DNSSEC and Web Security

Phillip Hallam-Baker
Comodo Group Inc.
The Biggest Problem in Web Security
Security is Optional

NOW!
With Added Safety!
WEB SECURITY NEEDS YOU
Two Approaches

• Security Upgrade in HTTP
 – Always retrospective
 – Only Applies to HTTP
 – No dependencies

• Security Upgrade in Discovery (DNS)
 – Infrastructure: Applies to any protocol
 – Depends on DNSSEC
Proposal: BOTH
Why DNS?
It is what the DNS is for.
DNS Development

1980s: Name → Host
1990s: Name → Host(s)
2000s: Name → Internet Service
2010s: Name → Internet Service + Properties
How?

- Some Design Choices
 - Support DNS CNAMEs, DNAMEs
 - Support DNS Wildcards
 - Support enhanced discovery (SRV, URI)
 - Granularity: Domain, Service Host
 - Number of DNS round trips
One Approach ESRV-01

$origin example.com
.
.
www
.
_http._tcp
A
CNAME
ESRV
ESRV
ESRV
ESRV
10.1.2.3
example.com.
dcert <CA Cert Digest>
disc prefix
tls required
ESRV with SRV

$origin example.com
.
A 10.1.2.3
www CNAME example.com.
.
ESRV disc SRV
$http._tcp SRV 1 1 80 host1.example.com
$http._tcp SRV 1 1 80 host2.example.com
host1 ESRV tls required
host1 ESRV dcert <EE Cert Digest>
host2 ESRV tls required
host2 ESRV dcert <EE Cert Digest>
Performance?

No impact unless you use features
Next Steps

• Constraints
 – Using DNS is the right way
 – But needs to be done right

• Approach
 – Continue with HTTP based Strict Security
 – Develop DNSSEC based approach as EXPERIMENTAL

• Will require multiple groups
 – DNS framework
 – Leveraging framework