NATx4 Port Allocation and Logging

[Cheng] draft-cheng-behave-nat44-pre-allocated-ports-01
[Tsou] draft-tsou-behave-natx4-log-reduction-02
[Durand] draft-durand-server-logging-recommendations-00

Note Nokia-Siemens IPR declaration on [Tsou]
Recommends logging of source port and address and timestamp at server as well as other information

Complementary to the other two drafts, won't be mentioned further
[Cheng] vs. [Tsou]

- [Cheng] and [Tsou] describe schemes for allocating ports at the NAT44 in blocks, to reduce the logging volume
 - Log only when blocks allocated, rather than each time a port is allocated
 - Both allow randomization
- Primary differences between [Cheng] and [Tsou]:
 - [Cheng] puts a static per-subscriber limit on total ports allocated.
 - [Tsou] allocates blocks without limit as required.
 - [Tsou] considers block deallocation. [Cheng] does not mention it.
- [Cheng] (maybe) and [Tsou] have issue of garbage collection (return of unused ports to common pool)
 - Tradeoff between randomization, clearance of little-used blocks
 - How soon to free block where all ports appear to be idle
Static port management

Pros:

- simple to understand
- DHCP-style logs
 - Log initial port range and be done.

Cons:

- Security
 - port randomization entropy is reduced to bucket size
 - Easy to mount attacks if bucket is small
- Operation
 - No mechanism to extend bucket
 - Complex failures when port range is exhausted
 - Usually leads to very large buckets
 - sub-optimal use of IP address
 - 5000 ports/user => 10 user/IP address
Dynamic port management

Pros:

- Large statistic multiplexing
- All users: Average 5 port/user
 - 10,000 users/IP address
- Active users only: Average 100 ports/user
 - 650 users/IP address

Cons

- Need to log each NAT binding
- 1 binding: 16 bytes, 2000 cnx/user/day, 6 month logs, 1,000,000 users = 5.6 Terabyte of data
- 1 binding: 20 bytes, 10000 cnx/user/day, 2 year logs, 1,000,000 users = 150 Terabyte of data

- Lot of data to store/archive/search
Hybrid port management: buckets

Solution 1

- Allocate ports in small buckets of random ports, say 20 at a time
 - When port is released, return it to free pool
- Log creation of bucket, not each flow
- Divide log volume & messages by 20

Pros:

- Better logs
- Preserve randomization
- Small impact on IP utilization ratio

Cons:

- Still lot of logs
- More complexity to manage buckets
Hybrid port management: static + dynamic buckets

Solution 2

- Based on solution 1
- 1st bucket is “special”:
 - Larger (e.g., 200 ports)
 - Released ports are put back in the bucket to be reused by the same user
- Other buckets work the same as solution 1
- Create a static random set of ports per user, with possibility to add new ports as needed
static + dynamic buckets analysis

Security

- Initial bucket is made of random ports
 - But an attacker could discover them
- Subsequent buckets are totally random

Operation

- Guarantees a minimum of ports per user
- Extend dynamically that range if/when needed
- Logs reduced to zero for users who stay in their initial bucket
- Multiplexing: about 250 users per IP address
Conclusion

- Port management offers a trade-off: log size vs address oversubscription ratio
 - Static management:
 • No logs, low over-subscription ratio
 - Dynamic management:
 • High volume of logs, high over-subscription ratio
 - Hybrid methods:
 • Medium to small volume of logs, medium over-subscription ratio
Backup Slides

Details of Proposals
[Cheng] Message Flow

Use

BNG

NAT44/NAS

AAA Server

Service Request

Access Request

Access Accept
• Framed-IP-Address
 • …
 • Nat-Max-Port-Count

Service Granted
• IPv4 address…

User traffic

Account Request
• Nat-Port-Range

User profile:
Username pwd
IPv4 address
...
Max Port Count

1) Allocate external IPv4 address
2) Allocate external port pool
3) Allocate external port for this new IP flow