattr)
al so appears within the response data in the follow ng situations.

For the OPEN, CREATE, and SETATTR operations, when the error
returned is NFS4ERR SCTL_FAIL. (See Use of storage ctl when
creating a file and Use of storage_ctl in SETATTR for details).

For the response to the FETCH SCNOTE operation, when there is a
pendi ng storage control note to be reported.

For nost purposes, a fattr4 storage ctl which appears in OPEN,
CREATE, and SETATTR requests are handl ed the sanme and a
fattr4_storage_ctl which appears in the responses for OPEN, CREATE,
and SETATTR are handled simlarly, while the VER FY and NVERI FY
requests forma third simlarity group

6.1. Use of storage ctl when creating a file
When the storage_ctl attribute is specified when creating a file, it
hel ps decide on the |ocation selected for the file data. If al

enforceabl e properties can be immedi ately satisfied, then the
operation proceeds nornally.

Noveck, et al. Expi res Septenber 15, 2011 [Page 19]

Internet-Draft storage_ctl March 2011

6

If an enforceable property specified as with the nanadatory
enforcenment | evel cannot be satisfied then the operation fails with
the error NFS4ERR SCTL_FAIL. The response contains, for the case
NFS4AERR SCTL_FAIL, a fattr4 storage _ctl val ue which consists all such
enforceabl e properties which could not be satisfied.

If there is a situation which is not as serious as the failure above,
but still of note, then information relevant to that situation is
stored as a pending storage control note, where it can be fetched (in
the sane COVPOUND) by the FETCH SCNOTE operati on.

The following three classes of itenms are included in situations
| eading to a pendi ng storage control note being created.

0 An enforceable property of the advisory enforcnment |evel which
could not be satisfied, i.e its conpliance status is indicated as
failed.

0 An enforceable property of the advisory enforcenent |evel which
could not be immediately satisfied, i.e. its conpliance status is
i ndi cated as Conpl yi ng.

0 An enforceable property of the mandatory enforcenent |evel which
could not be immediately satisfied, i.e. its conpliance status is
i ndi cated as Conpl yi ng.

2. Use of storage_ctl in SETATTR

A value of the storage ctl attribute with a structure sinmlar to the
OPEN case is used to change properties for an existing file.

Exi sting el ements properties, not changed by the storage_ctl
attribute remain in effect.

An enforceabl e property type and the sane enforcenent level status is
overridden by a corresponding one in the new attributes. To delete
such an enforceabl e property el ement without setting a new one, an
enforceabl e property with no paraneter values is used. Simlarly, an
informative property will override an existing one of the same type
and use of the that property specification with no paraneters is used
to delete an existing informative propety specification wthout
replacing it.

Failures and notifications are indicated via the error code
NFSAERR _SCTL_FAI LED and creation of pending storage control notes,
just as in the case of OPEN

Noveck, et al. Expi res Septenber 15, 2011 [Page 20]

Internet-Draft storage_ctl March 2011

6.3. Use of storage_ctl in GETATTR/ READDI R

When the storage_ctl attribute is requested as part of GETATTR or
READDI R, the fattr4 storage ctl returned within the file attributes
reflects the current informative properties together with the
enforceabl e properties and together with its current conpliance
stat us.

The order of the elements need not reflect that used when the
attribute was first set. Wen enforceable properties specify a range
of multiple possible values, the one returned in the attribute will
reflect the value actually assigned.

6.4. Use of storage_ctl in VER FY/ NVERI FY

The storage ctl attribute presented to VERIFY or NVERI FY is
interpreted as a series of properties each of which results in a
truth value. Wen the truth value for all properties presented is
true, VERIFY succeeds and NVERI FY fails. Conversely when not all
properties have that truth value, VERI FY fails and NVERI FY succeeds.

When informative properties are present they are conpared to the
val ue set at OPEN, CREATE, or the last SETATTR If no such val ue had
been previously set, the result is treated as non-nat chi ng.

Enf orceabl e properties are classified according to three criteria:

0 Whether they have paraneters that indicate specific values
(Wth-P) or are the special values defined for that purpose for
each paranmeter, which are treated as without paranmeters (Non-P)
where the paraneter val ues taken are those specified in the
correspondi ng property within the file' s attributes.

0 \Whether they are, an enforcenent |evel specified (Wth-Enf) or not
(Non- Enf).

0 \Whether they are together with one or nore conpliance |evel levels
specified (Wth-Conp) or not (Non-Conp).

G ven the above classifications, the follow ng sets of
characteristics for enforceable properties in the context of
storage _ctl for VERIFY, NVERI FY are treated as errors and shoul d
cause the return of the error NFS4ERR_SCTL_BAD.

0 Non- Conp/ Non- Enf / Non- P

0 Non- Conp/ Non-Enf/Wth-P

Noveck, et al. Expi res Septenber 15, 2011 [Page 21]

Internet-Draft storage_ctl March 2011

0 Wt h-Conp/ non- Enf/ Non- P
o0 Wth-Conp/Wth-Enf/Wth-P

G ven the above classifications, the follow ng sets of
characteristics for enforceable properties in the context of
storage_ctl for VERIFY, NVERI FY are handl ed as di scussed bel ow.

Non- Comp/ Wt h-Enf/Non-P: is true iff there exists an enforceable
property containing el enents of the associ ated enforcenent status
as part of the storage ctl attribute of the file.

Non- Conp/ Wth-Enf/Wth-P: is true iff the enforceable proeprty
specified is conmpatible with the correspondi ng enforceabl e
property of the associated enforcement level, i.e. if it is
possible to satisfy both at the same tinme, without reference to
whet her both or either actually is satisfied.

Wt h- Conp/ Non-Enf/Wth-P: is true iff the enforceable property
(including a set of of property specifications of the same type)
whi ch appear in the storage_ctl attribute passed to the op is
consistent with the set of conpliance levels (often a single | eve
but sonetines two) in the specification. That is, the actua
conpliance | evel nmust be one of the ones that is specified.

Wth-ConmpB/ Wth-Enf/Non-P: is true iff the enforceable property
designated by this specification (i.e. that being of the sane type
of specification and the sane enforcenent level) is consistent
with the set of conpliance levels (often a single | evel but
sometines two) in this specification. That is, the actua
conpliance | evel nmust be one of the ones that is specified.

Noveck, et al. Expi res Septenber 15, 2011 [Page 22]

Internet-Draft storage_ctl March 2011

7. The FETCH_SCNOTE Operati on
7.1. SYNOPSI S

(cfh) -> note_pres, note fattr
7.2. ARGUMENT

/* CURRENT _FH. */
voi d;

7.3. RESULT

enum SCFres_type {
SCFres_ABSENT = 0,
SCFres_PRESENT = 1

H

uni on SCFresok switch (SCFres_type note_pres) {
case FETCH PRES:
fattr4_storage_ctl note_attr;

case FETCH_ABS:
voi d;

uni on FETCHres switch (nfsstat4 status) {
case NF4_ XK
/* CURRENT_FH. opened file */
FETCH4r esok r esok4;
defaul t:
voi d;
b

7.4. DESCRI PTI ON

The FETCH _SCNOTE operation is used to fetch a pending storage control
note for a specified file handle (the current file handle). Note
that these notes are stored according to the current file handl e when
the operation which gave rise to themwas executed. Thus it will be
the directory on (nost) OPENs, and the specific file in the event of
SETATTR.

This operation uses the current filehandle value to identify the
storage control note bei ng sought.

The operation returns an indication of whether the note is present

Noveck, et al. Expi res Septenber 15, 2011 [Page 23]

Internet-Draft storage_ctl March 2011

and if it is a fattr4_storage_ctl val ue which consists al
enforceabl e properties where there is a | ack of adequate conpliance
to be noted. The use of the the enum scnote_respval rather than a
bool ean value allows |ater extension

If the note is present, it ceases to be so once the operation is
execut ed.

7.5. | MPLEMENTATI ON

Storage control note itens are nmintai ned on a per- COWPOUND- r equest
basis and cease to exist when a COWOUND fails due to conpletion or
an the occurrence of an error. This nmakes it desirable to place the
FETCH_SCNOTE operation close to, generally immediately after the
operation capabl e of generating the storage control note.

Noveck, et al. Expi res Septenber 15, 2011 [Page 24]

Internet-Draft storage_ctl March 2011

8. Attribute Extension
8.1. Experinental and O her Non-standardi zed Extensions

In order to support devel opnent of extensions to allow control of new
file systemsupport attributes, extensions may be defined, each with
their own proper space id. The goal is to allow quick depl oynment of
new features, including those that are vendor-specific at the tinme
with the definitions of extensions being publicly avail able.

Each such extension set should be registered with ANA. The
registration will include

0 A short nanme (a few words) by which the extension will be known.
0 The nane or corporate identity of the owner of the extension

o Data for the first version of the nanespace extension, as
descri bed bel ow.

I ANA wi |l assign a space id by which the extension will be known.

Successi ve versions of spaceid properties should be registered by the
owner of the extension. The registration should include:

0o The nanespace name and nunber.

0 The nanespace version nunber. The version nunber is in the forma
series of small (< 256) integers. The length of the series wll
probably be restricted to sonething between four and six. The
versi on nunmbers will not be checked for order but only that they
are uni que for a given extension.

0 A docurment in the formof an internet draft with information on
t he nanespace elenments paralleling this one. The docunent wll
contain definitions and property nunbers with the space id for al
of properties within the extension

Successi ve version nmay add properties but may not delete them
clarifications to the semantics of existing properties nmay be nade
but substantive changes in their semantics should not be nade.

Exi sting properties may not be defines as invalid or mandatory-to-
not -i npl ement but they may be defined as inconpatible with sone
set of new properties.

The definitional docunent should be subject to expert review but the
purpose of the reviewis to ensure that the docunent describes the

Noveck, et al. Expi res Septenber 15, 2011 [Page 25]

Internet-Draft storage_ctl March 2011

8.

8.

2

3.

ext ensi on adequately. It should not be rejected sinply because the
expert would do things differently or believe the specified
properties are useful

St andar di zed Ext ensi ons

St orage properties may be extended via a standards-track document in
a nunber of ways. Such an extension may be part of a new m nor
version, but may al so be done independent of in a standards-track
docunment other than for a new NFSv4 m nor version. Wen the
extension occurs in a new mnor version the document shoul d make

cl ear whether the additional properties are recomended (as is
normal |y the case) or nandatory.

The following forms of extension are all valid options:

Addi ng additional properties to existing standardi zed property set
such as PROP_BASE

Creating a new property set its own property set id.

Converting a previous experinental property set to standards-track
status based on the publication of the RFC [Need to clarify any
possi bl e transfer of ownership issues.]

The storage_ext attribute

The storage_ext attribute is a per-fs attribute which contains

i nformati on on the storage _ctl extensions suported by the server when
used on the associated file system Servers will often report the
same val ue of the storage_ext attribute for all file systems, but
client should not assune that this is the case.

struct section_se {

spacenum sc SpaceSct i on; /* Section nunber. */

bit map_sc Whi chProperties;/* Supported properties. */
b

typedef section_se fattr4_storage_ext & t � >;

The storage_ext attribute consists of section_se arrays, each of

whi ch specify the supported properties for a specific space_id. The
section_se arrays should be reported in ascendi ng numeric order of
spacenum sc val ues.

Noveck, et al. Expi res Septenber 15, 2011 [Page 26]

Internet-Draft storage_ctl March 2011

9. Sunmmary

This chapter serves a reference guide to things discussed above. For
a nore discursive treatnent, with less attention due syntax details,
see above.

9.1. Errors

This proposal would involve adding the followi ng new errors to the
NFS version 4 mnor version in which it is included.

NFSA4ERR_SCTL_BADPROP Returned when the storage_ctl attribute
contains properties with a space id unknown to the server, or wth
property bits whose diplacenment in the bitmap corresponds to
property nunbers not known to the server as being associated with
the current space id.

This error is returnable by OPEN, CREATE, SETATTR, VERI FY, and
NVERI FY.

NFSAERR _SCTL_BADPARM Returned when the storage_ctl attribute
contains paraneters defined as not valid in connection with the
current property. This includes situations in which nmultiple
properties contain values that are defined as inconsistent (as
opposed to not being satisfiable).

This error is returnable by OPEN, CREATE, SETATTR, VERIFY, and
NVERI FY.

NFSA4ERR_SCTL_BADENF Returned when the the storage_ctl attribute
contains a enforceable property whose enforce_sc is invalid, in
that it contain nultiple enforcenent |evel bits, contains no
enforcenment level bits, in a context in which that is not allowed
or contains a set of conpliance specification bits that is not
appropriate in the current context.

This error is returnable by OPEN, CREATE, SETATTR, VERI FY, and
NVERI FY.

NFS4AERR _SCTL_BADDATA Returned when the storage ctl contains a
section_sc whose PropertyData array does not match the |ength of
the properties specified in the associ ated Wi chProperti es.

This error is returnable by OPEN, CREATE, SETATTR, VERIFY, and
NVERI FY.

Noveck, et al. Expi res Septenber 15, 2011 [Page 27]

Internet-Draft storage_ctl March 2011

9.

2

NFSAERR SCTL_FAIL Returned when a required storage_ctl el enment
cannot be satisfied. This is as opposed to the case in which it
is not being able to be satisfied imMmediately but is in the
process of being satisfied.

This error is returnable by OPEN, CREATE, and SETATTR only.
Semantic constraints

This section lists the semantic contraints on property
specifications. W will have situations in which the attribute wll
fully match specified XDR specification but the specification wll

not be in line with appropriate contextual constraints. This section
will list those constraints, in order to conplement the XDR
definition above.

There are four categories of constraints that need to be dealt with:
o \Whether the properties have the associ ated paraneters specified.

o \Whether the properties have an associ ated enforcement |eve
speci fi ed.

o Whether the properties have associ ated conpliance | evel (s)
speci fi ed.

o0 Constraints that involve the validity of conbinations of what are
otherw se allowed situations with regard to the above.

Each property specifies a particuar value which is invalid and is to
be treated as inicateing the absence of property paraneters (zero

val ues, zero-length arays, etc.). Specification of the paraneters
associated with storage properties are generally required and so
these special value result in NFS4ERR _SCTL_BADPARM bei ng returned.
The only exceptions are SETATTR, for which a storage property without
paraneters serves to delete the correspondi ng storage propery in the
existing attribute, and VERI FY/ NVERI FY where it is allowed under sone
ci rcunstances, to be discussed bel ow

Speci fication of the enforcenent |evel is generally required for
enforceabl e properties. The only exception is VERI FY/ NVERI FY where
it is allowed under sone circunstances, to be discussed bel ow

Specification of the conmpliance status for enforceabl e properties
depends on the context in which the properties appears. For OPEN
CREATE, and SETATTR, specification of conpliance status is not

al l oned. VERI FY/ NVERI FY specification of multiple conpliance status
values is allowed, subject to the specific conbination constraints

Noveck, et al. Expi res Septenber 15, 2011 [Page 28]

Internet-Draft storage_ctl March 2011

appropriate to VERIFY and NVERI FY as listed below For all other
contexts, whether in CETATTR, READDI R, the responses in the

NFSAERR _SCTL_FAIL case, or in the response to the FETCH SCNOTE
operation, specification of conpliance status is required but only a
singl e conpliance status nust appear.

In addition to the constraints |listed above, in the case of a
storage_ctl attribute within VERI FY/ NVERI FY, the properties within
the attribute nmust neet the additional constraints described in the
section Use of storage_ctl in VERI FY/ NVERI FY

When sendi ng responses to GETATTR, READDI R, OPEN, CREATE, and
SETATTR, the server MJST obey these constraints. Wen receiving
OPEN, SETATTR, VERI FY, and NVERI FY requests that contain the
storage_ctl attribute, the server MJST return the error

NFS4AERR _SCTL_BADENF if the attribute does not follow the specified
constraints and is otherwise valid (matching the XDR property
deinition).

These constraints apply to properties introduced by extensions to the
storage_ctl attirbute unless explicitly overridden in the docunent
defining the extension. Such a docunent may add ot her contextua
constraints that apply to the properties defined by that extension

Noveck, et al. Expi res Septenber 15, 2011 [Page 29]

Internet-Draft storage_ctl March 2011

10.

Possi bl e Future Wrk

Thi s docunment describes a basic framework for storage control and a
basic set of properties. It is a base for devel opnent of this
feature and coul d have consi derabl e additions before incorporation in
NFSv4 an ninor version. On the other hand, the feature is intended
to be defined with sufficient flexibility that many of these
additions to the feature night be done as subsequent extensions,
after the basic feature is nmade part of an NFSv4 m nor version.

The question of which additions are required for an initial version
of the feature, which are best deferred to | ater and whi ch proposed
extensions don’t really belong is a conplex one and will be a mgjor
subj ect of the devel opnent of the feature.

The following list, illustrates sone of the possible additions that
have had sone prelimnary discussion. It is not intended to be
exhaustive, and the exam nation of other additions not yet thought of
is definitely part of the work to be done:

Addition of other properties to those in this docunent, that make
sense as a basic set of properties, both informative and
enforceable, for an initial set to be part of an NFSv4 nminor

versi on.

Mechani sns to allow a set of properties to be applied to a |arge
set of files, including those that are directory-based (with

i nheritance a possible part of the mix), by bulk attribute change
on a client-specified set of files, or by allowing the client to
store sone set of properties as a persistent object in file
system and all owi ng subsequent storage control attributes to

ref erence that persistent object.

Mechani sns to enable the client to determ ne possible choices (or
ranges) for sonme properties within the context of a given server
This would be to sinplify and streanine property negotation

Mechani sns by which a server could advertise various possible sets
of property choices to deal with environnents where there only
exists a small set of possible choices each effecting a particul ar
choice for many properties, as opposed to a case where multiple

i ndependent property choices are possible.

Noveck, et al. Expi res Septenber 15, 2011 [Page 30]

Internet-Draft storage_ctl March 2011

11. Acknow edgnents

M ke Eisler reviewed early drafts of this work and nmade inportant
contributions in helping define the direction of the effort.

Davi d Bl ack revi ewed many drafts of this work and nmade nmany hel pfu
suggestions that inproved the quality of the result.

Noveck, et al. Expi res Septenber 15, 2011 [Page 31]

Internet-Draft storage_ctl March 2011

Aut hors’ Addr esses

Davi d Noveck

EMC

228 South St.

Hopki nton, MA 01748
Us

Phone: +1 508 249 5748
Emai | : davi d. noveck@nt. com

Pranoop R Erasani

Net App

48980 Cat Grass Terrace
Fremont, CA 94539

us

Phone: +1 408 822 3282
Emai | : pranoop@et app. com

Lakshm N. Bai ravasundaram
Net App

475 East Java Drive
Sunnyval e, CA 94089

Us

Phone: +1 408 419 5616
Emai | : | akshmi b@et app. com

Peng Dai

Vmwar e

5 Canbri dge Center
Canbri dge, MA 02142
us

Phone: +1 617 528 7592
Enai | : pdai @nware. com

Noveck, et al. Expi res Septenber 15, 2011 [Page 32]

Internet-Draft storage_ctl March 2011

Chri stos Karanonolis
Vmaar e

3401 Hil |l vi ew Ave.
Palo Alto, CA 94304
Us

Phone: +1 650 427 2329
Emai | : ckaranpnol i s@mwar e. com

Noveck, et al. Expi res Septenber 15, 2011 [Page 33]

