Automated Security Association Management for Routing Protocols

draft-liang-karp-auto-sa-management-rp-00

IETF79 Beijing, China
November, 2010

Xiaoping Liang (Ellen)
ZTE Corporation
liang.xiaoping@zte.com.cn
Motivation

• SA provisioned to routing protocols is what we need to protect routing message essentially
• SAs of routing protocols are divers
• Automated management of SAs for routing protocols is desired and necessary
• Different keys management and their uses, and identity authentication, are involved in automated SA management system for routing protocols, and are indispensable parts of it
Goals

• Discuss automated security association (SA) management for routing protocols
• Discuss two candidate solutions of automated SA management that are based on IKEv2 and ISAKMP respectively
Prior Work

- RFC 4301 IPsec
- RFC 2408 ISAKMP
- RFC 4306, RFC 5996 IKEv2
- Draft-ietf-karp-framework-00
- Draft-ietf-karp-design-guide-01
- Draft-wei-karp-analysis-rp-sa-00
Draft Outline

• Automated SA management for routing protocols
• RP SA MGMT based on IKEv2 Extensions
• RP SA MGMT based on ISAKMP Extensions

* RP SA: Routing Protocol Security Association
RP SA
Establishment & Maintenance

• RP SA Attributes identified and unified Format
 • Key ID, authentication algorithm, authentication key, life time, sequence number, etc.; the direction
 • Interoperation; header format and payload format

• Secure Channel
 • Established before RP SA is transferred; encryption and message authentication and anti-replay

• RP SA Negotiation, Creation, and Distribution and Delivery
 • Motivation, procedure, payloads, what to negotiate
 • How to create

• RP SA Deletion, Update, and Rekey
 • Life time, life cycle
 • Adjacencies bouncing problem
IKEv2 Extensions 1/5

• Why using IKEv2
 • Existing mechanism for key management evolving along time, and is deploying by industry
 • Flexible and extensible naturally to support RP SA MGMT

• Extending SA Payload to support RP SA
• Adding New Payload to support RP SA
• Adding New Exchange Type to support RP SA negotiation
IKEv2 Extensions 2/5

-- Extending SA Payload

(a) Security Association Payload

(b) Proposal Substructure

(c) Transform Substructure

(d) Data Attributes
IKEv2 Extensions 3/5
-- Extending SA Payload

- IKE_SA_INIT exchange, secure channel established (IKE_SA)

```
<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SAi, KEi, Ni --&gt;</td>
<td>HDR, SAr, KEr, Nr, [CERTREQ]</td>
</tr>
</tbody>
</table>
```

- IKE_AUTH exchange, RP SA negotiation

```
<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,] AUTH, SAe, TSi, TSr} --&gt;</td>
<td>HDR, SK {IDr, [CERT,] AUTH, SAe, TSi, TSr}</td>
</tr>
</tbody>
</table>
```
IKEv2 Extensions 4/5
-- Adding New Payload

(a) Security Association Payload for Routing Protocol (SARP)

(b) Proposal Substructure

(c) Transform Substructure
IKEv2 Extensions 5/5

-- Adding New Exchange Type

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SK {SAei, Ni, [KEi], [...]}</td>
<td>HDR, SK {SAer, Nr, [KEr], [...]}</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Responder</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDR, SK {SARPi, Ni, [KEi], [...]}</td>
<td>HDR, SK {SARPr, Nr, [KEr], [...]}</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
ISAKMP Extensions 1/3

• Why using ISAKMP
 • Intended to support the negotiation of SAs for security protocols at all layers of the network stack
 • Provides a framework but not define mechanisms

• Extension method:
 • Extend DOI of SA payload to indicate the subsequent payloads are used to negotiate RP SA
 • Extend Security Protocol Identifiers of proposal for RP SA
 • Match SPI field in proposal substructure to Key ID of RP SA, and extend SPI Size (in octet) field to indicate the length of Key ID of RP SA
 • Extend Transform Identifiers to define transform for routing protocol
 • Extend Attribute Type to support attributes of RP SA

• Alternatively, extend DOI field of SA payload to indicate the subsequent payloads will be used to negotiate RP SA for specific routing protocol
ISAKMP Extensions 2/3

(a) Security Association Payload

(b) Proposal Payload Format

(c) Transform Payload Format

SA Attributes

SA Life Type = TBD
SA Life Duration = TBD
Authentication Algorithm = TBD, e.g., HMAC_SHA

Transform ID = TBD, e.g., OSPF_SHA

SPI Size = 1 for OSPFv2

Protocol ID = TBD, e.g., PROTO_OSPFv2

DOI = TBD, e.g., 3
ISAKMP Extensions 3/3

(a) Security Association Payload

(b) Proposal Payload Format

(c) Transform Payload Format
Summary of the Extensions

<table>
<thead>
<tr>
<th>Options</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extend SA of IKEv2</td>
<td>Reuse IKEv2 at maximum</td>
<td>Extend IKEv2</td>
</tr>
<tr>
<td>Add new payload in IKEv2</td>
<td>Speed up RP SA payload processing</td>
<td>Extend IKEv2 one more step</td>
</tr>
<tr>
<td>Add new exchange in IKEv2</td>
<td>Speed up RP SA exchange</td>
<td>Extend IKEv2 two more steps</td>
</tr>
<tr>
<td>Extend payload in ISAKMP (1)</td>
<td>Reuse ISAKMP at maximum</td>
<td>Extend ISAKMP</td>
</tr>
<tr>
<td>Extend payload in ISAKMP (2)</td>
<td>More dedicated to specific RP</td>
<td>Extend ISAKMP By defining more DOI</td>
</tr>
</tbody>
</table>

We show one approach/direction to KMP for routing protocols!
Future Work

• Identity proof/authentication
• Group key management
• Inter-domain authentication
• ...

WE NEED YOU!!!

Please review and consider taking this on as working group document