Introduction and Problem Statement
draft-deng-lwip-ps

Hui Deng, China Mobile
Shoichi Sakane, Cisco
Wassim Haddad, Ericsson
Ning Kong, CNNIC
Introduction: Dancing with shackles

The Evolution of Computing: We keep inventing tiny and smart devices

- Challenges from Tiny and Small Devices
 - Communication overhead
 - Computation overhead, especially security computations
 - Energy Efficient: each byte transmitted consumes energy
 - Design challenge: dancing with shackles
Example Scenario

- Example Services
 - Open the air conditioner before going back
 - The sensor will send an alarming message to the host’s mobile phone if home security issues are identified
Why IP?

- **Technically:** IP is fully inter-operable
 - IP runs over different lower layers
 - IP bridges different MAC protocols

- **Service development:**
 - IP facilitates the new service development
 - For private protocols, it is always difficult to add new services to the network

- **Network operating cost:**
 - IP connects products from different vendors, that’s what people want
 - Simple network management, friendly UI
Lightweight TCP/IP stack

- Linux TCP/IP stack
 - ~100KB code, ~400KB RAM
 - µCLinux kernel ~400KB code, ~1 MB RAM

- Devices used in the Internet of Things

<table>
<thead>
<tr>
<th>Chips</th>
<th>ROM</th>
<th>RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2431</td>
<td>128K Flash</td>
<td>8K</td>
</tr>
<tr>
<td>EM351</td>
<td>128K Flash</td>
<td>12K</td>
</tr>
<tr>
<td>ATMega1</td>
<td>128K+512K</td>
<td>4K</td>
</tr>
</tbody>
</table>

- Problem: how to implement the TCP/IP stack on the constrained devices
Existing Practices

- **uIP**
 - On 8-bit micro-controllers
 - less then 10kB ROM and 2kB RAM
- **LwIP**
 - around 40kB of RAM and 30kB ROM
- **uC/IP**
 - Based on BSD TCP/IP implementations
- **BLIP**
 - Berkeley Low-power IP stack on TinyOS
- **TINYTCP**
 - does not implement urgent pointers, and discards segments that are received out of order.
Implementation Issues

• Modularity and Layering
 – OS does not maintain a strict protection barrier between kernel and application
 – Layering: TCP checksum validation

• Memory Usage Constraints
 – Dynamic memory allocation could not go through on constrained devices

• Inefficient Socket APIs
 – The BSD socket API requires the support of a multitasking system which imposes a significant overhead due to the need for task management, context switching and allocation of stack space.

• Protocol Interoperability
 – Some do not handle options
 – Some do not handle fragmentation and reassembly
Thank you !