Overview of CELT

Jean-Marc Valin
Timothy B. Terriberry
Gregory Maxwell
CELT: Constrained Energy Lapped Transform

- Transform codec (MDCT, like MP3, Vorbis)
 - Short windows (5-22 ms), poor frequency resolution
- Explicitly code energy of each band of the signal
 - Coarse shape of sound preserved no matter what
- Code remaining details using vector quantization
- Variable time-frequency resolution for transients
- Now uses pitch post-filtering
Block Diagram
"Lapped Transform" Modified DCT

- The normal DCT causes coding artifacts (sharp discontinuities) between blocks, easily audible.
- The "Modified" DCT (MDCT) uses a decaying window to overlap multiple blocks:
 - Same transform used in MP3, Vorbis, AAC, etc.
 - But with much smaller blocks, less overlap.
"Constrained Energy"
Critical Bands

- Group MDCT coefficients into bands approximating the critical bands (Bark scale)
"Constrained Energy"
Coding Band Energy

- Most important psychoacoustic lesson learned from Vorbis:

 Preserve the energy in each band

- Vorbis does this implicitly with its "floor curve"

- CELT codes the energy explicitly
 - Coarse energy (6 dB resolution), predicted from previous frame and from previous band
 - Fine energy, improves resolution where we have available bits, not predicted
Coding Band Shape

- After normalizing, each band is represented by an N-dimensional unit vector
 - Point on an N-dimensional sphere
 - Describes "shape" of energy within the band
- Code this shape using with vector quantization
 - Pyramid Vector Quantizer (Fischer, 1986)
- Vectors with integer coordinates whose magnitudes sum to K

$$S(N, K) = \{ y \in \mathbb{Z}^N : \sum_{i=1}^{N} |y_i| = K \}$$
Psychoacoustic Tricks

• Avoiding "birdie" artifacts
 – K may be small, giving a sparse spectrum > 8 kHz
 – Use N-D rotation to “spread” pulses
 • Makes the signal sound more “noisy” (less tonal)
 • Inverse rotation applied in the encoder

• Avoiding "pre-echo" artifacts
 – When a transient is detected, split the frame and do a smaller MDCT on each piece
 – Interleave the results and continue as normal
Time-Frequency Adjustment

• Finer transient control: TF resolution switching
 – Apply Hadamard transform in one band over multiple blocks
 – Forward transform: increase frequency resolution
 – Inverse transform: increase time resolution

• Two TF resolutions per frame
 – Decision coded per band
 – Handles mixed tonal/transient content
Post-Filter

- Proposed by Raymond Chen (Broadcom)
- Noise shaping for highly harmonic contents
Questions?