draft-dipankar-nfsv4-pathless-objects-01

NetApp- Go further, faster

Pathless Objects and

Search Attributes

Dipankar Roy

" Key Issues Solved

NetApp:

= Object based storage with NFS.
— Uses NFS filehandle as Object identifier
— Filenames and pathnames are not required
— Container based namespace

" Tag based searching for Objects or Files

— Metadata for an Object or a File can be the
searchable tags

— Search and look up multiple objects with a single
query and rich query semantics

— Search for an object at the server instead of
searching at the client

NetApp:

Additions to NFSv4

= Two new file types - NFANOPATHOBJ and NFAOBJSET

= Two new operations — PUTOBJROOTFH and
PUTSRCHATTR

= Two new attributes — sattrsupport and srchattrlist
®" One new search query structure — srchquerylist

®= Minor modifications to NFSv4 operations and
structures that deal with pathnames

NetApp:

Considerations and Use cases

= Advisory locking must be supported, mandatory
locking optional.

" Tag based filesystems are currently being used by
major search engines, social networking websites,
online sellers, multimedia websites etc.

= Several open source implementations available for
tag based filesystems

= No overlapping content with any other RFC, as far
as we know

® Prototyping is in progress

= Potential impact can be such that NFS may become
protocol of choice for Object based storage

" Action Items

NetApp:

® \Who should be involved
— Anyone with active interest in NFS

— Preference to active members of NFSv4 charter of
IETF and NFS client/server implementers

" Intended for NFSv4.2
= Review requested from WG

= Authors to work on review comments and
prototype

= Targeted completion of review and prototype
before next IETF

" Questions/Answers

NetApp:

®" Thanks to Thomas Haynes and Manjunath
Shankararao for reviewing this presentation.

= URL:
http://tools.ietf.org/html/draft-dipankar-nfsv4-pathless-

objects-01

= Any questions can be sent to
— nfsvd@ietf.org
— dipankar@netapp.com

®= Thank youl!

Go further, faster

" Pathless Objects and Object Sets

NetApp:

®= Object Root Filehandle
— Similar to NFS public root filehandle
— Master container for Object Sets
— Gives a new namespace for pathless objects
— READDIR at Object Root Filehandle lists all Object Sets
= New file types
— NFANOPATHOBI : For pathless objects
— NFA40BIJSET : For Object Sets
= Use existing NFS operations for creation and maintenance
= Object Sets have unique names but Objects do not

= QOptional to support: file names, POSIX semantics, stateful
operations, device files etc

NetApp: Gamma is afile

Alpha is a DB table Beta is a directory

Objects are records Objects are files Objects are

line numbers
contaner - Gontainer Container Container
pecific

Search Alpha ‘ ‘ Beta ‘ ‘ Gamma
Attributes

I Container Specific read, I write, search etc ops I
Master
Search

Master Container - Object root filehandle
Attributes

PUTOBJROOTFH, READDIR
PUTFH, CREATE or OPEN, SETATTR
PUTSRCHATTR, READDIR

v

Client A Client B
Search Engine over NFS| | Text Editor over NFS

NetApp:

Search Attributes

= Used to lookup pathless objects. Can also be used
for regular files.

= New recommended attributes

— sattrsupport : server supports search attributes
— srchattrlist : the search attribute

= A search attribute is defined by the tuple
<name, type, values>

= Type can be string or integer

® Used with SETATTR and GETATTR

= New operation to lookup objects based on search
attributes - PUTSRCHATTR

" Search Attributes XDR

NetApp:

®= bool sattrsupport; /* indicates search attributes are supported */
®= enum svaltype {
SVAL_TYPE_NUM =0; /* Search Attribute value is a number */
SVAL_TYPE_STR =1; /* Search Attribute value is a string */
Iy

® union sval switch (svaltype type) { /* single search attribute value */
case SVAL_TYPE_NUM: int64_t svalnum;
case SVAL_TYPE_STR: component4 svalstr;
default: void;

:;
= typedef struct sval svalist<>; /* array of attribute values */
® struct srchattr {
component4 srchattrname; /* name of the search attribute */
svaltype type; /* type of the search attribute */
svalist srchvalist; /* list of values for this attr */
5

= typedef struct srchattr srchattrlist<>;

" Search Attributes Query

NetApp:
= Collection of search attributes matching one or
more values

= Match can be based on equals, less than or greater
than

= Queries are joined together using logical AND, OR
and NOT operations

= Provision for embedded queries and ordered
evaluation using priority

= Used in PUTSRCHATTR

" Search Attributes Query XDR

NetApp:

®= enum srelation {
SRELN_EQUALS =0;
SRELN_GREATER = 1;
SRELN_LESSER =2;
2
®= enum srchqueryjointype {
SQUERY_NONE = 0;
SQUERY_AND =1;
SQUERY OR =2;
2
= struct srchquery {
srchattrlist search_attrs;
srelation search_relation;
srchqueryjoinype sqjtypenext;
uint32_t priority;
uint32_t flag;
2

= typedef struct srchquery srchquerylist<>;

" New Operations

NetApp:

= PUTOBJROOTFH

— Similar to PUTROOTFH but for pathless Objects

— READDIR following PUTOBJROOTFH lists all Object
Sets

= PUTSRCHATTR

— Current file handle must be the Object Root
filehandle or the filehandle for an Object Set

— Matches all objects specified in the search attribute
query

— Must be followed by a obligatory READDIR, which is
used to structure the reply

NetApp:

Modifications to NFS operations

= CREATE

— Must be used to create Objects Sets and may be used to
create pathless objects

— Unique name must for Object Set
— Empty string is a valid name for a pathless object
= LOOKUP

— If multiple files matching a name is found, LOOKUP
returns an error
= OPEN

— Can be used to create pathless objects with an empty name

= READDIR

— Must be used immediately after a PUTSRCHATTR, returns all
objects matching the query

— Can return empty file names

" Migration and Replication

NetApp:

= Supported with trivial modifications to fs_locations
and fs_locations_info

= "rootpath" and "fs-root" in fs_location4 needs to
be Object Set names.

= "fli_rootpath" and "fli_fs_root" for
fs_locations_info4 contains Object Set names.

