IPv6 over Low power WPAN WG (6lowpan)

Chairs:

Geoff Mulligan <geoff@mulligan.com>

Carsten Bormann <cabo@tzi.org>

Mailing List:

6lowpan@ietf.org

Jabber:

6lowpan@jabber.ietf.org

- We assume people have read the drafts
- Meetings serve to advance difficult issues by making good use of face-to-face communications
- Be aware of the IPR principles, according to RFC 3979 and its updates

- √ Blue sheets
- ✓ Scribe(s)

Milestones (from WG charter page)

Document submissions to IESG:

- Aug 2008 x 2 Improved Header Compression (PS)
- Aug 2008 // 6 Security Analysis (Info)
- Sep 2008 // 3 Architecture (Info)
- Sep 2008 x 4 Routing Requirements (Info)
- Nov 2008 x 1 Bootstrapping and ND Optimizns (PS)
- Dec 2008 x 5 Use Cases (Info)

Also: running documents for implementers, interop

15:20	Introduction, Agenda	Chair	's (10)
15:30	1 – finishing ND		
15:3	0 ND-14	ZS	(15)
15:4	5 NCE/next-hop	SS	(15)
16:0	0 multihop DAD, context life	EN	(30)
16:3	0 Discussion		
17:10	3 – status security work		
17:20	0 – new work on HC		
17:2	5 TCP HC	DR	(15)
17:4	0 Generic HC	CB	(10)
17:50	0 – miscellaneous	Chair	s (5)
17:55	Next steps/Rechartering18:10	Chair	s (15)

15:20 Introduction, Agenda	Chair	rs (10)
15:30 1 – finishing ND		
15:30 ND-14	ZS	(15)
15:45 NCE/next-hop	SS	(15)
16:00 multihop DAD, context life	EN	(30)
16:30 Discussion		
17:10 3 – status security work		
17:20 0 – new work on HC		
17:25 TCP HC	DR	(15)
17:40 Generic HC	CB	(10)
17:50 0 – miscellaneous	Chair	rs (5)
17:55 Next steps/Rechartering18:10	Chair	rs (15)

"Neighbor Discovery Optimization for Lowpower and Lossy Networks"

draft-ietf-6lowpan-nd-14

Zach Shelby, Samita Chakrabarti, Erik Nordmark

Progress since Maastricht

- nd-12
 - Aligned ABRO fields for 32-bit reserved (#90)
 - Clarifications and example of router interaction (#91)
 - Temporary NCE added (#87)
- nd-13
 - Error-to solution added for duplicate MACs (#126)
- nd-14 (to resolve WGLC comments)
 - New DAR and DAC multihop DAD messages
 - MULTIHOP_HOPLIMIT = 64
 - Clarified host de-registration
 - Router next-hop determination section added
 - Removed 6CO infinite lifetime

Current status

- WGLC issues have been resolved
- TODOs found by the authors:
 - Clarification on context distribution lifecycle (#129)
 - Define MIN_CONTEXT_CHANGE_DELAY as greater than the default router lifetime
 - Editorial text trimming (less repetition)
 - General editing round needed
- Next step
 - Release nd-15 within 2 weeks

Host-Router interface

Duplicate address detection

Multihop prefix distribution

Put it all together...

Legend: (mc) = Multicast (uc) = Unicast

15:20 Introduction, Agenda	Chair	rs (10)
15:30 1 – finishing ND		
15:30 ND-14	ZS	(15)
15:45 NCE/next-hop	SS	(15)
16:00 multihop DAD, context life	EN	(30)
16:30 Discussion		
17:10 3 – status security work		
17:20 0 – new work on HC		
17:25 TCP HC	DR	(15)
17:40 Generic HC	CB	(10)
17:50 0 – miscellaneous	Chai	rs (5)
17:55 Next steps/Rechartering18:10	Chair	rs (15)

"Neighbor Discovery Optimization for Lowpower and Lossy Networks"

draft-ietf-6lowpan-nd-14

Zach Shelby, Samita Chakrabarti, Erik Nordmark

zach@sensinode.com

<u>samitac@ipinfusion.com</u>

nordmark@orcale.com

Clarification on NCE and NextHop Determination

WG Comments [Colin and Others]

Concern on possible neighbor table collision

Example Scenario

Conclusion: Clarification is required for proper understanding of NCE management

Clarification on NCE and NextHop Determination

WG Comments [Colin and Others]

 Concerns on left-behind NCE when node moves away before the registration expiry

Example Scenario

Conclusion: Clarification is required for proper understanding of NCE management

Action Taken in ND-14

- Clarification(1)
 - Tentative NCEs are created when Multihop DAD is performed by the 6LR [already described in section 8.2]
 - We added some text in section 3.5 regarding that as well. However, in nd-15 we will do some more checks/cleanup to remove inconsistency and redundancy
 - Sec 6.5.4: Next Hop Determination at 6LR
 - Tentative or garbage-collectable NCEs are not used for on-link status determination
 - As per RFC 4861 and general IP networking principle, Routers should check the routing table for sending the MDAD packets to 6LBR

Action Taken in ND-14

- Clarification(2) for concern on left-behind NCE on 6LRs
 - Sec 1.3: If possible a moving node should de-register itself from the current default router and then register itself with a new default-router
 - If it is a run-away node, NCE entry expires after registrationlifetime. 6LR will transmit data for that NCE until it expires
 - Use low registration lifetime for nodes where the network is unstable or nodes are mobile

ND-14: Clarification(2)...

- Mobility optimization is out of scope of the 6LoWPAN ND document.
- More optimization may be possible with movement detection and signaling the previous default-router to delete the NCE before registration expiry, but more thoughts and investigation are needed, such solution may be formed as an additional extension on local mobility optimization.
- Section 6.5.3 mentions that Routing protocol be notified with addition or removal of NCEs; Thus a Routing protocol may also be used to notify the previous 6LR that the particular node has moved away

Clarification/Guideline for Implementation

- Problem # 127 Clarification on optional/Mandatory languages
 - Optional behaviors are regarded as SHOULD for implementation and MAY for deployment
 - Changes were made in section 1.3 and section 1.4 is added to reflect the above assertion
 - Section 13 (Guidelines for New Features) was added to clarify implementation and deployment recommendations for 6LN, 6LBR and 6LR nodes.

15:20	Introduction, Agenda	Chaiı	s (10)
15:30	1 – finishing ND		
15:3	0 ND-14	ZS	(15)
15:4	5 NCE/next-hop	SS	(15)
16:0	0 multihop DAD, context life	EN	(30)
16:3	0 Discussion		
17:10	3 – status security work		
17:20	0 – new work on HC		
17:2	5 TCP HC	DR	(15)
17:4	0 Generic HC	CB	(10)
17:50	0 – miscellaneous	Chaiı	rs (5)
17:55	Next steps/Rechartering18:10	Chaiı	rs (15)

Neighbor Discovery Duplicate Address Request and Confirmation

<draft-ietf-6lowpan-nd-14.txt>

Erik Nordmark erik.nordmark@oracle.com

Multihop DAD Issue in -13

- Two different forms of ARO
 - Length=2 for host to router communication
 - Length=4 for multihop DAD
- The NS/NA with ARO Length=4 was quite different than anything else
 - Hoplimit=255 check does not apply
 - MUST NOT modify the NCEs
- Made it difficult to implement hoplimit check
- Hard for firewall to filter out multihop DAD messages

Make it more clear; separate ICMP types for multihop DAD

- ARO now only has Length=2
- Duplicate Address Request (DAR) replaces multihop NS with ARO Length=4
- Duplicate Address Confirmation (DAC) replaces multihop NA with ARO Length=4
- DAR and DAC are not subject to hoplimit=255
- NS and NA are always subject to hoplimit=255
- The logic of multihop DAD is unchanged

DAR/DAC message format

```
Code
       EUI-64
  Registered Address
```

24 bytes shorter than NS with ARO

Context distribution; unclear in -14

^λ Section 7.2 says

- Only when it is reasonable to assume that this information was successfully disseminated SHOULD an option with C=1be sent, enabling the actual use of the context information for compression.
- That is, in preparation for a change of context information, its dissemination SHOULD continue for at least MIN_CONTEXT_CHANGE_DELAY with C=0. Only when it is reasonable to assume that the fact that the context is now invalid was successfully disseminated ...

Context distribution; What is "reasonable"?

- Maximum default router lifetime 18 hours
 - Implies host will RS after at most 18 hours
 - RS triggers an RA with the newest 6CO
- Administrator can configure 6LRs to use shorter default router lifetime
- Suggestion: Replace MIN_CONTEXT_CHANGE_DELAY with "at least the configured default router lifetime", and clarify that this is what "reasonable" means

15:20	Introduction, Agenda	Chair	s (10)
15:30	1 – finishing ND		
15:30	ND-14	ZS	(15)
15:45	NCE/next-hop	SS	(15)
16:00	multihop DAD, context life	EN	(30)
16:30	Discussion		
17:10	3 – status security work		
17:20	0 – new work on HC		
17:25	5 TCP HC	DR	(15)
17:40	Generic HC	CB	(10)
17:50	0 – miscellaneous	Chair	rs (5)
17:55	Next steps/Rechartering18:10	Chaiı	rs (15)

6CO Option

Figure 1: 6LoWPAN Context Option format (valid lifetime up to 655350 s \approx 7.6 days)

6CO state machine

- active distribution of updates goes right and left slowly
- timeouts go left, through a deprecated state for a while

Actual:


```
Introduction, Agenda
15:20
                                          Chairs (10)
15:30 1 – finishing ND
  15:30
           ND-14
                                          ZS
                                                (15)
  15:45
           NCE/next-hop
                                          SS
                                                (15)
  16:00
           multihop DAD, context life
                                                (30)
                                          EN
           Discussion
  16:30
17:10 3 – status security work
17:20 0 – new work on HC
           TCP HC
                                                (15)
  17:25
                                          DR
                                                (10)
                                          CB
  17:40
           Generic HC
17:50 0 – miscellaneous
                                          Chairs (5)
17:55 Next steps/Rechartering...18:10
                                          Chairs (15)
```

15:20 I	ntroduction, Agenda	Chair	rs (10)
15:30 °	1 – finishing ND		
15:30	ND-14	ZS	(15)
15:45	NCE/next-hop	SS	(15)
16:00	multihop DAD, context life	EN	(30)
16:30	Discussion		
17:10	3 – status security work		
17:20	0 – new work on HC		
17:25	TCP HC	DR	(15)
17:40	Generic HC	CB	(10)
17:50	0 – miscellaneous	Chair	rs (5)
17:55 I	Next steps/Rechartering18:10	Chair	rs (15)

15:20 Introductio	n, Agenda Cł	nairs (10)
15:30 1 – finishin	g ND	
15:30 ND-14	ZS	6 (15)
15:45 NCE/n	ext-hop SS	S (15)
16:00 multih	op DAD, context life EN	V (30)
16:30 Discus	ssion	
17:10 3 – status s	security work	
17:20 0 – new wo	ork on HC	
17:25 TCP H	C DF	R (15)
17:40 Gener	ic HC CE	3 (10)
17:50 0 – miscella	aneous Cł	nairs (5)
17:55 Next steps	/Rechartering18:10 Ch	nairs (15)

http://6lowpan.tzi.org

TCP Header Compression for 6LoWPAN (draft-aayadi-6lowpan-tcphc-01)

Ahmed Ayadi, <u>David Ros</u> and Laurent Toutain IETF-79 Beijing November 9, 2010

Motivation

- TCP allows running useful services like remote login and HTTP in Low-power and Lossy Networks
- But:TCP header overhead is between 20 and 60 bytes
- Currently, LOWPAN_IPHC defines only a compression scheme for UDP (LOWPAN_NHC)
- Goal: define a TCP compression scheme compatible with 6LoWPAN, using LOWPAN_NHC
 - Outside to LoWPAN, LoWPAN to outside, LoWPAN to LoWPAN

LOWPAN_TCPHC: overview

 TCPHC is implemented both on the Edge Router and on the (TCP end-point) LoWPAN node which save the context of the TCP connections

LOWPAN_TCPHC: overview

TCPHC:

- does not compress TCP segments in the connection establishment phase (SYN)
 - replaces the source port and destination port by a Context IDentifier (CID)
- sends only the bytes of dynamic fields (Sequence number, ACK number, Window) that have changed
- removes unused bits (Reserved)
- elides the TCP header-length field (value inferred at decompression)
- compresses SACK and Timestamp TCP options

LOWPAN_TCPHC header types

Regular header (used outside the LLN)

TCP header payload

 Full header (sent at the connection establishment phase)

LOWPAN_TCPHC	CID	TCP header	payload	
--------------	-----	------------	---------	--

Compressed header

fields, in TCP-header order

LOWPAN_TCPHC format for compressed headers

Compression of TCP options

- MSS and SACK-permitted are sent uncompressed in SYN segments
- SACK:
 - Only one SACK block is allowed
 - SACK block values are replaced by their offset w.r.t. the ACK number
- Time Stamp:
 - Only bytes that have changed, compared to last segment, are carried in-line.
 - A bitmap field is added to describe if a byte is omitted or carried in-line.
- Other options are assumed to be unused / not useful in LNNs
 - E.g. Window Scale option (low bit rates, memory constraints)

Current status

- We have an alpha version of TCPHC for Contiki OS already implemented
 - We plan to keep it in sync with the draft, and to release the code «soon»
 - Some (very) preliminary results
 - TCPHC reduces the TCP header to 6 bytes in more than 95% of cases
 - TCPHC reduces energy consumption by up to ~15%
- Interest in adopting LOWPAN_TCPHC as a WG item?

79th IETF: 6lowpan WG Agenda

15:20 Introduction, Agenda	Chaiı	rs (10)
15:30 1 – finishing ND		
15:30 ND-14	ZS	(15)
15:45 NCE/next-hop	SS	(15)
16:00 multihop DAD, context life	EN	(30)
16:30 Discussion		
17:10 3 – status security work		
17:20 0 – new work on HC		
17:25 TCP HC	DR	(15)
17:40 Generic HC	CB	(10)
17:50 0 – miscellaneous	Chair	rs (5)
17:55 Next steps/Rechartering18:10	Chair	rs (15)

New proposal: 6LoWPAN-GHC

- Generic compression of remaining headers and header-like payloads: ICMPv6, ND, RPL; DHCP; ...
- draft-bormann-6lowpan-ghc: simple LZ77 based on bytecode
 - single-page specification: simple
 - stateless (but can use 6LoWPAN-HC context)
- provides modest compression factors between 1.65 and 1.85 on realistic examples
- fits in 6LoWPAN-HC's NHC
- is this something we want to pursue?

Example: ND Neighbor Solicitation

```
Payload:
 87 00 a7 68 00 00 00 00 fe 80 00 00 00 00 00 00
 02 1c da ff fe 00 30 23 <u>01 01 3b d3</u> 00 00 00 00
 1f 02 00 00 00 00 00 06 00 1c da ff fe 00 20 24
Pseudoheader:
 20 02 0d b8 00 00 00 00 00 00 00 ff fe 00 3b d3
 fe 80 00 00 00 00 00 00 02 <u>1c da ff fe 00</u> 30 23
 00 00 00 30 00 00 00 3a
copy: 04 87 00 a7 68
4 nulls: 82
ref(32): fe 80 00 00 00 00 00 02 1c da ff fe 00 30 23
 -> ref 101nssss 1 2/11nnnkkk 6 0: b2 f0
copy: 04 01 01 3b d3
4 nulls: 82
copy: 02 1f 02
5 nulls: 83
copy: 02 06 00
ref(24): 1c da ff fe 00 -> ref 101nssss 0 2/11nnnkkk 3 3: a2 db
copy: 02 20 24
Compressed:
 04 87 00 a7 68 82 b2 f0 04 01 01 3b d3 82 02 <u>1f</u>
 02 83 02 06 00 a2 db 02 20 24
Was 48 bytes; compressed to 26 bytes, compression factor 1.85
```


79th IETF: 6lowpan WG Agenda

15:20 Introduction, Agenda	Chair	s (10)
15:30 1 – finishing ND		
15:30 ND-14	ZS	(15)
15:45 NCE/next-hop	SS	(15)
16:00 multihop DAD, context life	EN	(30)
16:30 Discussion		
17:10 3 – status security work		
17:20 0 – new work on HC		
17:25 TCP HC	DR	(15)
17:40 Generic HC	СВ	(10)
17:50 0 – miscellaneous	Chair	rs (5)
17:55 Next steps/Rechartering18:10	Chair	s (15)

http://6lowpan.tzi.org

Interesting individual submissions

- Split-off from ND:
 - draft-thubert-6lowpan-backbone-router-02.txt (to support LoWPANs with multiple border routers)
- Extensively discussed, limited usecase:
 - draft-thubert-6lowpan-simple-fragment-recovery-07.txt (special encapsulation with adaptation layer retransmit of individual fragments)
- For each of these, decide:
 - (A) We want to continue work as WG
 - (B) We encourage author to continue as individual submission
 - (C) We discourage further work

79th IETF: 6lowpan WG Agenda

15:20 In	troduction, Agenda	Chairs	Chairs (10)	
15:30 1	– finishing ND			
15:30	ND-14	ZS	(15)	
15:45	NCE/next-hop	SS	(15)	
16:00	multihop DAD, context life	EN	(30)	
16:30	Discussion			
17:10 3	status security work			
17:20 0	– new work on HC			
17:25	TCP HC	DR	(15)	
17:40	Generic HC	CB	(10)	
17:50 0	– miscellaneous	Chairs	s (5)	
17:55 No	ext steps/Rechartering18:10	Chairs	s (15)	

Securing 6LoWPAN ND

- 6LoWPAN ND is not secure and subject to attacks, it needs to be secured
- Secure 6LoWPAN ND can not use SeND directly because SeND uses computationally heavy cryprographical algorithms, etc.
- Simple extension to SeND (RFC 3971 & 3972) is needed
 - Use Elliptic Curve Cryptography public keys
 - Use SHA-2
 - Use efficient design