
Network Working Group R. Moskowitz
Internet-Draft Verizon
Intended status: Standards Track March 14, 2011
Expires: September 15, 2011

 HIP Diet EXchange (DEX)
 draft-moskowitz-hip-rg-dex-05

Abstract

 This document specifies the details of the Host Identity Protocol
 Diet EXchange (HIP DEX). HIP DEX is a variant of the HIP Base
 EXchange (HIP BEX) [RFC5201-bis] specifically designed to use as few
 crypto primitives as possible yet still deliver the same class of
 security features as HIP BEX.

 The design goal of HIP DEX is to be usable by sensor devices that are
 memory and processor constrained. Like HIP BEX it is expected to be
 used together with another suitable security protocol, such as the
 Encapsulated Security Payload (ESP). HIP DEX can also be used
 directly as a keying mechanism for a MAC layer security protocol as
 is supported by IEEE 802.15.4 [IEEE.802-15-4.2006].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 15, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Moskowitz Expires September 15, 2011 [Page 1]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Table of Contents

 1. Introduction . 4
 1.1. The HIP Diet EXchange (DEX) 4
 1.2. Memo Structure . 5
 2. Terms and Definitions . 5
 2.1. Requirements Terminology 5
 2.2. Notation . 6
 3. The DEX Host Identifier Tag (HIT) and Its Representations . . 6
 3.1. Host Identity Tag (HIT) 6
 3.2. Generating a HIT from an HI 7
 4. Protocol Overview . 7
 4.1. Creating a HIP Association 7
 4.1.1. HIP Puzzle Mechanism 8
 4.1.2. Puzzle Exchange 9
 4.1.3. HIP State Machine 10
 4.1.4. HIP DEX Security Associations 14
 4.1.5. User Data Considerations 14
 5. Packet Formats . 15
 5.1. HIP Parameters . 15
 5.1.1. HIT_SUITE_LIST . 15
 5.1.2. ENCRYPTED_KEY . 16
 5.1.3. HIP_MAC_3 . 17
 5.2. HIP Packets . 17
 5.2.1. I1 - the HIP Initiator Packet 18
 5.2.2. R1 - the HIP Responder Packet 19
 5.2.3. I2 - the Second HIP Initiator Packet 20
 5.2.4. R2 - the Second HIP Responder Packet 21

Moskowitz Expires September 15, 2011 [Page 2]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 5.3. ICMP Messages . 22
 6. Packet Processing . 23
 6.1. Solving the Puzzle . 23
 6.2. HIP_MAC Calculation and Verification 24
 6.2.1. CMAC Calculation 24
 6.3. HIP DEX KEYMAT Generation 25
 6.4. Processing Incoming I1 Packets 28
 6.4.1. R1 Management . 28
 6.5. Processing Incoming R1 Packets 28
 6.6. Processing Incoming I2 Packets 29
 6.7. Processing Incoming R2 Packets 30
 6.8. Sending UPDATE Packets 30
 6.9. Handling State Loss 30
 7. HIP Policies . 30
 8. Security Considerations 31
 9. IANA Considerations . 32
 10. Acknowledgments . 32
 11. References . 32
 11.1. Normative References 32
 11.2. Informative References 33
 Appendix A. Using Responder Puzzles 34
 Appendix B. Generating a Public Key Encoding from an HI 35

Moskowitz Expires September 15, 2011 [Page 3]

Internet-Draft HIP Diet EXchange (DEX) March 2011

1. Introduction

 This memo specifies the details of the Host Identity Protocol Diet
 EXchange (HIP DEX). HIP DEX uses the smallest possible set of
 established cryptographic primitives, in such a manner that does not
 change our understanding of their behaviour, yet in a different
 formulation to achieve assertions normally met with different
 primitives.

 HIP DEX builds on HIP BEX [RFC5201-bis], and only the differences
 between BEX and DEX are documented here.

 There are a few key differences between BEX and DEX.

 Minimum collection of cryptographic primitives.

 AES-CBC for symmetric encryption and to provide CMAC for MACing
 functions.

 Static Elliptic Curve Diffie-Hellman key pairs used to encrypt
 the session key.

 A simple truncation function for HIT generation.

 Forfeit of Perfect Forward Secrecy with the dropping of ephemeral
 Diffie-Hellman.

 Forfeit of digital signatures with the removal of a hash function.
 Reliance of DH derived key used in HIP_MAC to prove ownership of
 the private key.

 Provide a Password Authentication within the exchange. This may
 be supported by BEX as well, but not defined there.

 Operate in an aggressive retransmission manner to deal with the
 high packet loss nature of sensor networks.

1.1. The HIP Diet EXchange (DEX)

 The HIP diet exchange is a two-party cryptographic protocol used to
 establish communications context between hosts. The first party is
 called the Initiator and the second party the Responder. The four-
 packet design helps to make HIP DoS resilient. The protocol
 exchanges Static Diffie-Hellman keys in the 2nd and 3rd packets,
 transmits session secrets in the 3rd and 4th packets, and
 authenticates the parties also in the 3rd and 4th packets.
 Additionally, the Responder starts a puzzle exchange in the 2nd
 packet, with the Initiator completing it in the 3rd packet before the

Moskowitz Expires September 15, 2011 [Page 4]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 Responder stores any state from the exchange.

 Thus DEX is operationally similar to BEX. The model is fairly
 equivalent to 802.11-2007 [IEEE.802-11.2007] Master Key and Pair-wise
 Transient Key, but handled in a single exchange.

 HIP DEX does not have the option of encrypting the Host Identity of
 the Initiator in the 3rd packet. The Responder’s Host Identity is
 also not protected. Thus there is no attempt at anonymity as in BEX.

 Data packets start to flow after the 4th packet. Simiarly to HIP
 BEX, DEX does not have an explicit transition to connected state for
 the Responder.

 This is learned when the Responder starts receiving protected
 datagrams, indicating that the Initiator received the R2 packet. As
 such the Intitator should take care to NOT send the first data packet
 until some delta time after it received the R2 packet. This is to
 provide time for the Responder to process any aggressively
 retransmitted I2 packets.

 An existing HIP association can be updated using the update mechanism
 defined in this document, and when the association is no longer
 needed, it can be closed using the defined closing mechanism.

 Finally, HIP is designed as an end-to-end authentication and key
 establishment protocol, to be used with Encapsulated Security Payload
 (ESP) [rfc5202-bis] and other end-to-end security protocols. The
 base protocol does not cover all the fine-grained policy control
 found in Internet Key Exchange (IKE) [RFC4306] that allows IKE to
 support complex gateway policies. Thus, HIP is not a replacement for
 IKE.

1.2. Memo Structure

 The rest of this memo is structured as follows. Section 2 defines
 the central keywords, notation, and terms used throughout the rest of
 the document. Section 4 gives an overview of the HIP base exchange
 protocol. Section 6 define the rules for packet processing.
 Finally, Sections 7, 8, and 9 discuss policy, security, and IANA
 considerations, respectively.

2. Terms and Definitions

2.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

Moskowitz Expires September 15, 2011 [Page 5]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 document are to be interpreted as described in RFC 2119 [RFC2119].

2.2. Notation

 [x] indicates that x is optional.

 {x} indicates that x is encrypted.

 X(y) indicates that y is a parameter of X.

 <x>i indicates that x exists i times.

 --> signifies "Initiator to Responder" communication (requests).

 <-- signifies "Responder to Initiator" communication (replies).

 | signifies concatenation of information-- e.g., X | Y is the
 concatenation of X with Y.

 Ltrunc (M(x), K) denotes the lowest order K bits of the result of
 the mac function M on the input x.

3. The DEX Host Identifier Tag (HIT) and Its Representations

 The DEX Host Identity Tag (HIT) is distinguished in two ways from the
 BEX HIT:

 The HIT SUITE ID Section 5.1.1 is ONLY a DEX ID.

 The HIT DEX HIT is not generated via a cryptographic hash. Rather
 it is a truncation of the Elliptic Curve Host Identity.

3.1. Host Identity Tag (HIT)

 The DEX Host Identity Tag is a 128-bit value -- a truncation of the
 Host Identifier appended with a prefix. There are two advantages of
 using a Host Identity Tag over the actual Host Identity public key in
 protocols. Firstly, its fixed length makes for easier protocol
 coding and also better manages the packet size cost of this
 technology. Secondly, it presents a consistent format to the
 protocol whatever underlying identity technology is used.

 BEX uses RFC 4843-bis [RFC4843-bis] specified 128-bit hash-based
 identifiers, called Overlay Routable Cryptographic Hash Identifiers
 (ORCHIDs). Their prefix, allocated from the IPv6 address block, is
 defined in [RFC4843-bis].

 In DEX, a cryptographic hash is NOT used to form the HIT. Rather the

Moskowitz Expires September 15, 2011 [Page 6]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 HI is truncated to 96 bits.

3.2. Generating a HIT from an HI

 The DEX HIT is not an ORCHID, as there is no hash function in DEX.
 Since a HI that is an ECDH key is directly computed from a random
 number it is already collision resistant. The DEX HIT is the left-
 truncated 96 bits of the HI. This 96 bit value is used in place of
 the hash in the ORCHID. The HIT suite (see Section 9) is used for
 the four bits of the Orchid Generation Algorithm (OGA) field in the
 ORCHID. The same IPv6 prefix used in BEX is used for DEX.

4. Protocol Overview

 The following material is an overview of the differences between the
 BEX and DEX implementations of the HIP protocol. It is expected that
 [RFC5201-bis] is well understood first.

4.1. Creating a HIP Association

 By definition, the system initiating a HIP exchange is the Initiator,
 and the peer is the Responder. This distinction is forgotten once
 the base exchange completes, and either party can become the
 Initiator in future communications.

 The HIP Diet EXchange serves to manage the establishment of state
 between an Initiator and a Responder. The first packet, I1,
 initiates the exchange, and the last three packets, R1, I2, and R2,
 constitute an authenticated secret key wrapped by a Diffie-Hellman
 derived key for session key generation. The HIP association keys are
 drawn from this keying material. If other cryptographic keys are
 needed, e.g., to be used with ESP, they are expected to be drawn from
 the same keying material.

 The second packet, R1, starts the actual exchange. It contains a
 puzzle -- a cryptographic challenge that the Initiator must solve
 before continuing the exchange. The level of difficulty of the
 puzzle can be adjusted based on level of trust with the Initiator,
 current load, or other factors. The R1 also contains lists of
 cryptographic algorithms supported by the Responder. Based on these
 lists, the Initiator can continue, abort, or restart the base
 exchange with a different selection of cryptographic algorithms.

 In the I2 packet, the Initiator must display the solution to the
 received puzzle. Without a correct solution, the I2 message is
 discarded. The I2 also contains a key wrap parameter that carries
 the key for the Responder. This key is only half the final session
 key. The packet is authenticated by the sender (Initiator).

Moskowitz Expires September 15, 2011 [Page 7]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 The R2 packet finalizes the base exchange. The R2 contains a key
 wrap parameter that carries the rest of the key for the Initiator.
 The packet is authenticated by the sender (Initiator).

 The base exchange is illustrated below. The term "key" refers to the
 Host Identity public key, "secret" refers to a random value encrypted
 by a public key, and "sig" represents a signature using such a key.
 The packets contain other parameters not shown in this figure.

 Initiator Responder

 I1:
 -------------------------->
 select precomputed R1
 R1: puzzle, PK
 <-------------------------
 solve puzzle remain stateless
 PK Encrypt x
 I2: solution, PK, ECR(DH,secret x), mac
 -------------------------->
 check puzzle
 check mac
 PK Encrypt y
 R2: PK, ECR(DH,secret y), mac
 <--------------------------
 check mac

4.1.1. HIP Puzzle Mechanism

 The purpose of the HIP puzzle mechanism is to protect the Responder
 from a number of denial-of-service threats. It allows the Responder
 to delay state creation until receiving I2. Furthermore, the puzzle
 allows the Responder to use a fairly cheap calculation to check that
 the Initiator is "sincere" in the sense that it has churned CPU
 cycles in solving the puzzle.

 DEX uses the CMAC function instead of a hash function as in BEX.

 The puzzle mechanism has been explicitly designed to give space for
 various implementation options. It allows a Responder implementation
 to completely delay session-specific state creation until a valid I2
 is received. In such a case, a correctly formatted I2 can be
 rejected only once the Responder has checked its validity by
 computing one CMAC function. On the other hand, the design also
 allows a Responder implementation to keep state about received I1s,
 and match the received I2s against the state, thereby allowing the
 implementation to avoid the computational cost of the CMAC function.

Moskowitz Expires September 15, 2011 [Page 8]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 The drawback of this latter approach is the requirement of creating
 state. Finally, it also allows an implementation to use other
 combinations of the space-saving and computation-saving mechanisms.

 Generally speaking, the puzzle mechanism works in DEX the same as in
 BEX. There are some implementation differences, using CMAC rather
 than a hash.

 See Appendix A for one possible implementation. Implementations
 SHOULD include sufficient randomness to the algorithm so that
 algorithmic complexity attacks become impossible [CRO03].

4.1.2. Puzzle Exchange

 The Responder starts the puzzle exchange when it receives an I1. The
 Responder supplies a random number I, and requires the Initiator to
 find a number J. To select a proper J, the Initiator must create the
 concatenation of the HITs of the parties and J, and feed this
 concatenation using I as the key into the CMAC algorithm. The lowest
 order K bits of the result MUST be zeros. The value K sets the
 difficulty of the puzzle.

 To generate a proper number J, the Initiator will have to generate a
 number of Js until one produces the CMAC target of zeros. The
 Initiator SHOULD give up after exceeding the puzzle lifetime in the
 PUZZLE parameter ([RFC5201-bis]). The Responder needs to re-create
 the concatenation of the HITs and the provided J, and compute the
 CMAC using I once to prove that the Initiator did its assigned task.

 To prevent precomputation attacks, the Responder MUST select the
 number I in such a way that the Initiator cannot guess it.
 Furthermore, the construction MUST allow the Responder to verify that
 the value was indeed selected by it and not by the Initiator. See
 Appendix A for an example on how to implement this.

 Using the Opaque data field in an ECHO_REQUEST_UNSIGNED parameter
 ([RFC5201-bis]), the Responder can include some data in R1 that the
 Initiator must copy unmodified in the corresponding I2 packet. The
 Responder can generate the Opaque data in various ways; e.g., using
 some secret, the sent I, and possibly other related data. Using the
 same secret, the received I (from the I2), and the other related data
 (if any), the Receiver can verify that it has itself sent the I to
 the Initiator. The Responder MUST periodically change such a used
 secret.

 It is RECOMMENDED that the Responder generates a new puzzle and a new
 R1 once every few minutes. Furthermore, it is RECOMMENDED that the
 Responder remembers an old puzzle at least 2*Lifetime seconds after

Moskowitz Expires September 15, 2011 [Page 9]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 the puzzle has been deprecated. These time values allow a slower
 Initiator to solve the puzzle while limiting the usability that an
 old, solved puzzle has to an attacker.

4.1.3. HIP State Machine

 The HIP protocol itself has little state. In HIP DEX, as in BEX,
 there is an Initiator and a Responder. Once the security
 associations (SAs) are established, this distinction is lost. If the
 HIP state needs to be re-established, the controlling parameters are
 which peer still has state and which has a datagram to send to its
 peer.

 The HIP DEX state machine has the same states as the BEX state
 machine. However, there is an optional aggressive transmission
 feature to provide better performance in sensor networks with high
 packet loss. The following section documents the few differences in
 the DEX state machine.

4.1.3.1. HIP Aggressive Transmission Mechanism

 HIP DEX may be used on networks with high packet loss. DEX deals
 with this by using an aggressive transmission practice for I1 and I2
 packets. The Initiator SHOULD continually send I1 and I2 packets at
 some short interval t msec, based on local policy. The transmission
 stops on receipt of the corresponding R1 or R2 packet, which acts as
 an acknowledgment receipt.

 Since the Responder is stateless until it receives an I2, it does not
 need any special behaviour on sending R1 other than to send one
 whenever it receives an I1. The Responder sends an R2 after receipt
 every I2. The Responder does need to know that R2 was received by
 the Initiator. Like in BEX, the Responder can learn this when it
 starts receiving datagrams.

Moskowitz Expires September 15, 2011 [Page 10]

Internet-Draft HIP Diet EXchange (DEX) March 2011

4.1.3.2. HIP States

 +---------------------+---+
 | State | Explanation |
 +---------------------+---+
UNASSOCIATED	State machine start
I1-SENT	Initiating base exchange
I2-SENT	Waiting to complete base exchange
R2-SENT	Waiting to complete base exchange
ESTABLISHED	HIP association established
CLOSING	HIP association closing, no data can be
	sent
CLOSED	HIP association closed, no data can be sent
E-FAILED	HIP exchange failed
 +---------------------+---+

 Table 1: HIP States

4.1.3.3. HIP State Processes

 System behavior in state I1-SENT, Table 2.

 +---------------------+-----------------------------+
 | Trigger | Action |
 +---------------------+-----------------------------+
 | t msec | Send I1 and stay at I1-SENT |
 +---------------------+-----------------------------+

 Table 2: I1-SENT - Initiating HIP

 System behavior in state I2-SENT, Table 3.

 +---------------------+-----------------------------+
 | Trigger | Action |
 +---------------------+-----------------------------+
 | t msec | Send I2 and stay at I2-SENT |
 +---------------------+-----------------------------+

 Table 3: I2-SENT - Waiting to finish HIP

Moskowitz Expires September 15, 2011 [Page 11]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 System behavior in state R2-SENT, Table 4.

 +----------------------+-----------------------------+
 | Trigger | Action |
 +----------------------+-----------------------------+
 | Receive duplicate I2 | Send R2 and stay at R2-SENT |
 +----------------------+-----------------------------+

 Table 4: R2-SENT - Waiting to finish HIP

4.1.3.4. Simplified HIP State Diagram

 The following diagram shows the major state transitions. Transitions
 based on received packets implicitly assume that the packets are
 successfully authenticated or processed.

Moskowitz Expires September 15, 2011 [Page 12]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 +-+ +------------------------------+
 I1 received, send R1 | | | |
 | v v |
 Datagram to send +--------------+ I2 received, send R2 |
 Send I1 +--------------| UNASSOCIATED |--------------+ |
 +-+ | +-+ +--------------+ | |
 send | | | | | | |
 I1 t | | | | | Alg. not supported, send I1 | |
 msec v | v | v | |
 +---------+ I2 received, send R2 | |
 +---->| I1-SENT |-------------------------------------+ | |
+---------+							
	+----------------------+		+-+receive				
send I2+-+	R1 received,	I2 received, send R2					I2,
t msec	v v send I2	v v v	v send R2				
+---------+	+---------+						
+->	I2-SENT	------------+	R2-SENT	<--+			
	+---------+ +---------+						
		data					
	receive	or					
	R1, send	EC timeout	receive I2,				
	I2	R2 received +--------------+	send R2				
	+----------->	ESTABLISHED	<--------+				
	+--------------+						
				receive I2, send R2			
	recv+------------+	+------------------------+					
	CLOSE,						
	send	No packet sent					
	CLOSE_ACK	/received for	timeout				
		UAL min, send	+---------+<-+ (UAL+MSL)				
		CLOSE +--->	CLOSING	--+ retransmit			
		+---------+ CLOSE					
 +--|------------|----------------------+| | | | | |
 +------------|-----------------------+ | | +-----------------+ |
 | | +-----------+ +-------------------|----+
 | +-----------+ | receive CLOSE, CLOSE_ACK | | |
 | | | send CLOSE_ACK received or | |
 | | | timeout | |
 | | | (UAL+MSL) | |
 | v v | |
 | +--------+ receive I2, send R2 | |
 +-----------------------| CLOSED |----------------------------+ |
 +--------+ /-------------------------+
 ^ | \-------/ timeout (UAL+2MSL),
 | | move to UNASSOCIATED
 +-+
 CLOSE received, send CLOSE_ACK

Moskowitz Expires September 15, 2011 [Page 13]

Internet-Draft HIP Diet EXchange (DEX) March 2011

4.1.4. HIP DEX Security Associations

 HIP DEX establishes two Security Associations (SA), one for the
 Diffie-Hellman derived key, or Master Key, and one for session or
 Pair-wise Key.

4.1.4.1. Master Key SA

 The Master Key SA is used to secure DEX parameters and authenticate
 HIP packets. Since so little data will be protected by this SA it
 can be very longed lived.

 The Master Key SA contains the following elements.

 Source HIT

 Destination HIT

 HIP_Encrypt Key

 HIP_MAC Key

 Both keys are extracted from the Diffie-Hellman derived key via
 Section 6.3. Their length is determined by HIP_CIPHER.

4.1.4.2. Pair-wise Key SA

 The Pair-wise Key SA is used to secure and authenticate user data.
 It is refreshed (or rekeyed) using the UPDATE packet exchange.

 The Pair-wise Key SA elements are defined by the data transform (e.g.
 ESP_TRANSFORM [rfc5202-bis]).

 The secrets in ENCRYPTED_KEY from I2 and R2 are concatenated to form
 the input to a Key Derivation Function (KDF). If the data transform
 does not have its own KDF, then Section 6.3 is used. Even though
 this input is randomly distributed, a KDF Extract phase may be needed
 to get the proper length for input to the KDF Expand phase.

4.1.5. User Data Considerations

 There is no difference in User Data Considerations between BEX and
 DEX with one exception. Loss of state due to system reboot may be a
 critical performance issue. Thus implementors MAY choose to use non-
 volatile, secure storage for HIP state so that it survives system
 reboot. This will limit state loss during reboots to only those
 situtations that there is an SA timeout.

Moskowitz Expires September 15, 2011 [Page 14]

Internet-Draft HIP Diet EXchange (DEX) March 2011

5. Packet Formats

5.1. HIP Parameters

 The HIP Parameters are used to carry the public key associated with
 the sender’s HIT, together with related security and other
 information. They consist of parameters, ordered according to their
 numeric type number and encoded in TLV format.

 The following new parameter types are currently defined for DEX, in
 addition to those defined for BEX. Also listed are BEX parameters
 that have additional values for DEX.

 For the BEX parameters, DIFFIE_HELLMAN, DH_GROUP_LIST, and HOST_ID,
 only the ECC values are valid in DEX.

 +------------------+-------+----------+-----------------------------+
 | TLV | Type | Length | Data |
 +------------------+-------+----------+-----------------------------+
ENCRYPTED_KEY	643	variable	Encrypted container for key
			generation exchange
HIP_MAC_3	61507	variable	CMAC-based message
			authentication code
HIT_SUITE_LIST	715	variable	Ordered list of the HIT
			suites supported by the
			Responder
 +------------------+-------+----------+-----------------------------+

5.1.1. HIT_SUITE_LIST

 The HIT suites in DEX are limited to:

 HIT suite ID
 ECDH/DEX 8

 The HIT_SUITE_LIST parameter contains a list of the supported HIT
 suite IDs of the Responder. Since the HIT of the Initiator is a DEX
 HIT, the Responder MUST only respond with a DEX HIT suite ID.
 Currently, only one such suite ID has been defined.

Moskowitz Expires September 15, 2011 [Page 15]

Internet-Draft HIP Diet EXchange (DEX) March 2011

5.1.2. ENCRYPTED_KEY

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Reserved |
 +-+
 / Encrypted value /
 / /
 / +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ /
 / Nonce /
 / +-------------------------------+
 / | Padding |
 +-+

 Type 643
 Length length in octets, excluding Type, Length, and
 Padding
 Encrypted The value is encrypted using an encryption algorithm
 value as defined in the HIP_CIPHER parameter.
 Nonce Nonce included in encrypted text.

 The ENCRYPTED parameter encapsulates a value and a nonce. The value
 is typically a random number used in a key creation process and the
 nonce is known to the receiver to validate successful decryption.

 Some encryption algorithms require an IV (initialization vector).
 The IV MUST be known to the receiver through some source other than
 within the Encrypted_key block. For example the Puzzle value, I, can
 be used as an IV.

 Some encryption algorithms require that the data to be encrypted must
 be a multiple of the cipher algorithm block size. In this case, the
 above block of data MUST include additional padding, as specified by
 the encryption algorithm. The size of the extra padding is selected
 so that the length of the unencrypted data block is a multiple of the
 cipher block size. The encryption algorithm may specify padding
 bytes other than zero; for example, AES [FIPS.197.2001] uses the
 PKCS5 padding scheme (see section 6.1.1 of [RFC2898]) where the
 remaining n bytes to fill the block each have the value n. This
 yields an "unencrypted data" block that is transformed to an
 "encrypted data" block by the cipher suite. This extra padding added
 to the set of parameters to satisfy the cipher block alignment rules
 is not counted in HIP TLV length fields, and this extra padding
 should be removed by the cipher suite upon decryption.

Moskowitz Expires September 15, 2011 [Page 16]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 Note that the length of the cipher suite output may be smaller or
 larger than the length of the value and nonce to be encrypted, since
 the encryption process may compress the data or add additional
 padding to the data.

 Once this encryption process is completed, the Encrypted_key data
 field is ready for inclusion in the Parameter. If necessary,
 additional Padding for 8-byte alignment is then added according to
 the rules of TLV Format in [RFC5201-bis].

5.1.3. HIP_MAC_3

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | |
 | CMAC |
 / /
 / +-------------------------------+
 | | Padding |
 +-+

 Type 61507
 Length length in octets, excluding Type, Length, and
 Padding
 CMAC CMAC computed over the HIP packet, excluding the
 HIP_MAC parameter itself. The checksum field MUST
 be set to zero and the HIP header length in the HIP
 common header MUST be calculated not to cover any
 excluded parameters when the CMAC is calculated. The
 size of the CMAC is the natural size of the AES block
 depending on the AES key size.

 The CMAC calculation and verification process is presented in
 Section 6.2.1.

5.2. HIP Packets

 DEX uses the same eight basic HIP packets (see [RFC5201-bis]) as in
 BEX. Four are for the HIP exchange, one is for updating, one is for
 sending notifications, and two are for closing a HIP association.
 There are some differences in the HIP parameters in the exchange
 packets between BEX and DEX. This section will cover the DEX
 packets.

 An important difference between BEX and DEX HIP packets is that there

Moskowitz Expires September 15, 2011 [Page 17]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 is no HIP_SIGNATURE parameter available in DEX. Thus R1 is
 completely unprotected and can be spoofed. The I2, R2, UPDATE,
 NOTIFY, CLOSE, and CLOSE_ACK parameters only have a HIP_MAC_3
 parameter for packet authentication. The processing of these packets
 are changed accordingly.

 In the future, an OPTIONAL upper-layer payload MAY follow the HIP
 header. The Next Header field in the header indicates if there is
 additional data following the HIP header. The HIP packet, however,
 MUST NOT be fragmented. This limits the size of the possible
 additional data in the packet.

5.2.1. I1 - the HIP Initiator Packet

 The HIP header values for the I1 packet:

 Header:
 Packet Type = 1
 SRC HIT = Initiator’s HIT
 DST HIT = Responder’s HIT, or NULL

 IP (HIP (DH_GROUP_LIST))

 Minimum size = 40 bytes

 The I1 packet contains the fixed HIP header and the Initiator’s
 DH_GROUP_LIST.

 Valid control bits: none

 The Initiator HIT MUST be a DEX HIT. The HIT Suite ID MUST be of a
 DEX type. Currently only ECDH/DEX is defined.

 The Initiator receives the Responder’s HIT either from a DNS lookup
 of the Responder’s FQDN, from some other repository, or from a local
 table. The Responder’s HIT MUST be a DEX HIT. If the Initiator does
 not know the Responder’s HIT, it may attempt to use opportunistic
 mode by using NULL (all zeros) as the Responder’s HIT. See also "HIP
 Opportunistic Mode" [RFC5201-bis].

 Since this packet is so easy to spoof even if it were signed, no
 attempt is made to add to its generation or processing cost.

 The Initiator includes a DH_GROUP_LIST parameter in the I1 to inform
 the Responder of its preferred DH Group IDs. Only ECDH Groups may be
 included in this list. Note that the DH_GROUP_LIST in the I1 packet
 is not protected by a MAC.

Moskowitz Expires September 15, 2011 [Page 18]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 Implementations MUST be able to handle a storm of received I1
 packets, discarding those with common content that arrive within a
 small time delta, but distinguishing this from arriving at a set time
 delta. This behaviour is the expected behaviour for an Initiator on
 a network with high packet loss. The HIP state machine calls out
 this behaviour in this case and the Initiator will stop sending I1
 packets after it receives an R1 packet.

5.2.2. R1 - the HIP Responder Packet

 The HIP header values for the R1 packet:

 Header:
 Packet Type = 2
 SRC HIT = Responder’s HIT
 DST HIT = Initiator’s HIT

 IP (HIP ([R1_COUNTER,]
 PUZZLE,
 HIP_CIPHER,
 HOST_ID,
 HIT_SUITE_LIST,
 DH_GROUP_LIST,
 [<, ECHO_REQUEST_UNSIGNED >i])

 Minimum size = 120 bytes

 Valid control bits: A

 If the Responder’s HI is an anonymous one, the A control MUST be set.

 The Initiator’s HIT MUST match the one received in I1. If the
 Responder has multiple HIs, the Responder’s HIT used MUST match
 Initiator’s request. If the Initiator used opportunistic mode, the
 Responder may select freely among its HIs. See also "HIP
 Opportunistic Mode" [RFC5201-bis].

 The R1 generation counter is used to determine the currently valid
 generation of puzzles. The value is increased periodically, and it
 is RECOMMENDED that it is increased at least as often as solutions to
 old puzzles are no longer accepted.

 The Puzzle contains a Random #I and the difficulty K. The difficulty
 K indicates the number of lower-order bits, in the puzzle CMAC
 result, that MUST be zeros; see Section 4.1.2.

 The Initiator HIT does not provide the HOST_ID key size. The
 Responder selects its HOST_ID based on the Initiator’s preference

Moskowitz Expires September 15, 2011 [Page 19]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 expressed in the DH_GROUP_LIST parameter in the I1. The Responder
 sends back its own preference based on which it chose the HOST_ID as
 DH_GROUP_LIST. This allows the Initiator to determine whether its
 own DH_GROUP_LIST in the I1 was manipulated by an attacker. There is
 a further risk that the Responder’s DH_GROUP_LIST was manipulated by
 an attacker, as R1 cannot be authenticated in DEX as it can in BEX.
 Thus it is repeated in R2 allowing for a final check at that point.

 In DEX, the Diffie-Hellman HOST_ID values are static. They are NOT
 discarded.

 The HIP_CIPHER contains the encryption algorithms supported by the
 Responder to protect the key exchange, in the order of preference.
 All implementations MUST support the AES-CBC [RFC3602].

 The ECHO_REQUEST_UNSIGNED contains data that the sender wants to
 receive unmodified in the corresponding response packet in the
 ECHO_RESPONSE_UNSIGNED parameter.

5.2.3. I2 - the Second HIP Initiator Packet

 The HIP header values for the I2 packet:

 Header:
 Type = 3
 SRC HIT = Initiator’s HIT
 DST HIT = Responder’s HIT

 IP (HIP ([R1_COUNTER,]
 SOLUTION,
 HIP_CIPHER,
 HOST_ID,
 ENCRYPTED_KEY {DH, secret-x|I},
 [ENCRYPTED {DH, ENCRYPTED_KEY {passwd, challenge } },]
 HIP_MAC_3,
 [<, ECHO_RESPONSE_UNSIGNED>i)])

 Minimum size = 180 bytes

 Valid control bits: A

 The HITs used MUST match the ones used previously.

 If the Initiator’s HI is an anonymous one, the A control MUST be set.

 The Initiator MAY include an unmodified copy of the R1_COUNTER
 parameter received in the corresponding R1 packet into the I2 packet.

Moskowitz Expires September 15, 2011 [Page 20]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 The Solution contains the Random #I from R1 and the computed #J. The
 low-order K bits of the CMAC(S, | ... | J) MUST be zero.

 In DEX, the Diffie-Hellman HOST_ID values are static. They are NOT
 discarded.

 The HIP_CIPHER contains the single encryption transform selected by
 the Initiator, that will be used to protect the HI exchange. The
 chosen transform MUST correspond to one offered by the Responder in
 the R1. All implementations MUST support the AES-CBC transform
 [RFC3602].

 The ECHO_RESPONSE_UNSIGNED contain the unmodified Opaque data copied
 from the corresponding echo request parameter.

 The ENCRYPTED_KEY contains an Initiator generated random secret x
 that MUST be uniformly distributed that is concatenated with I from
 the puzzle. The secret x’s length matches the keysize of the
 selected encryption transform. I from the puzzle is used as the IV
 in the encryption transform. This acts as a nonce from the Responder
 to prove freshness of the secret wrapping from the Initiator. I in
 the ENCRYPTED block enables the Responder to validate a proper
 decryption of the block. The key for the encryption is the
 HIP_Encrypt key.

 If the Initiator has prior knowledge that the Responder is expecting
 a password authenication, the Initiator encrypts the
 ECHO_REQUEST_UNSIGNED with the password, then wraps the ENCRYPTED
 parameter in the secret x. I from the puzzle is used as the nonce
 here as well. There is no signal within R1 for this behaviour.
 Knowledge of password authencation must be externally configured.

 The MAC is calculated over the whole HIP envelope, excluding any
 parameters after the HIP_MAC_3, as described in Section 6.2.1. The
 Responder MUST validate the HIP_MAC_3.

5.2.4. R2 - the Second HIP Responder Packet

 The HIP header values for the R2 packet:

Moskowitz Expires September 15, 2011 [Page 21]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 Header:
 Packet Type = 4
 SRC HIT = Responder’s HIT
 DST HIT = Initiator’s HIT

 IP (HIP (DH_GROUP_LIST,
 ENCRYPTED_KEY {DH, secret-y|I},
 HIP_MAC_3)

 Minimum size = 108 bytes

 Valid control bits: none

 The Responder repeats the DH_GROUP_LIST parameter in R2. This MUST
 be the same list as included in R1. The DH_GROUP_LIST parameter is
 repeated here because R2 is MACed and thus cannot be altered by an
 attacker. This allows the Initiator to determine whether its own
 DH_GROUP_LIST in the I1 was manipulated by an attacker.

 The ENCRYPTED contains an Responder generated random secret y that
 MUST be uniformly distributed that is concatenated with I from the
 puzzle. The secret y’s length matches the keysize of the selected
 encryption transform. I from the puzzle is used as the IV in the
 encryption transform. This acts as a nonce from the Initiator to
 prove freshness of the secret wrapping from the Responder. I in the
 ENCRYPTED block enables the Responder to validate a proper decryption
 of the block. The key for the encryption is the HIP_Encrypt key.

 The HIP_MAC_3 is calculated over the whole HIP envelope, with
 Responder’s HOST_ID parameter concatenated with the HIP envelope.
 The HOST_ID parameter is removed after the CMAC calculation. The
 procedure is described in Section 6.2.1.

 The Initiator MUST validate the HIP_MAC_3.

5.3. ICMP Messages

 When a HIP implementation detects a problem with an incoming packet,
 and it either cannot determine the identity of the sender of the
 packet or does not have any existing HIP association with the sender
 of the packet, it MAY respond with an ICMP packet. Any such replies
 MUST be rate-limited as described in [RFC2463]. In most cases, the
 ICMP packet will have the Parameter Problem type (12 for ICMPv4, 4
 for ICMPv6), with the Pointer field pointing to the field that caused
 the ICMP message to be generated.

Moskowitz Expires September 15, 2011 [Page 22]

Internet-Draft HIP Diet EXchange (DEX) March 2011

6. Packet Processing

 Each host is assumed to have a single HIP protocol implementation
 that manages the host’s HIP associations and handles requests for new
 ones. Each HIP association is governed by a conceptual state
 machine, with states defined above in Section 4.1.3. The HIP
 implementation can simultaneously maintain HIP associations with more
 than one host. Furthermore, the HIP implementation may have more
 than one active HIP association with another host; in this case, HIP
 associations are distinguished by their respective HITs. It is not
 possible to have more than one HIP association between any given pair
 of HITs. Consequently, the only way for two hosts to have more than
 one parallel association is to use different HITs, at least at one
 end.

6.1. Solving the Puzzle

 This subsection describes the puzzle-solving details.

 In R1, the values I and K are sent in network byte order. Similarly,
 in I2, the values I and J are sent in network byte order. The mac is
 created by concatenating, in network byte order, the following data,
 in the following order and using the CMAC algorithm with I as the
 key:

 128-bit Initiator’s HIT, in network byte order, as appearing in
 the HIP Payload in R1 and I2.

 128-bit Responder’s HIT, in network byte order, as appearing in
 the HIP Payload in R1 and I2.

 n-bit random value J (where n is CMAC-len), in network byte order,
 as appearing in I2.

 In order to be a valid response puzzle, the K low-order bits of the
 resulting CMAC MUST be zero.

 Notes:

 i) All the data in the CMAC input MUST be in network byte order.

 ii) The order of the Initiator’s and Responder’s HITs are
 different in the R1 and I2 packets; see [RFC5201-bis]. Care must
 be taken to copy the values in the right order to the CMAC input.

 The following procedure describes the processing steps involved,
 assuming that the Responder chooses to precompute the R1 packets:

Moskowitz Expires September 15, 2011 [Page 23]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 Precomputation by the Responder:
 Sets up the puzzle difficulty K.
 Creates a R1 and caches it.

 Responder:
 Selects a suitable cached R1.
 Generates a random number I.
 Sends I and K in an R1.
 Saves I and K for a Delta time.

 Initiator:
 Generates repeated attempts to solve the puzzle until a matching J
 is found:
 Ltrunc(CMAC(I, HIT-I | HIT-R | J), K) == 0
 Sends I and J in an I2.

 Responder:
 Verifies that the received I is a saved one.
 Finds the right K based on I.
 Computes V := Ltrunc(CMAC(I, HIT-I | HIT-R | J), K)
 Rejects if V != 0
 Accept if V == 0

6.2. HIP_MAC Calculation and Verification

 The following subsections define the actions for processing the
 HIP_MAC_3 parameter.

6.2.1. CMAC Calculation

 Both the Initiator and the Responder should take some care when
 verifying or calculating the HIP_MAC_3. Specifically, the Responder
 should preserve other parameters than the HOST_ID when sending the
 R2. Also, the Initiator has to preserve the HOST_ID exactly as it
 was received in the R1 packet.

 The scope of the calculation for HIP_MAC_3 is:

 CMAC: { HIP header | [Parameters] }

 where Parameters include all HIP parameters of the packet that is
 being calculated with Type values from 1 to (HIP_MAC’s Type value -
 1) and exclude parameters with Type values greater or equal to
 HIP_MAC’s Type value.

 During HIP_MAC calculation, the following applies:

Moskowitz Expires September 15, 2011 [Page 24]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 o In the HIP header, the Checksum field is set to zero.

 o In the HIP header, the Header Length field value is calculated to
 the beginning of the HIP_MAC parameter.

 Parameter order is described in [RFC5201-bis].

 The HIP_MAC parameter is defined in Section 5.1.3. The CMAC
 calculation and verification process is as follows:

 Packet sender:

 1. Create the HIP packet, without the HIP_MAC or any other parameter
 with greater Type value than the HIP_MAC parameter has.

 2. Calculate the Header Length field in the HIP header.

 3. Compute the CMAC using either HIP-gl or HIP-lg integrity key
 retrieved from KEYMAT as defined in Section 6.3.

 4. Add the HIP_MAC_3 parameter to the packet and any parameter with
 greater Type value than the HIP_MAC’s (HIP_MAC_3’s) that may
 follow.

 5. Recalculate the Length field in the HIP header.

 Packet receiver:

 1. Verify the HIP header Length field.

 2. Remove the HIP_MAC_3 parameter, as well as all other parameters
 that follow it with greater Type value, saving the contents if
 they will be needed later.

 3. Recalculate the HIP packet length in the HIP header and clear the
 Checksum field (set it to all zeros).

 4. Compute the CMAC using either HIP-gl or HIP-lg integrity key as
 defined in Section 6.3 and verify it against the received CMAC.

 5. Set Checksum and Header Length field in the HIP header to
 original values.

6.3. HIP DEX KEYMAT Generation

 The HIP DEX KEYMAT process is used for both the Diffie-Hellman
 Derived Master key and the Encrypted secrets Pair-wise key. The
 former uses both the Extract and Expand phases, while the later MAY

Moskowitz Expires September 15, 2011 [Page 25]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 need the Extract and Expand phases if the key is longer than 128
 bits. Othewise it only needs the Expand phase.

 The Diffie-Hellman Derived Master key is exchanged in R1 and I2 and
 used in I2, R2. UPDATE, NOTIFY, and ACK packets. The Encrypted
 secrets Pair-wise key is not used in HIP, but is available as the
 datagram protection key. Some datagram protection mechanisms have
 their own Key Derivation Function, and if so that SHOULD be used
 rather than the HIP DEX KEYMAT.

 The KEYMAT has two components, CKDF-Extract and CKDF-Expand. The
 Extract function COMPRESSES a non-uniformly distributed key, as is
 the output of a Diffie-Hellman key derivation, to EXTRACT all the key
 entropy into a fixed length output. The Expand function takes either
 the output of the Extract function or directly uses a uniformly
 distributed key and EXPANDS the length of the key, repeatedly
 distributing the key entropy, to produce the keys needed.

 The CKDF-Extract function is following operation; the | operation
 denotes concatenation.

 CKDF-Extract(DHK, info, L) -> CK

 where

 info = sort(HIT-I | HIT-R) | "CKDF-Extract"
 BigK = Diffie-Hellman Derived or Session (x | y) Key
 I = I from PUZZLE Parameter

 The output CK is calculated as follows:

 CK = CMAC(I, BigK | info)

 The CKDF-Expand function is following operation; the | operation
 denotes concatenation.

Moskowitz Expires September 15, 2011 [Page 26]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 CKDF-Expand(CK, info, L) -> OKM

 where

 info = sort(HIT-I | HIT-R) | "CKDF-Expand"
 CK = CK from CKDF-Extract or (x | y)
 PRKlen = Length of PRK in octets
 maclen = Length of CMAC in octets = 128/8 = 16
 L length of output keying material in octets
 (<= 255*macLen)

 If PRKlen != macLen then PRK = CMAC(0^128, PRK)

 The output OKM is calculated as follows:

 N = ceil(L/macLen)
 T = T(1) | T(2) | T(3) | ... | T(N)
 OKM = first L octets of T

 where:

 T(0) = empty string (zero length)
 T(1) = CMAC(CK, T(0) | info | 0x01)
 T(2) = CMAC(CK, T(1) | info | 0x02)
 T(3) = CMAC(CK, T(2) | info | 0x03)
 ...

 (where the constant concatenated to the end of each T(n) is a
 single octet.)

 Sort(HIT-I | HIT-R) is defined as the network byte order
 concatenation of the two HITs, with the smaller HIT preceding the
 larger HIT, resulting from the numeric comparison of the two HITs
 interpreted as positive (unsigned) 128-bit integers in network byte
 order.

 x and y values are from the ENCRYPTED parameters from I2 and R2
 respectively.

 The initial keys are drawn sequentially in the order that is
 determined by the numeric comparison of the two HITs, with comparison
 method described in the previous paragraph. HOST_g denotes the host
 with the greater HIT value, and HOST_l the host with the lower HIT
 value.

 The drawing order for initial keys:

Moskowitz Expires September 15, 2011 [Page 27]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 HIP-gl encryption key for HOST_g’s outgoing HIP packets

 HIP-gl integrity (CMAC) key for HOST_g’s outgoing HIP packets

 HIP-lg encryption key for HOST_l’s outgoing HIP packets

 HIP-lg integrity (CMAC) key for HOST_l’s outgoing HIP packets

 The number of bits drawn for a given algorithm is the "natural" size
 of the keys. For the mandatory algorithms, the following sizes
 apply:

 AES 128 or 256 bits

 If other key sizes are used, they must be treated as different
 encryption algorithms and defined separately.

6.4. Processing Incoming I1 Packets

 An implementation SHOULD reply to an I1 with an R1 packet, unless the
 implementation is unable or unwilling to set up a HIP association.
 An I1 in DEX is handled identically to BEX with the exception that in
 constructing the R1, the Responder SHOULD select a HIT that is
 constructed with the MUST algorithm, which is currently ECDH.

6.4.1. R1 Management

 All compliant implementations MUST produce R1 packets. An R1 in DEX
 is handled identically to BEX.

6.5. Processing Incoming R1 Packets

 A system receiving an R1 MUST first check to see if it has sent an I1
 to the originator of the R1 (i.e., it is in state I1-SENT). An R1 in
 DEX is handled identically to BEX with the following differences.

 If the system has been sending out a stream of I1 packets to work
 around high packet loss on a network, it stops sending the I1 packets
 AFTER successfully processing a R1 packet.

 There is no HIP_SIGNATURE in the R1 packet. It is an
 unauthentication packet.

 The following steps define the conceptual processing rules for
 responding to an R1 packet that are different than in BEX:

 1. If the system is configured with an authentication password for
 the responder, it constructs the authentication response to

Moskowitz Expires September 15, 2011 [Page 28]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 include in the I2.

 2. The system prepares and sends an I2, as described in
 Section 5.2.3. The system MAY be configured to continually send
 this I2 until it receives and validates an R2.

6.6. Processing Incoming I2 Packets

 Upon receipt of an I2, the system MAY perform initial checks to
 determine whether the I2 corresponds to a recent R1 that has been
 sent out, if the Responder keeps such state. An I2 in DEX is handled
 identically to BEX with the following differences.

 The HIP implementation SHOULD process the I2. This includes
 validation of the puzzle solution, extracting the ENCRYPTED key for
 processing I2, decrypting the Initiator’s Host Identity, verifying
 the mac, creating state, and finally sending an R2.

 There is no HIP_SIGNATURE on this packet. Authentication is
 completely based on the HIP_MAC_3 parameter.

 The following steps define the conceptual processing rules for
 responding to an I2 packet:

 1. If the system’s state machine is in the I2-SENT state, the system
 makes a comparison between its local and sender’s HITs (similarly
 as in Section 6.3). If the local HIT is smaller than the
 sender’s HIT, it should drop the I2 packet, and continue using
 the R1 received and I2 sent to the peer earlier. Otherwise, the
 system should process the received I2 packet and drop any
 previously derived Diffie-Hellman keying material Kij and
 ENCRYPTED keying material it might have formed upon sending the
 I2 previously. The peer Diffie-Hellman key, ENCRYPTED keying
 material and the nonce J are taken from the just arrived I2
 packet. The local Diffie-Hellman key and the nonce I are the
 ones that were earlier sent in the R1 packet.

 2. The system MUST validate the solution to the puzzle by computing
 the mac described in Section 5.2.3 using the CMAC algorithm.

 3. The system must extract the keying material from the ENCRYPTED
 parameter. This key is used to derive the HIP data keys.

 4. If the checks above are valid, then the system proceeds with
 further I2 processing; otherwise, it discards the I2 and its
 state machine remains in the same state. If the system has been
 sending a stream of R1 packets to the HIT in the I2 the system
 stops sending the R1s.

Moskowitz Expires September 15, 2011 [Page 29]

Internet-Draft HIP Diet EXchange (DEX) March 2011

6.7. Processing Incoming R2 Packets

 An R2 received in states UNASSOCIATED, I1-SENT, or ESTABLISHED
 results in the R2 being dropped and the state machine staying in the
 same state. If an R2 is received in state I2-SENT, it SHOULD be
 processed.

 There is no HIP_SIGNATURE on this packet. Authentication is
 completely based on the HIP_MAC_3 parameter.

 The conceptual processing rules for an incoming R2 packet in DEX are
 identical to BEX with the following differences.

 1. The system checks the DH_GROUP_LIST as in R1 packet processing.
 If the list is different from R1’s there may have been a DH
 downgrade attack against the unprotected R1 packet. If the
 DH_GROUP_LIST presents a better list than recieved in the R1
 packet, the system may either resend I1 within the retry bounds
 or abandon the HIP exchange.

 2. The system must extract the keying material from the ENCRYPTED
 parameter. This key is concatanated with that sent in the I2
 packet to form the HIP data keys.

6.8. Sending UPDATE Packets

 A host sends an UPDATE packet when it updates some information
 related to a HIP association. DEX UPDATE handling is the similar in
 DEX as in BEX. The key difference is the HIP_SIGNATURE is not
 present.

6.9. Handling State Loss

 In the case of system crash and unanticipated state loss, the system
 SHOULD delete the corresponding HIP state, including the keying
 material. That is, the state SHOULD NOT be stored on stable storage.
 If the implementation does drop the state (as RECOMMENDED), it MUST
 also drop the peer’s R1 generation counter value, unless a local
 policy explicitly defines that the value of that particular host is
 stored. An implementation MUST NOT store R1 generation counters by
 default, but storing R1 generation counter values, if done, MUST be
 configured by explicit HITs.

7. HIP Policies

 There are a number of variables that will influence the HIP exchanges
 that each host must support. All HIP implementations MUST support
 more than one simultaneous HI, at least one of which SHOULD be

Moskowitz Expires September 15, 2011 [Page 30]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 reserved for anonymous usage. Although anonymous HIs will be rarely
 used as Responders’ HIs, they will be common for Initiators. Support
 for more than two HIs is RECOMMENDED.

 Many Initiators would want to use a different HI for different
 Responders. The implementations SHOULD provide for an ACL of
 Initiator’s HIT to Responder’s HIT. This ACL SHOULD also include
 preferred transform and local lifetimes.

 The value of K used in the HIP R1 packet can also vary by policy. K
 should never be greater than 20, but for trusted partners it could be
 as low as 0.

 Responders would need a similar ACL, representing which hosts they
 accept HIP exchanges, and the preferred transform and local
 lifetimes. Wildcarding SHOULD be supported for this ACL also.

8. Security Considerations

 HIP is designed to provide secure authentication of hosts. HIP also
 attempts to limit the exposure of the host to various denial-of-
 service and man-in-the-middle (MitM) attacks. In so doing, HIP
 itself is subject to its own DoS and MitM attacks that potentially
 could be more damaging to a host’s ability to conduct business as
 usual.

 HIP DEX replaces the SIGMA authenticated Diffie-Hellman key exchange
 of BEX with a random generated key exchange encrypted by a Diffie-
 Hellman derived key. Both the Initiator and Responder contribute to
 this key.

 The strength of the key is based on the quality of the secrets
 generated the Initiator and Responder. Since the Initiator is
 commonly a sensor there is a natural concern about the quality of
 its random number generator.

 DEX lacks Perfect Forward Secrecy (PFS). If the Initiator’s HI is
 compromised, ALL HIP connections protected with that HI are
 compromised.

 The puzzle mechanism using CMAC may need further study that it
 does present the desired level of difficulty.

 The DEX HIT extraction MAY present new attack opportunities;
 further study is needed.

 The R1 packet is unprotected and offers an attacker new resource
 attacks against the Initiator. This is mitigated by the Initator

Moskowitz Expires September 15, 2011 [Page 31]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 only processing a received R1 when it has sent an I1. This is
 another DoS attack, but for battery powered Initiators, it could be a
 concern.

9. IANA Considerations

 IANA has reserved protocol number 139 for the Host Identity Protocol.

 The following HIT suites are defined for DEX HIT generation.

 +-------+------------+----------------------+-----------------------+
 | Index | Hash | Signature algorithm | Description |
 | | function | family | |
 +-------+------------+----------------------+-----------------------+
 | 5 | LTRUNC | ECDH | ECDH HI truncated to |
 | | | | 96 bits |
 +-------+------------+----------------------+-----------------------+

 Table 5: HIT Suites

10. Acknowledgments

 The drive to put HIP on a cryptographic ’Diet’ came out of a number
 of discussions with sensor vendors at IEEE 802.15 meetings. David
 McGrew was very

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119,
 March 1997.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol,
 Version 6 (IPv6) Specification", RFC 2460,
 December 1998.

 [RFC2463] Conta, A. and S. Deering, "Internet Control
 Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification",
 RFC 2463, December 1998.

 [RFC3602] Frankel, S., Glenn, R., and S. Kelly, "The AES-
 CBC Cipher Algorithm and Its Use with IPsec",
 RFC 3602, September 2003.

 [RFC3972] Aura, T., "Cryptographically Generated

Moskowitz Expires September 15, 2011 [Page 32]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 Addresses (CGA)", RFC 3972, March 2005.

 [RFC4309] Housley, R., "Using Advanced Encryption
 Standard (AES) CCM Mode with IPsec
 Encapsulating Security Payload (ESP)",
 RFC 4309, December 2005.

 [RFC4843-bis] Laganier, J. and F. Dupont, "An IPv6 Prefix for
 Overlay Routable Cryptographic Hash Identifiers
 (ORCHID)", draft-ietf-hip-rfc4843-bis-00 (work
 in progress), August 2010.

 [RFC5201-bis] Moskowitz, R., Heer, T., Jokela, P., and T.
 Henderson, "Host Identity Protocol Version 2
 (HIPv2)", draft-ietf-hip-rfc5201-bis-05 (work
 in progress), March 2011.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter,
 "Fundamental Elliptic Curve Cryptography
 Algorithms", RFC 6090, February 2011.

 [rfc5202-bis] Jokela, P., Moskowitz, R., Nikander, P., and J.
 Melen, "Using the Encapsulating Security
 Payload (ESP) Transport Format with the Host
 Identity Protocol (HIP)",
 draft-ietf-hip-rfc5202-bis-00 (work in
 progress), September 2010.

11.2. Informative References

 [AUR03] Aura, T., Nagarajan, A., and A. Gurtov,
 "Analysis of the HIP Base Exchange Protocol",
 in Proceedings of 10th Australasian Conference
 on Information Security and Privacy, July 2003.

 [CRO03] Crosby, SA. and DS. Wallach, "Denial of Service
 via Algorithmic Complexity Attacks", in
 Proceedings of Usenix Security Symposium 2003,
 Washington, DC., August 2003.

 [FIPS.197.2001] National Institute of Standards and Technology,
 "Advanced Encryption Standard (AES)", FIPS PUB
 197, November 2001, <http://csrc.nist.gov/
 publications/fips/fips197/fips-197.pdf>.

 [IEEE.802-11.2007] "Information technology - Telecommunications
 and information exchange between systems -
 Local and metropolitan area networks - Specific

Moskowitz Expires September 15, 2011 [Page 33]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 requirements - Part 11: Wireless LAN Medium
 Access Control (MAC) and Physical Layer (PHY)
 Specifications", IEEE Standard 802.11,
 June 2007, <http://standards.ieee.org/
 getieee802/download/802.11-2007.pdf>.

 [IEEE.802-15-4.2006] "Information technology - Telecommunications
 and information exchange between systems -
 Local and metropolitan area networks - Specific
 requirements - Part 15.4: Wireless Medium
 Access Control (MAC) and Physical Layer (PHY)
 Specifications for Low-Rate Wireless Personal
 Area Networks (WPANs)", IEEE Standard 802.15.4,
 September 2006, <http://standards.ieee.org/
 getieee802/download/802.15.4-2006.pdf>.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for
 Writing an IANA Considerations Section in
 RFCs", BCP 26, RFC 2434, October 1998.

 [RFC2898] Kaliski, B., "PKCS #5: Password-Based
 Cryptography Specification Version 2.0",
 RFC 2898, September 2000.

 [RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2)
 Protocol", RFC 4306, December 2005.

 [rfc4423-bis] Moskowitz, R., "Host Identity Protocol
 Architecture", draft-ietf-hip-rfc4423-bis-02
 (work in progress), February 2011.

Appendix A. Using Responder Puzzles

 As mentioned in Section 4.1.1, the Responder may delay state creation
 and still reject most spoofed I2s by using a number of pre-calculated
 R1s and a local selection function. This appendix defines one
 possible implementation in detail. The purpose of this appendix is
 to give the implementors an idea on how to implement the mechanism.
 If the implementation is based on this appendix, it MAY contain some
 local modification that makes an attacker’s task harder.

 The Responder creates a secret value S, that it regenerates
 periodically. The Responder needs to remember the two latest values
 of S. Each time the S is regenerated, the R1 generation counter
 value is incremented by one and the Responder generates an R1 packet.

 When the Initiator sends the I1 packet for initializing a connection,
 the Responder gets the HIT and IP address from the packet, and

Moskowitz Expires September 15, 2011 [Page 34]

Internet-Draft HIP Diet EXchange (DEX) March 2011

 generates an I value for the puzzle.

 I value calculation:
 I = Ltrunc(CMAC (S, HIT-I | HIT-R | IP-I | IP-R), n)
 where n = CMAC-len

 From an incoming I2 packet, the Responder gets the required
 information to validate the puzzle: HITs, IP addresses, and the
 information of the used S value from the R1_COUNTER. Using these
 values, the Responder can regenerate the I, and verify it against the
 I received in the I2 packet. If the I values match, it can verify
 the solution using I, J, and difficulty K. If the I values do not
 match, the I2 is dropped.

 puzzle_check:
 V := Ltrunc(CMAC(I2.I | I2.I, I2.hit_i | I2.hit_r | I2.J), K)
 if V != 0, drop the packet

 If the puzzle solution is correct, the I and J values are stored for
 later use. They are used as input material when keying material is
 generated.

 Keeping state about failed puzzle solutions depends on the
 implementation. Although it is possible for the Responder not to
 keep any state information, it still may do so to protect itself
 against certain attacks (see Section 4.1.1).

Appendix B. Generating a Public Key Encoding from an HI

 The following pseudo-code illustrates the process to generate a
 public key encoding from an HI for ECDH.

Author’s Address

 Robert Moskowitz
 Verizon Telcom and Business
 1000 Bent Creek Blvd, Suite 200
 Mechanicsburg, PA
 USA

 EMail: robert.moskowitz@verizonbusiness.com

Moskowitz Expires September 15, 2011 [Page 35]

