High-Assurance Re-Direction
(The HARD problem)

Richard Barnes
Peter St. Andre
A Common Design Pattern

• a.com outsources services to b.com
• User directs client to connect to a.com
• Client gets redirect to b.com and connects

• How does the client know he’s talking to the right server for a.com?
Scope

- Many different applications
 - HTTP, SMTP/IMAP/POP3, SIP, XMPP
 - LoST, HELD, ALTO?
- Different embodiments of a redirect
 - DNS-layer: CNAME, MX, SRV, NAPTR, etc.
 - Application-layer: 3XX responses (for example)
In XMPP, for example...

```
xmpp-server._tcp.geopriv.info. 14400 IN SRV 5 0 5269
xmpp-server.l.google.com
xmpp-server.l.google.com. 300 IN A 74.125.45.125
```

Client

DNS

SRV?

→ google.com

ClientHello

SNI=geopriv.info

xmpp-server.l.google.com
Terminology

• Source domain (a.com)
 – The domain the user sees
 – The domain that is delegated to the service provider

• Target domain (b.com)
 – The domain providing the service
 – The domain to which the service is delegated
Redirected Authentication Options

1. Ignore the redirect
 – Client expects the server to authenticate as the source domain (a.com)
 – Server authenticates as source domain

2. Authenticate the redirect
 – Source domain signs the redirect
 – Server authenticates as the target domain
 – Client validates the signature and expects the server to authenticate as the target domain
Ignoring the Redirect

• State of the art for DNS-based redirection
 – Follow the MX / SRV record

• Security issues
 – a.com might not trust b.com with credentials to authenticate as a.com
 – b.com might not want to have to protect customer credentials

• Operational issues
 – b.com needs to choose which identity to present (requires TLS SNI or equivalent)
 – Inter-provider connections go as O(n²)
Authenticating the Redirect

• Basic requirements:
 – Source domain (a.com) makes a signed statement of the redirect
 – Client can locate and validate this statement

• Nice to have:
 – Generality to address multiple applications
 – Simple for source domain to provision

• Different for application-layer vs. DNS redirect
Application-Layer Redirection

• Client has an application-layer interaction with the source domain (a.com) that redirects it to the target domain (b.com)
 – E.g., HTTP 301 over TLS

• Application mechanisms to authenticate source domain, thus the redirect

• Drawbacks:
 – Each application has a separate mechanism
 – Source domain can’t completely offload service
DNS-Based Redirection

- Client gets redirect information from DNS, without connecting to source domain at the application layer
- DNSSEC solves this case, since client can verify that redirect record is signed by source domain
- XMPP discussions on interim mechanisms (Domain Name Assertions – DNA)
 - Attribute certificates [draft-ietf-xmpp-dna]
 - External DNSSEC trust anchors [draft-barnes-xmpp-dna]
 - A couple more on the XMPP list
Attribute Cert DNA

- Source domain signs an attribute cert authorizing target domain to provide XMPP services
- Client connects directly to target domain
- Target domain provides attribute cert as proof of authorization
- Costs:
 - Source domain has to sign an attribute cert
 - Requires application-layer protocol changes
Local DNSSEC

• Much of the barrier to DNSSEC deployment is the lack of chains to the root

• Use DNSSEC locally:
 – Sign the delegation zone with DNSSEC
 – Bind the key to the parent domain with an X.509 DV cert

• Very general across applications

• ... but requires specialized DNSSEC signing and validation
More and more applications are facing the HARD problem
Applications need to think about how to secure their redirects
A generalized solution might lead to more consistent behavior and enhanced security