SILK Overview

IETF codec WG, Nov 8, 2010
Koen Vos
Decoder

Bitstream

Arithmetic Decoding and Dequantizing

Gains
Quant. Offset
Rand Seed

Pulse

Generate Excitation

LTP Synthesis

LPC Synthesis

Pitch Lags
LTP Coefs
LTP Scale

LPC Coefs

Decoded Speech
Encoder

Speech Signal → Adaptive High-Pass Filter → Prefilter → Noise Shaping Quantizer → Gains Processor → Prediction Analysis → LTP Scaling Control → Pitch Index

Bitstream
Adaptive High-Pass Filter

• 2nd order IIR filter
• Cutoff frequency between 80 and 150 Hz
• Depends on:
 – Recent pitch lags: higher cutoff for high pitch frequencies
 – Noise levels: higher cutoff for noisy input
Prediction

• Short-term (LPC) + long-term (LTP)
• Re-estimate LPC given LTP coefficients
• Burg's method
• LPC coefficients coded as Line Spectral Frequencies (LSFs): multi-stage VQ with entropy coding of indices
• Interpolation of LFSs for first 10 ms
Two Noise Shaping Structures

• Moving Average (most commonly used)

\[
Y(z) = X(z) + (1 + W(z)) \cdot Q(z)
\]

with: \(W(z) = \sum_{n=1}^{D} w_n z^{-n} \)

• Autoregressive

\[
Y(z) = X(z) + (Y(z) - X(z)) \cdot W(z) + Q(z)
\]

\[\Leftrightarrow\]

\[
Y(z) = X(z) + \frac{Q(z)}{1 - W(z)}
\]

with: \(W(z) = \sum_{n=1}^{D} w_n z^{-n} \)

Note: for simplicity, quantization noise is treated as an independent, additive signal.
With Prediction

- Predictor $P(z)$ does LPC and LTP
- Noise shaping filter $W(z)$ performs short-term and long-term noise shaping
- Setting $W(z) = 0$: closed-loop predictive quantizer adds white noise
- Setting $W(z) = P(z)$: the quantizer becomes open-loop, $P(z)$ determines noise
- In practice: something in between

Note: some high-rates assumptions were made.

$$Y(z) = X(z) + \frac{Q(z)}{1 - W(z)}$$
Combined Prediction and Noise Shaping

\[Y(z) = G \cdot (1 - W_1(z)) \cdot X(z) + W_2(z) \cdot Y(z) + Q(z) \]

\[\iff \]

\[Y(z) = G \cdot \frac{1 - W_1(z)}{1 - W_2(z)} X(z) + \frac{1}{1 - W_2(z)} Q(z) \]

- Quantization noise is shaped by \(W_2(z) \)
- Input is pre-filtered by \((1-W_1(z))/(1-W_2(z)) \), and scaled by \(G \)`
Entropy Coding of Excitation

• Coded per 16-sample block
• First compute sum of absolute values
• Then recursively split the block in half, each time entropy coding the sum of absolute values in each half
• Signs of non-zero samples coded separately
• For large signal, LSBs are coded separately