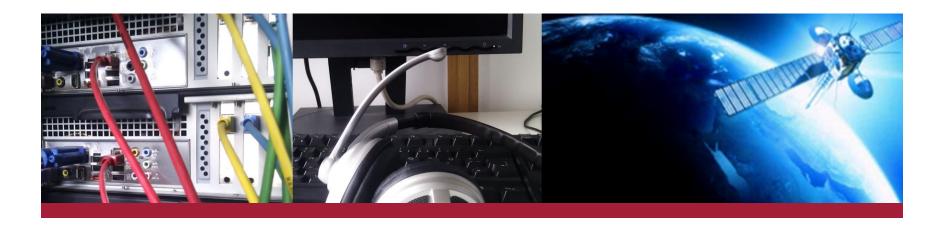


MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT

Interactive Communication Systems (ICS)



Bayesian Location Identifier draft-hoene-geopriv-bli-00

C. Hoene, A. Krebs, C. Behle, M. Schmidt

www.net.uni-tuebingen.de

Location Tracking is Imprecise

- Location Generators use sensor data to estimate a location
- Sensor data is noisy
- Filters are used to estimate an real position despite noise measurement.
- Commonly used filters:
 - Kalman
 - Particle Filters
 - Gaussian Sum Particle Filter
- Idea
 - Use filter outputs to describe position estimates

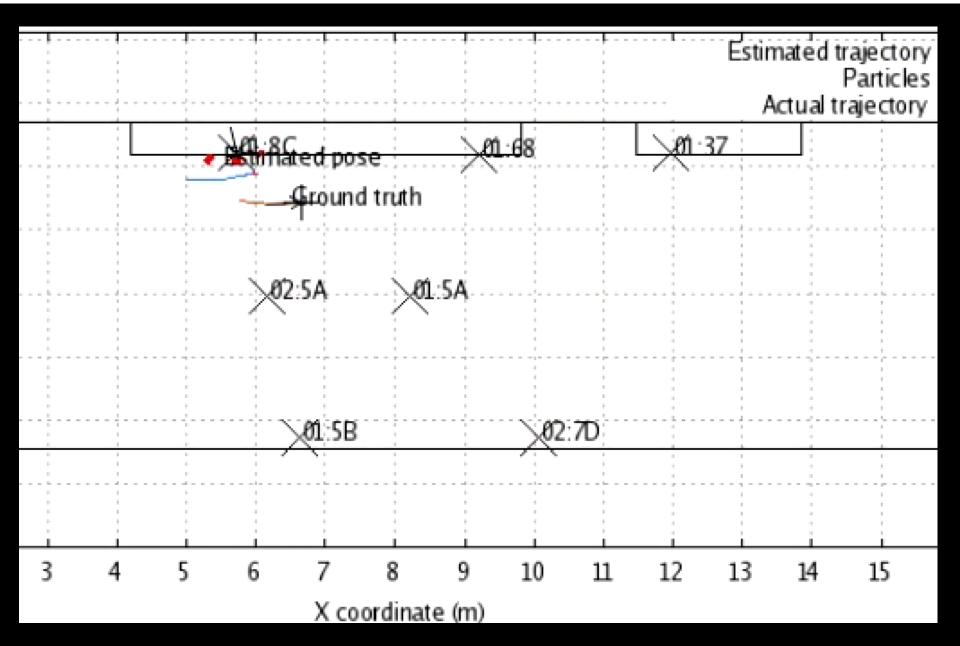
Particle Filter

- Best explained by an example taken from our AmbiSense lab:
- Experimental setup:
 - Roboter is moving around shelf
 - Roboter location tracking with seven Bluetooth nodes via RSSI
 - Particles are displayes as red dots
 - Ground truth is based on laser measurements
- Uncertainty is given by
 - a set of particles, which represent position estimates

Particle Filters?

Best explained by an example filmed in our AmbiSense lab:

[http://www.ambisense.org]



Kalman Filtering (citing Wikipedia)

- Uses on Gaussian distributions to describe uncertainty.
- ► The Kalman filter model assumes the true state at time k is evolved from the state at (k 1) according to

$$\mathbf{x}_k = \mathbf{F}_k \mathbf{x}_{k-1} + \mathbf{B}_k \mathbf{u}_k + \mathbf{w}_k$$

- where F_k is the state transition model which is applied to the previous state x_{k-1} ;
- B_k is the control-input model which is applied to the control vector u_k;
- w_k is the process noise which is assumed to be drawn from a zero mean multivariate normal distribution with covariance Q_k.

$$\mathbf{w}_k \sim N(0, \mathbf{Q}_k)$$

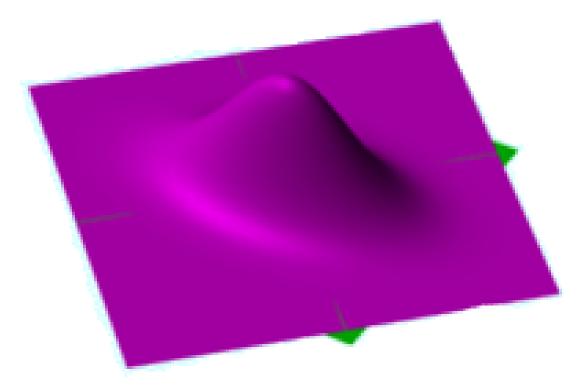
At time k an observation (or measurement) z_k of the true state x_k is made according to

$$\mathbf{z}_k = \mathbf{H}_k \mathbf{x}_k + \mathbf{v}_k$$

- where H_k is the observation model which maps the true state space into the observed space
- and v_k is the observation noise which is assumed to be zero mean Gaussian white noise with covariance R_k.

Kalman Filter output

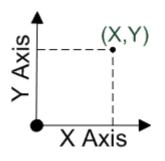
- Algorithmic details are not important...
- We only like to understand the filter output, which is simple:
 - multi-variable Gaussian probability density function with
 - position estimate z_k and covariance matrix R_k

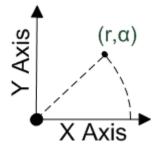


http://en.wikipedia.org/wiki/Covariance matrix

Related Datum, Coordinate Systems, Transformation Matrix

- Position is estimated relative to another PIDF-LO, e.g.
 - Longitude, lattidue, height
 - Civic address
 - WLAN access point identified by MAC address
- Supporting two coordinate Systems
 - Cartesian
 - Polar





In addition, coordinates are transformed with

$$T(\vec{x}) = \mathbf{A}\vec{x}$$

- T is a linear transformation mapping Rⁿ to R^m for vector x.
 A is the transformation matrix.
- A supports rotation, scaling, shearing, refraction, affine transformation, perceptive projection, ...

Summary: Bayesian Location Identifier

- Position estimates are always imprecise...
- Idea
 - use filter outputs to describe measurements of locations
 - Describe them with Bayesian statistics...
 - Our solution is based on a solid scientific foundation...
- Filter outputs are easy to understand
- Apps can do with this data anything they want to...
 - Who knows what kind of applications will be invented?
- Potential Improvements:
 - Add a time field.
 - Requesting sensor data having a request time stamp (for fusion)
 - Compressed representation of particles