
Network Working Group E. Ivov, Ed.
Internet-Draft Jitsi
Intended status: Informational E. Marocco, Ed.
Expires: September 15, 2011 Telecom Italia
 J. Lennox
 Vidyo, Inc.
 March 14, 2011

 A Real-Time Transport Protocol (RTP) Header Extension for Mixer-to-
 Client Audio Level Indication
 draft-ietf-avtext-mixer-to-client-audio-level-01

Abstract

 This document describes a mechanism for RTP-level mixers in audio
 conferences to deliver information about the audio level of
 individual participants. Such audio level indicators are transported
 in the same RTP packets as the audio data they pertain to.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 15, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Ivov, et al. Expires September 15, 2011 [Page 1]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Protocol Operation . 4
 4. Header Format . 6
 5. Audio level encoding . 6
 6. Signaling Information . 7
 7. Security Considerations 9
 8. IANA Considerations . 9
 9. Open Issues . 10
 10. Acknowledgments . 10
 11. Changes From Earlier Versions 10
 11.1. Changes From Draft -00 10
 12. References . 11
 12.1. Normative References 11
 12.2. Informative References 11
 Appendix A. Reference Implementation 12
 A.1. AudioLevelCalculator.java 12
 A.2. AudioLevelRenderer.java 14
 Authors’ Addresses . 16

Ivov, et al. Expires September 15, 2011 [Page 2]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

1. Introduction

 The Framework for Conferencing with the Session Initiation Protocol
 (SIP) defined in RFC 4353 [RFC4353] presents an overall architecture
 for multi-party conferencing. Among others, the framework borrows
 from RTP [RFC3550] and extends the concept of a mixer entity
 "responsible for combining the media streams that make up a
 conference, and generating one or more output streams that are
 delivered to recipients". Every participant would hence receive, in
 a flat single stream, media originating from all the others.

 Using such centralized mixer-based architectures simplifies support
 for conference calls on the client side since they would hardly
 differ from one-to-one conversations. However, the method also
 introduces a few limitations. The flat nature of the streams that a
 mixer would output and send to participants makes it difficult for
 users to identify the original source of what they are hearing.

 Mechanisms that allow the mixer to send to participants cues on
 current speakers (e.g. the CSRC fields in RTP [RFC3550]) only work
 for speaking/silent binary indications. There are, however, a number
 of use cases where one would require more detailed information.
 Possible examples include the presence of background chat/noise/
 music/typing, someone breathing noisily in their microphone, or other
 cases where identifying the source of the disturbance would make it
 easy to remove it (e.g. by sending a private IM to the concerned
 party asking them to mute their microphone). A more advanced
 scenario could involve an intense discussion between multiple
 participants that the user does not personally know. Audio level
 information would help better recognize the speakers by associating
 with them complex (but still human readable) characteristics like
 loudness and speed for example.

 One way of presenting such information in a user friendly manner
 would be for a conferencing client to attach audio level indicators
 to the corresponding participant related components in the user
 interface as displayed in Figure 1.

Ivov, et al. Expires September 15, 2011 [Page 3]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

 | |
 | 00:42 | Weekly Call |
 |________________________|
 | |
 | |
 | Alice |====== | (S) |
 | |
 | Bob |= | |
 | |
 | Carol | | (M) |
 | |
 | Dave |=== | |
 | |
 |________________________|

 Figure 1: Displaying detailed speaker information to the user by
 including audio level for every participant.

 Implementing a user interface like the above requires analysis of the
 media sent from other participants. In a conventional audio
 conference this is only possible for the mixer since all other
 conference participants are generally receiving a single, flat audio
 stream and have therefore no immediate way of determining individual
 audio levels.

 This document specifies an RTP extension header that allows such
 mixers to deliver audio level information to conference participants
 by including it directly in the RTP packets transporting the
 corresponding audio data.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Protocol Operation

 According to RFC 3550 [RFC3550] a mixer is expected to include in
 outgoing RTP packets a list of identifiers (CSRC IDs) indicating the
 sources that contributed to the resulting stream. The presence of
 such CSRC IDs allows RTP clients to determine, in a binary way, the
 active speaker(s) in any given moment. RTCP also provides a basic
 mechanism to map the CSRC IDs to user identities through the CNAME

Ivov, et al. Expires September 15, 2011 [Page 4]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

 field. More advanced mechanisms, may exist depending on the
 signaling protocol used to establish and control a conference. In
 the case of the Session Initiation Protocol [RFC3261] for example,
 the Event Package for Conference State [RFC4575] defines a <src-id>
 tag which binds CSRC IDs to media streams and SIP URIs.

 This document describes an RTP header extension that allows mixers to
 indicate the audio-level of every conference participant (CSRC) in
 addition to simply indicating their on/off status. This new header
 extension is based on the "General Mechanism for RTP Header
 Extensions" [RFC5285].

 Each instance of this header contains a list of one-octet audio
 levels expressed in -dBov, with values from 0 to 127 representing 0
 to -127 dBov(see Section 4 and Section 5). Appendix A provides a
 reference implementation indicating one way of obtaining such values
 from raw audio samples.

 Every audio level value pertains to the CSRC identifier located at
 the corresponding position in the CSRC list. In other words, the
 first value would indicate the audio level of the conference
 participant represented by the first CSRC identifier in that packet
 and so forth. The number and order of these values MUST therefore
 match the number and order of the CSRC IDs present in the same
 packet.

 When encoding audio level information, a mixer SHOULD include in a
 packet information that corresponds to the audio data being
 transported in that same packet. It is important that these values
 follow the actual stream as closely as possible. Therefore a mixer
 SHOULD also calculate the values after the original contributing
 stream has undergone possible processing such as level normalization,
 and noise reduction for example.

 Note that in some cases a mixer may be sending an RTP audio stream
 that only contains audio level information and no actual audio.
 Updating a (web) interface conference module may be one reason for
 this to happen.

 It may sometimes happen that a conference involves more than a single
 mixer. In such cases each of the mixers MAY choose to relay the CSRC
 list and audio-level information they receive from peer mixers (as
 long as the total CSRC count remains below 16). Given that the
 maximum audio level is not precisely defined by this specification,
 it is likely that in such situations average audio levels would be
 perceptibly different for the participants located behind the
 different mixers.

Ivov, et al. Expires September 15, 2011 [Page 5]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

4. Header Format

 The audio level indicators are delivered to the receivers in-band
 using the "General Mechanism for RTP Header Extensions" [RFC5285].
 The payload of this extension is an ordered sequence of 8-bit audio
 level indicators encoded as per Section 5.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ID | len |0| level 1 |0| level 2 |0| level 3 ...
 +-+

 Figure 2: Audio level indicators extension format

 The 4-bit len field is the number minus one of data bytes (i.e. audio
 level values) transported in this header extension element following
 the one-byte header. Therefore, the value zero in this field
 indicates that one byte of data follows. A value of 15 is not
 allowed by this specification and it MUST NOT be used as the RTP
 header can carry a maximum of 15 CSRC IDs. The maximum value allowed
 is therefore 14 indicating a following sequence of 15 audio level
 values.

 Note that use of the two-byte header defined in RFC 5285 [RFC5285]
 follows the same rules the only change being the length of the ID and
 len fields.

5. Audio level encoding

 Audio level indicators are encoded in the same manner as audio noise
 level in the RTP Payload Comfort Noise specification [RFC3389] and
 audio level in the RTP Extension Header for Client-to-mixer Audio
 Level Notification [I-D.ietf-avtext-client-to-mixer-audio-level]
 specification. The magnitude of the audio level is packed into the
 least significant bits of one audio-level byte with the most
 significant bit unused and always set to 0 as shown below in
 Figure 3.

Ivov, et al. Expires September 15, 2011 [Page 6]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 |0| level |
 +-+-+-+-+-+-+-+-+

 Figure 3: Audio Level Encoding

 The audio level is expressed in -dBov, with values from 0 to 127
 representing 0 to -127 dBov. dBov is the level, in decibels, relative
 to the overload point of the system, i.e. the maximum-amplitude
 signal that can be handled by the system without clipping. (Note:
 Representation relative to the overload point of a system is
 particularly useful for digital implementations, since one does not
 need to know the relative calibration of the analog circuitry.) For
 example, in the case of u-law (audio/pcmu) audio [ITU.G.711], the 0
 dBov reference would be a square wave with values +/- 8031. (This
 translates to 6.18 dBm0, relative to u-law’s dBm0 definition in Table
 6 of G.711.)

 To simplify implementation of the encoding procedures described here,
 this specification provides a sample Java implementation (Appendix A)
 demonstating one way it can be achieved.

6. Signaling Information

 The URI for declaring the audio level header extension in an SDP
 extmap attribute and mapping it to a local extension header
 identifier is "urn:ietf:params:rtp-hdrext:csrc-audio-level". There
 is no additional setup information needed for this extension (i.e. no
 extensionattributes).

 An example attribute line in the SDP, for a conference might be:

 a=extmap:7 urn:ietf:params:rtp-hdrext:csrc-audio-level

 The above mapping will most often be provided per media stream (in
 the media-level section(s) of SDP, i.e., after an "m=" line) or
 globally if there is more than one stream containing audio level
 indicators in a session.

 Presence of the above attribute in the SDP description of a media
 stream indicates that some or all RTP packets in that stream would
 contain the audio level information RTP extension header.

 Conferencing clients that support audio level indicators and have no
 mixing capabilities SHOULD always include the direction parameter in

Ivov, et al. Expires September 15, 2011 [Page 7]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

 the "extmap" attribute setting it to "recvonly". Conference focus
 entities with mixing capabilities MAY omit the direction or set it to
 "sendrecv" in SDP offers. Such entities SHOULD set it to "sendonly"
 in SDP answers to offers with a "recvonly" parameter and to
 "sendrecv" when answering other "sendrecv" offers.

 The following Figure 4 and Figure 5 show two example offer/answer
 exchanges between a conferencing client and a focus, and between two
 conference focus entities.

 v=0
 o=alice 2890844526 2890844526 IN IP6 host.example.com
 c=IN IP6 host.example.com
 t=0 0
 m=audio 49170 RTP/AVP 0 4
 a=rtpmap:0 PCMU/8000
 a=rtpmap:4 G723/8000
 a=extmap:1/recvonly urn:ietf:params:rtp-hdrext:csrc-audio-level

 v=0
 i=A Seminar on the session description protocol
 o=conf-focus 2890844730 2890844730 IN IP6 focus.example.net
 c=IN IP6 focus.example.net
 t=0 0
 m=audio 52543 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 a=extmap:1/sendonly urn:ietf:params:rtp-hdrext:csrc-audio-level

 A client-initiated example SDP offer/answer exchange negotiating an
 audio stream with one-way flow of of audio level information.

 Figure 4

Ivov, et al. Expires September 15, 2011 [Page 8]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

 v=0
 i=Un seminaire sur le protocole de description des sessions
 o=fr-focus 2890844730 2890844730 IN IP6 focus.fr.example.net
 c=IN IP6 focus.fr.example.net
 t=0 0
 m=audio 49170 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 a=extmap:1/sendrecv urn:ietf:params:rtp-hdrext:csrc-audio-level

 v=0
 i=A Seminar on the session description protocol
 o=us-focus 2890844526 2890844526 IN IP6 focus.us.example.net
 c=IN IP6 focus.us.example.net
 t=0 0
 m=audio 52543 RTP/AVP 0
 a=rtpmap:0 PCMU/8000
 a=extmap:1/sendrecv urn:ietf:params:rtp-hdrext:csrc-audio-level

 An example SDP offer/answer exchange between two conference focus
 entities with mixing capabilities negotiating an audio stream with
 bidirectional flwo of audio level information.

 Figure 5

7. Security Considerations

 1. This document defines a means of attributing audio level to a
 particular participant in a conference. An attacker may try to
 modify the content of RTP packets in a way that would make audio
 activity from one participant appear as coming from another.
 2. Furthermore, the fact that audio level values would not be
 protected even in an SRTP session may be of concern in some cases
 where the activity of a particular participant in a conference is
 confidential.
 3. Both of the above are concerns that stem from the design of the
 RTP protocol itself and they would probably also apply when using
 CSRC identifiers the way they were specified in RFC 3550
 [RFC3550]. It is therefore important that according to the needs
 of a particular scenario, implementors and deployers consider use
 of a lower level security and authentication mechanism.

8. IANA Considerations

 This document defines a new extension URI that, if approved, would
 need to be added to the RTP Compact Header Extensions sub-registry of
 the Real-Time Transport Protocol (RTP) Parameters registry, according

Ivov, et al. Expires September 15, 2011 [Page 9]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

 to the following data:

 Extension URI: urn:ietf:params:rtp-hdrext:csrc-audio-level
 Description: Mixer-to-client audio level indicators
 Contact: emcho@jitsi.org
 Reference: RFC XXXX

9. Open Issues

 At the time of writing of this document the authors have no clear
 view on how and if the following list of issues should be address
 here:
 1. Audio levels in video streams. This specification allows use of
 audio level values in "silent" audio streams that don’t otherwise
 carry any payload thus allowing their delivery within systems
 where the various focus/mixer components communicate with each
 other as conference participants. The same train of thought may
 very well justify audio level transport in video streams.
 2. It has been suggested to reference ITU P.56 [ITU.P56.1993] for
 level measurement. This needs to be investigated.

10. Acknowledgments

 Lyubomir Marinov contributed level measurement and rendering code.

 Roni Even, Ingemar Johansson, Michael Ramalho and several others
 provided helpful feedback over the dispatch mailing list.

 Jitsi’s participation in this specification is funded by the NLnet
 Foundation.

11. Changes From Earlier Versions

 Note to the RFC-Editor: please remove this section prior to
 publication as an RFC.

11.1. Changes From Draft -00

 o Added code for sound pressure calculation and measurement in
 "APPENDIX A. Reference Implementation".
 o Changed affiliation for Emil Ivov.
 o Removed "Appendix: Design choices".

12. References

Ivov, et al. Expires September 15, 2011 [Page 10]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, July 2003.

 [RFC5285] Singer, D. and H. Desineni, "A General Mechanism for RTP
 Header Extensions", RFC 5285, July 2008.

12.2. Informative References

 [I-D.ietf-avtext-client-to-mixer-audio-level]
 Lennox, J., Ivov, E., and E. Marocco, "A Real-Time
 Transport Protocol (RTP) Header Extension for Client-to-
 Mixer Audio Level Indication",
 draft-ietf-avtext-client-to-mixer-audio-level-00 (work in
 progress), February 2011.

 [ITU.G.711]
 International Telecommunications Union, "Pulse Code
 Modulation (PCM) of Voice Frequencies", ITU-
 T Recommendation G.711, November 1988.

 [ITU.P56.1993]
 International Telecommunications Union, "Objective
 Measurement of Active Speech Level", ITU-T Recommendation
 P.56, March 1988.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3389] Zopf, R., "Real-time Transport Protocol (RTP) Payload for
 Comfort Noise (CN)", RFC 3389, September 2002.

 [RFC3551] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and
 Video Conferences with Minimal Control", STD 65, RFC 3551,
 July 2003.

 [RFC3920] Saint-Andre, P., Ed., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 3920, October 2004.

 [RFC4353] Rosenberg, J., "A Framework for Conferencing with the
 Session Initiation Protocol (SIP)", RFC 4353,

Ivov, et al. Expires September 15, 2011 [Page 11]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

 February 2006.

 [RFC4575] Rosenberg, J., Schulzrinne, H., and O. Levin, "A Session
 Initiation Protocol (SIP) Event Package for Conference
 State", RFC 4575, August 2006.

Appendix A. Reference Implementation

 This appendix contains Java code for a reference implementation of
 the level calculation and rendering methods.The code is not normative
 and by no means the only possible implementation. Its purpose is to
 help implementors add audio level support to mixers and clients.

 The Java code consists of the following files and methods:

 AudioLevelCalculator.java: Calculates the sound pressure level of a
 signal with specific samples. Can be used in mixers to generate
 values suitable for the level extension headers.
 AudioLevelRenderer.java: Helps adjust a sequence of pressure levels
 so that they would appear "natural" to users. Can be used by
 clients and applied over the values received in a level extension
 header so that displayed levels would change smoothly and
 correspond to user experience.

 The implementation is provided in Java but does not rely on any of
 the language specific and can be easily ported to another.

A.1. AudioLevelCalculator.java

/**
 * Calculates the audio level of specific samples of a singal based on
 * sound pressure level.
 */
public class AudioLevelCalculator
{

 /**
 * Calculates the sound pressure level of a signal with specific
 * <tt>samples</tt>.
 *
 * @param samples the samples of the signal to calculate the sound
 * pressure level of. The samples are specified as an <tt>int</tt>
 * array starting at <tt>offset</tt>, extending <tt>length</tt>
 * number of elements and each <tt>int</tt> element in the specified
 * range representing a 16-bit sample.
 *

Ivov, et al. Expires September 15, 2011 [Page 12]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

 * @param offset the offset in <tt>samples</tt> at which the samples
 * start
 * @param length the length of the signal specified in
 * <tt>samples<tt> starting at <tt>offset</tt>
 * @return the sound pressure level of the specified signal
 */
 public static int calculateSoundPressureLevel(
 int[] samples, int offset, int length)
 {
 /*
 * Calcuate the root mean square of the signal i.e. the
 * effective sound pressure.
 */
 double rms = 0;

 for (; offset < length; offset++)
 {
 double sample = samples[offset];

 sample /= Short.MAX_VALUE;
 rms += sample * sample;
 }
 rms = (length == 0) ? 0 : Math.sqrt(rms / length);

 /*
 * The sound pressure level is a logarithmic measure of the
 * effectivesound pressure of a sound relative to a reference
 * value and is measured in decibels.
 */
 double db;

 /*
 * The minimum sound pressure level which matches the maximum
 * of the sound meter.
 */
 final double MIN_SOUND_PRESSURE_LEVEL = 0;
 /*
 * The maximum sound pressure level which matches the maximum
 * of the sound meter.
 */
 final double MAX_SOUND_PRESSURE_LEVEL
 = 127 /* HUMAN TINNITUS (RINGING IN THE EARS) BEGINS */;

 if (rms > 0)
 {
 /*
 * The commonly used "zero" reference sound pressure in air
 * is 20 uPa RMS, which is usually considered the threshold

Ivov, et al. Expires September 15, 2011 [Page 13]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

 * of human hearing.
 */
 final double REF_SOUND_PRESSURE = 0.00002;

 db = 20 * Math.log10(rms / REF_SOUND_PRESSURE);

 /*
 * Ensure that the calculated level is within the minimum
 * and maximum sound pressure level.
 */
 if (db < MIN_SOUND_PRESSURE_LEVEL)
 db = MIN_SOUND_PRESSURE_LEVEL;
 else if (db > MAX_SOUND_PRESSURE_LEVEL)
 db = MAX_SOUND_PRESSURE_LEVEL;
 }
 else
 {
 db = MIN_SOUND_PRESSURE_LEVEL;
 }

 return (int) db;
 }
}

 AudioLevelCalculator.java

A.2. AudioLevelRenderer.java

/**
 * Helps adjust a sequence of pressure levels so that they would appear
 * "natural" to users. Can be used by clients and applied over the
 * values received in a level extension header so that displayed levels
 * would change smoothly and correspond to user experience..
 */
public class AudioLevelRenderer
{
 /**
 * The last audio level displayed by
 * {@link AudioLevelCalculator#displayAudioLevel(int, int, int)}.
 */
 private int lastAudioLevel = 0;

 /**
 * Returns a specific sound pressure level as an animated (i.e.
 * does not jump up and down too much in a single update) audio
 * level.

Ivov, et al. Expires September 15, 2011 [Page 14]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

 *
 * @param spl the sound pressure level to be displayed
 * @param minAudioLevel the minimum of the UI range which is used
 * to depict audio levels
 * @param maxAudioLevel the maximum of the UI range which is used
 * to depict audio levels
 * @return a sound pressure level that can be displayed to the user.
 */
 public int renderAudioLevel(
 int spl, int minAudioLevel, int maxAudioLevel)
 {
 /*
 * The minimum sound pressure level that the UI is interested in
 * displaying.
 */
 final double MIN_SPL_TO_DISPLAY = 40 /* A WHISPER */;

 /*
 * The maximum sound pressure level that the UI is interested in
 * displaying.
 */
 final double MAX_SPL_TO_DISPLAY = 85 /* HEARING DAMAGE */;

 int audioLevel;

 if (spl < MIN_SPL_TO_DISPLAY)
 audioLevel = minAudioLevel;
 else if (spl > MAX_SPL_TO_DISPLAY)
 audioLevel = maxAudioLevel;
 else
 {
 /*
 * Depict the range between "A WHISPER" and the beginning of
 * "HEARING DAMAGE".
 */
 audioLevel
 = (int)
 (((spl - MIN_SPL_TO_DISPLAY)
 / (MAX_SPL_TO_DISPLAY - MIN_SPL_TO_DISPLAY))
 * (maxAudioLevel - minAudioLevel));
 if (audioLevel < minAudioLevel)
 audioLevel = minAudioLevel;
 else if (audioLevel > maxAudioLevel)
 audioLevel = maxAudioLevel;
 }

 /*
 * Animate the audio level so that it does not jump up and down

Ivov, et al. Expires September 15, 2011 [Page 15]

Internet-Draft Mixer-to-client Audio Level Indication March 2011

 * too fast.
 */
 lastAudioLevel
 = (int) (lastAudioLevel * 0.8 + audioLevel * 0.2);

 /* Return the displayable audio level. */
 return lastAudioLevel;
 }
}

 AudioLevelRenderer.java

Authors’ Addresses

 Emil Ivov (editor)
 Jitsi
 Strasbourg 67000
 France

 Email: emcho@jitsi.org

 Enrico Marocco (editor)
 Telecom Italia
 Via G. Reiss Romoli, 274
 Turin 10148
 Italy

 Email: enrico.marocco@telecomitalia.it

 Jonathan Lennox
 Vidyo, Inc.
 433 Hackensack Avenue
 Seventh Floor
 Hackensack, NJ 07601
 US

 Email: jonathan@vidyo.com

Ivov, et al. Expires September 15, 2011 [Page 16]

