HyBi Wbrking G oup |. Fette
I nternet-Draft Googl e, Inc
I ntended status: Standards Track February 25, 2011
Expi res: August 29, 2011

The WebSocket protoco
draft-ietf-hybi-thewebsocket protocol - 06

Abstract

The WebSocket protocol enables two-way communication between a user
agent running untrusted code running in a controlled environnment to a
renote host that has opted-in to comuni cations fromthat code. The
security nodel used for this is the Oigin-based security node
commonly used by Web browsers. The protocol consists of an initial
handshake fol |l owed by basic nessage fram ng, |ayered over TCP. The
goal of this technology is to provide a nechani smfor browser-based
applications that need two-way conmmuni cati on with servers that does
not rely on opening nultiple HTTP connections (e.g. using
XMLHt t pRequest or <iframe>s and | ong polling).

Pl ease send feedback to the hybi @etf.org nmailing |ist.
Status of this Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
wor ki ng docunments as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”
This Internet-Draft will expire on August 29, 2011

Copyright Notice

Copyright (c) 2011 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’s Lega
Provisions Relating to | ETF Docunents

Fette Expi res August 29, 2011 [Page 1]

Internet-Draft The WebSocket protoco

(http://trustee.ietf.org/license-info)
publication of this docunent.
careful ly,
to this docunent.

February 2011

in effect on the date of

Pl ease revi ew t hese documents

as they describe your rights and restrictions with respect
Code Conponents extracted fromthis docunent nust

include Sinplified BSD License text as described in Section 4.e of

the Trust Legal

described in the Sinplified BSD License.

Tabl e of Contents

1.

Fette

ol o el o

N

www

rArABML

bl

C}h)k=n1UIUINIA{QCD~JG>b-b-b(ﬂJ>UJh>H
NEI N NokAbhobowh

I ntroduction .

1 Background . .
2 Pr ot ocol overview

3 Openi ng handshake

4. O osing handshake

5. Design phil osophy

6 Security nodel . .

7 Rel ationship to TCP and HTTP

8 Establ i shing a connection . .

9. Subprotocols using the VebSocket protoco
Conf ormance requi renents . . Co

.1. Term nol ogy

WebSocket URI s

.1. Parsing VEbSoeket URIS :
.2. Constructing WebSocket URIs
.3. Valid WbSocket URIs

Data Framing .
Overvi ew . . e
Client-to- Server Maski ng .
Base Frani ng Protocol
Fragment ati on
Control Frames .
.1. Cdose
.2. Ping .
.3. Pong .
Dat a Franes
Exanples . . .
Extensrbrlrty
enrng Handshake
Client Requirenents
Server-side requirenents .

(2N e

. 2.
. 2.
ror Handling .

Handling errors |n UTF 8 fron1the server
Handling errors in UTF-8 fromthe client

0si ng the connection

Expi res August 29, 2011

1. Reading the client’s openrng handshake
2. Sending the server’s openi ng handshake
r

Provi sions and are provided wi thout warranty as

Internet-Draft The WebSocket protocol February 2011

0.

10.
10.
10.
10.
10.
10.
10.
10.

10.

1
7
7
7
7
2
7
7.
. 3.
4
7.
7.
Ex
1
2

4.
4.
t

PREREe

NN

Definitions . . .

1 Cl ose the V‘ébSocket Oonnectl on . . .
2 Start the WebSocket C osing Handshake
3. The WebSocket Connection Is Cl osed .
4 Fail the WebSocket Connection
Abnormal cl osures .

1 Cient-initiated Closure.

2. Server-initiated closure .

Nor mal cl osure of connections

St atus codes . . .

1. Defined Stat us Codes .

2. Reserved status code ranges
ensi ons .

Negoti ati ng ext ensi ons .
Known ext ensions .

8.2.1. Conpression
Security considerations
| ANA consi derations

©9°>'FD$”PP°!\’!‘

Regi stration of ws: schene .
Regi stration of wss: schene

Regi stration of the "V‘ébSockei I-rrTP Upérade kei/w.ord

Sec- WebSocket - Key .o
Sec- WebSocket - Ext ensi ons .
Sec- WebSocket - Accept

Sec- WebSocket-Origin .
Sec- WbSocket - Pr ot ocol
Sec- WbSocket - Ver si on

11. USI ng the WebSocket protocol from other specifications .
12. Acknow edgenents . . .
13. Appendi x: List of Changes .
13.1. Changes from-05 to -06
14. Normative References . .
Aut hor’ s Address .

Fette

Expi res August 29, 2011

33
33
33
33
33
34
34
34
34
34
34
35
37
37
38
38
40
42
42
43
44
44
45
46
46
47
47
49
50
51
51
53
55

[Page 3]

Internet-Draft The WebSocket protocol February 2011

1. Introduction
1.1. Background
_This section is non-nornmative. _

Hi storically, creating an instant nessenger chat client as a Wb
application has required an abuse of HITTP to poll the server for
updat es whil e sending upstreamnotifications as distinct HITP calls.

This results in a variety of problens:

0 The server is forced to use a nunber of different underlying TCP
connections for each client: one for sending information to the
client, and a new one for each incom ng nessage.

o0 The wire protocol has a high overhead, with each client-to-server
message havi ng an HTTP header.

0o The client-side script is forced to maintain a mapping fromthe
out goi ng connections to the incom ng connection to track replies.

A sinmpler solution would be to use a single TCP connection for
traffic in both directions. This is what the WebSocket protoco
provides. Conbined with the WebSocket API, it provides an
alternative to HITP polling for two-way comuni cation froma Wb page
to a renote server. [WBAPI]

The sane technique can be used for a variety of Wb applications:
games, stock tickers, nultiuser applications with sinultaneous
editing, user interfaces exposing server-side services in real tineg,
etc.

1.2. Protocol overview
_This section is non-nornative. _
The protocol has two parts: a handshake, and then the data transfer.
The handshake fromthe client |ooks as follows:
GET /chat HTTP/ 1.1
Host: server. exanpl e.com
Upgr ade: websocket
Connecti on: Upgrade
Sec- WebSocket - Key: dGhl | HN\hbXBsZSBub25j ZQ==

Sec- WbSocket - Origin: http://exanple.com
Sec- WebSocket - Prot ocol : chat, superchat

Fette Expi res August 29, 2011 [Page 4]

Internet-Draft The WebSocket protocol February 2011

Sec- WebSocket - Version: 6
The handshake fromthe server |ooks as foll ows:

HTTP/ 1.1 101 Switching Protocols

Upgr ade: websocket

Connecti on: Upgrade

Sec- WebSocket - Accept: s3pPLMBi Txa@kYGzzhZRbK+x Qo=
Sec- WebSocket - Prot ocol : chat

The leading line fromthe client follows the Request-Line fornat.
The leading line fromthe server follows the Status-Line format. The
Request - Li ne and St atus-Line productions are defined in [RFC2616] .

After the leading line in both cases cone an unordered set of
headers. The neani ng of these headers is specified in Section 5 of
this docunent. Additional headers may al so be present, such as
cookies required to identify the user. The format and parsing of
headers is as defined in [RFC2616] .

Once the client and server have both sent their handshakes, and if
t he handshake was successful, then the data transfer part starts.
This is a two-way comuni cati on channel where each side can

i ndependently fromthe other, send data at will.

Clients and servers, after a successful handshake, transfer data back
and forth in conceptual units referred to in this specification as
"messages”. A nessage is a conplete unit of data at an application
level, with the expectation that nany or nost applications

i mpl ementing this protocol (such as web user agents) provide APIs in
terns of sending and receiving messages. The websocket message does
not necessarily correspond to a particular network |ayer fram ng, as
a fragnented nessage nmay be coal esced, or vice versa, e.g. by an

i ntermedi ary.

Data is sent on the wire in the formof frames that have an

associ ated type. Broadly speaking, there are types for textual data,
which is interpreted as UTF-8 text, binary data (whose interpretation
is left up to the application), and control franmes, which are not
intended to carry data for the application, but instead for protocol -
| evel signaling, such as to signal that the connection should be
closed. This version of the protocol defines six frane types and

| eaves ten reserved for future use.

The WebSocket protocol uses this framing so that specifications that

use the WebSocket protocol can expose such connections using an
event - based nechani sminstead of requiring users of those

Fette Expi res August 29, 2011 [Page 5]

Internet-Draft The WebSocket protocol February 2011

specifications to inplement buffering and piecing together of
messages manual | y.

1.3. Openi ng handshake
_This section is non-normative. _

The openi ng handshake is intended to be conpatible with HITP-based
server-side software and internediaries, so that a single port can be
used by both HTTP clients talking to that server and WbSocket
clients talking to that server. To this end, the WbSocket client’s
handshake is an HTTP Upgrade request:

GET /chat HTTP/ 1.1

Host: server. exanpl e.com

Upgr ade: websocket

Connecti on: Upgrade

Sec- WebSocket - Key: dGhl | HNhbXBsZSBub25j ZQ==
Sec- WebSocket - Origin: http://exanpl e. com
Sec- WbSocket - Prot ocol : chat, superchat
Sec- WebSocket - Version: 6

Headers in the handshake are sent by the client in a random order
the order is not neaningful

Addi tional headers are used to select options in the WbSocket
protocol. Options available in this version are the subprotoco
sel ector, | Sec-WbSocket-Protocol|, and | Cookie|, which can used for
sendi ng cookies to the server (e.g. as an authentication nechanism.
The | Sec- WebSocket - Prot ocol | request-header field can be used to
i ndi cate what subprotocols (application-level protocols |ayered over
the WebSocket protocol) are acceptable to the client. The server
sel ects one of the acceptable protocols and echoes that value in its
handshake to indicate that it has sel ected that protocol

Sec- WebSocket - Prot ocol : chat

The "Request-URI" of the GET nethod [RFC2616] is used to identify the
endpoi nt of the WbSocket connection, both to allow multiple domains
to be served fromone IP address and to allow multiple WbSocket
endpoints to be served by a single server

The client includes the hostnanme in the Host header of its handshake
as per [RFC2616], so that both the client and the server can verify
that they agree on which host is in use.

The | Sec- WebSocket - Origin| header is used to protect against
unaut hori zed cross-origin use of a WebSocket server by scripts using

Fette Expi res August 29, 2011 [Page 6]

Internet-Draft The WebSocket protocol February 2011

the | WebSocket| APl in a Web browser. The server is inforned of the
script origin generating the WbSocket connection request. |f the
server does not wish to accept connections fromthis origin, it can
choose to abort the connection. This header is sent by browser
clients, for non-browser clients this header may be sent if it makes
sense in the context of those clients.

Finally, the server has to prove to the client that it received the
client’s WbSocket handshake, so that the server doesn’t accept
connections that are not WebSocket connections. This prevents an
attacker fromtricking a WebSocket server by sending it carefully-
crafted packets using | XM.Htt pRequest| or a |forn]{ subm ssion

To prove that the handshake was received, the server has to take two
pi eces of information and conbine themto forma response. The first
pi ece of information cones fromthe | Sec- WbSocket - Key| header in the
client handshake:

Sec- WebSocket - Key: dGhl | HNhbXBsZSBub25j zQ==

For this header, the server has to take the value (as present in the
header, e.g. the base64-encoded version), and concatenate this with
the GUI D "258EAFA5- E914- 47DA- 95CA- C5ABODC85B11" in string form which
is unlikely to be used by network endpoints that do not understand
the WebSocket protocol. A SHA-1 hash, base64-encoded, of this
concatenation is then returned in the server’s handshake

[FI PS. 180- 2. 2002] .

Concretely, if as in the exanpl e above, header | Sec-WbSocket - Key|

had the val ue "dGhl | HNnbXBsZSBub25j ZQ==", the server woul d
concatenate the string "258EAFA5- E914- 47DA- 95CA- C5ABODC85B11" to form
the string "dGhl | HNhbXBsZSBub25j ZQ==258EAFA5- E914- 47DA- 95CA-
C5ABODC85B11". The server would then take the SHA-1 hash of this,
giving the value 0xb3 Ox7a Ox4f 0x2c OxcO 0x62 O0x4f 0x16 0x90 Oxf6
0x46 0x06 Oxcf 0x38 0x59 0x45 Oxb2 Oxbe Oxc4 Oxea. This value is

t hen base64-encoded, to give the val ue "s3pPLMBi Txa@kYGzzhZRbK+
x0o=". This value would then be echoed in the header | Sec-WbSocket -
Accept | .

The handshake fromthe server is nmuch sinpler than the client
handshake. The first line is an HITP Status-Line, with the status
code 101:

HTTP/ 1.1 101 Switchi ng Protocols

Any status code other than 101 MJUST be treated as a failure if
semantics of that status code are not defined in the context of a

Fette Expi res August 29, 2011 [Page 7]

Internet-Draft The WebSocket protocol February 2011

WebSocket connection, and the websocket connection aborted. The
headers foll ow the status code

The | Connection| and | Upgrade| headers conplete the HTTP Upgrade.
The | Sec- WebSocket - Accept| header indicates whether the server is
willing to accept the connection. |f present, this header nust

i nclude a hash of the client’s nonce sent in | Sec- WebSocket - Key|
along with a predefined GU D. Any other value nmust not be
interpreted as an acceptance of the connection by the server

HTTP/ 1.1 101 Switching Protocols

Upgr ade: websocket

Connecti on: Upgrade

Sec- WebSocket - Accept: s3pPLMBi TxaQ@kY&zhZRbK+x Qo=

These fields are checked by the Wb browser when it is acting as a

| WebSocket| client for scripted pages. |f the | Sec-WbSocket - Accept |
val ue does not match the expected value, or if the header is m ssing,
or if the HITP status code is not 101, the connection will not be

est abli shed and WebSockets franes will not be sent.

Option fields can also be included. |In this version of the protocol
the main option field is | Sec- WbSocket - Protocol |, which indicates
the subprotocol that the server has selected. Wb browsers verify
that the server included one of the values as was specified in the

| WebSocket| constructor. A server that speaks nultiple subprotocols
has to nmake sure it selects one based on the client’s handshake and
specifies it in its handshake.

Sec- WebSocket - Prot ocol : chat

The server can al so set cookie-related option fields to _set_
cookies, as in HITP.

1.4. dosing handshake
_This section is non-normative. _
The cl osi ng handshake is far sinpler than the opening handshake.

Ei t her peer can send a control frane with data containing a specified
control sequence to begin the cl osing handshake (detailed in

Section 4.5.1). Upon receiving such a frame, the other peer sends a
close frane in response, if it hasn't already sent one. Upon
receiving that_control frane, the first peer then closes the
connection, safe in the know edge that no further data is
forthconi ng.

Fette Expi res August 29, 2011 [Page 8]

Internet-Draft The WebSocket protocol February 2011

After sending a control franme indicating the connection should be
cl osed, a peer does not send any further data; after receiving a

control franme indicating the connection should be closed, a peer

di scards any further data received.

It is safe for both peers to initiate this handshake sinultaneously.

The cl osi ng handshake is intended to replace the TCP cl osing
handshake (FI N ACK), on the basis that the TCP cl osi ng handshake is
not always reliable end-to-end, especially in the presence of nan-in-
the-m ddl e proxi es and other internediaries.

By sending a close frame and waiting for a close frane in response,
1.5. Design phil osophy
_This section is non-nornmative. _

The WebSocket protocol is designed on the principle that there should
be minimal framing (the only framng that exists is to make the
protocol frane-based instead of stream based, and to support a

di stinction between Unicode text and binary franes). It is expected
that netadata woul d be | ayered on top of WebSocket by the application
| ayer, in the same way that netadata is |layered on top of TCP by the
application layer (HITP)

Conceptual Iy, WebSocket is really just a layer on top of TCP that
adds a Web "origin"-based security nodel for browsers; adds an
addressi ng and protocol naning nechanismto support nultiple services
on one port and multiple host nanes on one | P address; |layers a
fram ng nmechanismon top of TCP to get back to the |IP packet
mechanismthat TCP is built on, but without length linmts; and re-

i mpl ements the cl osi ng handshake in-band. OQher than that, it adds
nothing. Basically it is intended to be as close to just exposing
raw TCP to script as possible given the constraints of the Wb. It’'s
al so designed in such a way that its servers can share a port with
HTTP servers, by having its handshake be a valid HTTP Upgrade
handshake al so.

The protocol is intended to be extensible; future versions wll
likely introduce additional concepts such as nultipl exing.

1.6. Security nodel
_This section is non-normative. _

The WebSocket protocol uses the origin nodel used by Web browsers to
restrict which Web pages can contact a WebSocket server when the

Fette Expi res August 29, 2011 [Page 9]

Internet-Draft The WebSocket protocol February 2011

WebSocket protocol is used froma Wb page. Naturally, when the
WebSocket protocol is used by a dedicated client directly (i.e. not
froma Wb page through a Wb browser), the origin nodel is not
useful, as the client can provide any arbitrary origin string.

This protocol is intended to fail to establish a connection with
servers of pre-existing protocols like SMIP or HTTP, while all ow ng
HTTP servers to opt-in to supporting this protocol if desired. This
is achieved by having a strict and el aborate handshake, and by
limting the data that can be inserted into the connection before the
handshake is finished (thus limting how nuch the server can be

i nfluenced).

It is sinmlarly intended to fail to establish a connection when data
fromother protocols, especially HITP, is sent to a WbSocket server
for exanple as might happen if an HTML |fornl were subnitted to a
WebSocket server. This is primarily achieved by requiring that the
server prove that it read the handshake, which it can only do if the
handshake contains the appropriate parts which thensel ves can only be
sent by a WebSocket handshake. In particular, at the tine of witing
of this specification, fields starting with | Sec-| cannot be set by
an attacker froma Wb browser using only HTM. and JavaScript APls
such as | XMLHt t pRequest | .

1.7. Relationship to TCP and HITP
_This section is non-normative. _

The WebSocket protocol is an independent TCP-based protocol. Its
only relationship to HTTP is that its handshake is interpreted by
HTTP servers as an Upgrade request.

Based on the expert recommendati on of the | ANA, the WebSocket
protocol by default uses port 80 for regul ar WebSocket connections
and port 443 for WbSocket connections tunnel ed over TLS

1.8. Establishing a connection
_This section is non-normative. _

When a connection is to be nade to a port that is shared by an HITP
server (a situation that is quite likely to occur with traffic to
ports 80 and 443), the connection will appear to the HITP server to
be a regular GET request with an Upgrade offer. In relatively sinple
setups with just one I P address and a single server for all traffic
to a single hostnane, this nmight allow a practical way for systens
based on the WebSocket protocol to be deployed. In nore el aborate
setups (e.g. with load balancers and nultiple servers), a dedicated

Fette Expi res August 29, 2011 [Page 10]

Internet-Draft The WebSocket protocol February 2011

set of hosts for WbSocket connections separate fromthe HTTP servers
is probably easier to manage. At the time of witing of this
specification, it should be noted that connections on port 80 and 443
have significantly different success rates, with connections on port
443 being significantly nore |likely to succeed, though this may
change with tine.

1.9. Subprotocols using the WebSocket protoco
_This section is non-normative. _

The client can request that the server use a specific subprotocol by
i ncluding the | Sec- WbSocket-Protocol| field in its handshake. If it
is specified, the server needs to include the same field and one of
the sel ected subprotocol values in its response for the connection to
be established.

These subprotocol nanmes do not need to be registered, but if a
subprotocol is intended to be inplenented by multiple independent
WebSocket servers, potential clashes with the names of subprotocols
defined i ndependently can be avoi ded by using nanes that contain the
domai n nane of the subprotocol’s originator. For exanple, if Exanple
Corporation were to create a Chat subprotocol to be inplenented by
many servers around the Wb, they could nanme it "chat.exanpl e.coni.
If the Exanple Organi zation called their conpeting subprotoco
"exanpl e.org’s chat protocol", then the two subprotocols could be

i npl ement ed by servers sinultaneously, with the server dynamcally
sel ecting which subprotocol to use based on the value sent by the
client.

Subprotocol s can be versioned i n backwards-inconpati bl e ways by
changi ng the subprotocol nane, e.g. going from "bookings. exanpl e. net"
to "v2.bookings. exanpl e. net". These subprotocols wuld be considered
conpl etely separate by WebSocket clients. Backwards-conpatible

versi oning can be inplenented by reusing the same subprotocol string
but carefully designing the actual subprotocol to support this kind
of extensibility.

Fette Expi res August 29, 2011 [Page 11]

Internet-Draft The WebSocket protocol February 2011

2

2

Conf or mance requirenments

Al'l di agranms, exanples, and notes in this specification are non-
normative, as are all sections explicitly marked non-normative.
Everything else in this specification is nornative.

The key words "MJST", "MJST NOT", "REQUI RED', "SHOULD', "SHOULD NOT",
" RECOMVENDED"', "NMAY", and "OPTIONAL" in the normative parts of this
docunent are to be interpreted as described in RFC2119. For
readability, these words do not appear in all uppercase letters in
this specification. [RFC2119]

Requi rements phrased in the inperative as part of algorithms (such as
"strip any | eading space characters" or "return fal se and abort these
steps”) are to be interpreted with the nmeaning of the key word

("must", "should", "

may", etc) used in introducing the algorithm

Conf ormance requirenents phrased as algorithns or specific steps may
be inplemented in any manner, so long as the end result is
equivalent. (In particular, the algorithms defined in this
specification are intended to be easy to follow, and not intended to
be performant.)

| mpl enent ati ons nmay i npose inplenmentation-specific linmts on

ot herwi se unconstrained inputs, e.g. to prevent denial of service
attacks, to guard against running out of nmenory, or to work around
pl atform specific limtations.

The conformance cl asses defined by this specification are user agents
and servers.

1. Term nol ogy

*ASCI | * shall nean the character-encoding schene defined in
[ANSI . X3-4.1986] .

Converting a string to ASCI| | owercase neans replacing al
characters in the range UW+0041 to W005A (i.e. LATIN CAPITAL LETTER
A to LATIN CAPI TAL LETTER Z) with the correspondi ng characters in the
range U+0061 to U+007A (i.e. LATIN SVMALL LETTER A to LATI N SMALL
LETTER 2).

Conparing two strings in an *ASClI| case-insensitive* manner mneans
comparing them exactly, code point for code point, except that the
characters in the range U+0041 to W0O05A (i.e. LATIN CAPITAL LETTER
A to LATIN CAPI TAL LETTER Z) and the correspondi ng characters in the
range U+0061 to W+007A (i.e. LATIN SVMALL LETTER A to LATI N SMALL
LETTER Z) are considered to al so match.

Fette Expi res August 29, 2011 [Page 12]

Internet-Draft The WebSocket protocol February 2011

The term"URI" is used in this section in a manner consistent with
the term nol ogy used in HTM.,, nanely, to denote a string that mi ght
or might not be a valid URl or IRl and to which certain error
handl i ng behaviors will be applied when the string is parsed

[RFC3986]

When an inplenentation is required to _send_ data as part of the
WebSocket protocol, the inplenentation may del ay the actua

transmi ssion arbitrarily, e.g. buffering data so as to send fewer |IP
packets.

Fette Expi res August 29, 2011 [Page 13]

Internet-Draft The WebSocket protocol February 2011

3. WebSocket URIs

3. 1.

Par si ng WebSocket URI's

The steps to *parse a WebSocket URI's conponents* froma string /uri/
are as follows. These steps return either a /host/, a /port/, a
/resource nanme/, and a /secure/ flag, or they fail.

1.

10.

11.

Fette

If the /uri/ string is not an absolute URI, then fail this
algorithm [RFC3986] [RFC3987]

Resolve the /uri/ string using the resolve a Wb address

al gorithm defined by the Wb addresses specification, with the
URI character encoding set to UTF-8. [RFC3629] [RFC3986]

[RFC3987]

NOTE: It doesn't matter what it is resolved relative to, since
we already know it is an absolute URI at this point.

If /uri/ does not have a <schenme> conponent whose val ue, when
converted to ASCII |owercase, is either "ws" or "wss", then fai
this algorithm

If /uri/ has a <fragnent> conponent, then fail this algorithm

If the <scheme> conponent of /uri/ is "ws", set /secure/ to
fal se; otherwise, if the <scheme> conponent is "wss", set
/secure/ to true; otherwise, fail this algorithm

Let /host/ be the value of the <host> conponent of /uri/,
converted to ASCII | owercase

If /uri/ has a <port> conponent, then let /port/ be that
conmponent’s val ue; otherwise, there is no explicit /port/.

If there is no explicit /port/, then: if /secure/ is false, let
/port/ be 80, otherwise let /port/ be 443.

Let /resource nane/ be the value of the <path> conponent (which
m ght be enpty) of /uril/.

If /resource nane/ is the enpty string, set it to a single
character W002F SOLIDUS (/).

If /uri/ has a <query> conponent, then append a single U+003F

QUESTI ON MARK character (?) to /resource nane/, followed by the
val ue of the <query> conponent.

Expi res August 29, 2011 [Page 14]

Internet-Draft The WebSocket protocol February 2011

12. Return /host/, /port/, /resource name/, and /secure/.
3.2. Constructing WebSocket URIs

The steps to *construct a WbSocket URI* froma /host/, a /port/, a
/resource nanme/, and a /secure/ flag, are as foll ows:

1. Let /uri/ be the enpty string.

2. If the /secure/ flag is false, then append the string "ws://" to
furi/. Oherwi se, append the string "wss://" to /uril.

3. Append /host/ to /uril.

4. If the /securel/ flag is false and port is not 80, or if the
/secure/ flag is true and port is not 443, then append the string
":" followed by /port/ to /uri/.

5. Append /resource name/ to /uril/.
6. Return /uri/.
3.3. Valid WbSocket URIs

For a WebSocket URI to be considered valid, the follow ng conditions
MUST hol d.

0 The /host/ nust be ASCll-only (i.e. it nust have been punycode-
encoded already if necessary, and MJST NOT contain any characters
above U+007E)

o0 The /resource nane/ string nust be a non-enpty string of
characters in the range W0021 to WOO7E that starts with a W002F
SCLI DUS character (/).

Any WebSocket URI's not meeting the above criteria are considered
invalid, and a client MJST NOT attenpt to nmake a connection to an
invalid WebSocket URI. A client SHOULD attenpt to parse a UR
obt ai ned from any external source (such as a web site or a user)
using the steps specified in Section 3.1 to obtain a valid WbSocket
URI, but MJST NOT attenpt to connect with such an unparsed URI, and
i nstead only use the parsed version and only if that version is
considered valid by the criteria above.

Fette Expi res August 29, 2011 [Page 15]

Internet-Draft The WebSocket protocol February 2011

4. Data Franming
4.1. Overview

In the WebSocket protocol, data is transmtted using a sequence of
franes. Franmes sent fromthe client to the server are nasked to
avoi d confusing network internmedi aries, such as intercepting proxies.
Frames sent fromthe server to the client are not nasked.

The base frami ng protocol defines a frame type with an opcode, a
payl oad | ength, and designated | ocations for extension and
application data, which together define the payload data. Certain
bits and opcodes are reserved for future expansion of the protocol.
As such, In the absence of extensions negotiated during the opening
handshake (Section 5), all reserved bits MJST be 0 and reserved
opcode val ues MUST NOT be used.

A data frame MAY be transnitted by either the client or the server at
any tine after handshake conpletion and before that endpoi nt has sent
a cl ose nmessage (Section 4.5.1).

4.2. dient-to-Server Msking
The client MUST nask all frames sent to the server
The maski ng-key is contained conpletely within the frane.
The masking-key is a 32-bit value chosen at random by the client.
The maski ng-key MUST be derived froma strong source of entropy, and
t he maski ng-key for a given frame MJUST NOT nmake it sinple for a
server to predict the nasking-key for a subsequent frane.

Each nmasked frame consists of a 32-bit nasking-key foll owed by
masked- dat a:

masked- f r ane maski ng- key masked- dat a

maski ng- key = 4full - octet
masked- dat a = *ful |l -octet
full -octet = 9%00- FF

The masked-data is the clear-text frane "encrypted" using a sinple
XOR ci pher as foll ows.

Octet i of the masked-data is the XOR of octet i of the clear text
frane with octet i nodulo 4 of the nasking-key:

Fette Expi res August 29, 2011 [Page 16]

Internet-Draft The WebSocket protocol February 2011

i MOD 4
clear-text-octet-i XOR octet-j-of-maski ng-key

]
masked- oct et - i

When preparing a masked-frane, the client MJST pick a fresh maski ng-
key uniformy at randomfromthe set of allowed 32-bit values. The
unpredictability of the masking-nonce is essential to prevent the
aut hor of malicious application data fromselecting the bytes that
appear on the wire.

4.3. Base Framing Protoco
This wire format for the data transfer part is described by the ABNF

given in detail in this section. A high |level overview of the
framng is given in the following figure. [RFC5234]

0 1 2 3
01234567890123456789012345678901
B e T T B S +
| FIRI R R opcode| Rl Payload |len | Ext ended payl oad | ength |
IS S|s (4) |9 (7 I _ (16/63) I
| N V] V| V| | V| | (if payload | en==126/127) |
| 11]2]3| | 4] I I
ottt T T T

| Ext ended payl oad |l ength continued, if payload |len == 127

T e +

[[Ext ensi on data [

e T S S 4

T e . +
Application data

o m m e +

FIN. 1 bit

Indicates that this is the final fragment in a nmessage. The first
fragment may also be the final fragnent.

RSV1, RSV2, RSV3, RSV4: 1 bit each

Must be O unless an extension is negotiated which defines neani ngs
for non-zero val ues

Opcode: 4 bits

Defines the interpretation of the payl oad data

Fette Expi res August 29, 2011 [Page 17]

Internet-Draft The WebSocket protocol February 2011

Payl oad I ength: 7 bits

The length of the payload: if 0-125, that is the payload | ength.

If 126, the following 2 bytes interpreted as a 16 bit unsigned
integer are the payload length. |[If 127, the follow ng 8 bytes
interpreted as a 64-bit unsigned integer (the high bit nust be 0)
are the payload length. Miltibyte length quantities are expressed
in network byte order. The payload length is the length of the
Extension data + the Iength of the Application Data. The length
of the Extension data may be zero, in which case the Payl oad
length is the length of the Application data.

Extensi on data: n bytes

The extension data is O bytes unless there is a reserved op-code
or reserved bit present in the frane which indicates an extension
has been negotiated. Any extension MJST specify the length of the
extension data, or how that | ength nay be cal culated, and its use
MUST be negoti ated during the handshake. |If present, the
extension data is included in the total payload |ength.

Application data: n bytes
Arbitrary application data, taking up the remai nder of the frame
after any extension data. The length of the Application data is
equal to the payload length mnus the I ength of the Extension
dat a.

The base franming protocol is fornally defined by the foll owi ng ABNF
[RFC5234] :

Fette Expi res August 29, 2011 [Page 18]

Internet-Draft

4.4,

ws-frane

frame-fin

frame-rsvl
frame-rsv2
frame-rsv3

frane- opcode

frane-rsv4

frame-1ength

frame-1 ength-16
frane-| engt h- 63
franme- ext ensi on
application-data

Fragnent ati on

The WebSocket protoco

= frane-fin
frame-rsvl
frame-rsv2
frame-rsv3
frane- opcode
frame-rsv4
frame-1ength
f r ame- ext ensi on
appl i cati on-dat a;

February 2011

= %0 ; nore frames of this nmessage foll ow
[%1 ; final frame of nessage
= %0 ; 1 bit, nust be 0O

=0 ; 1 bit, nust be 0O

=90 ; 1 bit, nmust be O

= %0 ; continuation franme

| %1 ; connection close

[%2 ; ping

/| %3 ; pong

| %4 ; text frame

[%5 ; binary frame

| 9%6-F ; reserved

= U0 ; 1 bit, nust be 0O

= %00-7D

| 9%&7E frame-Iength-16

/| 9%7F frame-1|ength-63

%0000- FFFF

= 9%0000000000000000- 7FFFFFFFFFFFFFFF

= *(O%00-FF) ;

= *(9%00- FF)

to be defined | ater

The primary purpose of fragnentation is to allow sending a nessage

t hat
buffer that nessage.

i s of unknown size when the nessage is started without having to
I f messages couldn’t be fragnented,

then an

endpoi nt would have to buffer the entire nmessage so its length could

be counted before first byte is sent.

Fette

Expi res August 29, 2011

Wth fragnmentation

a server

[Page 19]

Internet-Draft The WebSocket protocol February 2011

or intermediary may choose a reasonable size buffer, and when the
buffer is full wite a fragment to the network.

A secondary use-case for fragnentation is for nultiplexing, where it
is not desirable for a | arge nessage on one |ogical channel to
nmonopol i ze the output channel, so the MJX needs to be free to split
the message into smaller fragnents to better share the output
channel

The following rules apply to fragnentation

0 An unfragnented nessage consists of a single frane with the FIN
bit set and an opcode ot her than O.

0 A fragnented nmessage consists of a single frane with the FIN bit
cl ear and an opcode other than 0, followed by zero or nore franes
with the FIN bit clear and the opcode set to 0, and term nated by
a single frame with the FIN bit set and an opcode of 0. |Its
content is the concatenation of the application data from each of
those frames in order. As an exanple, for a text nessage sent as
three fragnents, the first fragnment woul d have an opcode of 0x4
and a FIN bit clear, the second fragnment woul d have an opcode of
0x0 and a FIN bit clear, and the third fragnent woul d have an
opcode of 0x0 and a FIN bit that is set.

o Control franes MAY be injected in the mddle of a fragmented
message. Control frames thenselves MUST NOT be fragnented. _Note
if control frames could not be interjected, the latency of a ping,
for exanple, would be very long if behind a | arge nessage. As
such, an endpoi nt MJST be capabl e of handling control frames in
the mddle of a fragnmented nessage. _

0 A sender MAY create fragnents of any size for non contro
nessages.

o Cients and servers MJST support receiving both fragnented and
unfragment ed nessages.

0 An internediary MAY change the fragnentation of a nessage if the
message uses only opcode and reserved bit val ues known to the
i ntermediary.

0 As a consequence of these rules, all fragments of a nmessage are of
the sane type, as set by the first fragment’s opcode. Since
Control frames cannot be fragnmented, the type for all fragnments in
a nmessage MJST be either text or binary, or one of the reserved
opcodes.

Fette Expi res August 29, 2011 [Page 20]

Internet-Draft The WebSocket protocol February 2011

4.5. Control Franes

Control frames have opcodes of 0x01 (O ose), 0x02 (Ping), or 0x03
(Pong). Control franes are used to communi cate state about the
websocket. Control franes can be interjected in the niddle of a
fragment ed nessage

Al'l control frames MJST be 125 bytes or less in I ength and MJST NOT
be fragnented.

4.5.1. dose
The C ose nmessage contai ns an opcode of 0x01

The C ose nessage MAY contain a body (the "application data"™ portion
of the frane) that indicates a reason for closing, such as an
endpoi nt shutting down, an endpoint having received a nessage too

| arge, or an endpoint having received a nessage that does not conform
to the format expected by the other endpoint. |If there is a body,
the first two bytes of the body MIUST be a 2-byte integer (in network
byte order) representing a status code defined in Section 7.4.
Fol I owi ng the 2-byte integer the body MAY contain UTF-8 encoded data
the interpretation of which is not defined by this specification

The applicati on MUST NOT send any nore data nessages after sending a
cl ose nessage.

If an endpoint receives a C ose nessage and that endpoint did not
previously send a Cl ose nessage, the endpoint MIUST send a O ose
message in response. |t SHOULD do so as soon as is practical

After both sending and receiving a cl ose nmessage, an endpoi nt
consi ders the websocket connection closed, and SHOULD cl ose the
under|ying TCP connection

If a client and server both send a C ose nessage at the same tine,
both endpoints will have sent and received a C ose nessage and should
consi der the websocket connection closed and cl ose the underlying TCP
connecti on.

4.5.2. Ping
The Ping nessage contains an opcode of 0x02
Upon recei pt of a Ping nessage, an endpoint MJST send a Pong message

in response. It SHOULD do so as soon as is practical. The nessage
bodi es of the Ping and Pong MJST be the sane.

Fette Expi res August 29, 2011 [Page 21]

Internet-Draft The WebSocket protocol February 2011

4.5.3. Pong
The Pong nmessage contai ns an opcode of 0x03.
Upon recei pt of a Ping nessage, an endpoint MJUST send a Pong nessage
in response. It SHOULD do so as soon as is practical. The nessage
bodi es of the Ping and Pong MJUST be the same. A Pong is issued only
in response to the nost recent Ping.

4.6. Data Franes
Al frame types not listed in Section 4.5 are data franes, which
transport application-layer data. The opcode deternines the
interpretation of the application data:
Text

The payl oad data is text data encoded as UTF-8.

Bi nary

The payload data is arbitrary binary data whose interpretation is
solely up to the application |ayer

4.7. Exanples
_This section is non-normative. _
0o A single-frame text nessage
* 0x84 0x05 0x48 0x65 Ox6c Ox6¢C Ox6f (contains "Hello")
o A fragnented text nessage
* 0x04 0x03 0x48 0x65 0x6¢ (contains "Hel")
* 0x80 0x02 Ox6c Ox6f (contains "lo")
o Ping request and response

* 0x82 0Ox05 0x48 0x65 0x6¢ 0x6¢ 0x6f (contains a body of "Hello",
but the contents of the body are arbitrary)

* 0x83 0x05 0x48 0x65 0x6¢c 0x6¢ 0x6f (contains a body of "Hello",
mat chi ng the body of the ping)

Fette Expi res August 29, 2011 [Page 22]

Internet-Draft The WebSocket protocol February 2011

0 256 bytes binary nmessage in a single frane
* 0x85 Ox7E 0x0100 [256 bytes of binary data]
0 64Ki B binary nessage in a single franme
* 0x85 Ox7F 0x0000000000010000 [65536 bytes of binary data]
4.8. Extensibility

The protocol is designed to allow for extensions, which will add
capabilities to the base protocols. The endpoints of a connection
MUST negotiate the use of any extensions during the handshake. This
speci fication provides opcodes 0x6 through OxF, the extension data
field, and the frame-rsvl, frame-rsv2, frane-rsv3, and frane-rsv4
bits of the frane header for use by extensions. The negotiation of
extensions is discussed in further detail in Section 8.1. Below are
some anticipated uses of extensions. This list is neither conplete
nor proscriptive.

0 Extension data may be placed in the payl oad before the application
dat a.

0 Reserved bits can be allocated for per-frane needs.
0 Reserved opcode val ues can be defi ned.

0 Reserved bits can be allocated to the opcode field if nore opcode
val ues are needed.

0 A reserved bit or an "extension" opcode can be defined which

al | ocates additional bits out of the payload area to define |arger
opcodes or nore per-frame bits.

Fette Expi res August 29, 2011 [Page 23]

Internet-Draft The WebSocket protocol February 2011

5. Openi ng Handshake
5.1. dient Requirenents

User agents running in controlled environnents, e.g. browsers on
nmobi | e handsets tied to specific carriers, may offl oad the nanagenent
of the connection to another agent on the network. |In such a
situation, the user agent for the purposes of conformance is
considered to include both the handset software and any such agents.

When the user agent is to *establish a WbSocket connection* to a
WebSocket URI /uri/, it must neet the followi ng requirenments. |In the
following text, we will use terms from Section 3 such as "/host/" and
"/secure/ flag" as defined in that section.

1. The WebSocket URI and its conponents MJST be valid according to
Section 3.3. If any of the requirenents are not net, the client
MUST fail the WebSocket connection and abort these steps.

2. If the user agent already has a WebSocket connection to the
renote host (1P address) identified by /host/, even if known by
anot her nanme, the user agent MJUST wait until that connection has
been established or for that connection to have failed. There
MUST be no nore than one connection in a CONNECTI NG state. |If
mul ti pl e connections to the sane | P address are attenpted
si mul t aneously, the user agent MJST serialize themso that there
is no nore than one connection at a tinme running through the
fol |l owi ng steps.

If the user agent cannot determine the |P address of the renote
host (for exanple because all communication is being done through
a proxy server that perfornms DNS queries itself), then the user
agent MUST assume for the purposes of this step that each host
name refers to a distinct renote host, but should instead limt
the total nunber of sinmultaneous connections that are not
established to a reasonably | ow nunber (e.g., in a Wb browser,
to the nunber of tabs the user has open).

NOTE: This makes it harder for a script to performa denial of
service attack by just opening a | arge nunber of WebSocket
connections to a renmote host. A server can further reduce the
load on itself when attacked by making use of this by pausing
before closing the connection, as that will reduce the rate at
whi ch the client reconnects.

NOTE: There is no limt to the nunber of established WebSocket

connections a user agent can have with a single renote host.
Servers can refuse to connect users with an excessive nunber of

Fette Expi res August 29, 2011 [Page 24]

Internet-Draft The WebSocket protocol February 2011

Fette

connections, or disconnect resource-hogging users when suffering
hi gh | oad.

_Proxy Usage : If the user agent is configured to use a proxy
when using the WebSocket protocol to connect to host /host/
and/or port /port/, then the user agent SHOULD connect to that
proxy and ask it to open a TCP connection to the host given by
/host/ and the port given by /port/.

EXAMPLE: For exanple, if the user agent uses an HTTP proxy for
all traffic, thenif it was to try to connect to port 80 on
server exanple.com it nmight send the following lines to the
proxy server:

CONNECT exanpl e.com 80 HTTP/ 1.1
Host: exanpl e. com

If there was a password, the connection might |ook like:

CONNECT exanpl e.com 80 HTTP/ 1.1
Host: exanpl e. com
Proxy-aut hori zation: Basic ZWRuYWLvZGU6bnDj YXBI cyE=

If the user agent is not configured to use a proxy, then a direct
TCP connection SHOULD be opened to the host given by /host/ and
the port given by /port/.

NOTE: |nplenmentations that do not expose explicit U for

sel ecting a proxy for WebSocket connections separate from ot her
proxi es are encouraged to use a SOCKS proxy for WbSocket
connections, if available, or failing that, to prefer the proxy
configured for HTTPS connections over the proxy configured for
HTTP connecti ons.

For the purpose of proxy autoconfiguration scripts, the URl to
pass the function nust be constructed from/host/, /port/,
/resource name/, and the /secure/ flag using the steps to
construct a WbSocket URI.

NOTE: The WebSocket protocol can be identified in proxy
aut oconfiguration scripts fromthe schenme ("ws:" for unencrypted
connections and "wss:" for encrypted connections).

If the connection could not be opened, either because a direct

connection failed or because any proxy used returned an error,
then the user agent MJST fail the WebSocket connection and abort

Expi res August 29, 2011 [Page 25]

Internet-Draft The WebSocket protocol February 2011

the connection attenpt.

If /secure/ is true, the user agent MJIST perform a TLS handshake
over the connection. |If this fails (e.g. the server’s
certificate could not be verified), then the user agent MJST fai
t he WebSocket connection and abort the connection. O herwi se,
all further communication on this channel MJST run through the
encrypted tunnel. [RFC2246]

User agents MJST use the Server Nane Indication extension in the
TLS handshake. [RFC4366]

Once a connection to the server has been established (including a
connection via a proxy or over a TLS-encrypted tunnel), the client
MUST send a handshake to the server. The handshake consists of an
HTTP upgrade request, along with a list of required and optiona
headers. The requirenments for this handshake are as foll ows.

1.

Fette

The handshake nust be a valid HTTP request as specified by
[RFC2616] .

The Met hod of the request MJUST be GET and the HTTP versi on MJST
be at least 1.1.

For exanple, if the WebSocket URI is "ws://exanple.conlchat",
The first line sent SHOULD be "CGET /chat HTTP/ 1. 1"

The request nust contain a "Request-URI" as part of the GET
met hod. This MJUST nmatch the /resource nane/ Section 3.

The request MJST contain a "Host" header whose value is equal to
the authority conponent of the WbSocket URI

The request MJST contain an "Upgrade" header whose value is
equal to "websocket".

The request MJST contain a "Connection" header whose val ue MJST
i nclude the "Upgrade" token

The request MJST include a header with the nane "Sec- WebSocket -
Key". The value of this header MJST be a nonce consisting of a
random y sel ected 16-byte val ue that has been base64- encoded

[RFC3548]. The nonce MJST be randomy sel ected randomy for
each connecti on.

NOTE: As an exanple, if the randomy selected value was the

sequence of bytes 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09
Ox0a 0xOb 0xOc 0x0d OxOe OxOf 0x10, the value of the header

Expi res August 29, 2011 [Page 26]

Internet-Draft The WebSocket protocol February 2011

10.

11.

12.

woul d be " AQ DBAUGBwgJ Cgs MDQ4PEC=="

The request MJST include a header with the nane "Sec-WebSocket -
Oigin" if the request is comng froma browser client. |If the
connection is froma non-browser client, the request MAY include
this header if the semantics of that client match the use-case
descri bed here for browser clients. The value of this header
MUST be the ASCI| serialization of origin of the context in

whi ch the code establishing the connection is running, and MJST
be | ower-case. The value MJST NOT contain letters in the range
U+0041 to UH+005A (i.e. LATIN CAPITAL LETTER A to LATIN CAPI TAL
LETTER Z) [I-D.ietf-websec-origin].

As an exanple, if code is running on ww. exanpl e.com attenpting
to establish a connection to ww2. exanpl e.com the value of the
header would be "http://ww. exanpl e. cont'.

The request MJST include a header with the nane "Sec- WbSocket -
Version". The value of this header nust be 6

The request MAY include a header with the nanme "Sec-WbSocket -
Protocol". |If present, this value indicates the subprotocol(s)
the client wishes to speak. The elenents that conprise this

val ue MUST be non-enpty strings with characters in the range
UW0021 to WHOO7E and MUST all be unique. The ABNF for the val ue
of this header is 1#(token | quoted-string), where the
definitions of constructs and rules are as given in [RFC2616].

The request MAY include a header with the nane "Sec-WbSocket -
Extensions”. |f present, this value indicates the protocol -

| evel extension(s) the client wishes to speak. The
interpretation and format of this header is described in
Section 8.1.

The request MAY include headers associated with sendi ng cooki es,
as defined by the appropriate specifications
[I-D.ietf-httpstate-cookie].

Once the client’s opening handshake has been sent, the client MJST
wait for a response fromthe server before sending any further data.
The client MJUST validate the server’'s response as foll ows:

(0]

Fette

If the status code received fromthe server is not 101, the client
MUST fail the WebSocket connecti on

If the response | acks an Upgrade header or the Upgrade header

contains a value that is not an ASCI| case-insensitive match for
t he val ue "websocket", the client MJST fail the WebSocket

Expi res August 29, 2011 [Page 27]

Internet-Draft The WebSocket protocol February 2011

connecti on.

o If the response | acks a Connection header or the Connection header
contains a value that is not an ASCI| case-insensitive match for
the val ue "Upgrade", the client MIUST fail the WbSocket
connecti on.

o |If the response | acks a Sec-WbSocket - Accept header or the Sec-
WebSocket - Accept contains a val ue other than the base64-encoded
SHA-1 of the concatenation of the Sec-WbSocket-Key (as a string,
not base64-decoded) with the string "258EAFA5- E914- 47DA- 95CA-
C5ABODC85B11", the client MJUST fail the WebSocket connection

Where the al gorithm above requires that a user agent fail the
WebSocket connection, the user agent may first read an arbitrary
nunber of further bytes fromthe connection (and then discard then
before actually *failing the WebSocket connection*. Simlarly, if a
user agent can show that the bytes read fromthe connection so far
are such that there is no subsequent sequence of bytes that the
server can send that would not result in the user agent being
required to *fail the WebSocket connection*, the user agent may

i Mmediately *fail the WbSocket connection* w thout waiting for those
byt es.

NOTE: The previous paragraph is intended to make it conforning for
user agents to inplenent the algorithmin subtly different ways that
are equivalent in all ways except that they term nate the connection
at earlier or later points. For exanple, it enables an

i npl ementation to buffer the entire handshake response before
checking it, or to verify each field as it is received rather than
collecting all the fields and then checking themas a bl ock

5.2. Server-side requirenents
_This section only applies to servers. _

Servers may offload the managenent of the connection to other agents
on the network, for exanple |oad bal ancers and reverse proxies. In
such a situation, the server for the purposes of conformance is
considered to include all parts of the server-side infrastructure
fromthe first device to terninate the TCP connection all the way to
the server that processes requests and sends responses.

EXAMPLE: For exanple, a data center m ght have a server that responds
to WebSocket requests with an appropriate handshake, and then passes
the connection to another server to actually process the data franes.
For the purposes of this specification, the "server" is the

conbi nati on of both conputers

Fette Expi res August 29, 2011 [Page 28]

Internet-Draft The WebSocket protocol February 2011

5.2.1. Reading the client’s opening handshake

When a client starts a WebSocket connection, it sends its part of the
openi ng handshake. The server nust parse at |least part of this
handshake in order to obtain the necessary information to generate
the server part of the handshake.

The client handshake consists of the followi ng parts. |If the server,
whi | e readi ng the handshake, finds that the client did not send a
handshake t hat natches the description below, the server nust abort
the WebSocket connection

1. An HTTP/ 1.1 or higher GET request, including a "Request-UR"
[RFC2616] that should be interpreted as a /resource nane/
Section 3.

2. A "Host" header containing the server’s authority.

3. A "Sec-WbSocket - Key" header with a base64-encoded val ue that,
when decoded, is 16 bytes in | ength.

4., A "Sec-WbSocket - Version" header, with a value of 6

5. Optionally, a "Sec-WbSocket-Origin" header. This header is sent
by all browser clients. A connection attenpt |acking this header
SHOULD NOT be interpreted as coming froma browser client

6. Optionally, a "Sec-WbSocket-Protocol header, with a |ist of
val ues indicating which protocols the client would like to speak
ordered by preference.

7. Optionally, a "Sec-WbSocket - Ext ensi ons” header, with a |list of
val ues indicating which extensions the client would like to
speak. The interpretation of this header is discussed in
Section 8. 1.

8. Optionally, other headers, such as those used to send cookies to
a server. Unknown headers MUST be i gnored.

5.2.2. Sending the server’s openi ng handshake
When a client establishes a WbSocket connection to a server, the
server must conplete the following steps to accept the connection and
send the server’s openi ng handshake.
1. |If the server supports encryption, performa TLS handshake over

the connection. |If this fails (e.g. the client indicated a host
nane in the extended client hello "server_nane" extension that

Fette Expi res August 29, 2011 [Page 29]

Internet-Draft The WebSocket protocol February 2011

Fette

the server does not host), then close the connection; otherw se,
all further communication for the connection (including the
server handshake) mnust run through the encrypted tunnel

[RFC2246]

Establish the follow ng information:

[origin/
The | Sec- WebSocket - Ori gin| header in the client’s handshake
i ndicates the origin of the script establishing the
connection. The originis serialized to ASCII and converted
to |l owercase. The server MAY use this information as part of
a deternination of whether to accept the inconing connection.

I key/
The | Sec- WebSocket - Key| header in the client’s handshake
i ncl udes a base64-encoded value that, if decoded, is 16 bytes
in length. This (encoded) value is used in the creation of
the server’s handshake to indicate an acceptance of the
connection. It is not necessary for the server to base64-
decode t he Sec-WebSocket - Key val ue.

/ version/
The | Sec- WebSocket - Versi on| header in the client’s handshake
i ncludes the version of the WbSocket protocol the client is
attenpting to comunicate with. |If this version does not
mat ch a versi on understood by the server, the server MJST
abort the WebSocket connection. The server MAY send a non-200
response code with a | Sec- WebSocket - Ver si on| header i ndi cating
the version(s) the server is capable of understanding al ong
with this non-200 response code.

/ resour ce nane/
An identifier for the service provided by the server. |[If the
server provides multiple services, then the val ue should be
derived fromthe resource name given in the client’s handshake
fromthe Request-UR [RFC2616] of the GET net hod

/ subpr ot ocol /
A (possibly enpty) list representing the subprotocol the
server is ready to use. |If the server supports nultiple
subprotocol s, then the value should be derived fromthe
client’s handshake, specifically by selecting one of the
val ues fromthe "Sec-WbSocket-Protocol" field. The absence
of such a field is equivalent to the null value. The enpty
string is not the same as the null value for these purposes.

Expi res August 29, 2011 [Page 30]

Internet-Draft The WebSocket protocol February 2011

/ ext ensi ons/

A (possibly enpty) list representing the protocol-I|eve
extensions the server is ready to use. |If the server supports
mul ti pl e extensions, then the value should be derived fromthe
client’s handshake, specifically by selecting one or nore of
the val ues fromthe "Sec-WbSocket - Ext ensions" field. The
absence of such a field is equivalent to the null value. The
enpty string is not the same as the null value for these

pur poses. Extensions not listed by the client MJUST NOT be
listed. The method by which these val ues shoul d be sel ected
and interpreted is discussed in Section 8.1.

3. If the server chooses to accept the incoming connection, it nust
reply with a valid HTTP response indicating the foll ow ng.

1.

A 101 response code. Such a response could | ook like
"HTTP/ 1.1 101 Switching Protocol s"

A "Sec-WebSocket - Accept” header. The value of this header is
constructed by concatenating /key/, defined above in
Paragraph 2 of Section 5.2.2, with the string "258EAFA5- E914-
47DA- 95CA- C5ABODC85B11", taking the SHA-1 hash of this
concatenated value to obtain a 20-byte val ue, and baseb64-
encodi ng this 20-byte hash

NOTE: As an exanple, if the value of the "Sec-WbSocket-Key"
header in the client’s handshake were

"dGhl | HNhbXBsZSBub25j ZQ==", the server woul d append the
string "258EAFA5- E914- 47DA- 95CA- C5ABODC85B11" to formthe
string "dGhl | HN\hbXBsZSBub25j ZQ==258EAFA5- E914- 47DA- 95CA-
C5ABODC85B11". The server would then take the SHA-1 hash of
this string, giving the value 0xb3 0x7a 0x4f 0x2c 0OxcO 0x62
Ox4f 0x16 0x90 Oxf6 0x46 0x06 Oxcf 0x38 0x59 0x45 0xb2 Oxbe
Oxc4 Oxea. This value is then base64-encoded, to give the
val ue "s3pPLMBi Txa@@kYGzzhZRbK+xCo=", which woul d be returned
in the "Sec-WbSocket - Accept" header

Optionally, a "Sec-WbSocket-Protocol" header, with a val ue
/ subprotocol/ as defined in Paragraph 2 of Section 5.2.2.

Optionally, a "Sec-WbSocket - Ext ensi ons" header, with a val ue
/ extensions/ as defined in Paragraph 2 of Section 5.2.2.

This conpletes the server’s handshake. |If the server finishes these
steps without aborting the WebSocket connection, and if the client
does not then fail the WbSocket connection, then the connection is
established and the server may begin sending and receiving data, as
described in the next section.

Fette

Expi res August 29, 2011 [Page 31]

Internet-Draft The WebSocket protocol February 2011

6. Error Handling
6.1. Handling errors in UTF-8 fromthe server

When a client is to interpret a byte streamas UTF-8 but finds that
the byte streamis not in fact a valid UTF-8 stream then any bytes
or sequences of bytes that are not valid UTF-8 sequences nust be
interpreted as a WFFFD REPLACEMENT CHARACTER

6.2. Handling errors in UTF-8 fromthe client

When a server is to interpret a byte streamas UTF-8 but finds that
the byte streamis not in fact a valid UTF-8 stream behavior is
undefined. A server could close the connection, convert invalid byte
sequences to WFFFD REPLACEMENT CHARACTERs, store the data verbatim
or perform application-specific processing. Subprotocols |ayered on
the WebSocket protocol mght define specific behavior for servers.

Fette Expi res August 29, 2011 [Page 32]

Internet-Draft The WebSocket protocol February 2011

7. Cosing the connection
7.1. Definitions
7.1.1. dose the WbSocket Connecti on

To _Close the WebSocket Connection_, an endpoint closes the
underlying TCP connection. An endpoint SHOULD use a nethod that
cleanly closes the TCP connection, discarding any trailing bytes that
may be received. And endpoint MAY close the connection via any neans
avai | abl e when necessary, such as when under attack

As an exanple of how to obtain a clean closure in C using Berkel ey
sockets, one would call shutdown() with SHUT_WR on the socket, cal

recv() until obtaining a return value of O indicating that the peer
has al so perforned an orderly shutdown, and finally calling close()
on the socket.

7.1.2. Start the WebSocket d osing Handshake

To _start the WebSocket cl osing handshake_, and endpoint MJST send a
Close control frane, as described in Section 4.5.1. Upon receiving a
Close control frane, the other party sends a Cose control frane in
response. Once an endpoint has both sent and received a C ose
control frame, that endpoint should _C ose the WbSocket Connection_
as defined in Section 7.1.1.

7.1.3. The WebSocket Connection |Is C osed

When the underlying TCP connection is closed, it is said that _the
WebSocket connection is closed . |If the tcp connection was closed
after the WebSocket cl osing handshake was conpl eted, the WebSocket
connection is said to have been closed _cleanly_.

7.1.4. Fail the WbSocket Connecti on

Certain algorithms and specifications require a user agent to _fai
the WebSocket connection_. To do so, the user agent nust _Cl ose the
WebSocket Connection_, and MAY report the problemto the user (which
woul d be especially useful for developers) in an appropriate nmanner

Except as indicated above or as specified by the application |ayer

(e.g. a script using the WebSocket API), user agents SHOULD NOT cl ose
t he connecti on.

Fette Expi res August 29, 2011 [Page 33]

Internet-Draft The WebSocket protocol February 2011

7.2. Abnormal closures
7.2.1. dient-initiated closure

Certain algorithns, nanely during the initial handshake, require the
user agent to *fail the WebSocket connection*. To do so, the user
agent nust _Cl ose the WbSocket connection_ as previously defined,
and may report the problemto the user via an appropriate mechani sm
(whi ch woul d be especially useful for devel opers).

Except as indicated above or as specified by the application |ayer
(e.g. a script using the WebSocket API), user agents should not close
t he connecti on.

7.2.2. Server-initiated closure

Certain algorithnms require or recommend that the server _abort the
WebSocket connection_ during the opening handshake. To do so, the
server nust sinply _close the WebSocket connection_ (Section 7.1.1).

7.3. Nor mal cl osure of connections

Servers MAY cl ose the WbSocket connection whenever desired. User
agents SHOULD NOT cl ose the WebSocket connection arbitrarily. In
ei ther case, an endpoint initiates a closure by follow ng the
procedures to _start the WebSocket cl osing handshake_

(Section 7.1.2).

7.4. Status codes

When cl osing an established connection (e.g. when sending a d ose
frane, after the handshake has conpl eted), an endpoint MAY indicate a
reason for closure. The interpretation of this reason by an
endpoi nt, and the action an endpoint should take given this reason
are left undefined by this specification. This specification defines
a set of pre-defined status codes, and specifies which ranges nay be
used by extensions, franmeworks, and end applications. The status
code and any associ ated textual nessage are optional conponents of a
Cl ose frane.

7.4.1. Defined Status Codes

Endpoi nts MAY use the follow ng pre-defined status codes when sending
a Cose frane.

Fette Expi res August 29, 2011 [Page 34]

Internet-Draft The WebSocket protocol February 2011

1000

1000 indicates a normal closure, meani ng whatever purpose the
connection was established for has been fulfill ed.

1001

1001 indicates that an endpoint is "going away", such as a server
goi ng down, or a browser having navigated away from a page.

1002

1002 indicates that an endpoint is terminating the connection due
to a protocol error.

1003
1003 indicates that an endpoint is terninating the connection
because it has received a type of data it cannot accept (e.g. an
endpoi nt that understands only text data may send this if it
receives a binary nmessage.)

1004

1004 indicates that an endpoint is terminating the connection
because it has received a nessage that is too | arge

7.4.2. Reserved status code ranges
0-999
Status codes in the range 0-999 are not used.
1000- 1999

Status codes in the range 1000-1999 are reserved for definition by
this protocol

2000- 2999

Status codes in the range 2000-2999 are reserved for use by
ext ensi ons.

3000- 3999
Status codes in the range 3000-3999 MAY be used by libraries and

frameworks. The interpretation of these codes is undefined by
this protocol. End applications MJST NOT use status codes in this

Fette Expi res August 29, 2011 [Page 35]

Internet-Draft The WebSocket protocol February 2011

range.
4000- 4999
Status codes in the range 4000-4999 MAY be used by application

code. The interpretaion of these codes is undefined by this
pr ot ocol .

Fette Expi res August 29, 2011 [Page 36]

Internet-Draft The WebSocket protocol February 2011

8. Extensions

WebSocket clients MAY request extensions to this specification, and
WebSocket servers MAY accept sonme or all extensions requested by the
client. A server MJST NOT respond with any extension not requested
by the client. |f extension paraneters are included in negotiations
between the client and the server, those paraneters MJST be chosen in
accordance with the specification of the extension to which the
paraneters apply.

8.1. Negotiating extensions

A client requests extensions by including a "Sec-WbSocket -

Ext ensi ons" header, which follows the normal rules for HITP headers
(see [RFC2616] section 4.2) and the value of the header is defined by
the foll owi ng ABNF:

extension-list = 1#extension

extension = extension-token *(";" extension-param)
ext ensi on-token = regi stered-token | private-use-token
regi stered-token = token

private-use-token = "x-" token
extension-param = token ["=" (token | quoted-string)]

Note that |ike other HTTP headers, this header may be split or
combi ned across multiple lines. Ergo, the follow ng are equival ent:

Sec- WebSocket - Ext ensi ons: f oo
Sec- WebSocket - Ext ensi ons: bar; baz=2

is exactly equivalent to
Sec- WbSocket - Ext ensi ons: foo, bar; baz=2

Any extension-token used nust either be a registered token
(registration TBD), or have a prefix of "x-" to indicate a private-
use token. The paraneters supplied with any given extensi on MIST be
defined for that extension. Note that the client is only offering to
use any advertised extensions, and MJST NOT use them unl ess the
server accepts the extension.

Note that the order of extensions is significant. Any interactions
between nul ti pl e extensions MAY be defined in the docunents defining
the extensions. |In the absence of such definition, the
interpretation is that the headers listed by the client inits
request represent a preference of the headers it wishes to use, with
the first options listed being nost preferable. The extensions
listed by the server in response represent the extensions actually in

Fette Expi res August 29, 2011 [Page 37]

Internet-Draft The WebSocket protocol February 2011

use. Should the extensions nodify the data and/or framing, the order
of operations on the data should be assuned to be the sane as the
order in which the extensions are listed in the server’s response in
t he openi ng handshake.

For exanple, if there are two extensions "foo" and "bar", if the
header | Sec- WebSocket - Ext ensi ons| sent by the server has the val ue
"foo, bar" then operations on the data will be nmade as

bar (foo(data)), be those changes to the data itself (such as
conpression) or changes to the framng thay nmay "stack".

Non- normati ve exanpl es of acceptabl e extensi on headers:

Sec- WbSocket - Ext ensi ons: defl at e-stream
Sec- WebSocket - Ext ensi ons: nmux; nmax-channel s=4; flowcontrol, deflate-strea

Sec- WebSocket - Ext ensi ons: X-privat e- ext ensi on

A server accepts one or nore extensions by including a | Sec-
WebSocket - Ext ensi ons| header contai ning one or nore extensions which
were requested by the client. The interpretation of any extension
paraneters, and what constitutes a valid response by a server to a
requested set of parameters by a client, will be defined by each such
ext ensi on.

8. 2. Known ext ensi ons

Ext ensi ons provide a nechanismfor inplenmentations to opt-into

addi tional protocol features. This section defines the neaning of
wel | - known ext ensi ons but inplenentations may use extensions defined
separately as well

8.2.1. Conpression

The regi stered extension token for this conpression extension is
"defl ate-streant.

The extension does not have any per nessage extension data and it
does not define the use of any WebSocket reserved bits or op codes.

Senders using this extension MJST apply RFC 1951 encodings to all
bytes of the data stream follow ng the handshake includi ng both data
and control nessages. The data stream MAY include multiple bl ocks of
bot h conpressed and unconpressed types as defined by RFC 1951.

[RFC1951]

Senders MJST NOT delay the transmi ssion of any portion of a WbSocket

message because the deflate encoding of the nessage does not end on a
byt e boundary. The encodings for adjacent nessages MAY appear in the

Fette Expi res August 29, 2011 [Page 38]

Internet-Draft The WebSocket protocol February 2011

sane byte if no delay in transmi ssion is occurred by doing so.

Fette Expi res August 29, 2011 [Page 39]

Internet-Draft The WebSocket protocol February 2011

9.

Security considerations

VWhile this protocol is intended to be used by scripts in Wb pages,
it can also be used directly by hosts. Such hosts are acting on
their own behalf, and can therefore send fake "Origin" fields,

m sl eadi ng the server. Servers should therefore be careful about
assuning that they are talking directly to scripts from known
origins, and rnust consider that they m ght be accessed in unexpected
ways. |In particular, a server should not trust that any input is
val i d.

EXAMPLE: For exanple, if the server uses input as part of SQ
queries, all input text should be escaped before being passed to the
SQ. server, lest the server be susceptible to SQ injection

Servers that are not intended to process input fromany Wb page but
only for certain sites should verify the "Origin" field is an origin
they expect, and should only respond with the correspondi ng " Sec-
WebSocket-Origin" if it is an accepted origin. Servers that only
accept input fromone origin can just send back that value in the
"Sec- WebSocket-Origin" field, without bothering to check the client’s
val ue.

If at any time a server is faced with data that it does not
understand, or that violates some criteria by which the server
determ nes safety of input, or when the server sees a handshake that
does not correspond to the values the server is expecting (e.qg.
incorrect path or origin), the server should just disconnect. It is
al ways safe to di sconnect.

The biggest security risk when sending text data using this protoco
is sending data using the wong encoding. |f an attacker can trick
the server into sending data encoded as | SO 8859-1 verbatim (for

i nstance), rather than encoded as UTF-8, then the attacker could
inject arbitrary franes into the data stream

In addition to endpoints being the target of attacks via WbSockets,
other parts of web infrastructure, such as proxies, nmay be the
subject of an attack. In particular, an internediary may interpret a
WebSocket nmessage froma client as a request, and a nmessage fromthe
server as a response to that request. For instance, an attacker
could get a browser to establish a connection to its server, get the
browser to send a nessage that |l ooks to an internediary |like a CGET
request for a common piece of JavaScript on another donain, and send

Fette Expi res August 29, 2011 [Page 40]

Internet-Draft The WebSocket protocol February 2011

back a nessage that is interpreted as a cacheabl e response to that
request, thus poisioning the cache for other users. To prevent this
attack, nmessages sent fromclients are nmasked on the wire with a 32-
bit value, to prevent an attacker fromcontrolling the bits on the
wire and thus | essen the probability of an attacker being able to
construct a nessage that can be misinterpreted by a proxy as a non-
WebSocket request.

Fette Expi res August 29, 2011 [Page 41]

Internet-Draft The WebSocket protocol February 2011

10.

10.

| ANA consi derations
1. Registration of ws: schene
A |ws:| URI identifies a WebSocket server and resource nane.

URI schene nane.
ws

St at us.
Per manent .

URI schene synt ax.
In ABNF ternms using the terminals fromthe URl specifications:
[RFC5234] [RFC3986]

ws hier-part ["?" query]

The path and query conponents formthe resource nanme sent to the
server to identify the kind of service desired. Oher conponents
have t he nmeani ngs described in RFC3986.

URI schene semanti cs.
The only operation for this schene is to open a connection using
t he WebSocket protocol

Encodi ng consi derati ons.
Characters in the host conponent that are excluded by the syntax
defined above nust be converted from Uni code to ASCI| by applying
the I DNA ToASCI| algorithmto the Uni code host nane, with both the
Al'l owUnassi gned and UseSTD3ASCI | Rul es flags set, and using the
result of this algorithmas the host in the URI. [RFC3490]

Characters in other conponents that are excluded by the syntax
defined above nust be converted from Unicode to ASCI| by first
encodi ng the characters as UTF-8 and then repl acing the
correspondi ng bytes using their percent-encoded formas defined in
the URI and IRl specification. [RFC3986] [RFC3987]

Applications/protocols that use this URl schene nane.
WebSocket protocol

I nteroperability considerations.
None.

Fette Expi res August 29, 2011 [Page 42]

Internet-Draft The WebSocket protocol February 2011

Security considerations.
See "Security considerations" section above.

Cont act .
lan Hickson <i an@i xi e. ch>

Aut hor/ Change control |l er
lan Hi ckson <i an@i xi e. ch>

Ref er ences.
Thi s docunent.

10. 2. Registration of wss: schene

A |wss:| URl identifies a WbSocket server and resource nane, and
indicates that traffic over that connection is to be encrypted.

URI schene nane.
WSS

St at us.
Per manent .

URI schene synt ax.
In ABNF terms using the terminals fromthe UR specifications:
[RFC5234] [RFC3986]

WSS hier-part ["?" query]
The path and query conponents formthe resource nanme sent to the
server to identify the kind of service desired. O her conponents
have t he meani ngs described in RFC3986

URI schene semanti cs.
The only operation for this schene is to open a connection using
t he WebSocket protocol, encrypted using TLS

Encodi ng consi derati ons.
Characters in the host conponent that are excluded by the syntax
defined above nust be converted from Unicode to ASCI| by applying
the I DNA ToASCI| algorithmto the Unicode host nane, with both the
Al'l owUnassi gned and UseSTD3ASCI | Rul es flags set, and using the
result of this algorithmas the host in the URI. [RFC3490]

Characters in other conponents that are excluded by the syntax
defined above nust be converted from Unicode to ASCI| by first
encodi ng the characters as UTF-8 and then replacing the
correspondi ng bytes using their percent-encoded formas defined in

Fette Expi res August 29, 2011 [Page 43]

Internet-Draft The WebSocket protocol February 2011

the URI and IRl specification. [RFC3986] [RFC3987]

Appl i cations/protocols that use this URl schene nane.
WebSocket protocol over TLS.

I nteroperability considerations.
None.

Security considerations.
See "Security considerations" section above.

Cont act .
lan Hi ckson <i an@i xi e. ch>

Aut hor / Change controller.
I an Hi ckson <i an@i xi e. ch>

Ref er ences.
Thi s docunent.

10.3. Registration of the "WebSocket™ HITP Upgrade keyword

Narme of token.
WebSocket

Aut hor / Change controller.
lan Hi ckson <i an@i xi e. ch>

Cont act .
lan Hi ckson <i an@i xi e. ch>

Ref er ences.
Thi s docunent.

10. 4. Sec-WebSocket - Key

This section describes a header field for registration in the
Per manent Message Header Field Registry. [RFC3864]

Header field nane
Sec- WebSocket - Key

Appl i cabl e protocol
http

Fette Expi res August 29, 2011 [Page 44]

Internet-Draft The WebSocket protocol February 2011

10.

St at us
reserved; do not use outsi de WebSocket handshake

Aut hor/ Change control |l er
| ETF

Speci fication docunent (s)
This docunment is the relevant specification

Rel ated i nformati on
None.

The | Sec- WebSocket - Key| header is used in the WebSocket handshake.

It is sent fromthe client to the server to provide part of the

i nformati on used by the server to prove that it received a valid
WebSocket handshake. This hel ps ensure that the server does not
accept connections from non-WbSocket clients (e.g. HITP clients)
that are being abused to send data to unsuspecting WebSocket servers.

5. Sec- WbSocket - Ext ensi ons

This section describes a header field for registration in the
Per manent Message Header Field Registry. [RFC3864]

Header field nane
Sec- WbSocket - Ext ensi ons

Appl i cabl e protoco
http

St at us
reserved; do not use outsi de WebSocket handshake

Aut hor/ Change control |l er
| ETF

Speci fication docunent (s)
This docunment is the relevant specification

Rel ated i nformati on
None.

The | Sec- WebSocket - Ext ensi ons| header is used in the WbSocket
handshake. It is initially sent fromthe client to the server, and
then subsequently sent fromthe servver to the client, to agree on a
set of protocol-level extensions to use during the connection

Fette Expi res August 29, 2011 [Page 45]

Internet-Draft The WebSocket protocol February 2011

10. 6. Sec-WebSocket - Accept

This section describes a header field for registration in the
Per manent Message Header Field Registry. [RFC3864]

Header field nane
Sec- WebSocket - Accept

Appl i cabl e protocol
http

St at us
reserved; do not use outside WebSocket handshake

Aut hor/ Change control |l er
| ETF

Speci fication docunent(s)
This docunment is the relevant specification

Rel ated i nfornation
None.

The | Sec- WebSocket - Accept| header is used in the WbSocket handshake.
It is sent fromthe server to the client to confirmthat the server
iswilling to initiate the connection

10.7. Sec-WbSocket-Origin

This section describes a header field for registration in the
Per manent Message Header Field Registry. [RFC3864]

Header field nane
Sec- WbSocket - Origin

Appl i cabl e protoco
http

St at us
reserved; do not use outside WbSocket handshake

Aut hor/ Change controller
| ETF

Speci fication document (s)
This docunent is the relevant specification

Fette Expi res August 29, 2011 [Page 46]

Internet-Draft The WebSocket protocol February 2011

10.

10.

Rel ated i nfornati on
None.

The | Sec- WebSocket-Origin| header is used in the WbSocket handshake.
It is sent fromthe server to the client to confirmthe origin of the
script that opened the connection. This enables user agents to
verify that the server is willing to serve the script that opened the
connecti on.

8. Sec-WebSocket - Pr ot ocol

This section describes a header field for registration in the
Per manent Message Header Field Registry. [RFC3864]

Header field nane
Sec- WebSocket - Pr ot ocol

Appl i cabl e protoco
http

St at us
reserved; do not use outside WbSocket handshake

Aut hor/ Change controller
| ETF

Speci ficati on docunent (s)
This docunent is the relevant specification

Rel ated i nfornati on
None.

The | Sec- WebSocket - Prot ocol | header is used in the WbSocket
handshake. It is sent fromthe client to the server and back from
the server to the client to confirmthe subprotocol of the
connection. This enables scripts to both select a subprotocol and be
sure that the server agreed to serve that subprotocol

9. Sec-WbSocket - Ver si on

This section describes a header field for registration in the
Per manent Message Header Field Registry. [RFC3864]

Header field nane
Sec- WbSocket - Ver si on

Fette Expi res August 29, 2011 [Page 47]

Internet-Draft The WebSocket protocol February 2011

Appl i cabl e protoco
http

St at us
reserved; do not use outside WbSocket handshake

Aut hor/ Change control |l er
| ETF

Speci fication docunent(s)
This docunent is the relevant specification

Rel ated i nfornati on
None.

The | Sec- WebSocket - Versi on| header is used in the WbSocket

handshake. It is sent fromthe client to the server to indicate the
protocol version of the connection. This enables servers to
correctly interpret the handshake and subsequent data being sent from
the data, and close the connection if the server cannot interpret

that data in a safe manner

Fette Expi res August 29, 2011 [Page 48]

Internet-Draft The WebSocket protocol February 2011

11. Using the WebSocket protocol from other specifications

The WebSocket protocol is intended to be used by anot her
specification to provide a generic nechani smfor dynam ¢ aut hor -
defined content, e.g. in a specification defining a scripted API

Such a specification first needs to "establish a WebSocket
connection", providing that algorithmwth:

o The destination, consisting of a /host/ and a /port/.

o0 A /resource nane/, which allows for nmultiple services to be
identified at one host and port.

0o A /secure/ flag, which is true if the connection is to be
encrypted, and fal se otherw se.

0 An ASCI| serialization of an origin that is being nade responsible
for the connection. [I-D.ietf-websec-origin]

0 Optionally a string identifying a protocol that is to be |ayered
over the WebSocket connection

The /host/, /port/, /resource nane/, and /secure/ flag are usually
obtained froma URI using the steps to parse a WbSocket URI’'s
components. These steps fail if the URI does not specify a
WebSocket .

If a connection can be established, then it is said that the
"WebSocket connection is established"

If at any time the connection is to be closed, then the specification
needs to use the "close the WbSocket connection” algorithm

When the connection is closed, for any reason including failure to
establish the connection in the first place, it is said that the
"WebSocket connection is cl osed"

Wil e a connection is open, the specification will need to handl e the
cases when "a WbSocket nessage has been received" with text /data/.

To send sone text /data/ to an open connection, the specification
needs to "send /data/ using the WebSocket".

Fette Expi res August 29, 2011 [Page 49]

Internet-Draft The WebSocket protocol February 2011

12.

Acknowl edgenent s

Speci al thanks are due to lan Hi ckson, who was the original author
and editor of this protocol. The initial design of this
specification benefitted fromthe participation of nmany people in the
VWHATWG and WHATWG mailing list. Contributions to that specification
are not tracked by section, but a list of all who contributed to that
specification is given in the WHATWG HTM. specification at
http://whatwg. org/ ht m 5.

Speci al thanks also to John Tanplin for providing a significant
amount of text for the Data Framing section of this specification.

Speci al thanks also to Adam Barth for providing a significant anmount
of text and background research for the Data Masking section of this
speci fication.

Fette Expi res August 29, 2011 [Page 50]

Internet-Draft The WebSocket protocol February 2011

13.

13.

Appendi x: List of Changes

This section is not normative. This section was added at the request
of the chairs to help track changes between versions. This section
will be renmoved fromthe final version of this docunent.

1. Changes from-05 to -06

Two major areas were changed in this draft. The cl osi ng handshake
was clarified and re-witten to add in term nol ogy matching the API
specification. The close frane was given an optional status code to
i ndi cate closure reason, and the notion of a body indicating which
side initiated the close renoved. Aside fromthis, many areas were
clarified in areas previously ambi guous, though the meaning shoul d
remain consistent with the intent of previous drafts. Certain other
mat eri al changes that are not as |arge as those previously nentioned
are |listed below, though for a conplete |list readers are reninded
that a tool is available to diff two versions at
http://tools.ietf.org/tools/rfcdiff/. The list belowis nmy attenpt
at a changel og, not an authoritative guarantee, plese use the diff
tool for a conplete list.

o Cdarified that Sec-WbSocket-Origin is optional for non-browser
clients.

o Cdarified the semantics of the closing handshake to be that the
connection is closed when an endpoint has both sent and received a
cl ose frane.

0 Changed text around final HTTP responses and the WbSocket
handshake.

0 Renoved Sec-WebSocket - Nonce
0 Attenpted to convert use of URL to URI term nology. (Ticket 41)
0 Attenpted to resolve Ticket 42 re: HTM. spec reference.

0 Edited potentially msleadin text around the word "even" in
Section 1.6 and what applied to XHR vs nore broadly.

0 Renoved non-material text from 1.8 about establishing a
connecti on.

o Carified text in the section about fragnentation (4.4). No
mat eri al changes, clarification only.

Fette Expi res August 29, 2011 [Page 51]

Internet-Draft The WebSocket protocol February 2011

(o]

Fette

Clarified that control frames (4.5) may be interjected in the
m ddl e of a fragmented nessage

Clarified what was neant by the body of a close frane.

Clarified the intent in 5.1 that there be only one connection in
CONNECTI NG st at e.

Cleaned 1.5 up to note that conpression was already introduced in
the spec, left in multiplexing as a future definition

Random y sel ected randomy - typo fix.
Added a change log in the appendi x.

Included in security considerations a description of the attack
presented by Adam Bart h.

Changed sone referneces from Wb- Socket to WebSocket

Clarified in 3.1 that only ws and wss are valid options, and that
ot her schenes should result in a failure.

Various cl eanups around termn nol ogy of "host", "endpoint", and
"user agent".

Defi ned status codes and reserved ranges for close franes.
Added text that a TCP connection should be shut down cl eanly.

Clarified whether the upgrade header exactly equal ed upgrade or
cont ai ned an upgrade token.

Expi res August 29, 2011 [Page 52]

Internet-Draft The WebSocket protocol February 2011

14. Normative References

[ANSI . X3- 4. 1986]
American National Standards Institute, "Coded Character
Set - 7-bit Anmerican Standard Code for | nformation
I nterchange", ANSI X3.4, 1986.

[FI PS. 180- 2. 2002]
National Institute of Standards and Technol ogy, "Secure
Hash Standard", FIPS PUB 180-2, August 2002, <http://
csrc. nist.gov/publications/fips/fipsl80-2/fipsl80-2. pdf>.

[RFC1951] Deutsch, P., "DEFLATE Conpressed Data Format Specification
version 1.3", RFC 1951, My 1996.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Levels", BCP 14, RFC 2119, March 1997.

[RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

[RFC2616] Fielding, R, Gettys, J., Mgul, J., Frystyk, H,
Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC3490] Faltstrom P., Hoffman, P., and A. Costello,
"Internationalizing Domain Nanmes in Applications (IDNA)",
RFC 3490, March 2003.

[RFC3548] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 3548, July 2003.

[RFC3629] Yergeau, F., "UTF-8, a transformation format of |SO
10646", STD 63, RFC 3629, Novenber 2003.

[RFC3864] Klyne, G, Nottingham M, and J. Mgul, "Registration
Procedures for Message Header Fields", BCP 90, RFC 3864,
Sept enber 2004.

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005.

[RFC3987] Duerst, M and M Suignard, "Internationalized Resource
Identifiers (IRIs)", RFC 3987, January 2005.

[RFC4366] Bl ake-WIlson, S., Nystrom M, Hopwood, D., M kkelsen, J.,
and T. Wight, "Transport Layer Security (TLS)

Fette Expi res August 29, 2011 [Page 53]

Internet-Draft The WebSocket protocol February 2011

Ext ensi ons", RFC 4366, April 2006.

[RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Speci fications: ABNF', STD 68, RFC 5234, January 2008.

[I-D.ietf-httpstate-cookie]
Barth, A, "HTTP State Managenent Mechanisni',
draft-ietf-httpstate-cookie-20 (work in progress),
Decenber 2010.

[I-D.ietf-websec-origin]
Barth, A, "The Web Origin Concept",
draft-ietf-websec-origin-00 (work in progress),
Decenber 2010.

[WBAPI] Hi ckson, 1., "The Wb Sockets API", August 2010,
<http://dev.w3. org/ ht M 5/ websocket s/ >.

Fette Expi res August 29, 2011 [Page 54]

Internet-Draft The WebSocket protocol February 2011

Aut hor’ s Addr ess

lan Fette

Googl e, Inc.

Email: ifette+ietf@oogle.com
URI : http://ww.ianfette.com

Fette Expi res August 29, 2011 [Page 55]

