Supporting Multicast Routing Protocols Using Keytable

Tim Polk Russ Housley

Background

- Concept was separation of routing protocol from management of long term keys
- Documented in two personal drafts
 - draft-housley-saag-crypto-key-table
 - Concrete definition of a conceptual database
 - draft-polk-saag-rtg-auth-keytable
 - Informational, applying the database of long-lived cryptographic keys to routing protocols
 - Included unicast "worked example" for TCP-AO
- Applicability to multicast routing unclear

Target: IS-IS

- Authors decided to develop a worked example for IS-IS as a stress test since this seemed the most complex
 - Network Entity Title instead of IP address in keytable definition
 - New worked example text in informational draft
- Two new drafts believed to demonstrate applicability to multicast (and resolve all known comments)
 - draft-housley-saag-crypto-key-table-04
 - draft-polk-saag-rtg-auth-keytable-05

Overview of IS-IS Example (0)

- Goals authentication and replay protection
 - Relies on RFC 5310 for authentication TLV
 - Relies on native IS-IS sequence numbers for replay protection in link state PDUs
 - Assumes existence of a "timestamp" TLV to add replay detection for IS-IS hellos

Overview of IS-IS Example (1)

- Required key material mimics password-based configuration
 - a pairwise key for each point-to-point link to protect hello messages;
 - a multicast key for each broadcast LAN, for each Level, to protect hello messages;
 - a multicast key for LSP and sequence number packets for each Level 1 area; and
 - a multicast key for LSP and sequence number packets for the Level 2 domain.

Overview of IS-IS Example (2)

- Each IS-IS router maintains separate keys for the IIIHs on each network interface
 - Need two keys if network interface supports neighbors for the Level 1 Area and the Level 2 domain
 - If replay protection is needed, include local timestamp (sufficient to be locally increasing)
- Receiver verifies MAC, interface, and timestamp
 - Each IS-IS router needs to maintain one new state value for each neighbor (last time value)
 - Once replay protection is on, need to maintain last received timestamp for that neighbor
 - If timestamp is expected, discard IIHs that omit timestamp or include "old" timestamp value

Overview of IS-IS Example (3)

- Maintain additional key or keys to protect LSPs flooded through the Area and/or the Level 2 domain
 - Again, requires two keys if router participates in both Levels (1/2) of IS-IS
- The same procedures apply to sequence number packets

Non-features of IS-IS Example

- No key diversification needed
 - No connection-oriented communications, so typical key diversification info not available
 - Sequence numbers and timestamps provide replay protection
- No automatic rekey
 - As a practical matter, sequence number space should never be exhausted.

Changes to crypto-key-table

- IS-IS specific changes since Maastricht:
 - Added an Interface field to disambiguate peers
 - Added text regarding multicast key selection
 - Original text was more consistent with unicast
- Several additional changes to address comments from Ran Atkinson

Conclusion

 Keytable construct can be applied to multicast routing protocols

 Please consider whether this pair of drafts are appropriate for adoption by the karp wg.