IKEv2 with CGA

Jean-Michel Combes
<jeanmichel.combes@orange-ftgroup.com>

Aurélien Wailly
<aurelien.wailly@orange-ftgroup.com>
• CGA design
• IKEv2 quick overview
• IKEv2+CGA
• Implementation
• IKEv2+CGA and DNSSEC
CGA design

- Cryptographically Generated Addresses [RFC3972]
- Public/private key pair
- CGA Parameters

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Subnet Prefix</th>
<th>Collision Count</th>
<th>Public Key</th>
<th>Extension Fields</th>
</tr>
</thead>
</table>

- IPv6 address: Prefix (64 bits) || Interface ID (64 bits)
- Interface ID = First64(Hash(CGA Parameters))
IKEv2 quick overview

- **IKE_SA_INIT**

 Initiator

 HDR, SAi1, KEi, Ni

 Responder

 -->

 <-- HDR, SAR1, KER, Nr, [CERTREQ]

- **IKE_AUTH**

 Initiator

 HDR, SK {IDi, [CERT], [CERTREQ], [CERTREQ], [IDr,]
 AUTH, SAi2, TSi, TSr}

 Responder

 -->

 <-- HDR, SK {IDr, [CERT], AUTH,
 SAR2, TSi, TSr}
IKEv2+CGA (1/2)

- Based on draft-laganier-ike-ipv6-cga-02 (expired)
- CGA used as an alternative credential in IKE_AUTH
IKEv2+CGA (2/2)

- IDi, IDr
 - ID_IPV6_ADDR == CGA
- CERT
 - New type: 222
 - Includes CGA parameters
 - Format looks like a self-signed certificate
- CERTREQ
 - New type: 222
- AUTH
 - Signature based on the private key associated to the CGA public one
- Peer Authorization Database (PAD)
 - ID_IPV6_ADDR associated with CGA authentication method
First conclusions

• Implementation
 – Based on **StrongSwan**

• Advantages
 – Infrastructureless
 • Less entities than a classical trust infrastructure (e.g. PKI)
 • Less attack vectors than on certification path

• Drawbacks
 – Identity
 • CGA, hard to remember for a human
 • IPsec security policy only based on IP addresses
 – "Hard-coded" cryptographic algorithms
 • SHA1 mandatory
 • RSA (minimum key length is 384 bits)
 – Revocation
 • Not possible
IKEv2+CGA and DNSSEC

• Use of DNS
 – To set up IPsec security policy with FQDN
 – Potentially, to solve revocation issue

• Use of DNSSEC
 – To keep the same security level

• Implementation
 – Based on BIND
 – Partially implemented (issue with StrongSwan design)
Questions?