Data Center TCP (DCTCP)

Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, Murari Sridharan

Microsoft Research Stanford University
Data Center Packet Transport

• Large purpose-built DCs
 – Huge investment: R&D, business

• Transport *inside* the DC
 – TCP rules (99.9% of traffic)

• How’s TCP doing?
TCP in the Data Center

• We’ll see TCP does not meet demands of apps.
 – Suffers from bursty packet drops, Incast [SIGCOMM ‘09], ...
 – Builds up large queues:
 ➢ Adds significant latency.
 ➢ Wastes precious buffers, esp. bad with shallow-buffered switches.

• Operators work around TCP problems.
 – Ad-hoc, inefficient, often expensive solutions
 – No solid understanding of consequences, tradeoffs
Roadmap

• What’s really going on?
 – Interviews with developers and operators
 – Analysis of applications
 – Switches: shallow-buffered vs deep-buffered
 – Measurements

• A systematic study of transport in Microsoft’s DCs
 – Identify impairments
 – Identify requirements

• Our solution: Data Center TCP
Case Study: Microsoft Bing

- Measurements from 6000 server production cluster

- Instrumentation passively collects logs
 - Application-level
 - Socket-level
 - Selected packet-level

- More than 150TB of compressed data over a month
Partition/Aggregate Application Structure

- Time is money
 - Strict deadlines (SLAs)

- Missed deadline
 - Lower quality result

1. Art is a lie...
2. The chief...
3. ...

Deadline = 250ms

Deadline = 50ms

Deadline = 10ms

Worker Nodes

"Everything you can imagine is real."
"Bad artists copy. Good artists steal."
"It is your work in life that is the ultimate seduction."
"The chief enemy of creativity is good sense."
"Inspiration does exist, but it must find you working."
"I'd like to live as a poor man with lots of money."
"Art is a lie that makes us realize the truth."
"Computers are useless. They can only give you answers."
"Time is money"

1. Missed deadline
 - Lower quality result
Generality of Partition/Aggregate

• The foundation for many large-scale web applications.
 – Web search, Social network composition, Ad selection, etc.

• Example: Facebook

Partition/Aggregate ~ Multiget
 – Aggregators: Web Servers
 – Workers: Memcached Servers
Workloads

- Partition/Aggregate (Query)
- Short messages [50KB-1MB] (Coordination, Control state)
- Large flows [1MB-50MB] (Data update)
Impairments

• Incast

• Queue Buildup

• Buffer Pressure
Incast

- Synchronized mice collide.
 ➢ Caused by Partition/Aggregate.

Worker 1

Worker 2

Worker 3

Worker 4

Aggregator

RTO_{\text{min}} = 300 \text{ ms}

TCP timeout
Incast Really Happens

Requests are jittered over 10ms window.

Jittering switched off around 8:30 am.

Jittering trades off median against high percentiles.

99.9th percentile is being tracked.
Queue Buildup

- Big flows buildup queues.
 - Increased latency for short flows.

- Measurements in Bing cluster
 - For 90% packets: RTT < 1ms
 - For 10% packets: 1ms < RTT < 15ms
Data Center Transport Requirements

1. High Burst Tolerance
 – Incast due to Partition/Aggregate is common.

2. Low Latency
 – Short flows, queries

3. High Throughput
 – Continuous data updates, large file transfers

The challenge is to achieve these three together.
Tension Between Requirements

High Throughput
High Burst Tolerance

Low Latency

Deep Buffers:
- Queuing Delays
- Increase Latency

Shallow Buffers:
- Bad for Bursts & Throughput
- Reduced RTO_{min} (SIGCOMM ‘09)
- Doesn’t Help Latency

Objective:
Low Queue Occupancy & High Throughput

AQM – RED:
- Avg Queue Not Fast Enough for Incast
The DCTCP Algorithm
Review: The TCP/ECN Control Loop

Sender 1

Data Packet

Sender 2

ACK Packet

Receiver
Review: The TCP/ECN Control Loop

ECN = Explicit Congestion Notification

Sender 1

Sender 2

Receiver

ECN Mark (1 bit)

ECN Echo in ACK
Small Queues & TCP Throughput: The Buffer Sizing Story

• Bandwidth-delay product rule of thumb:
 – A single flow needs $C \times RTT$ buffers for 100% Throughput.

• Appenzeller rule of thumb (SIGCOMM ‘04):
 – Large # of flows: $C \times RTT / \sqrt{N}$ is enough.

![Diagram showing Cwnd, Buffer Size, and Throughput with varying values over time.]
Small Queues & TCP Throughput: The Buffer Sizing Story

• Bandwidth-delay product rule of thumb:
 – A single flow needs $C \times RTT$ buffers for 100% Throughput.

• Appenzeller rule of thumb (SIGCOMM ‘04):
 – Large # of flows: $C \times RTT / \sqrt{N}$ is enough.

• Can’t rely on stat-mux benefit in the DC.
 – Measurements show typically 1-2 big flows at each server, at most 4.
Small Queues & TCP Throughput: The Buffer Sizing Story

- Bandwidth-delay product rule of thumb:
 - A single flow needs $C \times RTT$ buffers for 100% Throughput.

- Appenzeller rule of thumb (SIGCOMM ‘04):
 - Large # of flows: $C \times RTT / \sqrt{N}$ is enough.

- Can’t rely on stat-mux benefit in the DC.
 - Measurements show typically 1-2 big flows at each server, at most 4.

Real Rule of Thumb:
Low Variance in Sending Rate \rightarrow Small Buffers Suffice
Two Key Ideas

1. React in proportion to the **extent** of congestion, not its **presence**.
 - Reduces **variance** in sending rates, lowering queuing requirements.

<table>
<thead>
<tr>
<th>ECN Marks</th>
<th>TCP</th>
<th>DCTCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 1 1 1 0 1 1 1</td>
<td>Cut window by 50%</td>
<td>Cut window by 40%</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0 0 1</td>
<td>Cut window by 50%</td>
<td>Cut window by 5%</td>
</tr>
</tbody>
</table>

2. Mark based on **instantaneous** queue length.
 - Fast feedback to better deal with bursts.
Data Center TCP Algorithm

Switch side:

- Mark packets when Queue Length > K.

Sender side:

- Maintain running average of *fraction* of packets marked \((\alpha)\).

In each RTT:

\[
F = \frac{\text{# of marked ACKs}}{\text{Total # of ACKs}}
\]

\[
\alpha \leftarrow (1 - g)\alpha + gF
\]

- Adaptive window decreases: \(Cwnd \leftarrow (1 - \frac{\alpha}{2})Cwnd\)
 - Note: decrease factor between 1 and 2.
DCTCP in Action

Setup: Win 7, Broadcom 1Gbps Switch
Scenario: 2 long-lived flows, \(K = 30 \text{KB} \)

Graph:
- DCTCP, \(K=20 \), 2 flows
- TCP, 2 flows

Axes:
- Y-axis: Queue Length (Kbytes)
- X-axis: Time (seconds)
Why it Works

1. High Burst Tolerance
 ✓ Large buffer headroom → bursts fit.
 ✓ Aggressive marking → sources react before packets are dropped.

2. Low Latency
 ✓ Small buffer occupancies → low queuing delay.

3. High Throughput
 ✓ ECN averaging → smooth rate adjustments, low variance.
Analysis

• How low can DCTCP maintain queues without loss of throughput?
• How do we set the DCTCP parameters?

➢ Need to quantify queue size oscillations (Stability).

![Diagram showing window size oscillations over time]
Analysis

- How low can DCTCP maintain queues without loss of throughput?
- How do we set the DCTCP parameters?

➢ Need to quantify queue size oscillations (Stability).
Analysis

• How low can DCTCP maintain queues without loss of throughput?
• How do we set the DCTCP parameters?

➢ Need to quantify queue size oscillations (Stability).

\[K > \frac{1}{7} C \times RTT \]

85% Less Buffer than TCP
Evaluation

• Implemented in Windows stack.

• Real hardware, **1Gbps and 10Gbps** experiments
 – 90 server testbed
 – Broadcom Triumph 48 1G ports – 4MB shared memory
 – Cisco Cat4948 48 1G ports – 16MB shared memory
 – Broadcom Scorpion 24 10G ports – 4MB shared memory

• Numerous micro-benchmarks
 – Throughput and Queue Length
 – Multi-hop
 – Queue Buildup
 – Buffer Pressure
 – Fairness and Convergence
 – Incast
 – Static vs Dynamic Buffer Mgmt

• **Cluster traffic benchmark**
Cluster Traffic Benchmark

• Emulate traffic within 1 Rack of Bing cluster
 – 45 1G servers, 10G server for external traffic

• Generate query, and background traffic
 – Flow sizes and arrival times follow distributions seen in Bing

• Metric:
 – Flow completion time for queries and background flows.

 We use $\text{RTO}_{\text{min}} = 10\text{ms}$ for both TCP & DCTCP.
Baseline

Background Flows

Query Flows

Flow Completion Time (ms)

Flow Size

DCTCP
TCP

Query Completion Time (ms)

DCTCP
TCP

Mean
95th
99th
99.9th

0
10
20
30
40
50
60
70
80
90
100
150
200

10-100KB
100KB-1MB
1-10MB
>10MB

9 16
13 22
63 64
182 182

3 4
5 7
19 28
68 40

25
Low latency for short flows.
Low latency for short flows.
High throughput for long flows.
Baseline

- Low latency for short flows.
- High throughput for long flows.
- High burst tolerance for query flows.
Scaled Background & Query

10x Background, 10x Query

Completion Time (ms)

- DCTCP/ShallowBuf
- TCP/ShallowBuf
- TCP-RED/ShallowBuf
- TCP/DeepBuf

Short messages

Query
Conclusions

• DCTCP satisfies all our requirements for Data Center packet transport.
 ✓ Handles bursts well
 ✓ Keeps queuing delays low
 ✓ Achieves high throughput

• Features:
 ✓ Very simple change to TCP and a single switch parameter.
 ✓ Based on mechanisms already available in Silicon.