
HyBi Working Group I. Fette
Internet-Draft Google, Inc.
Intended status: Standards Track February 25, 2011
Expires: August 29, 2011

 The WebSocket protocol
 draft-ietf-hybi-thewebsocketprotocol-06

Abstract

 The WebSocket protocol enables two-way communication between a user
 agent running untrusted code running in a controlled environment to a
 remote host that has opted-in to communications from that code. The
 security model used for this is the Origin-based security model
 commonly used by Web browsers. The protocol consists of an initial
 handshake followed by basic message framing, layered over TCP. The
 goal of this technology is to provide a mechanism for browser-based
 applications that need two-way communication with servers that does
 not rely on opening multiple HTTP connections (e.g. using
 XMLHttpRequest or <iframe>s and long polling).

 Please send feedback to the hybi@ietf.org mailing list.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 29, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents

Fette Expires August 29, 2011 [Page 1]

Internet-Draft The WebSocket protocol February 2011

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Background . 4
 1.2. Protocol overview . 4
 1.3. Opening handshake . 6
 1.4. Closing handshake . 8
 1.5. Design philosophy . 9
 1.6. Security model . 9
 1.7. Relationship to TCP and HTTP 10
 1.8. Establishing a connection 10
 1.9. Subprotocols using the WebSocket protocol 11
 2. Conformance requirements 12
 2.1. Terminology . 12
 3. WebSocket URIs . 14
 3.1. Parsing WebSocket URIs 14
 3.2. Constructing WebSocket URIs 15
 3.3. Valid WebSocket URIs 15
 4. Data Framing . 16
 4.1. Overview . 16
 4.2. Client-to-Server Masking 16
 4.3. Base Framing Protocol 17
 4.4. Fragmentation . 19
 4.5. Control Frames . 21
 4.5.1. Close . 21
 4.5.2. Ping . 21
 4.5.3. Pong . 22
 4.6. Data Frames . 22
 4.7. Examples . 22
 4.8. Extensibility . 23
 5. Opening Handshake . 24
 5.1. Client Requirements 24
 5.2. Server-side requirements 28
 5.2.1. Reading the client’s opening handshake 29
 5.2.2. Sending the server’s opening handshake 29
 6. Error Handling . 32
 6.1. Handling errors in UTF-8 from the server 32
 6.2. Handling errors in UTF-8 from the client 32
 7. Closing the connection . 33

Fette Expires August 29, 2011 [Page 2]

Internet-Draft The WebSocket protocol February 2011

 7.1. Definitions . 33
 7.1.1. Close the WebSocket Connection 33
 7.1.2. Start the WebSocket Closing Handshake 33
 7.1.3. The WebSocket Connection Is Closed 33
 7.1.4. Fail the WebSocket Connection 33
 7.2. Abnormal closures . 34
 7.2.1. Client-initiated closure 34
 7.2.2. Server-initiated closure 34
 7.3. Normal closure of connections 34
 7.4. Status codes . 34
 7.4.1. Defined Status Codes 34
 7.4.2. Reserved status code ranges 35
 8. Extensions . 37
 8.1. Negotiating extensions 37
 8.2. Known extensions . 38
 8.2.1. Compression . 38
 9. Security considerations 40
 10. IANA considerations . 42
 10.1. Registration of ws: scheme 42
 10.2. Registration of wss: scheme 43
 10.3. Registration of the "WebSocket" HTTP Upgrade keyword . . . 44
 10.4. Sec-WebSocket-Key . 44
 10.5. Sec-WebSocket-Extensions 45
 10.6. Sec-WebSocket-Accept 46
 10.7. Sec-WebSocket-Origin 46
 10.8. Sec-WebSocket-Protocol 47
 10.9. Sec-WebSocket-Version 47
 11. Using the WebSocket protocol from other specifications 49
 12. Acknowledgements . 50
 13. Appendix: List of Changes 51
 13.1. Changes from -05 to -06 51
 14. Normative References . 53
 Author’s Address . 55

Fette Expires August 29, 2011 [Page 3]

Internet-Draft The WebSocket protocol February 2011

1. Introduction

1.1. Background

 This section is non-normative.

 Historically, creating an instant messenger chat client as a Web
 application has required an abuse of HTTP to poll the server for
 updates while sending upstream notifications as distinct HTTP calls.

 This results in a variety of problems:

 o The server is forced to use a number of different underlying TCP
 connections for each client: one for sending information to the
 client, and a new one for each incoming message.

 o The wire protocol has a high overhead, with each client-to-server
 message having an HTTP header.

 o The client-side script is forced to maintain a mapping from the
 outgoing connections to the incoming connection to track replies.

 A simpler solution would be to use a single TCP connection for
 traffic in both directions. This is what the WebSocket protocol
 provides. Combined with the WebSocket API, it provides an
 alternative to HTTP polling for two-way communication from a Web page
 to a remote server. [WSAPI]

 The same technique can be used for a variety of Web applications:
 games, stock tickers, multiuser applications with simultaneous
 editing, user interfaces exposing server-side services in real time,
 etc.

1.2. Protocol overview

 This section is non-normative.

 The protocol has two parts: a handshake, and then the data transfer.

 The handshake from the client looks as follows:

 GET /chat HTTP/1.1
 Host: server.example.com
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Sec-WebSocket-Origin: http://example.com
 Sec-WebSocket-Protocol: chat, superchat

Fette Expires August 29, 2011 [Page 4]

Internet-Draft The WebSocket protocol February 2011

 Sec-WebSocket-Version: 6

 The handshake from the server looks as follows:

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
 Sec-WebSocket-Protocol: chat

 The leading line from the client follows the Request-Line format.
 The leading line from the server follows the Status-Line format. The
 Request-Line and Status-Line productions are defined in [RFC2616].

 After the leading line in both cases come an unordered set of
 headers. The meaning of these headers is specified in Section 5 of
 this document. Additional headers may also be present, such as
 cookies required to identify the user. The format and parsing of
 headers is as defined in [RFC2616].

 Once the client and server have both sent their handshakes, and if
 the handshake was successful, then the data transfer part starts.
 This is a two-way communication channel where each side can,
 independently from the other, send data at will.

 Clients and servers, after a successful handshake, transfer data back
 and forth in conceptual units referred to in this specification as
 "messages". A message is a complete unit of data at an application
 level, with the expectation that many or most applications
 implementing this protocol (such as web user agents) provide APIs in
 terms of sending and receiving messages. The websocket message does
 not necessarily correspond to a particular network layer framing, as
 a fragmented message may be coalesced, or vice versa, e.g. by an
 intermediary.

 Data is sent on the wire in the form of frames that have an
 associated type. Broadly speaking, there are types for textual data,
 which is interpreted as UTF-8 text, binary data (whose interpretation
 is left up to the application), and control frames, which are not
 intended to carry data for the application, but instead for protocol-
 level signaling, such as to signal that the connection should be
 closed. This version of the protocol defines six frame types and
 leaves ten reserved for future use.

 The WebSocket protocol uses this framing so that specifications that
 use the WebSocket protocol can expose such connections using an
 event-based mechanism instead of requiring users of those

Fette Expires August 29, 2011 [Page 5]

Internet-Draft The WebSocket protocol February 2011

 specifications to implement buffering and piecing together of
 messages manually.

1.3. Opening handshake

 This section is non-normative.

 The opening handshake is intended to be compatible with HTTP-based
 server-side software and intermediaries, so that a single port can be
 used by both HTTP clients talking to that server and WebSocket
 clients talking to that server. To this end, the WebSocket client’s
 handshake is an HTTP Upgrade request:

 GET /chat HTTP/1.1
 Host: server.example.com
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
 Sec-WebSocket-Origin: http://example.com
 Sec-WebSocket-Protocol: chat, superchat
 Sec-WebSocket-Version: 6

 Headers in the handshake are sent by the client in a random order;
 the order is not meaningful.

 Additional headers are used to select options in the WebSocket
 protocol. Options available in this version are the subprotocol
 selector, |Sec-WebSocket-Protocol|, and |Cookie|, which can used for
 sending cookies to the server (e.g. as an authentication mechanism).
 The |Sec-WebSocket-Protocol| request-header field can be used to
 indicate what subprotocols (application-level protocols layered over
 the WebSocket protocol) are acceptable to the client. The server
 selects one of the acceptable protocols and echoes that value in its
 handshake to indicate that it has selected that protocol.
 Sec-WebSocket-Protocol: chat

 The "Request-URI" of the GET method [RFC2616] is used to identify the
 endpoint of the WebSocket connection, both to allow multiple domains
 to be served from one IP address and to allow multiple WebSocket
 endpoints to be served by a single server.

 The client includes the hostname in the Host header of its handshake
 as per [RFC2616], so that both the client and the server can verify
 that they agree on which host is in use.

 The |Sec-WebSocket-Origin| header is used to protect against
 unauthorized cross-origin use of a WebSocket server by scripts using

Fette Expires August 29, 2011 [Page 6]

Internet-Draft The WebSocket protocol February 2011

 the |WebSocket| API in a Web browser. The server is informed of the
 script origin generating the WebSocket connection request. If the
 server does not wish to accept connections from this origin, it can
 choose to abort the connection. This header is sent by browser
 clients, for non-browser clients this header may be sent if it makes
 sense in the context of those clients.

 Finally, the server has to prove to the client that it received the
 client’s WebSocket handshake, so that the server doesn’t accept
 connections that are not WebSocket connections. This prevents an
 attacker from tricking a WebSocket server by sending it carefully-
 crafted packets using |XMLHttpRequest| or a |form| submission.

 To prove that the handshake was received, the server has to take two
 pieces of information and combine them to form a response. The first
 piece of information comes from the |Sec-WebSocket-Key| header in the
 client handshake:

 Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

 For this header, the server has to take the value (as present in the
 header, e.g. the base64-encoded version), and concatenate this with
 the GUID "258EAFA5-E914-47DA-95CA-C5AB0DC85B11" in string form, which
 is unlikely to be used by network endpoints that do not understand
 the WebSocket protocol. A SHA-1 hash, base64-encoded, of this
 concatenation is then returned in the server’s handshake
 [FIPS.180-2.2002].

 Concretely, if as in the example above, header |Sec-WebSocket-Key|
 had the value "dGhlIHNhbXBsZSBub25jZQ==", the server would
 concatenate the string "258EAFA5-E914-47DA-95CA-C5AB0DC85B11" to form
 the string "dGhlIHNhbXBsZSBub25jZQ==258EAFA5-E914-47DA-95CA-
 C5AB0DC85B11". The server would then take the SHA-1 hash of this,
 giving the value 0xb3 0x7a 0x4f 0x2c 0xc0 0x62 0x4f 0x16 0x90 0xf6
 0x46 0x06 0xcf 0x38 0x59 0x45 0xb2 0xbe 0xc4 0xea. This value is
 then base64-encoded, to give the value "s3pPLMBiTxaQ9kYGzzhZRbK+
 xOo=". This value would then be echoed in the header |Sec-WebSocket-
 Accept|.

 The handshake from the server is much simpler than the client
 handshake. The first line is an HTTP Status-Line, with the status
 code 101:

 HTTP/1.1 101 Switching Protocols

 Any status code other than 101 MUST be treated as a failure if
 semantics of that status code are not defined in the context of a

Fette Expires August 29, 2011 [Page 7]

Internet-Draft The WebSocket protocol February 2011

 WebSocket connection, and the websocket connection aborted. The
 headers follow the status code.

 The |Connection| and |Upgrade| headers complete the HTTP Upgrade.
 The |Sec-WebSocket-Accept| header indicates whether the server is
 willing to accept the connection. If present, this header must
 include a hash of the client’s nonce sent in |Sec-WebSocket-Key|
 along with a predefined GUID. Any other value must not be
 interpreted as an acceptance of the connection by the server.

 HTTP/1.1 101 Switching Protocols
 Upgrade: websocket
 Connection: Upgrade
 Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

 These fields are checked by the Web browser when it is acting as a
 |WebSocket| client for scripted pages. If the |Sec-WebSocket-Accept|
 value does not match the expected value, or if the header is missing,
 or if the HTTP status code is not 101, the connection will not be
 established and WebSockets frames will not be sent.

 Option fields can also be included. In this version of the protocol,
 the main option field is |Sec-WebSocket-Protocol|, which indicates
 the subprotocol that the server has selected. Web browsers verify
 that the server included one of the values as was specified in the
 |WebSocket| constructor. A server that speaks multiple subprotocols
 has to make sure it selects one based on the client’s handshake and
 specifies it in its handshake.

 Sec-WebSocket-Protocol: chat

 The server can also set cookie-related option fields to _set_
 cookies, as in HTTP.

1.4. Closing handshake

 This section is non-normative.

 The closing handshake is far simpler than the opening handshake.

 Either peer can send a control frame with data containing a specified
 control sequence to begin the closing handshake (detailed in
 Section 4.5.1). Upon receiving such a frame, the other peer sends a
 close frame in response, if it hasn’t already sent one. Upon
 receiving _that_ control frame, the first peer then closes the
 connection, safe in the knowledge that no further data is
 forthcoming.

Fette Expires August 29, 2011 [Page 8]

Internet-Draft The WebSocket protocol February 2011

 After sending a control frame indicating the connection should be
 closed, a peer does not send any further data; after receiving a
 control frame indicating the connection should be closed, a peer
 discards any further data received.

 It is safe for both peers to initiate this handshake simultaneously.

 The closing handshake is intended to replace the TCP closing
 handshake (FIN/ACK), on the basis that the TCP closing handshake is
 not always reliable end-to-end, especially in the presence of man-in-
 the-middle proxies and other intermediaries.

 By sending a close frame and waiting for a close frame in response,

1.5. Design philosophy

 This section is non-normative.

 The WebSocket protocol is designed on the principle that there should
 be minimal framing (the only framing that exists is to make the
 protocol frame-based instead of stream-based, and to support a
 distinction between Unicode text and binary frames). It is expected
 that metadata would be layered on top of WebSocket by the application
 layer, in the same way that metadata is layered on top of TCP by the
 application layer (HTTP).

 Conceptually, WebSocket is really just a layer on top of TCP that
 adds a Web "origin"-based security model for browsers; adds an
 addressing and protocol naming mechanism to support multiple services
 on one port and multiple host names on one IP address; layers a
 framing mechanism on top of TCP to get back to the IP packet
 mechanism that TCP is built on, but without length limits; and re-
 implements the closing handshake in-band. Other than that, it adds
 nothing. Basically it is intended to be as close to just exposing
 raw TCP to script as possible given the constraints of the Web. It’s
 also designed in such a way that its servers can share a port with
 HTTP servers, by having its handshake be a valid HTTP Upgrade
 handshake also.

 The protocol is intended to be extensible; future versions will
 likely introduce additional concepts such as multiplexing.

1.6. Security model

 This section is non-normative.

 The WebSocket protocol uses the origin model used by Web browsers to
 restrict which Web pages can contact a WebSocket server when the

Fette Expires August 29, 2011 [Page 9]

Internet-Draft The WebSocket protocol February 2011

 WebSocket protocol is used from a Web page. Naturally, when the
 WebSocket protocol is used by a dedicated client directly (i.e. not
 from a Web page through a Web browser), the origin model is not
 useful, as the client can provide any arbitrary origin string.

 This protocol is intended to fail to establish a connection with
 servers of pre-existing protocols like SMTP or HTTP, while allowing
 HTTP servers to opt-in to supporting this protocol if desired. This
 is achieved by having a strict and elaborate handshake, and by
 limiting the data that can be inserted into the connection before the
 handshake is finished (thus limiting how much the server can be
 influenced).

 It is similarly intended to fail to establish a connection when data
 from other protocols, especially HTTP, is sent to a WebSocket server,
 for example as might happen if an HTML |form| were submitted to a
 WebSocket server. This is primarily achieved by requiring that the
 server prove that it read the handshake, which it can only do if the
 handshake contains the appropriate parts which themselves can only be
 sent by a WebSocket handshake. In particular, at the time of writing
 of this specification, fields starting with |Sec-| cannot be set by
 an attacker from a Web browser using only HTML and JavaScript APIs
 such as |XMLHttpRequest|.

1.7. Relationship to TCP and HTTP

 This section is non-normative.

 The WebSocket protocol is an independent TCP-based protocol. Its
 only relationship to HTTP is that its handshake is interpreted by
 HTTP servers as an Upgrade request.

 Based on the expert recommendation of the IANA, the WebSocket
 protocol by default uses port 80 for regular WebSocket connections
 and port 443 for WebSocket connections tunneled over TLS.

1.8. Establishing a connection

 This section is non-normative.

 When a connection is to be made to a port that is shared by an HTTP
 server (a situation that is quite likely to occur with traffic to
 ports 80 and 443), the connection will appear to the HTTP server to
 be a regular GET request with an Upgrade offer. In relatively simple
 setups with just one IP address and a single server for all traffic
 to a single hostname, this might allow a practical way for systems
 based on the WebSocket protocol to be deployed. In more elaborate
 setups (e.g. with load balancers and multiple servers), a dedicated

Fette Expires August 29, 2011 [Page 10]

Internet-Draft The WebSocket protocol February 2011

 set of hosts for WebSocket connections separate from the HTTP servers
 is probably easier to manage. At the time of writing of this
 specification, it should be noted that connections on port 80 and 443
 have significantly different success rates, with connections on port
 443 being significantly more likely to succeed, though this may
 change with time.

1.9. Subprotocols using the WebSocket protocol

 This section is non-normative.

 The client can request that the server use a specific subprotocol by
 including the |Sec-WebSocket-Protocol| field in its handshake. If it
 is specified, the server needs to include the same field and one of
 the selected subprotocol values in its response for the connection to
 be established.

 These subprotocol names do not need to be registered, but if a
 subprotocol is intended to be implemented by multiple independent
 WebSocket servers, potential clashes with the names of subprotocols
 defined independently can be avoided by using names that contain the
 domain name of the subprotocol’s originator. For example, if Example
 Corporation were to create a Chat subprotocol to be implemented by
 many servers around the Web, they could name it "chat.example.com".
 If the Example Organization called their competing subprotocol
 "example.org’s chat protocol", then the two subprotocols could be
 implemented by servers simultaneously, with the server dynamically
 selecting which subprotocol to use based on the value sent by the
 client.

 Subprotocols can be versioned in backwards-incompatible ways by
 changing the subprotocol name, e.g. going from "bookings.example.net"
 to "v2.bookings.example.net". These subprotocols would be considered
 completely separate by WebSocket clients. Backwards-compatible
 versioning can be implemented by reusing the same subprotocol string
 but carefully designing the actual subprotocol to support this kind
 of extensibility.

Fette Expires August 29, 2011 [Page 11]

Internet-Draft The WebSocket protocol February 2011

2. Conformance requirements

 All diagrams, examples, and notes in this specification are non-
 normative, as are all sections explicitly marked non-normative.
 Everything else in this specification is normative.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in the normative parts of this
 document are to be interpreted as described in RFC2119. For
 readability, these words do not appear in all uppercase letters in
 this specification. [RFC2119]

 Requirements phrased in the imperative as part of algorithms (such as
 "strip any leading space characters" or "return false and abort these
 steps") are to be interpreted with the meaning of the key word
 ("must", "should", "may", etc) used in introducing the algorithm.

 Conformance requirements phrased as algorithms or specific steps may
 be implemented in any manner, so long as the end result is
 equivalent. (In particular, the algorithms defined in this
 specification are intended to be easy to follow, and not intended to
 be performant.)

 Implementations may impose implementation-specific limits on
 otherwise unconstrained inputs, e.g. to prevent denial of service
 attacks, to guard against running out of memory, or to work around
 platform-specific limitations.

 The conformance classes defined by this specification are user agents
 and servers.

2.1. Terminology

 ASCII shall mean the character-encoding scheme defined in
 [ANSI.X3-4.1986].

 Converting a string to ASCII lowercase means replacing all
 characters in the range U+0041 to U+005A (i.e. LATIN CAPITAL LETTER
 A to LATIN CAPITAL LETTER Z) with the corresponding characters in the
 range U+0061 to U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL
 LETTER Z).

 Comparing two strings in an *ASCII case-insensitive* manner means
 comparing them exactly, code point for code point, except that the
 characters in the range U+0041 to U+005A (i.e. LATIN CAPITAL LETTER
 A to LATIN CAPITAL LETTER Z) and the corresponding characters in the
 range U+0061 to U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL
 LETTER Z) are considered to also match.

Fette Expires August 29, 2011 [Page 12]

Internet-Draft The WebSocket protocol February 2011

 The term "URI" is used in this section in a manner consistent with
 the terminology used in HTML, namely, to denote a string that might
 or might not be a valid URI or IRI and to which certain error
 handling behaviors will be applied when the string is parsed.
 [RFC3986]

 When an implementation is required to _send_ data as part of the
 WebSocket protocol, the implementation may delay the actual
 transmission arbitrarily, e.g. buffering data so as to send fewer IP
 packets.

Fette Expires August 29, 2011 [Page 13]

Internet-Draft The WebSocket protocol February 2011

3. WebSocket URIs

3.1. Parsing WebSocket URIs

 The steps to *parse a WebSocket URI’s components* from a string /uri/
 are as follows. These steps return either a /host/, a /port/, a
 /resource name/, and a /secure/ flag, or they fail.

 1. If the /uri/ string is not an absolute URI, then fail this
 algorithm. [RFC3986] [RFC3987]

 2. Resolve the /uri/ string using the resolve a Web address
 algorithm defined by the Web addresses specification, with the
 URI character encoding set to UTF-8. [RFC3629] [RFC3986]
 [RFC3987]

 NOTE: It doesn’t matter what it is resolved relative to, since
 we already know it is an absolute URI at this point.

 3. If /uri/ does not have a <scheme> component whose value, when
 converted to ASCII lowercase, is either "ws" or "wss", then fail
 this algorithm.

 4. If /uri/ has a <fragment> component, then fail this algorithm.

 5. If the <scheme> component of /uri/ is "ws", set /secure/ to
 false; otherwise, if the <scheme> component is "wss", set
 /secure/ to true; otherwise, fail this algorithm.

 6. Let /host/ be the value of the <host> component of /uri/,
 converted to ASCII lowercase.

 7. If /uri/ has a <port> component, then let /port/ be that
 component’s value; otherwise, there is no explicit /port/.

 8. If there is no explicit /port/, then: if /secure/ is false, let
 /port/ be 80, otherwise let /port/ be 443.

 9. Let /resource name/ be the value of the <path> component (which
 might be empty) of /uri/.

 10. If /resource name/ is the empty string, set it to a single
 character U+002F SOLIDUS (/).

 11. If /uri/ has a <query> component, then append a single U+003F
 QUESTION MARK character (?) to /resource name/, followed by the
 value of the <query> component.

Fette Expires August 29, 2011 [Page 14]

Internet-Draft The WebSocket protocol February 2011

 12. Return /host/, /port/, /resource name/, and /secure/.

3.2. Constructing WebSocket URIs

 The steps to *construct a WebSocket URI* from a /host/, a /port/, a
 /resource name/, and a /secure/ flag, are as follows:

 1. Let /uri/ be the empty string.

 2. If the /secure/ flag is false, then append the string "ws://" to
 /uri/. Otherwise, append the string "wss://" to /uri/.

 3. Append /host/ to /uri/.

 4. If the /secure/ flag is false and port is not 80, or if the
 /secure/ flag is true and port is not 443, then append the string
 ":" followed by /port/ to /uri/.

 5. Append /resource name/ to /uri/.

 6. Return /uri/.

3.3. Valid WebSocket URIs

 For a WebSocket URI to be considered valid, the following conditions
 MUST hold.

 o The /host/ must be ASCII-only (i.e. it must have been punycode-
 encoded already if necessary, and MUST NOT contain any characters
 above U+007E).

 o The /resource name/ string must be a non-empty string of
 characters in the range U+0021 to U+007E that starts with a U+002F
 SOLIDUS character (/).

 Any WebSocket URIs not meeting the above criteria are considered
 invalid, and a client MUST NOT attempt to make a connection to an
 invalid WebSocket URI. A client SHOULD attempt to parse a URI
 obtained from any external source (such as a web site or a user)
 using the steps specified in Section 3.1 to obtain a valid WebSocket
 URI, but MUST NOT attempt to connect with such an unparsed URI, and
 instead only use the parsed version and only if that version is
 considered valid by the criteria above.

Fette Expires August 29, 2011 [Page 15]

Internet-Draft The WebSocket protocol February 2011

4. Data Framing

4.1. Overview

 In the WebSocket protocol, data is transmitted using a sequence of
 frames. Frames sent from the client to the server are masked to
 avoid confusing network intermediaries, such as intercepting proxies.
 Frames sent from the server to the client are not masked.

 The base framing protocol defines a frame type with an opcode, a
 payload length, and designated locations for extension and
 application data, which together define the _payload_ data. Certain
 bits and opcodes are reserved for future expansion of the protocol.
 As such, In the absence of extensions negotiated during the opening
 handshake (Section 5), all reserved bits MUST be 0 and reserved
 opcode values MUST NOT be used.

 A data frame MAY be transmitted by either the client or the server at
 any time after handshake completion and before that endpoint has sent
 a close message (Section 4.5.1).

4.2. Client-to-Server Masking

 The client MUST mask all frames sent to the server.

 The masking-key is contained completely within the frame.

 The masking-key is a 32-bit value chosen at random by the client.
 The masking-key MUST be derived from a strong source of entropy, and
 the masking-key for a given frame MUST NOT make it simple for a
 server to predict the masking-key for a subsequent frame.

 Each masked frame consists of a 32-bit masking-key followed by
 masked-data:

 masked-frame = masking-key masked-data
 masking-key = 4full-octet
 masked-data = *full-octet
 full-octet = %x00-FF

 The masked-data is the clear-text frame "encrypted" using a simple
 XOR cipher as follows.

 Octet i of the masked-data is the XOR of octet i of the clear text
 frame with octet i modulo 4 of the masking-key:

Fette Expires August 29, 2011 [Page 16]

Internet-Draft The WebSocket protocol February 2011

 j = i MOD 4
 masked-octet-i = clear-text-octet-i XOR octet-j-of-masking-key

 When preparing a masked-frame, the client MUST pick a fresh masking-
 key uniformly at random from the set of allowed 32-bit values. The
 unpredictability of the masking-nonce is essential to prevent the
 author of malicious application data from selecting the bytes that
 appear on the wire.

4.3. Base Framing Protocol

 This wire format for the data transfer part is described by the ABNF
 given in detail in this section. A high level overview of the
 framing is given in the following figure. [RFC5234]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-------+-+-------------+-------------------------------+
 |F|R|R|R| opcode|R| Payload len | Extended payload length |
 |I|S|S|S| (4) |S| (7) | (16/63) |
 |N|V|V|V| |V| | (if payload len==126/127) |
 | |1|2|3| |4| | |
 +-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +
 | Extended payload length continued, if payload len == 127 |
 + - - - - - - - - - - - - - - - +-------------------------------+
 | | Extension data |
 +-------------------------------+ - - - - - - - - - - - - - - - +
 : :
 +---+
 : Application data :
 +---+

 FIN: 1 bit

 Indicates that this is the final fragment in a message. The first
 fragment may also be the final fragment.

 RSV1, RSV2, RSV3, RSV4: 1 bit each

 Must be 0 unless an extension is negotiated which defines meanings
 for non-zero values

 Opcode: 4 bits

 Defines the interpretation of the payload data

Fette Expires August 29, 2011 [Page 17]

Internet-Draft The WebSocket protocol February 2011

 Payload length: 7 bits

 The length of the payload: if 0-125, that is the payload length.
 If 126, the following 2 bytes interpreted as a 16 bit unsigned
 integer are the payload length. If 127, the following 8 bytes
 interpreted as a 64-bit unsigned integer (the high bit must be 0)
 are the payload length. Multibyte length quantities are expressed
 in network byte order. The payload length is the length of the
 Extension data + the length of the Application Data. The length
 of the Extension data may be zero, in which case the Payload
 length is the length of the Application data.

 Extension data: n bytes

 The extension data is 0 bytes unless there is a reserved op-code
 or reserved bit present in the frame which indicates an extension
 has been negotiated. Any extension MUST specify the length of the
 extension data, or how that length may be calculated, and its use
 MUST be negotiated during the handshake. If present, the
 extension data is included in the total payload length.

 Application data: n bytes

 Arbitrary application data, taking up the remainder of the frame
 after any extension data. The length of the Application data is
 equal to the payload length minus the length of the Extension
 data.

 The base framing protocol is formally defined by the following ABNF
 [RFC5234]:

Fette Expires August 29, 2011 [Page 18]

Internet-Draft The WebSocket protocol February 2011

 ws-frame = frame-fin
 frame-rsv1
 frame-rsv2
 frame-rsv3
 frame-opcode
 frame-rsv4
 frame-length
 frame-extension
 application-data;

 frame-fin = %x0 ; more frames of this message follow
 / %x1 ; final frame of message

 frame-rsv1 = %x0 ; 1 bit, must be 0

 frame-rsv2 = %x0 ; 1 bit, must be 0

 frame-rsv3 = %x0 ; 1 bit, must be 0

 frame-opcode = %x0 ; continuation frame
 / %x1 ; connection close
 / %x2 ; ping
 / %x3 ; pong
 / %x4 ; text frame
 / %x5 ; binary frame
 / %x6-F ; reserved

 frame-rsv4 = %x0 ; 1 bit, must be 0

 frame-length = %x00-7D
 / %x7E frame-length-16
 / %x7F frame-length-63

 frame-length-16 = %x0000-FFFF

 frame-length-63 = %x0000000000000000-7FFFFFFFFFFFFFFF

 frame-extension = *(%x00-FF) ; to be defined later

 application-data = *(%x00-FF)

4.4. Fragmentation

 The primary purpose of fragmentation is to allow sending a message
 that is of unknown size when the message is started without having to
 buffer that message. If messages couldn’t be fragmented, then an
 endpoint would have to buffer the entire message so its length could
 be counted before first byte is sent. With fragmentation, a server

Fette Expires August 29, 2011 [Page 19]

Internet-Draft The WebSocket protocol February 2011

 or intermediary may choose a reasonable size buffer, and when the
 buffer is full write a fragment to the network.

 A secondary use-case for fragmentation is for multiplexing, where it
 is not desirable for a large message on one logical channel to
 monopolize the output channel, so the MUX needs to be free to split
 the message into smaller fragments to better share the output
 channel.

 The following rules apply to fragmentation:

 o An unfragmented message consists of a single frame with the FIN
 bit set and an opcode other than 0.

 o A fragmented message consists of a single frame with the FIN bit
 clear and an opcode other than 0, followed by zero or more frames
 with the FIN bit clear and the opcode set to 0, and terminated by
 a single frame with the FIN bit set and an opcode of 0. Its
 content is the concatenation of the application data from each of
 those frames in order. As an example, for a text message sent as
 three fragments, the first fragment would have an opcode of 0x4
 and a FIN bit clear, the second fragment would have an opcode of
 0x0 and a FIN bit clear, and the third fragment would have an
 opcode of 0x0 and a FIN bit that is set.

 o Control frames MAY be injected in the middle of a fragmented
 message. Control frames themselves MUST NOT be fragmented. _Note:
 if control frames could not be interjected, the latency of a ping,
 for example, would be very long if behind a large message. As
 such, an endpoint MUST be capable of handling control frames in
 the middle of a fragmented message._

 o A sender MAY create fragments of any size for non control
 messages.

 o Clients and servers MUST support receiving both fragmented and
 unfragmented messages.

 o An intermediary MAY change the fragmentation of a message if the
 message uses only opcode and reserved bit values known to the
 intermediary.

 o As a consequence of these rules, all fragments of a message are of
 the same type, as set by the first fragment’s opcode. Since
 Control frames cannot be fragmented, the type for all fragments in
 a message MUST be either text or binary, or one of the reserved
 opcodes.

Fette Expires August 29, 2011 [Page 20]

Internet-Draft The WebSocket protocol February 2011

4.5. Control Frames

 Control frames have opcodes of 0x01 (Close), 0x02 (Ping), or 0x03
 (Pong). Control frames are used to communicate state about the
 websocket. Control frames can be interjected in the middle of a
 fragmented message.

 All control frames MUST be 125 bytes or less in length and MUST NOT
 be fragmented.

4.5.1. Close

 The Close message contains an opcode of 0x01.

 The Close message MAY contain a body (the "application data" portion
 of the frame) that indicates a reason for closing, such as an
 endpoint shutting down, an endpoint having received a message too
 large, or an endpoint having received a message that does not conform
 to the format expected by the other endpoint. If there is a body,
 the first two bytes of the body MUST be a 2-byte integer (in network
 byte order) representing a status code defined in Section 7.4.
 Following the 2-byte integer the body MAY contain UTF-8 encoded data,
 the interpretation of which is not defined by this specification.

 The application MUST NOT send any more data messages after sending a
 close message.

 If an endpoint receives a Close message and that endpoint did not
 previously send a Close message, the endpoint MUST send a Close
 message in response. It SHOULD do so as soon as is practical.

 After both sending and receiving a close message, an endpoint
 considers the websocket connection closed, and SHOULD close the
 underlying TCP connection.

 If a client and server both send a Close message at the same time,
 both endpoints will have sent and received a Close message and should
 consider the websocket connection closed and close the underlying TCP
 connection.

4.5.2. Ping

 The Ping message contains an opcode of 0x02.

 Upon receipt of a Ping message, an endpoint MUST send a Pong message
 in response. It SHOULD do so as soon as is practical. The message
 bodies of the Ping and Pong MUST be the same.

Fette Expires August 29, 2011 [Page 21]

Internet-Draft The WebSocket protocol February 2011

4.5.3. Pong

 The Pong message contains an opcode of 0x03.

 Upon receipt of a Ping message, an endpoint MUST send a Pong message
 in response. It SHOULD do so as soon as is practical. The message
 bodies of the Ping and Pong MUST be the same. A Pong is issued only
 in response to the most recent Ping.

4.6. Data Frames

 All frame types not listed in Section 4.5 are data frames, which
 transport application-layer data. The opcode determines the
 interpretation of the application data:

 Text

 The payload data is text data encoded as UTF-8.

 Binary

 The payload data is arbitrary binary data whose interpretation is
 solely up to the application layer.

4.7. Examples

 This section is non-normative.

 o A single-frame text message

 * 0x84 0x05 0x48 0x65 0x6c 0x6c 0x6f (contains "Hello")

 o A fragmented text message

 * 0x04 0x03 0x48 0x65 0x6c (contains "Hel")

 * 0x80 0x02 0x6c 0x6f (contains "lo")

 o Ping request and response

 * 0x82 0x05 0x48 0x65 0x6c 0x6c 0x6f (contains a body of "Hello",
 but the contents of the body are arbitrary)

 * 0x83 0x05 0x48 0x65 0x6c 0x6c 0x6f (contains a body of "Hello",
 matching the body of the ping)

Fette Expires August 29, 2011 [Page 22]

Internet-Draft The WebSocket protocol February 2011

 o 256 bytes binary message in a single frame

 * 0x85 0x7E 0x0100 [256 bytes of binary data]

 o 64KiB binary message in a single frame

 * 0x85 0x7F 0x0000000000010000 [65536 bytes of binary data]

4.8. Extensibility

 The protocol is designed to allow for extensions, which will add
 capabilities to the base protocols. The endpoints of a connection
 MUST negotiate the use of any extensions during the handshake. This
 specification provides opcodes 0x6 through 0xF, the extension data
 field, and the frame-rsv1, frame-rsv2, frame-rsv3, and frame-rsv4
 bits of the frame header for use by extensions. The negotiation of
 extensions is discussed in further detail in Section 8.1. Below are
 some anticipated uses of extensions. This list is neither complete
 nor proscriptive.

 o Extension data may be placed in the payload before the application
 data.

 o Reserved bits can be allocated for per-frame needs.

 o Reserved opcode values can be defined.

 o Reserved bits can be allocated to the opcode field if more opcode
 values are needed.

 o A reserved bit or an "extension" opcode can be defined which
 allocates additional bits out of the payload area to define larger
 opcodes or more per-frame bits.

Fette Expires August 29, 2011 [Page 23]

Internet-Draft The WebSocket protocol February 2011

5. Opening Handshake

5.1. Client Requirements

 User agents running in controlled environments, e.g. browsers on
 mobile handsets tied to specific carriers, may offload the management
 of the connection to another agent on the network. In such a
 situation, the user agent for the purposes of conformance is
 considered to include both the handset software and any such agents.

 When the user agent is to *establish a WebSocket connection* to a
 WebSocket URI /uri/, it must meet the following requirements. In the
 following text, we will use terms from Section 3 such as "/host/" and
 "/secure/ flag" as defined in that section.

 1. The WebSocket URI and its components MUST be valid according to
 Section 3.3. If any of the requirements are not met, the client
 MUST fail the WebSocket connection and abort these steps.

 2. If the user agent already has a WebSocket connection to the
 remote host (IP address) identified by /host/, even if known by
 another name, the user agent MUST wait until that connection has
 been established or for that connection to have failed. There
 MUST be no more than one connection in a CONNECTING state. If
 multiple connections to the same IP address are attempted
 simultaneously, the user agent MUST serialize them so that there
 is no more than one connection at a time running through the
 following steps.

 If the user agent cannot determine the IP address of the remote
 host (for example because all communication is being done through
 a proxy server that performs DNS queries itself), then the user
 agent MUST assume for the purposes of this step that each host
 name refers to a distinct remote host, but should instead limit
 the total number of simultaneous connections that are not
 established to a reasonably low number (e.g., in a Web browser,
 to the number of tabs the user has open).

 NOTE: This makes it harder for a script to perform a denial of
 service attack by just opening a large number of WebSocket
 connections to a remote host. A server can further reduce the
 load on itself when attacked by making use of this by pausing
 before closing the connection, as that will reduce the rate at
 which the client reconnects.

 NOTE: There is no limit to the number of established WebSocket
 connections a user agent can have with a single remote host.
 Servers can refuse to connect users with an excessive number of

Fette Expires August 29, 2011 [Page 24]

Internet-Draft The WebSocket protocol February 2011

 connections, or disconnect resource-hogging users when suffering
 high load.

 3. _Proxy Usage_: If the user agent is configured to use a proxy
 when using the WebSocket protocol to connect to host /host/
 and/or port /port/, then the user agent SHOULD connect to that
 proxy and ask it to open a TCP connection to the host given by
 /host/ and the port given by /port/.

 EXAMPLE: For example, if the user agent uses an HTTP proxy for
 all traffic, then if it was to try to connect to port 80 on
 server example.com, it might send the following lines to the
 proxy server:

 CONNECT example.com:80 HTTP/1.1
 Host: example.com

 If there was a password, the connection might look like:

 CONNECT example.com:80 HTTP/1.1
 Host: example.com
 Proxy-authorization: Basic ZWRuYW1vZGU6bm9jYXBlcyE=

 If the user agent is not configured to use a proxy, then a direct
 TCP connection SHOULD be opened to the host given by /host/ and
 the port given by /port/.

 NOTE: Implementations that do not expose explicit UI for
 selecting a proxy for WebSocket connections separate from other
 proxies are encouraged to use a SOCKS proxy for WebSocket
 connections, if available, or failing that, to prefer the proxy
 configured for HTTPS connections over the proxy configured for
 HTTP connections.

 For the purpose of proxy autoconfiguration scripts, the URI to
 pass the function must be constructed from /host/, /port/,
 /resource name/, and the /secure/ flag using the steps to
 construct a WebSocket URI.

 NOTE: The WebSocket protocol can be identified in proxy
 autoconfiguration scripts from the scheme ("ws:" for unencrypted
 connections and "wss:" for encrypted connections).

 4. If the connection could not be opened, either because a direct
 connection failed or because any proxy used returned an error,
 then the user agent MUST fail the WebSocket connection and abort

Fette Expires August 29, 2011 [Page 25]

Internet-Draft The WebSocket protocol February 2011

 the connection attempt.

 5. If /secure/ is true, the user agent MUST perform a TLS handshake
 over the connection. If this fails (e.g. the server’s
 certificate could not be verified), then the user agent MUST fail
 the WebSocket connection and abort the connection. Otherwise,
 all further communication on this channel MUST run through the
 encrypted tunnel. [RFC2246]

 User agents MUST use the Server Name Indication extension in the
 TLS handshake. [RFC4366]

 Once a connection to the server has been established (including a
 connection via a proxy or over a TLS-encrypted tunnel), the client
 MUST send a handshake to the server. The handshake consists of an
 HTTP upgrade request, along with a list of required and optional
 headers. The requirements for this handshake are as follows.

 1. The handshake must be a valid HTTP request as specified by
 [RFC2616].

 2. The Method of the request MUST be GET and the HTTP version MUST
 be at least 1.1.

 For example, if the WebSocket URI is "ws://example.com/chat",
 The first line sent SHOULD be "GET /chat HTTP/1.1"

 3. The request must contain a "Request-URI" as part of the GET
 method. This MUST match the /resource name/ Section 3.

 4. The request MUST contain a "Host" header whose value is equal to
 the authority component of the WebSocket URI.

 5. The request MUST contain an "Upgrade" header whose value is
 equal to "websocket".

 6. The request MUST contain a "Connection" header whose value MUST
 include the "Upgrade" token.

 7. The request MUST include a header with the name "Sec-WebSocket-
 Key". The value of this header MUST be a nonce consisting of a
 randomly selected 16-byte value that has been base64-encoded
 [RFC3548]. The nonce MUST be randomly selected randomly for
 each connection.

 NOTE: As an example, if the randomly selected value was the
 sequence of bytes 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09
 0x0a 0x0b 0x0c 0x0d 0x0e 0x0f 0x10, the value of the header

Fette Expires August 29, 2011 [Page 26]

Internet-Draft The WebSocket protocol February 2011

 would be "AQIDBAUGBwgJCgsMDQ4PEC=="

 8. The request MUST include a header with the name "Sec-WebSocket-
 Origin" if the request is coming from a browser client. If the
 connection is from a non-browser client, the request MAY include
 this header if the semantics of that client match the use-case
 described here for browser clients. The value of this header
 MUST be the ASCII serialization of origin of the context in
 which the code establishing the connection is running, and MUST
 be lower-case. The value MUST NOT contain letters in the range
 U+0041 to U+005A (i.e. LATIN CAPITAL LETTER A to LATIN CAPITAL
 LETTER Z) [I-D.ietf-websec-origin].

 As an example, if code is running on www.example.com attempting
 to establish a connection to ww2.example.com, the value of the
 header would be "http://www.example.com".

 9. The request MUST include a header with the name "Sec-WebSocket-
 Version". The value of this header must be 6.

 10. The request MAY include a header with the name "Sec-WebSocket-
 Protocol". If present, this value indicates the subprotocol(s)
 the client wishes to speak. The elements that comprise this
 value MUST be non-empty strings with characters in the range
 U+0021 to U+007E and MUST all be unique. The ABNF for the value
 of this header is 1#(token | quoted-string), where the
 definitions of constructs and rules are as given in [RFC2616].

 11. The request MAY include a header with the name "Sec-WebSocket-
 Extensions". If present, this value indicates the protocol-
 level extension(s) the client wishes to speak. The
 interpretation and format of this header is described in
 Section 8.1.

 12. The request MAY include headers associated with sending cookies,
 as defined by the appropriate specifications
 [I-D.ietf-httpstate-cookie].

 Once the client’s opening handshake has been sent, the client MUST
 wait for a response from the server before sending any further data.
 The client MUST validate the server’s response as follows:

 o If the status code received from the server is not 101, the client
 MUST fail the WebSocket connection.

 o If the response lacks an Upgrade header or the Upgrade header
 contains a value that is not an ASCII case-insensitive match for
 the value "websocket", the client MUST fail the WebSocket

Fette Expires August 29, 2011 [Page 27]

Internet-Draft The WebSocket protocol February 2011

 connection.

 o If the response lacks a Connection header or the Connection header
 contains a value that is not an ASCII case-insensitive match for
 the value "Upgrade", the client MUST fail the WebSocket
 connection.

 o If the response lacks a Sec-WebSocket-Accept header or the Sec-
 WebSocket-Accept contains a value other than the base64-encoded
 SHA-1 of the concatenation of the Sec-WebSocket-Key (as a string,
 not base64-decoded) with the string "258EAFA5-E914-47DA-95CA-
 C5AB0DC85B11", the client MUST fail the WebSocket connection.

 Where the algorithm above requires that a user agent fail the
 WebSocket connection, the user agent may first read an arbitrary
 number of further bytes from the connection (and then discard them)
 before actually *failing the WebSocket connection*. Similarly, if a
 user agent can show that the bytes read from the connection so far
 are such that there is no subsequent sequence of bytes that the
 server can send that would not result in the user agent being
 required to *fail the WebSocket connection*, the user agent may
 immediately *fail the WebSocket connection* without waiting for those
 bytes.

 NOTE: The previous paragraph is intended to make it conforming for
 user agents to implement the algorithm in subtly different ways that
 are equivalent in all ways except that they terminate the connection
 at earlier or later points. For example, it enables an
 implementation to buffer the entire handshake response before
 checking it, or to verify each field as it is received rather than
 collecting all the fields and then checking them as a block.

5.2. Server-side requirements

 This section only applies to servers.

 Servers may offload the management of the connection to other agents
 on the network, for example load balancers and reverse proxies. In
 such a situation, the server for the purposes of conformance is
 considered to include all parts of the server-side infrastructure
 from the first device to terminate the TCP connection all the way to
 the server that processes requests and sends responses.

 EXAMPLE: For example, a data center might have a server that responds
 to WebSocket requests with an appropriate handshake, and then passes
 the connection to another server to actually process the data frames.
 For the purposes of this specification, the "server" is the
 combination of both computers.

Fette Expires August 29, 2011 [Page 28]

Internet-Draft The WebSocket protocol February 2011

5.2.1. Reading the client’s opening handshake

 When a client starts a WebSocket connection, it sends its part of the
 opening handshake. The server must parse at least part of this
 handshake in order to obtain the necessary information to generate
 the server part of the handshake.

 The client handshake consists of the following parts. If the server,
 while reading the handshake, finds that the client did not send a
 handshake that matches the description below, the server must abort
 the WebSocket connection.

 1. An HTTP/1.1 or higher GET request, including a "Request-URI"
 [RFC2616] that should be interpreted as a /resource name/
 Section 3.

 2. A "Host" header containing the server’s authority.

 3. A "Sec-WebSocket-Key" header with a base64-encoded value that,
 when decoded, is 16 bytes in length.

 4. A "Sec-WebSocket-Version" header, with a value of 6.

 5. Optionally, a "Sec-WebSocket-Origin" header. This header is sent
 by all browser clients. A connection attempt lacking this header
 SHOULD NOT be interpreted as coming from a browser client.

 6. Optionally, a "Sec-WebSocket-Protocol header, with a list of
 values indicating which protocols the client would like to speak,
 ordered by preference.

 7. Optionally, a "Sec-WebSocket-Extensions" header, with a list of
 values indicating which extensions the client would like to
 speak. The interpretation of this header is discussed in
 Section 8.1.

 8. Optionally, other headers, such as those used to send cookies to
 a server. Unknown headers MUST be ignored.

5.2.2. Sending the server’s opening handshake

 When a client establishes a WebSocket connection to a server, the
 server must complete the following steps to accept the connection and
 send the server’s opening handshake.

 1. If the server supports encryption, perform a TLS handshake over
 the connection. If this fails (e.g. the client indicated a host
 name in the extended client hello "server_name" extension that

Fette Expires August 29, 2011 [Page 29]

Internet-Draft The WebSocket protocol February 2011

 the server does not host), then close the connection; otherwise,
 all further communication for the connection (including the
 server handshake) must run through the encrypted tunnel.
 [RFC2246]

 2. Establish the following information:

 /origin/
 The |Sec-WebSocket-Origin| header in the client’s handshake
 indicates the origin of the script establishing the
 connection. The origin is serialized to ASCII and converted
 to lowercase. The server MAY use this information as part of
 a determination of whether to accept the incoming connection.

 /key/
 The |Sec-WebSocket-Key| header in the client’s handshake
 includes a base64-encoded value that, if decoded, is 16 bytes
 in length. This (encoded) value is used in the creation of
 the server’s handshake to indicate an acceptance of the
 connection. It is not necessary for the server to base64-
 decode the Sec-WebSocket-Key value.

 /version/
 The |Sec-WebSocket-Version| header in the client’s handshake
 includes the version of the WebSocket protocol the client is
 attempting to communicate with. If this version does not
 match a version understood by the server, the server MUST
 abort the WebSocket connection. The server MAY send a non-200
 response code with a |Sec-WebSocket-Version| header indicating
 the version(s) the server is capable of understanding along
 with this non-200 response code.

 /resource name/
 An identifier for the service provided by the server. If the
 server provides multiple services, then the value should be
 derived from the resource name given in the client’s handshake
 from the Request-URI [RFC2616] of the GET method.

 /subprotocol/
 A (possibly empty) list representing the subprotocol the
 server is ready to use. If the server supports multiple
 subprotocols, then the value should be derived from the
 client’s handshake, specifically by selecting one of the
 values from the "Sec-WebSocket-Protocol" field. The absence
 of such a field is equivalent to the null value. The empty
 string is not the same as the null value for these purposes.

Fette Expires August 29, 2011 [Page 30]

Internet-Draft The WebSocket protocol February 2011

 /extensions/
 A (possibly empty) list representing the protocol-level
 extensions the server is ready to use. If the server supports
 multiple extensions, then the value should be derived from the
 client’s handshake, specifically by selecting one or more of
 the values from the "Sec-WebSocket-Extensions" field. The
 absence of such a field is equivalent to the null value. The
 empty string is not the same as the null value for these
 purposes. Extensions not listed by the client MUST NOT be
 listed. The method by which these values should be selected
 and interpreted is discussed in Section 8.1.

 3. If the server chooses to accept the incoming connection, it must
 reply with a valid HTTP response indicating the following.

 1. A 101 response code. Such a response could look like
 "HTTP/1.1 101 Switching Protocols"

 2. A "Sec-WebSocket-Accept" header. The value of this header is
 constructed by concatenating /key/, defined above in
 Paragraph 2 of Section 5.2.2, with the string "258EAFA5-E914-
 47DA-95CA-C5AB0DC85B11", taking the SHA-1 hash of this
 concatenated value to obtain a 20-byte value, and base64-
 encoding this 20-byte hash.

 NOTE: As an example, if the value of the "Sec-WebSocket-Key"
 header in the client’s handshake were
 "dGhlIHNhbXBsZSBub25jZQ==", the server would append the
 string "258EAFA5-E914-47DA-95CA-C5AB0DC85B11" to form the
 string "dGhlIHNhbXBsZSBub25jZQ==258EAFA5-E914-47DA-95CA-
 C5AB0DC85B11". The server would then take the SHA-1 hash of
 this string, giving the value 0xb3 0x7a 0x4f 0x2c 0xc0 0x62
 0x4f 0x16 0x90 0xf6 0x46 0x06 0xcf 0x38 0x59 0x45 0xb2 0xbe
 0xc4 0xea. This value is then base64-encoded, to give the
 value "s3pPLMBiTxaQ9kYGzzhZRbK+xOo=", which would be returned
 in the "Sec-WebSocket-Accept" header.

 3. Optionally, a "Sec-WebSocket-Protocol" header, with a value
 /subprotocol/ as defined in Paragraph 2 of Section 5.2.2.

 4. Optionally, a "Sec-WebSocket-Extensions" header, with a value
 /extensions/ as defined in Paragraph 2 of Section 5.2.2.

 This completes the server’s handshake. If the server finishes these
 steps without aborting the WebSocket connection, and if the client
 does not then fail the WebSocket connection, then the connection is
 established and the server may begin sending and receiving data, as
 described in the next section.

Fette Expires August 29, 2011 [Page 31]

Internet-Draft The WebSocket protocol February 2011

6. Error Handling

6.1. Handling errors in UTF-8 from the server

 When a client is to interpret a byte stream as UTF-8 but finds that
 the byte stream is not in fact a valid UTF-8 stream, then any bytes
 or sequences of bytes that are not valid UTF-8 sequences must be
 interpreted as a U+FFFD REPLACEMENT CHARACTER.

6.2. Handling errors in UTF-8 from the client

 When a server is to interpret a byte stream as UTF-8 but finds that
 the byte stream is not in fact a valid UTF-8 stream, behavior is
 undefined. A server could close the connection, convert invalid byte
 sequences to U+FFFD REPLACEMENT CHARACTERs, store the data verbatim,
 or perform application-specific processing. Subprotocols layered on
 the WebSocket protocol might define specific behavior for servers.

Fette Expires August 29, 2011 [Page 32]

Internet-Draft The WebSocket protocol February 2011

7. Closing the connection

7.1. Definitions

7.1.1. Close the WebSocket Connection

 To _Close the WebSocket Connection_, an endpoint closes the
 underlying TCP connection. An endpoint SHOULD use a method that
 cleanly closes the TCP connection, discarding any trailing bytes that
 may be received. And endpoint MAY close the connection via any means
 available when necessary, such as when under attack.

 As an example of how to obtain a clean closure in C using Berkeley
 sockets, one would call shutdown() with SHUT_WR on the socket, call
 recv() until obtaining a return value of 0 indicating that the peer
 has also performed an orderly shutdown, and finally calling close()
 on the socket.

7.1.2. Start the WebSocket Closing Handshake

 To _start the WebSocket closing handshake_, and endpoint MUST send a
 Close control frame, as described in Section 4.5.1. Upon receiving a
 Close control frame, the other party sends a Close control frame in
 response. Once an endpoint has both sent and received a Close
 control frame, that endpoint should _Close the WebSocket Connection_
 as defined in Section 7.1.1.

7.1.3. The WebSocket Connection Is Closed

 When the underlying TCP connection is closed, it is said that _the
 WebSocket connection is closed_. If the tcp connection was closed
 after the WebSocket closing handshake was completed, the WebSocket
 connection is said to have been closed _cleanly_.

7.1.4. Fail the WebSocket Connection

 Certain algorithms and specifications require a user agent to _fail
 the WebSocket connection_. To do so, the user agent must _Close the
 WebSocket Connection_, and MAY report the problem to the user (which
 would be especially useful for developers) in an appropriate manner.

 Except as indicated above or as specified by the application layer
 (e.g. a script using the WebSocket API), user agents SHOULD NOT close
 the connection.

Fette Expires August 29, 2011 [Page 33]

Internet-Draft The WebSocket protocol February 2011

7.2. Abnormal closures

7.2.1. Client-initiated closure

 Certain algorithms, namely during the initial handshake, require the
 user agent to *fail the WebSocket connection*. To do so, the user
 agent must _Close the WebSocket connection_ as previously defined,
 and may report the problem to the user via an appropriate mechanism
 (which would be especially useful for developers).

 Except as indicated above or as specified by the application layer
 (e.g. a script using the WebSocket API), user agents should not close
 the connection.

7.2.2. Server-initiated closure

 Certain algorithms require or recommend that the server _abort the
 WebSocket connection_ during the opening handshake. To do so, the
 server must simply _close the WebSocket connection_ (Section 7.1.1).

7.3. Normal closure of connections

 Servers MAY close the WebSocket connection whenever desired. User
 agents SHOULD NOT close the WebSocket connection arbitrarily. In
 either case, an endpoint initiates a closure by following the
 procedures to _start the WebSocket closing handshake_
 (Section 7.1.2).

7.4. Status codes

 When closing an established connection (e.g. when sending a Close
 frame, after the handshake has completed), an endpoint MAY indicate a
 reason for closure. The interpretation of this reason by an
 endpoint, and the action an endpoint should take given this reason,
 are left undefined by this specification. This specification defines
 a set of pre-defined status codes, and specifies which ranges may be
 used by extensions, frameworks, and end applications. The status
 code and any associated textual message are optional components of a
 Close frame.

7.4.1. Defined Status Codes

 Endpoints MAY use the following pre-defined status codes when sending
 a Close frame.

Fette Expires August 29, 2011 [Page 34]

Internet-Draft The WebSocket protocol February 2011

 1000

 1000 indicates a normal closure, meaning whatever purpose the
 connection was established for has been fulfilled.

 1001

 1001 indicates that an endpoint is "going away", such as a server
 going down, or a browser having navigated away from a page.

 1002

 1002 indicates that an endpoint is terminating the connection due
 to a protocol error.

 1003

 1003 indicates that an endpoint is terminating the connection
 because it has received a type of data it cannot accept (e.g. an
 endpoint that understands only text data may send this if it
 receives a binary message.)

 1004

 1004 indicates that an endpoint is terminating the connection
 because it has received a message that is too large.

7.4.2. Reserved status code ranges

 0-999

 Status codes in the range 0-999 are not used.

 1000-1999

 Status codes in the range 1000-1999 are reserved for definition by
 this protocol.

 2000-2999

 Status codes in the range 2000-2999 are reserved for use by
 extensions.

 3000-3999

 Status codes in the range 3000-3999 MAY be used by libraries and
 frameworks. The interpretation of these codes is undefined by
 this protocol. End applications MUST NOT use status codes in this

Fette Expires August 29, 2011 [Page 35]

Internet-Draft The WebSocket protocol February 2011

 range.

 4000-4999

 Status codes in the range 4000-4999 MAY be used by application
 code. The interpretaion of these codes is undefined by this
 protocol.

Fette Expires August 29, 2011 [Page 36]

Internet-Draft The WebSocket protocol February 2011

8. Extensions

 WebSocket clients MAY request extensions to this specification, and
 WebSocket servers MAY accept some or all extensions requested by the
 client. A server MUST NOT respond with any extension not requested
 by the client. If extension parameters are included in negotiations
 between the client and the server, those parameters MUST be chosen in
 accordance with the specification of the extension to which the
 parameters apply.

8.1. Negotiating extensions

 A client requests extensions by including a "Sec-WebSocket-
 Extensions" header, which follows the normal rules for HTTP headers
 (see [RFC2616] section 4.2) and the value of the header is defined by
 the following ABNF:

 extension-list = 1#extension
 extension = extension-token *(";" extension-param)
 extension-token = registered-token | private-use-token
 registered-token = token
 private-use-token = "x-" token
 extension-param = token ["=" (token | quoted-string)]

 Note that like other HTTP headers, this header may be split or
 combined across multiple lines. Ergo, the following are equivalent:

 Sec-WebSocket-Extensions: foo
 Sec-WebSocket-Extensions: bar; baz=2

 is exactly equivalent to

 Sec-WebSocket-Extensions: foo, bar; baz=2

 Any extension-token used must either be a registered token
 (registration TBD), or have a prefix of "x-" to indicate a private-
 use token. The parameters supplied with any given extension MUST be
 defined for that extension. Note that the client is only offering to
 use any advertised extensions, and MUST NOT use them unless the
 server accepts the extension.

 Note that the order of extensions is significant. Any interactions
 between multiple extensions MAY be defined in the documents defining
 the extensions. In the absence of such definition, the
 interpretation is that the headers listed by the client in its
 request represent a preference of the headers it wishes to use, with
 the first options listed being most preferable. The extensions
 listed by the server in response represent the extensions actually in

Fette Expires August 29, 2011 [Page 37]

Internet-Draft The WebSocket protocol February 2011

 use. Should the extensions modify the data and/or framing, the order
 of operations on the data should be assumed to be the same as the
 order in which the extensions are listed in the server’s response in
 the opening handshake.

 For example, if there are two extensions "foo" and "bar", if the
 header |Sec-WebSocket-Extensions| sent by the server has the value
 "foo, bar" then operations on the data will be made as
 bar(foo(data)), be those changes to the data itself (such as
 compression) or changes to the framing thay may "stack".

 Non-normative examples of acceptable extension headers:

 Sec-WebSocket-Extensions: deflate-stream
 Sec-WebSocket-Extensions: mux; max-channels=4; flow-control, deflate-strea
m
 Sec-WebSocket-Extensions: x-private-extension

 A server accepts one or more extensions by including a |Sec-
 WebSocket-Extensions| header containing one or more extensions which
 were requested by the client. The interpretation of any extension
 parameters, and what constitutes a valid response by a server to a
 requested set of parameters by a client, will be defined by each such
 extension.

8.2. Known extensions

 Extensions provide a mechanism for implementations to opt-in to
 additional protocol features. This section defines the meaning of
 well-known extensions but implementations may use extensions defined
 separately as well.

8.2.1. Compression

 The registered extension token for this compression extension is
 "deflate-stream".

 The extension does not have any per message extension data and it
 does not define the use of any WebSocket reserved bits or op codes.

 Senders using this extension MUST apply RFC 1951 encodings to all
 bytes of the data stream following the handshake including both data
 and control messages. The data stream MAY include multiple blocks of
 both compressed and uncompressed types as defined by RFC 1951.
 [RFC1951]

 Senders MUST NOT delay the transmission of any portion of a WebSocket
 message because the deflate encoding of the message does not end on a
 byte boundary. The encodings for adjacent messages MAY appear in the

Fette Expires August 29, 2011 [Page 38]

Internet-Draft The WebSocket protocol February 2011

 same byte if no delay in transmission is occurred by doing so.

Fette Expires August 29, 2011 [Page 39]

Internet-Draft The WebSocket protocol February 2011

9. Security considerations

 While this protocol is intended to be used by scripts in Web pages,
 it can also be used directly by hosts. Such hosts are acting on
 their own behalf, and can therefore send fake "Origin" fields,
 misleading the server. Servers should therefore be careful about
 assuming that they are talking directly to scripts from known
 origins, and must consider that they might be accessed in unexpected
 ways. In particular, a server should not trust that any input is
 valid.

 EXAMPLE: For example, if the server uses input as part of SQL
 queries, all input text should be escaped before being passed to the
 SQL server, lest the server be susceptible to SQL injection.

 Servers that are not intended to process input from any Web page but
 only for certain sites should verify the "Origin" field is an origin
 they expect, and should only respond with the corresponding "Sec-
 WebSocket-Origin" if it is an accepted origin. Servers that only
 accept input from one origin can just send back that value in the
 "Sec-WebSocket-Origin" field, without bothering to check the client’s
 value.

 If at any time a server is faced with data that it does not
 understand, or that violates some criteria by which the server
 determines safety of input, or when the server sees a handshake that
 does not correspond to the values the server is expecting (e.g.
 incorrect path or origin), the server should just disconnect. It is
 always safe to disconnect.

 The biggest security risk when sending text data using this protocol
 is sending data using the wrong encoding. If an attacker can trick
 the server into sending data encoded as ISO-8859-1 verbatim (for
 instance), rather than encoded as UTF-8, then the attacker could
 inject arbitrary frames into the data stream.

 In addition to endpoints being the target of attacks via WebSockets,
 other parts of web infrastructure, such as proxies, may be the
 subject of an attack. In particular, an intermediary may interpret a
 WebSocket message from a client as a request, and a message from the
 server as a response to that request. For instance, an attacker
 could get a browser to establish a connection to its server, get the
 browser to send a message that looks to an intermediary like a GET
 request for a common piece of JavaScript on another domain, and send

Fette Expires August 29, 2011 [Page 40]

Internet-Draft The WebSocket protocol February 2011

 back a message that is interpreted as a cacheable response to that
 request, thus poisioning the cache for other users. To prevent this
 attack, messages sent from clients are masked on the wire with a 32-
 bit value, to prevent an attacker from controlling the bits on the
 wire and thus lessen the probability of an attacker being able to
 construct a message that can be misinterpreted by a proxy as a non-
 WebSocket request.

Fette Expires August 29, 2011 [Page 41]

Internet-Draft The WebSocket protocol February 2011

10. IANA considerations

10.1. Registration of ws: scheme

 A |ws:| URI identifies a WebSocket server and resource name.

 URI scheme name.
 ws

 Status.
 Permanent.

 URI scheme syntax.
 In ABNF terms using the terminals from the URI specifications:
 [RFC5234] [RFC3986]

 "ws" ":" hier-part ["?" query]

 The path and query components form the resource name sent to the
 server to identify the kind of service desired. Other components
 have the meanings described in RFC3986.

 URI scheme semantics.
 The only operation for this scheme is to open a connection using
 the WebSocket protocol.

 Encoding considerations.
 Characters in the host component that are excluded by the syntax
 defined above must be converted from Unicode to ASCII by applying
 the IDNA ToASCII algorithm to the Unicode host name, with both the
 AllowUnassigned and UseSTD3ASCIIRules flags set, and using the
 result of this algorithm as the host in the URI. [RFC3490]

 Characters in other components that are excluded by the syntax
 defined above must be converted from Unicode to ASCII by first
 encoding the characters as UTF-8 and then replacing the
 corresponding bytes using their percent-encoded form as defined in
 the URI and IRI specification. [RFC3986] [RFC3987]

 Applications/protocols that use this URI scheme name.
 WebSocket protocol.

 Interoperability considerations.
 None.

Fette Expires August 29, 2011 [Page 42]

Internet-Draft The WebSocket protocol February 2011

 Security considerations.
 See "Security considerations" section above.

 Contact.
 Ian Hickson <ian@hixie.ch>

 Author/Change controller.
 Ian Hickson <ian@hixie.ch>

 References.
 This document.

10.2. Registration of wss: scheme

 A |wss:| URI identifies a WebSocket server and resource name, and
 indicates that traffic over that connection is to be encrypted.

 URI scheme name.
 wss

 Status.
 Permanent.

 URI scheme syntax.
 In ABNF terms using the terminals from the URI specifications:
 [RFC5234] [RFC3986]

 "wss" ":" hier-part ["?" query]

 The path and query components form the resource name sent to the
 server to identify the kind of service desired. Other components
 have the meanings described in RFC3986.

 URI scheme semantics.
 The only operation for this scheme is to open a connection using
 the WebSocket protocol, encrypted using TLS.

 Encoding considerations.
 Characters in the host component that are excluded by the syntax
 defined above must be converted from Unicode to ASCII by applying
 the IDNA ToASCII algorithm to the Unicode host name, with both the
 AllowUnassigned and UseSTD3ASCIIRules flags set, and using the
 result of this algorithm as the host in the URI. [RFC3490]

 Characters in other components that are excluded by the syntax
 defined above must be converted from Unicode to ASCII by first
 encoding the characters as UTF-8 and then replacing the
 corresponding bytes using their percent-encoded form as defined in

Fette Expires August 29, 2011 [Page 43]

Internet-Draft The WebSocket protocol February 2011

 the URI and IRI specification. [RFC3986] [RFC3987]

 Applications/protocols that use this URI scheme name.
 WebSocket protocol over TLS.

 Interoperability considerations.
 None.

 Security considerations.
 See "Security considerations" section above.

 Contact.
 Ian Hickson <ian@hixie.ch>

 Author/Change controller.
 Ian Hickson <ian@hixie.ch>

 References.
 This document.

10.3. Registration of the "WebSocket" HTTP Upgrade keyword

 Name of token.
 WebSocket

 Author/Change controller.
 Ian Hickson <ian@hixie.ch>

 Contact.
 Ian Hickson <ian@hixie.ch>

 References.
 This document.

10.4. Sec-WebSocket-Key

 This section describes a header field for registration in the
 Permanent Message Header Field Registry. [RFC3864]

 Header field name
 Sec-WebSocket-Key

 Applicable protocol
 http

Fette Expires August 29, 2011 [Page 44]

Internet-Draft The WebSocket protocol February 2011

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

 Related information
 None.

 The |Sec-WebSocket-Key| header is used in the WebSocket handshake.
 It is sent from the client to the server to provide part of the
 information used by the server to prove that it received a valid
 WebSocket handshake. This helps ensure that the server does not
 accept connections from non-WebSocket clients (e.g. HTTP clients)
 that are being abused to send data to unsuspecting WebSocket servers.

10.5. Sec-WebSocket-Extensions

 This section describes a header field for registration in the
 Permanent Message Header Field Registry. [RFC3864]

 Header field name
 Sec-WebSocket-Extensions

 Applicable protocol
 http

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

 Related information
 None.

 The |Sec-WebSocket-Extensions| header is used in the WebSocket
 handshake. It is initially sent from the client to the server, and
 then subsequently sent from the servver to the client, to agree on a
 set of protocol-level extensions to use during the connection.

Fette Expires August 29, 2011 [Page 45]

Internet-Draft The WebSocket protocol February 2011

10.6. Sec-WebSocket-Accept

 This section describes a header field for registration in the
 Permanent Message Header Field Registry. [RFC3864]

 Header field name
 Sec-WebSocket-Accept

 Applicable protocol
 http

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

 Related information
 None.

 The |Sec-WebSocket-Accept| header is used in the WebSocket handshake.
 It is sent from the server to the client to confirm that the server
 is willing to initiate the connection.

10.7. Sec-WebSocket-Origin

 This section describes a header field for registration in the
 Permanent Message Header Field Registry. [RFC3864]

 Header field name
 Sec-WebSocket-Origin

 Applicable protocol
 http

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

Fette Expires August 29, 2011 [Page 46]

Internet-Draft The WebSocket protocol February 2011

 Related information
 None.

 The |Sec-WebSocket-Origin| header is used in the WebSocket handshake.
 It is sent from the server to the client to confirm the origin of the
 script that opened the connection. This enables user agents to
 verify that the server is willing to serve the script that opened the
 connection.

10.8. Sec-WebSocket-Protocol

 This section describes a header field for registration in the
 Permanent Message Header Field Registry. [RFC3864]

 Header field name
 Sec-WebSocket-Protocol

 Applicable protocol
 http

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

 Related information
 None.

 The |Sec-WebSocket-Protocol| header is used in the WebSocket
 handshake. It is sent from the client to the server and back from
 the server to the client to confirm the subprotocol of the
 connection. This enables scripts to both select a subprotocol and be
 sure that the server agreed to serve that subprotocol.

10.9. Sec-WebSocket-Version

 This section describes a header field for registration in the
 Permanent Message Header Field Registry. [RFC3864]

 Header field name
 Sec-WebSocket-Version

Fette Expires August 29, 2011 [Page 47]

Internet-Draft The WebSocket protocol February 2011

 Applicable protocol
 http

 Status
 reserved; do not use outside WebSocket handshake

 Author/Change controller
 IETF

 Specification document(s)
 This document is the relevant specification.

 Related information
 None.

 The |Sec-WebSocket-Version| header is used in the WebSocket
 handshake. It is sent from the client to the server to indicate the
 protocol version of the connection. This enables servers to
 correctly interpret the handshake and subsequent data being sent from
 the data, and close the connection if the server cannot interpret
 that data in a safe manner.

Fette Expires August 29, 2011 [Page 48]

Internet-Draft The WebSocket protocol February 2011

11. Using the WebSocket protocol from other specifications

 The WebSocket protocol is intended to be used by another
 specification to provide a generic mechanism for dynamic author-
 defined content, e.g. in a specification defining a scripted API.

 Such a specification first needs to "establish a WebSocket
 connection", providing that algorithm with:

 o The destination, consisting of a /host/ and a /port/.

 o A /resource name/, which allows for multiple services to be
 identified at one host and port.

 o A /secure/ flag, which is true if the connection is to be
 encrypted, and false otherwise.

 o An ASCII serialization of an origin that is being made responsible
 for the connection. [I-D.ietf-websec-origin]

 o Optionally a string identifying a protocol that is to be layered
 over the WebSocket connection.

 The /host/, /port/, /resource name/, and /secure/ flag are usually
 obtained from a URI using the steps to parse a WebSocket URI’s
 components. These steps fail if the URI does not specify a
 WebSocket.

 If a connection can be established, then it is said that the
 "WebSocket connection is established".

 If at any time the connection is to be closed, then the specification
 needs to use the "close the WebSocket connection" algorithm.

 When the connection is closed, for any reason including failure to
 establish the connection in the first place, it is said that the
 "WebSocket connection is closed".

 While a connection is open, the specification will need to handle the
 cases when "a WebSocket message has been received" with text /data/.

 To send some text /data/ to an open connection, the specification
 needs to "send /data/ using the WebSocket".

Fette Expires August 29, 2011 [Page 49]

Internet-Draft The WebSocket protocol February 2011

12. Acknowledgements

 Special thanks are due to Ian Hickson, who was the original author
 and editor of this protocol. The initial design of this
 specification benefitted from the participation of many people in the
 WHATWG and WHATWG mailing list. Contributions to that specification
 are not tracked by section, but a list of all who contributed to that
 specification is given in the WHATWG HTML specification at
 http://whatwg.org/html5.

 Special thanks also to John Tamplin for providing a significant
 amount of text for the Data Framing section of this specification.

 Special thanks also to Adam Barth for providing a significant amount
 of text and background research for the Data Masking section of this
 specification.

Fette Expires August 29, 2011 [Page 50]

Internet-Draft The WebSocket protocol February 2011

13. Appendix: List of Changes

 This section is not normative. This section was added at the request
 of the chairs to help track changes between versions. This section
 will be removed from the final version of this document.

13.1. Changes from -05 to -06

 Two major areas were changed in this draft. The closing handshake
 was clarified and re-written to add in terminology matching the API
 specification. The close frame was given an optional status code to
 indicate closure reason, and the notion of a body indicating which
 side initiated the close removed. Aside from this, many areas were
 clarified in areas previously ambiguous, though the meaning should
 remain consistent with the intent of previous drafts. Certain other
 material changes that are not as large as those previously mentioned
 are listed below, though for a complete list readers are reminded
 that a tool is available to diff two versions at
 http://tools.ietf.org/tools/rfcdiff/. The list below is my attempt
 at a changelog, not an authoritative guarantee, plese use the diff
 tool for a complete list.

 o Clarified that Sec-WebSocket-Origin is optional for non-browser
 clients.

 o Clarified the semantics of the closing handshake to be that the
 connection is closed when an endpoint has both sent and received a
 close frame.

 o Changed text around final HTTP responses and the WebSocket
 handshake.

 o Removed Sec-WebSocket-Nonce

 o Attempted to convert use of URL to URI terminology. (Ticket 41)

 o Attempted to resolve Ticket 42 re: HTML spec reference.

 o Edited potentially misleadin text around the word "even" in
 Section 1.6 and what applied to XHR vs more broadly.

 o Removed non-material text from 1.8 about establishing a
 connection.

 o Clarified text in the section about fragmentation (4.4). No
 material changes, clarification only.

Fette Expires August 29, 2011 [Page 51]

Internet-Draft The WebSocket protocol February 2011

 o Clarified that control frames (4.5) may be interjected in the
 middle of a fragmented message.

 o Clarified what was meant by the body of a close frame.

 o Clarified the intent in 5.1 that there be only one connection in
 CONNECTING state.

 o Cleaned 1.5 up to note that compression was already introduced in
 the spec, left in multiplexing as a future definition.

 o Randomly selected randomly - typo fix.

 o Added a change log in the appendix.

 o Included in security considerations a description of the attack
 presented by Adam Barth.

 o Changed some referneces from Web-Socket to WebSocket

 o Clarified in 3.1 that only ws and wss are valid options, and that
 other schemes should result in a failure.

 o Various cleanups around terminology of "host", "endpoint", and
 "user agent".

 o Defined status codes and reserved ranges for close frames.

 o Added text that a TCP connection should be shut down cleanly.

 o Clarified whether the upgrade header exactly equaled upgrade or
 contained an upgrade token.

Fette Expires August 29, 2011 [Page 52]

Internet-Draft The WebSocket protocol February 2011

14. Normative References

 [ANSI.X3-4.1986]
 American National Standards Institute, "Coded Character
 Set - 7-bit American Standard Code for Information
 Interchange", ANSI X3.4, 1986.

 [FIPS.180-2.2002]
 National Institute of Standards and Technology, "Secure
 Hash Standard", FIPS PUB 180-2, August 2002, <http://
 csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf>.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, May 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
 RFC 2246, January 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3490] Faltstrom, P., Hoffman, P., and A. Costello,
 "Internationalizing Domain Names in Applications (IDNA)",
 RFC 3490, March 2003.

 [RFC3548] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 3548, July 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 September 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, January 2005.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)

Fette Expires August 29, 2011 [Page 53]

Internet-Draft The WebSocket protocol February 2011

 Extensions", RFC 4366, April 2006.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [I-D.ietf-httpstate-cookie]
 Barth, A., "HTTP State Management Mechanism",
 draft-ietf-httpstate-cookie-20 (work in progress),
 December 2010.

 [I-D.ietf-websec-origin]
 Barth, A., "The Web Origin Concept",
 draft-ietf-websec-origin-00 (work in progress),
 December 2010.

 [WSAPI] Hickson, I., "The Web Sockets API", August 2010,
 <http://dev.w3.org/html5/websockets/>.

Fette Expires August 29, 2011 [Page 54]

Internet-Draft The WebSocket protocol February 2011

Author’s Address

 Ian Fette
 Google, Inc.

 Email: ifette+ietf@google.com
 URI: http://www.ianfette.com/

Fette Expires August 29, 2011 [Page 55]

