Constrained RESTful Environments
WG (core)

Chairs:
- Cullen Jennings <fluffy@cisco.com>
- Carsten Bormann <cabo@tzi.org>

Mailing List:
- core@ietf.org

Jabber:
- core@jabber.ietf.org

With some help from Peter Saint-Andre...

http://6lowapp.net
• We assume people have read the drafts

• Meetings serve to advance difficult issues by making good use of face-to-face communications

• Be aware of the IPR principles, according to RFC 3979 and its updates

✓Blue sheets
✓Scribe(s)
Milestones (from WG charter page)

http://datatracker.ietf.org/wg/core/charter/

Document submissions to IESG:

- **Apr 2010** Select WG doc for basis of CoAP protocol
- **Dec 2010** 1 – CoAP spec with mapping to HTTP REST submitted to IESG as PS
- **Dec 2010** 2 – Constrained security bootstrapping spec submitted to IESG as PS
- **Jan 2011** Recharter to add things reduced out of initial scope
CoAP: Meeting the requirements
Drafts

Active:

<table>
<thead>
<tr>
<th>Draft name</th>
<th>Rev.</th>
<th>Dated</th>
<th>Status</th>
<th>Comments, Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-ietf-core-link-format</td>
<td>-01</td>
<td>2010-10-25</td>
<td>Active</td>
<td>4/4</td>
</tr>
<tr>
<td>draft-ietf-core-coap</td>
<td>-03</td>
<td>2010-10-25</td>
<td>Active</td>
<td>11/37</td>
</tr>
<tr>
<td>draft-ietf-core-observe</td>
<td>-00</td>
<td>2010-10-18</td>
<td>Active</td>
<td>9/9</td>
</tr>
<tr>
<td>draft-ietf-core-block</td>
<td>-00</td>
<td>2010-10-18</td>
<td>Active</td>
<td>4/4</td>
</tr>
</tbody>
</table>

Related Active Documents (not working group documents):

(To see all core-related documents, go to core-related drafts in the ID-archive)

<table>
<thead>
<tr>
<th>Draft name</th>
<th>Rev.</th>
<th>Dated</th>
</tr>
</thead>
<tbody>
<tr>
<td>draft-vanderstok-core-bc</td>
<td>-02</td>
<td>2010-10-25</td>
</tr>
<tr>
<td>draft-rahman-core-groupcomm</td>
<td>-01</td>
<td>2010-10-25</td>
</tr>
<tr>
<td>draft-oflynn-core-bootstrapping</td>
<td>-02</td>
<td>2010-10-19</td>
</tr>
<tr>
<td>draft-shelby-core-coap-req</td>
<td>-02</td>
<td>2010-10-18</td>
</tr>
<tr>
<td>draft-shelby-core-link-format</td>
<td>-00</td>
<td>2010-09-28</td>
</tr>
<tr>
<td>draft-hartke-coap-observe</td>
<td>-02</td>
<td>2010-08-24</td>
</tr>
<tr>
<td>draft-bormann-core-coap-block</td>
<td>-00</td>
<td>2010-08-24</td>
</tr>
<tr>
<td>draft-bormann-coap-misc</td>
<td>-06</td>
<td>2010-08-24</td>
</tr>
<tr>
<td>draft-martocci-6lowapp-building-applications</td>
<td>-01</td>
<td>2010-07-08</td>
</tr>
<tr>
<td>draft-rahman-core-sleeping</td>
<td>-00</td>
<td>2010-06-29</td>
</tr>
<tr>
<td>draft-eggert-core-congestion-control</td>
<td>-00</td>
<td>2010-06-23</td>
</tr>
<tr>
<td>draft-moritz-6lowapp-dpws-enhancements</td>
<td>-01</td>
<td>2010-06-16</td>
</tr>
<tr>
<td>draft-shelby-core-coap</td>
<td>-01</td>
<td>2010-05-10</td>
</tr>
</tbody>
</table>

http://6lowapp.net

core@IETF79, 2010-11-08
CoAP Plugfest Sunday, Nov 07, 2010

• Testing core-coap-03
 ▪ focusing on newcomers
 ▪ most physically present, some via Internet

• Basic interoperability done
 ▪ message format, options encoding, transaction model
 ▪ GET, PUT, POST, DELETE, link-format

• Continue testing on specific features
 ▪ Block (nearly universal now)
 ▪ Asynchronous transactions, observe (3 interoperable)

• Followup plugfest 1600–1800 Thursday
 ▪ let’s just hijack the terminal room
79th IETF: core WG Agenda

15:10 Introduction, Agenda, Status Chairs (10)
15:20 1 – core CoAP ZS (30)
15:50 1 – slicing/(-block) CB (20)
16:10 retire to Wednesday, 09:00 Intro Chairs (05)
09:05 1 – (-link-format) ZS (15)
09:20 1 – (-observe) ZS (35)
09:55 1 – Review of Requirements ZS (10)
10:05 2 – Bootstrapping BS (15)
10:35 1/2 – Group Communication AR (15)
11:05 1/2 – CoAP Usage PV (15)
11:20 Next Steps Chairs (10)
79th IETF: core WG Agenda

15:10 Introduction, Agenda, Status Chairs (10)
15:20 1 – core CoAP ZS (30)
15:50 1 – slicing/(-block) CB (20)
16:10 retire to Wednesday, 09:00 Intro Chairs (05)
09:05 1 – (-link-format) ZS (15)
09:20 1 – (-observe) ZS (35)
09:55 1 – Review of Requirements ZS (10)
10:05 2 – Bootstrapping BS (15)
10:35 1/2 – Group Communication AR (15)
11:05 1/2 – CoAP Usage PV (15)
11:20 Next Steps Chairs (10)
Progress since Maastricht

- **coap-02 released**
 - Link-format to *draft-ietf-core-link-format*
 - Use of Uri-Authority defined more completely
 - Uri-Scheme option removed
- **coap-03 released**
 - Token option added
 - CoAP specific error codes added
 - Uri-Query option added
 - Security section completed
- **coap-03 plugfest event held yesterday**
Editorial Tickets

• **#29** Section 2.1.2 error
 – Token error in the Section 2.1.2. example text

• **#31** Variable uint
 – Add section defining variable length uint (from coap-observe)

• **#51** Section 2 Organization
 – Separate by transaction model and req/res model sections

• **#56** Distinguishing CoAP and DTLS
 – Section 10.2 need a discussion on how to tell the difference between DTLS and CoAP messages (solved on mailing list)
Technical Tickets

- **#30** Max-age 0-4 bytes
 - Change Max-age length to 0-4 bytes from 1-4 bytes, allowing for 0s to be indicated by 0 length

- **#50** Human readable error payloads
 - Define error payloads to be human readable in Section 11.1.

- **#52** How strict to define POST
 - Was a comment that POST text may be too restrictive.
 - Proposal to include the language:
 “The actual function performed by the POST method is determined by the server and is usually dependent on the request URI”

- **#63** Verify all synchronous and asynchronous interactions

- And **#28, #48, #53, #62** ...
#53 Token length

- A token was added to coap-03 to match requests with responses
- Very conservative length of 1-2 B was chosen
 - Reason: minimize overhead and server state
 - Problem: not sufficient for a client to store context in token (and protect the content)
- Proposal to define 1-8 B length
 - Sufficient for some token context and protection
 - Reasonable amount of state for a server
#28 Clarification on retransmission

- Should retransmits of responses transmit the current state of resource, rather than a snapshot of the state at the time of the first attempt?
 - Assumption in coap-03: **the snapshot**
 - Assumption in observe-00: **current recommended**

- Conclusion of mailing list discussion:
 - In some cases more memory efficient to send current state (rather than saving snapshot)
 - Proposal: Change Section 4.3 with “MAY include the current snapshot” and an explanation
#45 Block needs redirect

- (Ticket listed under ietf-block-00)
- Block transfer can support large representation in a POST request (or response) but not in both at the same time.
- This ticket proposes adding redirect support to coap-04 for redirecting a client to use a GET for retrieving the response
- Restricted to same-host only redirection for security reasons
#62 Uri-Scheme Option

- In draft-ietf-core-coap-01 and earlier we had a Uri-Scheme option
- Recent discussion has indicated that some people would find Uri-Scheme useful for a client to indicate the protocol to proxy to when using a multi-protocol proxy
- Discussion is needed to determine if we want to add Uri-Scheme back to the protocol
Security Tickets

• **#58** Define trust model
 – What's the general trust model in terms of the relationship between the servers and clients?

• **#59** Assumed device capabilities
 – What are the assumed capabilities of the devices in question?

• **#61** Cross-protocol attacks
 – Add some discussion of cross-protocol attacks, which seem likely with the NoSec mode.

• And **#54, #55, #60** …
#55 AES-CCM ciphers

- Section 10.2 defines using CoAP with DTLS
- coap-03 currently defines SHOULD support for AES-CBC ciphers with DTLS
 - Problem: AES-CBC not possible on all constrained hardware
 - But: RFC4347 is based on TLS 1.1 and does not support AES-CCM
- Solution:
 - Wait for RFC4347bis, just passed WGLC
 - Supports AEAD, but only GCM defined
 - Define a separate CCM cipher suite, or use draft-mcgrew-tls-aes-ccm-00.txt? (hash?)
#60 Access control

- Eric (and Adam) brought up an issue:
 - “How is access control expected to behave with respect to proxy caches? (The HTTP story is clear but you've stripped out the HTTP access control mechanisms). I don't see how a server even verifies a client who goes through a cache.”
#54 IPsec and multicast

- CoAP supports multicast requests
- How to secure them?
- Section 10.1 needs to be extended with a discussion on the use of IPsec with multicast
Next Steps

• Repeat the plugfest event this Thursday
• Close these tickets
 – Main focus on security
• Submit coap-04 within 3 weeks
• Go to last call
• WG goal to submit in December
CoAP Tutorial
The CoRE Architecture
CoAP Features

- Asynchronous transaction model
- UDP binding with reliability and multicast support
- GET, POST, PUT, DELETE
- Small, simple header < 10 bytes
 - 4 byte base header
 - TLV options, typically 2-4 bytes per option
- URI support
- Subset of IANA Internet media types
- Subset of HTTP-compatible response codes
- coap:// scheme
- Optional observation and discovery
What CoAP is (and is not)

• CoAP is
 – A RESTful protocol
 – Both synchronous and asynchronous
 – For constrained devices and networks
 – Specialized for M2M applications
 – Easy to proxy to/from HTTP

• CoAP is not
 – A replacement for HTTP
 – General HTTP compression
 – Separate from the web
The Transaction Model

- **Transport**
 - CoAP is defined for UDP

- **Transaction**
 - Single message exchange between end-points
 - CON, NON, ACK, RST

- **REST**
 - Piggybacked on transaction messages
 - Method, Response Code and Options (URI, content-type etc.)
Ver - Version (1)

T - Transaction Type (Confirmable, Non-Confirmable, Acknowledgement, Reset)

OC - Option Count, number of options after this header

Code - Request Method (1-10) or Response Code (40-255)

Transaction ID - Identifier for matching responses
Option Header

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>+-----------------+-----------------+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>option delta</td>
<td>length</td>
<td>for 0..14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+-----------------+-----------------+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

for 15..270:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>+-----------------+-----------------+-----------------+-----------------+-----------------+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>option delta</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>length - 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+-----------------+-----------------+-----------------+-----------------+-----------------+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option Delta – Difference between this option type and the previous

Length – Length of the option value (0–270)

Value – The value of Length bytes immediately follows Length
<table>
<thead>
<tr>
<th>Type</th>
<th>C/E</th>
<th>Name</th>
<th>Data type</th>
<th>Length</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>Reserved</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>Content-type</td>
<td>8-bit</td>
<td>1 B</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>unsigned integer</td>
<td></td>
<td>(text/plain)</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>Max-age</td>
<td>Variable length</td>
<td>1-4 B</td>
<td>60 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>unsigned integer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>Etag</td>
<td>Sequence of bytes</td>
<td>1-4 B</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>Uri-Authority</td>
<td>String</td>
<td>1-270 B</td>
<td>""</td>
</tr>
<tr>
<td>6</td>
<td>E</td>
<td>Location</td>
<td>String</td>
<td>1-270 B</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>Reserved</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>Uri-Path</td>
<td>String</td>
<td>1-270 B</td>
<td>""</td>
</tr>
<tr>
<td>11</td>
<td>C</td>
<td>Token</td>
<td>Sequence of bytes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>Uri-Query</td>
<td>String</td>
<td>1-270 B</td>
<td>-</td>
</tr>
</tbody>
</table>
Response Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>HTTP Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>100 Continue</td>
</tr>
<tr>
<td>80</td>
<td>200 OK</td>
</tr>
<tr>
<td>81</td>
<td>201 Created</td>
</tr>
<tr>
<td>124</td>
<td>304 Not Modified</td>
</tr>
<tr>
<td>160</td>
<td>400 Bad Request</td>
</tr>
<tr>
<td>164</td>
<td>404 Not Found</td>
</tr>
<tr>
<td>165</td>
<td>405 Method Not Allowed</td>
</tr>
<tr>
<td>175</td>
<td>415 Unsupported Media Type</td>
</tr>
<tr>
<td>200</td>
<td>500 Internal Server Error</td>
</tr>
<tr>
<td>202</td>
<td>502 Bad Gateway</td>
</tr>
<tr>
<td>203</td>
<td>503 Service Unavailable</td>
</tr>
<tr>
<td>204</td>
<td>504 Gateway Timeout</td>
</tr>
<tr>
<td>240</td>
<td>Token Option required by server</td>
</tr>
<tr>
<td>241</td>
<td>Uri-Authority Option required by server</td>
</tr>
<tr>
<td>242</td>
<td>Critical Option not supported</td>
</tr>
</tbody>
</table>
Internet Media Types

<table>
<thead>
<tr>
<th>Internet media type</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>text/plain (UTF-8)</td>
<td>0</td>
</tr>
<tr>
<td>text/xml (UTF-8)</td>
<td>1</td>
</tr>
<tr>
<td>text/csv (UTF-8)</td>
<td>2</td>
</tr>
<tr>
<td>text/html (UTF-8)</td>
<td>3</td>
</tr>
<tr>
<td>image/gif</td>
<td>21</td>
</tr>
<tr>
<td>image/jpeg</td>
<td>22</td>
</tr>
<tr>
<td>image/png</td>
<td>23</td>
</tr>
<tr>
<td>image/tiff</td>
<td>24</td>
</tr>
<tr>
<td>audio/raw</td>
<td>25</td>
</tr>
<tr>
<td>video/raw</td>
<td>26</td>
</tr>
<tr>
<td>application/link-format [IANA_TBD_LINK]</td>
<td>40</td>
</tr>
<tr>
<td>application/xml</td>
<td>41</td>
</tr>
<tr>
<td>application/octet-stream</td>
<td>42</td>
</tr>
<tr>
<td>application/rdf+xml</td>
<td>43</td>
</tr>
<tr>
<td>application/soap+xml</td>
<td>44</td>
</tr>
<tr>
<td>application/atom+xml</td>
<td>45</td>
</tr>
<tr>
<td>application/xmpp+xml</td>
<td>46</td>
</tr>
<tr>
<td>application/exi</td>
<td>47</td>
</tr>
<tr>
<td>application/x-bxml</td>
<td>48</td>
</tr>
<tr>
<td>application/fastinfoset</td>
<td>49</td>
</tr>
</tbody>
</table>
Confirmable Request

CoAP Client

CON (tid=123) GET /light

ACK (tid=123) 200 OK "<light>..."
Non-Confirmable Request

![Diagram of CoAP request](image)
Dealing with Packet Loss
Asynchronous Response

CoAP Client

CON (tid=125) GET /light token=f32a

ACK (tid=125)

takes too much time

CoAP Server

CON (tid=891) 200 OK /light token=f32a "<light>..."

/light ready

ACK (tid=891)
Bits and bytes...

CLIENT

----- CON + GET /temperature [TID=1234] ----->

SERVER

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 1 | 0 | 1 | GET = 1 | TID=1234 |
| 1 | 0 | 1 | GET = 1 | TID=1234 |
| 9 | 11 | "temperature" (11 Octets) ...
+-+

CLIENT

<-------- ACK + 200 OK [TID=1234] -------->

SERVER

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 1 | 2 | 0 | Code=80 | TID=1234 |
| 1 | 2 | 0 | Code=80 | TID=1234 |
Caching

- CoAP includes a simple caching model
 - Current only for the GET method
- Cache life
 - Controlled by the Max-Age Option
- Cache refresh and versioning
 - Using the Etag Option
- A proxy may participate in caching
 - Usually on behalf of a sleeping node
Proxying and caching
Resource Discovery

• Service Discovery
 – Leave this to e.g. DNS-SD

• Resource Discovery
 – Retrieving the links offered by CoAP servers
 – GET /.well-known/core
 – Returns a link-header style format
 • URL, name, description, content-type, short-url, id

• See draft-ietf-core-link-format-01
Resource Discovery

CoAP Client

CON (tid=123) GET /.well-known/core

ACK (tid=123) 200 OK "<light>..."

CoAP Server

</light>;n="Illuminance";ct=0;sh=/i,
</s/mastr.xml>;n="Maastricht weather";ct=1,
</s/mastr/temp>;n="Temperature in Maastricht";ct=1;sh=/m,
</s/oulu.xml>;n="Oulu weather";ct=1,
</s/oulu/temp>;n="Temperature in Oulu";ct=1;sh=/o,
</s/temp>;n="Temperature";ct=0;sh=/t,
</test>;n="test";ct=0
79th IETF: core WG Agenda

15:10 Introduction, Agenda, Status Chairs (10)
15:20 1 – core CoAP ZS (30)
15:50 1 – slicing/(-block) CB (20)
16:10 retire to Wednesday, 09:00 Intro Chairs (05)
09:05 1 – (-link-format) ZS (15)
09:20 1 – (-observe) ZS (35)
09:55 1 – Review of Requirements ZS (10)
10:05 2 – Bootstrapping BS (15)
10:35 1/2 – Group Communication AR (15)
11:05 1/2 – CoAP Usage PV (15)
11:20 Next Steps Chairs (10)
The block option

- Some resource representations are > MTU bytes
- Transfer in blocks

```
0
0 1 2 3 4 5 6 7
+-----------------+
|blocknr|M| szx |
+-----------------+
0                   1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+----------------------------------+
| block nr | M| szx |
+----------------------------------+
0                   1                   2
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+--------------------------------------------------+
| block nr | M| szx |
+--------------------------------------------------+
```

M: More Blocks
szx: \(\log_2 \text{Blocksize} - 4 \)

Decisions:
- Block size is power of 2
- \(16 \leq \text{Block size} \leq 2048 \)
The block option vs. methods

- **GET**: trivial
 - Receiver: watch Etag to obtain parts of same resource repr.
 - Also works for asynchronous responses (subscriptions)
 - initiative is with responder, then!

- **PUT, POST**: trigger actual update on M=0
 - manage parallel operations based on token option

- **Block is CRITICAL**
Thought experiment
- develops Size-Estimate option (see below)
- develops “semantic segmentation” (“Slicing”)

Instead of using numeric block numbers, use semantic continuation tokens
- continuation-response option: this is not all, more can be had by handing back the token given
- continuation-request option: hand back the token
- continuation-required: ask for a token (POST/PUT)
- message-size: aid in agreement on a good slice size

Is this better than Block?
Semantic Slicing

- **Advantages:**
 - Enables certain stateless proxies (for device enumeration)
 - those could be done using REST means
 - requires putting continuation token in response body
 - Enables application-oriented slice boundaries
 - Handles large POST/PUT responses
 - More flexibility

- **Disadvantages:**
 - More flexibility (behavior harder to predict)
 - More complexity
 - Harder to debug (less self-describing)
 - No random-access semantics (+/−?)
Block-00 Tickets:
Editorial work (no tech change)

• #47 Move discussion of benefits to introduction
• #48 Add example interactions
• #49 Expand security considerations
#44 estimate the size

- One solution in section 3 of bormann-block-01:
 - new option Size-Estimate
 - “should” be sent with first slice

- **Alternative/additional solution:**
 - Add size relationship attribute to link-format

- **Exact size or estimate?**
 - use cases not quite clear
#45 large responses to POST/PUT

- Block can be used either on request body (POST/PUT) or on response body (GET), not both
 - do we need large POST/PUT responses? If yes:
 - add a second option?
 - use redirects to GET to retrieve large POST/PUT responses?
- Redirects currently not available in base CoAP
#46 Error Codes for Block

- Reaction to PUT or POST where previous segments aren’t available
- Also possibly errors:
 - GET to block number that is beyond end
 - could return empty payload instead
 - GET with block number ≠ 0 and unsupported block size
 - could reduce block size and shift block number instead
79th IETF: core WG Agenda

15:10 Introduction, Agenda, Status Chairs (10)
15:20 1 – core CoAP ZS (30)
15:50 1 – slicing/(-block) CB (20)
16:10 retire to Wednesday, 09:00 Intro Chairs (05)
09:05 1 – (-link-format) ZS (15)
09:20 1 – (-observe) ZS (35)
09:55 1 – Review of Requirements ZS (10)
10:05 2 – Bootstrapping BS (15)
10:35 1/2 – Group Communication AR (15)
11:05 1/2 – CoAP Usage PV (15)
11:20 Next Steps Chairs (10)
CoRE Link Format

draft-ietf-core-link-format-01

Z. Shelby, with a lot of help from Peter Bigot
What is the CoRE Link Format

GET 184.106.150.250:61618/.well-known/core

</.well-known/core>;n="Resource discovery";ct=40,
</draft>,
</s/oulu.xml>;n="Oulu weather";ct=1,
</s/oulu/temp>;sh="o";n="Temperature in Oulu";ct=1,
</s/rand>;sh="r";n="Random number";ct=0,
</test>;n="test";ct=0,
</time/china>;n="Current time in China",
</time/euro>;n="Current time Central Europe",
</time/finland>;n="Current time in Finland"

You can try yourself:
http://184.106.150.250/coap/%5B0:0:0:0:0:0:1%5D:61618/.well-known/core
http://184.106.150.250
Progress since Maastricht

• link-format-00 split off from coap draft
 – Fixed the ABNF link-extension format
 – Clarified how filtering is optional
 – Required support of wildcard * processing when filtering is supported

• link-format-01 released
 – Formal definition for filter query string
 – Removed URI-reference from "n" and "id"
 – Added security text about multicast requests
Current Status

- RFC5988 “Web Linking” published recently
 - The CoRE link format is derived from this
- Tested in two plugfest events
 - Only trivial issues found in Beijing
 - Has been universally implemented
- 5 tickets currently identified
- Interest from memento.org to reference the CoRE Link Format
Known Issues

- (#41 Update link-header ref to RFC5988)
- #42 Finalize the link-extensions to define
 - Separate slide
- #43 More examples needed
- #57 Cyclical links
 - Clients parsing the link-format should be aware that /.well-known/core could include a link to itself or other cycles
- #70 Query string filter definition
Finalizing the link-extensions

<table>
<thead>
<tr>
<th>Extension</th>
<th>Key</th>
<th>Type</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>d</td>
<td>URI-reference</td>
<td></td>
</tr>
<tr>
<td>Short URL</td>
<td>sh</td>
<td>URI-reference</td>
<td>remove?</td>
</tr>
<tr>
<td>Name</td>
<td>n</td>
<td>quoted-string</td>
<td></td>
</tr>
<tr>
<td>Content-type</td>
<td>ct</td>
<td>integer</td>
<td></td>
</tr>
<tr>
<td>Identifier</td>
<td>id</td>
<td>quoted-string</td>
<td></td>
</tr>
<tr>
<td>Observable</td>
<td>obs</td>
<td>-</td>
<td>proposed</td>
</tr>
<tr>
<td>Size maximum</td>
<td>sz</td>
<td>integer</td>
<td>proposed</td>
</tr>
</tbody>
</table>
Next Steps

- Close these tickets
- Submit link-format-02 within 2 weeks
- Go to last call
- WG goal to submit in December
79th IETF: core WG Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Item</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:10</td>
<td>Introduction, Agenda, Status</td>
<td>Chairs (10)</td>
</tr>
<tr>
<td>15:20</td>
<td>1 – core CoAP</td>
<td>ZS (30)</td>
</tr>
<tr>
<td>15:50</td>
<td>1 – slicing/(-block)</td>
<td>CB (20)</td>
</tr>
<tr>
<td>16:10</td>
<td>retire to Wednesday, 09:00 Intro椅</td>
<td>Chairs (05)</td>
</tr>
<tr>
<td>09:05</td>
<td>1 – (-link-format)</td>
<td>ZS (15)</td>
</tr>
<tr>
<td>09:20</td>
<td>1 – (-observe)</td>
<td>ZS (35)</td>
</tr>
<tr>
<td>09:55</td>
<td>1 – Review of Requirements</td>
<td>ZS (10)</td>
</tr>
<tr>
<td>10:05</td>
<td>2 – Bootstrapping</td>
<td>BS (15)</td>
</tr>
<tr>
<td>10:35</td>
<td>1/2 – Group Communication</td>
<td>AR (15)</td>
</tr>
<tr>
<td>11:05</td>
<td>1/2 – CoAP Usage</td>
<td>PV (15)</td>
</tr>
<tr>
<td>11:20</td>
<td>Next Steps</td>
<td>Chairs (10)</td>
</tr>
</tbody>
</table>
What is CoRE Observe?

Diagram:

```
CoAP Client

CON (tid=125)  GET /light lifetime=60s
ACK (tid=125) 200 OK "<light>..."

CON (tid=430) 200 OK /light "<light>..."
ACK (tid=430)

CON (tid=431) 200 OK /light "<light>..."
ACK (tid=431)
```

/light changes
Progress since Maastricht

• observe-00 (submitted as WG document)
 – Removed the explanatory appendix
 – Removed the HTTP mapping
 – Removed the caching explanation
 – Omit URI from notifications if Token is present
 – Subscription option as variable length uint
Current Status

• First working group version
 – Needs plenty of editing
 – Needs considerations for coap-04 and block
• Tested in Maastricht and Beijing plugfests
 – 4+ implementations
• 15 tickets currently identified
 – Many are placeholders
Main Technical Tickets

• #34 Canceling a subscription
• #36 Add consideration of core-block
• #38 Example on proxy interaction
• #39 Caching (validation model)
• #40 Security section needed
• #65 Normal requests should not affect any ongoing observation
• #66 Identifying observations
• #67 Clarify rules for notifications
• #69 Notifying temporarily unresponsive clients
Next Steps

• Close these tickets
• Submit observe-01 soon after Beijing
• More implementation testing and feedback
79th IETF: core WG Agenda

<table>
<thead>
<tr>
<th>Time</th>
<th>Agenda Item</th>
<th>Speaker(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:10</td>
<td>Introduction, Agenda, Status</td>
<td>Chairs (10)</td>
</tr>
<tr>
<td>15:20</td>
<td>1 – core CoAP</td>
<td>ZS (30)</td>
</tr>
<tr>
<td>15:50</td>
<td>1 – slicing/(-block)</td>
<td>CB (20)</td>
</tr>
<tr>
<td>16:10</td>
<td>retire to Wednesday, 09:00 Intro</td>
<td>Chairs (05)</td>
</tr>
<tr>
<td>09:05</td>
<td>1 – (-link-format)</td>
<td>ZS (15)</td>
</tr>
<tr>
<td>09:20</td>
<td>1 – (-observe)</td>
<td>ZS (35)</td>
</tr>
<tr>
<td>09:55</td>
<td>1 – Review of Requirements</td>
<td>ZS (10)</td>
</tr>
<tr>
<td>10:05</td>
<td>2 – Bootstrapping</td>
<td>BS (15)</td>
</tr>
<tr>
<td>10:35</td>
<td>1/2 – Group Communication</td>
<td>AR (15)</td>
</tr>
<tr>
<td>11:05</td>
<td>1/2 – CoAP Usage</td>
<td>PV (15)</td>
</tr>
<tr>
<td>11:20</td>
<td>Next Steps</td>
<td>Chairs (10)</td>
</tr>
</tbody>
</table>
79th IETF: core WG Agenda

15:10 Introduction, Agenda, Status Chairs (10)
15:20 1 – core CoAP ZS (30)
15:50 1 – slicing/(-block) CB (20)
16:10 retire to Wednesday, 09:00 Intro Chairs (05)
09:05 1 – (-link-format) ZS (15)
09:20 1 – (-observe) ZS (35)
09:55 1 – Review of Requirements ZS (10)
10:05 2 – Bootstrapping BS (15)
10:35 1/2 – Group Communication AR (15)
11:05 1/2 – CoAP Usage PV (15)
11:20 Next Steps Chairs (10)
Security Bootstrapping

Colin O’flynn
Behcet Sarikaya (presenter)
Yoshi Ohba
Zhen Cao
Robert Cragie

draft-oflynn-core-bootstrapping-03 at IETF 79
Architecture

- 6lowPAN ND or Zigbee SE 2.0 architecture/topology adopted
- Root node is coordinator/6LBR
- Interior routers/6BR
- Leaf nodes
- Bootstrapping keys based on layers
- Lower layer protocols: 802.15.4 MAC & LowPAN adaptation Layer
- Higher layer protocols: IP and above
Protocols

• **Security Objectives**

• **EAP**: EAP authentication framework based on RFC 5247

• **Available Methods**:
 - PANA
 - HIP-DEX
 - 802.1X

• **Emphasis in the draft is** on the requirements on each of the available methods and meeting the objectives
Next Steps

• The draft has gone through major revision on -02
• Presented -02 in the last Interim
• Comments since then incorporated into -03
• Ready to become WG draft
• We ask for WG draft adoption
79th IETF: core WG Agenda

15:10 Introduction, Agenda, Status Chairs (10)
15:20 1 – core CoAP ZS (30)
15:50 1 – slicing/(-block) CB (20)
16:10 retire to Wednesday, 09:00 Intro Chairs (05)
09:05 1 – (-link-format) ZS (15)
09:20 1 – (-observe) ZS (35)
09:55 1 – Review of Requirements ZS (10)
10:05 2 – Bootstrapping BS (15)
10:35 1/2 – Group Communication AR (15)
11:05 1/2 – CoAP Usage PV (15)
11:20 Next Steps Chairs (10)
Group Communication for CoAP

Akbar Rahman (Editor)
(with much input from Kerry Lynn, Peter Bigot, Peter van der Stok, and others)

IETF 79, November 2010
Background

- This draft is a follow up to our previous draft on “Sleeping and Multicast Considerations for CoAP” which was in a problem statement format:

- During the previous CORE Webex calls, we were asked to produce satellite drafts to more precisely identify the problems and provide some initial solution proposals for:
 - Group Communications (as the more general problem of multicast) – This draft
 - Sleeping Nodes – TBD draft (but in progress)
Potential Approaches for Group Communication

- There are three alternative approaches for CoAP group communications each with associated pros/cons:
 - IP Multicast
 - Overlay (Proxy based) Multicast
 - CoAP Application level Group Management
IP Multicast

- **Concept:**
 - CoAP sub-networks to be connected directly to IP multicast enabled routers (e.g. running PIM-SM [RFC4601]).
 - Sending CoAP node can directly transmit group messages by setting IP address to selected multicast IP group address
 - Receiver CoAP nodes use MLD [RFC3810] to subscribe (listen) to any messages sent to selected IP multicast group

- **Pros**
 - Most efficient solution since done at IP layer
 - ROLL [draft-ietf-roll-rpl-14] assumes IP multicast supported
 - CoAP-03 draft [section 4.1] assumes IP multicast supported

- **Cons**
 - IP multicast is not generally deployed outside of corporate LANs and a few ISPs. So we may specify IP multicast support but practically it may often not be deployed
Concept:

- We define overlay multicast as one that utilizes an infrastructure based on proxies (rather than an IP router based multicast backbone) to deliver IP multicast packets to an end device.
- Since ROLL and CoAP drafts already support MLD (see pg. 4), we propose MLD Proxy [RFC3810] to be used as the overlay multicast approach.
- Specifically, the CoAP proxy node will also support Proxy MLD.
- Receiver CoAP nodes use MLD Proxy signaling to subscribe (listen) to any messages sent to selected IP multicast group.
- The CoAP (MLD) proxy node would be responsible for delivering any IP multicast message to the subscribed CoAP devices.
- Note that the CoAP (MLD) proxy need not necessarily be connected to an external multicast backbone.
Pros
- Ties well into existing CoAP proxy concept

Cons
- It is not obvious that existing MLD Proxy [RFC 3810] allows the specific scenario we are proposing. Further investigation required.
CoAP Application level Group Mgmt

- Concept:
 - Perform all group communications at the CoAP application level
 - Expand CoAP headers to allow simple group mgmt functions (Join, Leave, etc.)
 - The CoAP proxy node would be responsible for group mgmt
 - Any CoAP node that wanted to send a message to a CoAP group would first send the CoAP message to the proxy. The proxy would then explode it out to the group

- Pros
 - Functionality fully within the CoAP protocol (and CORE WG control)
 - Analogous approach as Email group management (and other Apps)

- Cons
 - Has high overhead compared to lower layer solutions
Group Resource Manipulation (1/3)

- Needed to replicate functionality of existing standards, e.g. BACnet’s Alarm and Event Notification service

- Two forms of group resource manipulation should be supported:
 - Push (PUT or MPUT) as for example “turn off all lights simultaneously”
 - Pull (GET or MGET) as for example “return all the resources matching a well known URI”

- Conceptually, the result of a MGET or MPUT should be the same as if the client had unicast them serially
Group Resource Manipulation (2/3)

- Limit manipulation to idempotent methods (PUT/GET/DEL)
 - Repeat requests can then be used to increase reliability of receipt

- Requires a consistent naming and addressing scheme for groups
 - Multicast is the easy case; can use DNS to resolve FQDN in authority to multicast or unicast address

- Can a group be represented by a list of addresses as well?
 - If so, perhaps this argues for a group scheme, e.g. "coapm" to signal a proxy to do fan-out task
Group Resource Manipulation (3/3)

- Target resource must be located at same port and path for all group members
 - Suggests a need to advertise path, port or have a priori agreement
79th IETF: core WG Agenda

15:10 Introduction, Agenda, Status Chairs (10)
15:20 1 – core CoAP ZS (30)
15:50 1 – slicing/(-block) CB (20)
16:10 retire to Wednesday, 09:00 Intro Chairs (05)
09:05 1 – (-link-format) ZS (15)
09:20 1 – (-observe) ZS (35)
09:55 1 – Review of Requirements ZS (10)
10:05 2 – Bootstrapping BS (15)
10:35 1/2 – Group Communication AR (15)
11:05 1/2 – CoAP Usage PV (15)
11:20 Next Steps Chairs (10)
CoAP Utilization for Building Control

draft-vanderstok-core-bc-02

Naming/Discovery/Legacy

Peter van der Stok
Kerry Lynn

November 10, 2010
Motivating Naming/Discovery

A typical BC installation may have 1000s of “points”

Authority:
- Node (host [:socket])
- Group (set of nodes)

Service:
- CoAP resource (URI)
 - `.well-known/core/type/device/...` (RFC 5785)
 - legacy standards (e.g. dali, ZigBee, BACnet)

CoAP exposes: list of resources for a given node (functional entry points)

Additionally needed:
- Definition/discovery of groups
- Discovery of all nodes in a scope (authority)
- Discovery of resources with given characteristics (type, etc.)
core-bc works out use of DNS

Central server solves:
 Large set > 100 nodes per domain
 Grouping (over subnets)

DNS-SD:
 Based on mature, well-known technology
 Hosts, dynamic ports via SRV records
 Path (functional entry points) via TXT records

Future work:
Smooth transition during installation/commissioning
FROM local isolated networks without IT services (mDNS?)
TO DNS providing global name registry
XXX/XYZ legacy network and IP networks

XXX network

XXX device

XXX device

XXX device

XXX/IP gateway

Internet

XYZ/IP gateway

XYZ network

XYZ device

XYZ device

XYZ device

CoAP

CoAP
XXX legacy naming with IP connectivity
Legacy and DNS-SD

Mapping of legacy standard “xxx” to DNS-SD naming conventions:
Assume that standardization body decides independent of CoAP

Proposed names inserted in DNS for legacy devices:
identifier._xxx._udp.domain
e.g. name._zigbee._udp.domain, where “name” is based on “n=

Possibly also by subtype:
identifier._type._sub._xxx._coap._udp.domain
e.g. name._light._sub._dali._udp.domain

In TXT records, additional information like:
type=dali
dalitype=4
sh=/dl20
DRAFT Example of Installation

Assume an installation tool, DNS server on-line
DNS is initialized with domains

Devices connected to network and switched on
Tool communicates to device:
 identifier: e.g. xyz0054ba
 domain: bu036.floor1...
Tool reads from device: IP address, service, resources, short url

Tool updates DNS server (port number?)
Tool defines groups

Maps id._dalitype._sub._dali._udp. bu036.floor1.building.org
To coap://id.bu036.floor1.building.org/short_url
Proposals

• Use DNS-SD and mDNS for service/resource discovery
• Base coap authority on canonical host name (A or AAAA record name)
• Create a limited structured namespace for functional entry points at /.well-known/core/type/function
• Naming convention to discover services with legacy naming

• Continue with:
 – mDNS to DNS transition
 – CoAP gateway to legacy
79th IETF: core WG Agenda

15:10 Introduction, Agenda, Status Chairs (10)
15:20 1 – core CoAP ZS (30)
15:50 1 – slicing/(-block) CB (20)
16:10 retire to Wednesday, 09:00 Intro Chairs (05)
09:05 1 – (-link-format) ZS (15)
09:20 1 – (-observe) ZS (35)
09:55 1 – Review of Requirements ZS (10)
10:05 2 – Bootstrapping BS (15)
10:35 1/2 – Group Communication AR (15)
11:05 1/2 – CoAP Usage PV (15)
11:20 Next Steps Chairs (10)