

DNS Caching: Running on Zero

Saleem Bhatti
School of Computer Science
University of St Andrews

Using DNS for networking

- (From ILNP a work in progress.)
- Use of names and name resolution for:
 - Mobility (host and network)
 - Multi-homing and fail-over
 - TE options
 - Load balancing
 - VM management/migration
 - Others ...
- Enhanced use of DNS compared to today:
 - Dynamic updates of DNS records
 - Cache times (TTL) of records may need to be reduced

(Non-)Effectiveness of DNS caching st And

- Jung, J., Sit, E., Balakrishnan, H., and Morris, R. 2002. DNS performance and the effectiveness of caching. IEEE/ACM Trans. on Networking. Vol. 10, No. 5 (Oct. 2002), pp. 589-603.
- DNS caching has reduced effectiveness for edge sites:
 - trace-driven emulation (no experiments)
 - A records could have low TTL (e.g. below 1000s)
 - such low TTL would have low impact on DNS load

DNS experiments at StA [1]

- Experiments in Q4/2009
- Modify TTL values of records in operational DNS server at School of CS, St Andrews
 - 4 DNS servers: Windows ActiveDirectory
 - ~400 DNS clients: Windows, Linux, MacOSX, BSD
- TTL values for successive 7-day periods during normal semester:
 - changed DNS TTL on ActiveDirectory
 - TTL values used: 1800s, 30s, 15s, 0s
- Configured clients not to cache.

DNS experiments at StA [2]

- Passive collection of packets via port mirror:
 - tcpdump(8) targeting port 53
 - Captured all DNS packets
- Results shown on following slides are for:
 - A record requests for servers only during the capture period (relevant to ILNP, and less 'noisy' data)
 - using 1 second buckets
- Basic statistics:
 - on time-domain data
- Spectral analysis:
 - examination of request rates
- Analysis: home-brew python scripts, NumPy package

2009: Basic dataset meta-data

Data set name	TTL [s]	Duration [s] ¹	Total DNS packets captured ²	Number of A record requests for 67 servers ³
dns1800	1800	601,200	41,868,522	2,004,133
dns30	30	601,200	71,105,247	2,648,796
dn15	15	601,200	56,472,027	3,240,675
dns0	0	601,200	55,868,573	4,501,590

¹ from tcpdump timestamps, rounded to nearest second, 7 days = 604,800 seconds, less 3600s temporal guard band for TTL value changes = 601,200 seconds

² includes all request and response packets to/from port 53 (TCP and UDP), including erroneous requests, retransmissions etc

³ servers that were active during the 4 weeks of data capture

dns1800: A record requests TTL=1800 Standrews

3.47 requests/s Std Dev:

183 requests/s Max:

dns30: A record requests TTL=30s University of St Andrews

DNS A record queries, TTL=dns2009-0030

Std Dev: 4.27 requests/s

Max: 261 requests/s

DNS A record queries, dns2009-0015

Std Dev: 4.85 requests/s

Max: 123 requests/s

dns0: A record requests TTL=0s

DNS A record queries, dns2009-0000

Std Dev: 4.93 requests/s Max: 3.69 requests/s

2009 Summary of basic statistics

Data set name	Mean [reqs/s]	Median [reqs/s]	Std Dev [reqs/s]	Maximum [reqs/s]
dns1800	3.33	3	3.47	183
dns30	4.41	4	4.27	261
dns15	5.39	4	4.85	123
dns0	7.49	7	4.93	369

60x drop in TTL values results in ⅓x increase in A record requests.

0 TTL gives (only) 2¼x increase.

2009 Basic spectral analysis

- Create approximate periodogram by counting occurrences of bucket sizes:
 - have used 1s bucket
 - so size of bucket is number of requests/s
- Comparison of periodogram:
 - shows changing dynamics of request rates
 - gives a better view of the trends in request rates

2009 periodograms: 1800s ...

10

Query rate [1/s]

100

.. 30s, 15s, 0s

External – 30s, 15s, 0s

7-day DNS A record query rates, dns2009-0030-o

7-day CDF for DNS A record query rates, dns2009-0000-o

Internal – 30s, 15s, 0s

Who would set DNS TTLs so low?

- Real A record values for some services:
 - TTL = 60 seconds: yahoo
 - TTL = 20 seconds: akamai
 - TTL = 0 seconds: St Andrews, Computer Science
- Note that a site would NOT set low TTLs for:
 - Its own NS records, which identify its DNS servers.
 - The A records related to its NS records.
 - A, CNAME, PTR records for services, e.g. email MX
 - A (mobile) site can make remote some or all of its authoritative DNS servers; some sites do so today.

Acknowledgements

- Thanks to:
 - Stuart Cheshire (Apple)
 - Dave Thaler (Microsoft)

for information on OS-specific features of DNS operation in end-hosts

- A Very Big Thanks to:
 - the Systems Admin Group at cs.st-andrews.ac.uk
 for implementing DNS TTL changes

Summary and Conclusion

Summary:

- Zero TTL values for edge-site DNS records possible
- DNS load with zero DNS TTLs seems manageable
- (Indeed, 1s is good, perhaps better than zero ...)

Conclusion:

Frequent DNS access for records with very low TTL seems practical

Future work:

- Scale experiment: analyses of larger DNS deployments
- Impact of the use of Secure DNS Dynamic Update and cryptographic authentication of DNS look-ups