Implementation of a Common API for
Transparent Hybrid Multicast
- Design & Performance Aspects -

Matthias Wahlisch, Thomas C. Schmidt
Stig Venaas

{waehlisch, t.schmidt}@ieee.org,
stig@cisco.com

2 link-lab el

nnnnnnn



Agenda

1. Background: Draft common multicast API
2. Design Aspects
Performance Evaluation

Open Issues

a »> o

Conclusion



Current Multicast Diversity

Group communication services exist in a variety of:
o Different flavors

- Any Source Multicast vs. Source-specific Multicast
o Different technologies

- IPv4 vs. IPv6, multicast tunnels, etc.

o Different layers

- Native multicast vs. overlay distribution



Implications

o Programmers decide on technology at coding time

How do they know about the multicast deployment state at
this time?

o Applications provide their own solutions to overcome
Inter-domain deployment problem

Increases complexity & introduce redundancy
o Lack of efficiency
Reasonable to assume no global IP-layer multicast

> Difficult to write multicast applications that run everywhere
& use most efficient group service



Recall: Common Multicast APl Draft

Idea: Move complexity from application to the

system level

The current draft provides ...

o)

a common multicast APl on app. layer that abstracts
group communication from distribution technologies

abstract naming and addressing by multicast URIs
mapping between naming and addressing

definition of protocol interaction to bridge multicast
data between overlay and underlay



Status

o Version 00/01 presented at IETF 76, Hiroshima

o Update version 02 presented at IETF 77, Anaheim
- Interesting work, but needs extended motivation

o Current version: 04
- Version 03 submitted before 78" IETF

o Version 05: Working on an update, which also
Includes insights of the NBS BoF

- Wil be available some weeks after this IETF meeting



Common Multicast APl & Middleware

Application MulticastSocket msock =
Level new MulticastSocket();
msock.send(data,”"mygroup.org”);
oS 1. Mapping of Group Name to Addresses
Level 2. Send data to technology specific interfaces

hash(mygroup.org) 224.1.2.3

o Mapping of names to technologies at run-time

o Late binding



Implementation Report:
The HAMcast stack

Design Aspects:

o Flexibility for future extensions and adaption to new
network technologies

- No recompilation or changes to existing application
using the HAMcast stack

o Easy integration of new programming languages
- Only mapping of API calls & ‘signaling’ to OS layer

o Separate implementation of general multicast logic
from technology-specific multicast instantiation



Overview HAMcast Stack

Group Application

\ join/leave \

\ send/receive \

Middleware

Sockets\

HAMcast

Socket
I

= = /
=~

Name Address Mapping

Service Selection

Group Name (ID) to Address (RLOC)

-

o

\ o
\ S Service Interfaces "\
< SA
: Iface: 1 Iface: 2 Iface: 3 Iface: n
Service
Discover
Y11 1pva IPv6 OLM Xyz

Pluggable Multicast Technology Moduley

il
1L

Underlay




Middleware: Rough Overview

o Unique daemon process instantiated once per host
o Implemented in C++
o Service functions realized by single modules

- Can be loaded by the system if required

o Technology-specific service interfaces

- Implement a specific multicast understanding, e.g.,
IPv4/6, OLM, ...

- Includes service discovery

o Send/receive functions implemented as asynchronous
calls

10



Module Example: Service Discovery

o Implemented by each technology module

o IP-layer multicast:
- Discovery based on libcap sniffer library

- Observation of general IGMP/MLD queries & PIM Hello
o DHT-based multicast:

- Unicast overlay is part of HAMcast stack
- Inquires group and neighbor states
o Gateways (e.g., AMT):

- Future work

11



Prototype Status

o First working version presented at EuroView’10

o Hybrid distribution of streaming video using
IPv4 + Scribe

o Monitoring tool to discover and visualize hybrid
multicast tree structure

- Usage of API service calls

12



Performance Evaluation

13

Aim:
o Basic evaluation of stack implementation
- We do not focus on distribution technology

o Comparison with native unicast

Setup:

o Single source, single receiver scenario; Linux OS
o Constant bit stream; 100 Mb/s Uplink

o Different packet sizes

o Average over several runs until convergence



Caveat

o Ongoing evaluation & optimization

o Performance results are a first view:
Optimization still to come

14



CPU Performance Send/Recelve

Linux HAMcast middleware CPU time === Linux app+middleware CPU time /—m
Linux HAMcast application CPU time Linux native application CPU time
UDP-send: CPU time UDP-receive: CPU time
320 . . . 200 r T s T
180 .
280 -
260 - 160 -
240 -
220 | 140 -
200 -
120 |
" 180 "
E |- 1
§ § 100 |
80
120 -
100 - so L
80
60 40 -
40 -
20
20
B4E payload, 100ME total B40B payload, 1000ME total 1280b payload, 1000ME total 0 B4E payload, 50MB total B40B payload, 500ME total 1280b payload, 500ME total

15 Send Receive



Data Rate

KB/sec

12288

11264

10240

9216

8192

7168

6144

5120

4096

3072

2048

1024

UDP: KB/sec

64B payload 640B payload 1280B payload

Linux HAMcast send
Linux HAMcast receive
Linux native send
Linux native receive



Packet Rate

packets/sec

100000

90000

80000

70000

60000

50000

40000

30000

20000

10000

UDP: packets/sec

64B payload 640B payload 1280B payload

Linux HAMcast send
Linux HAMcast receive
Linux native send
Linux native receive



HAMcast stack at a Glance

18

o Middleware implemented in C++
o Programming libraries for C++ (and Java)
o IPv4 and IPv6 module for native IP-layer multicast

o Scribe implementation for overlay multicast

- Based on Chimera P2P network stack
o Service discovery for IPv4/v6 multicast & OLM
o Prior to optimization: Moderate performance results



Open Issues

o More detailed analysis of stack performance
o Optimize implementation of HAMcast stack

o Development of libraries for further programming
languages

o Service selection strategy:

- Prefer most efficient technology

- Do not distribute in parallel

o SSM support

19



Thank you ...

o Please, read the upcoming version 05
o Interest in the implementation project?

o More feedback is needed by RG members!

20



	Implementation of a Common API for �Transparent Hybrid Multicast�- Design & Performance Aspects -
	Agenda
	Current Multicast Diversity
	Implications
	Recall: Common Multicast API Draft
	Status
	Common Multicast API & Middleware
	Implementation Report: �The HAMcast stack
	Overview HAMcast Stack
	Middleware: Rough Overview
	Module Example: Service Discovery
	Prototype Status
	Performance Evaluation
	Caveat
	CPU Performance Send/Receive
	Data Rate
	Packet Rate
	HAMcast stack at a Glance
	Open Issues
	Thank you …

