Multicast Routing Key Management Protocol

Sam Hartman
Dacheng Zhang
IETF79
draft-hartman-karp-mrkmp

11/07/10
Objectives

• Provide initial proposal for automated key management for routing protocols such as OSPF and IS-IS
• Support an approach that also works for unicast
• Demonstrate the out-of-band model for KARP
What KARP Learns Now

• Work out long-standing open issues
 – Work through multicast interactions for key table
 – Work through out-of-band key management

• Examine interface between routing protocol and key management
Replay and Protocol Interactions

• Today, manual keying provides no defense against inter-session replay

• Automated key management is one approach:
 – Re-key when a new “session” starts
 – Requires trigger from routing protocol to KMP

• Significant complexity savings if routing protocols solve this themselves
Starting from Known Technologies

- Based on GDOI for multicast operation
- Based on IKEv2 for base key management
- Some changes and alignment are required
Overview

- Elect a GCKS from available candidates
- All nodes perform unicast authentication to the GCKS and get initial key download
- GCKS may provide periodic updates
Election Protocol

State Machine

- Initial
 - Member
 - GCKS

Router A

A’s state = Initial, priority = low
A->group: state = init, priority = low

Router B

B’s state = Initial, priority = high
B-> group: state = init, priority = high

Time Delay

t1

A’s state = Member, priority = low

B’s state = GCKS, priority = high
Initial Exchange

Router A

\[\text{sa_init: HDR, PPSAi, KEi, Ni}\]

\[\text{sa_init_r: HDR, PSAr, KEr, NR, [CERTREQ]}\]

\[\text{sa_init2: HDR, SK \{ IDi, IDr, AUTHSTUFF, GSAi\}}\]

\[\text{sa_init2: SK \{ IDr, AUTHSTUFF, GSAr\}}\]

Router B
Key Update

Router B -> group: KEK{ GSAr}
Interface to Routing Protocol

• Manipulate election priorities to match DR/BDR
• Request re-keys to deal with replays