HIP support for RFIDs

Pascal.Urien@telecom-paristech.fr

http://perso.telecom-paristech.fr/~urien/hiprfid/
What is new in version 01

- **Editorial issues**
 - Replace the word TAG (inherited from the previous draft HIP-TAG) by RFID
 - The Signature-T attribute is renamed MAC-T
 - The HAT (HIP Address Translation) protocol is renamed HEP (HIP Encapsulation Protocol)

- **Keys-Tree improvement**
 - Simulations of various scenarios show that a tree of depth n, with $p^{*} n$ elements (p child nodes per node) is optimized for p a big integer (10^6, ...) and n small integer (<10)
 - RFID have small computing resources
 - PORTAL have powerful computing resources
 - Paper to be published

- **Experimental platforms**
 - Tests were performed with smartphone equipped with the NFC technology and SIM (java) cards
 - Paper to be published
A Keys-Tree manages a maximum of p^n RFID IDs, with np keys

Each RFID stores n keys

RFID-Index = Function(EPC-Code)

$$a_n p^{n-1} + a_{n-1} p^{n-2} + \ldots + a_1$$

Each term a_i is associated with a key $K_{i,j}$

- $1 \leq i \leq n$
- $0 \leq j \leq p-1$
- $j = a_i$

$f(r1,r2,EPC-Code) = H_1 | H_2 | \ldots | H_n$

$H_i = HMAC(r1 | r2, K_{i,j})$
HIP-RFID for NFC Smart phone

SIM CARD

NFC ENABLE SMART PHONE

PORTAL

JAVA 1.6

PC/SC

USB CCID

NFC MODEM

JAVA

HIP RFID

4/11 Pascal URIEN, IETF 79th, Tuesday 9th November 2010, Beijing, China
Conclusion: To be done

- HIT structure for pseudo-random coding
- Secure Channel establishment
 - To be specify by an other draft
- HEP (HIP Encapsulation Protocol)
 - To be specify by an other draft
- Open code for Keys-Tree
- Other?
HIP-RFID in a Nutshell
What is an RFID?
- An RFID is an electronic device that delivers an identity (ID) thanks to radio means.

Link with the Internet Of Things (IoT)
- A Thing is associated with a RFID

RFID have limited computing resources
- Electronic chip, whose area ranges from 1mm^2 to 25mm^2
- RFIDs are usually powered by readers.
- Very low power consumption.

Objective of this draft
- Defining a protocol for RFIDs, compatible with the IP ecosystem.
- Enforcing strong privacy, i.e. no information leakage for unauthorized ears.
- Managing secure channel with RFIDs (Optional)
- Crypto Agility: cryptographic procedures adapted to RFIDs computing resources.
Privacy issues for RFIDs

- **ID MUST be protected**
- **HIP-RFID**: ID is a solution of \(f(r_1, r_2, ID) \)

![Diagram]

Example

- Many proposal in the scientific literature

 \[f(r_1, r_2, ID) = \text{hash}(r_1 \mid r_2 \mid ID) \]

Modified BEX exchange

- Negotiation of the security scheme (HIT-T-TRANSFORM attribute).
- Third and fourth message are MACed (typically with a HMAC function)
- Fourth message is optional, only mandatory when a secure ESP channel has been negotiated.
 - This is not yet detailed in this draft
 - ESP MAY be used for read write operation.

The HIT is a random number

RFIDs never expose their identity in clear text, but hide this value (typically an EPC-Code) by a particular equation (f) that can be only solved by a dedicated entity, referred as the portal.

- f(r1,r2, ID)
- \(f \) can be anything that works
- An integrity key is computed from \(KI\text{-AUTH\text{-KEY}} = g(r1,r2,ID) \)

HIP exchanges occurred between RFIDs and PORTALs; they are shuttled by IP packets, through the Internet cloud.
HIP-RFID Architecture

HEP: HIP Encapsulation Protocol