
Network Working Group M. Bjorklund
Internet-Draft Tail-f Systems
Intended status: Standards Track December 8, 2010
Expires: June 11, 2011

 A YANG Data Model for Interface Configuration
 draft-bjorklund-netmod-interfaces-cfg-00

Abstract

 This document defines a YANG data model for the configuration of
 network interfaces. It is expected that interface type specific
 configuration data models augment the generic interfaces data model
 defined in this document.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 11, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bjorklund Expires June 11, 2011 [Page 1]

Internet-Draft YANG Interface Configuration December 2010

Table of Contents

 1. Introduction . 3
 2. Objectives . 4
 3. Interfaces Data Model . 5
 3.1. The interface List . 5
 3.2. Interface References 6
 3.3. Interface Layering . 6
 4. Interfaces YANG module . 7
 5. IANA Considerations . 12
 6. Security Considerations 13
 7. Acknowledgments . 14
 8. Normative References . 15
 Appendix A. Example: Ethernet Interface Module 16
 Appendix B. Example: Ethernet Bonding Interface Module 18
 Appendix C. Example: VLAN Interface Module 19
 Appendix D. Example: IP Module 21
 Author’s Address . 22

Bjorklund Expires June 11, 2011 [Page 2]

Internet-Draft YANG Interface Configuration December 2010

1. Introduction

 This document defines a YANG [RFC6020] data model for the
 configuration of network interfaces. It is expected that interface
 type specific configuration data models augment the generic
 interfaces data model defined in this document.

 Network interfaces are central to the configuration of many Internet
 protocols. Thus, it is important to establish a common data model
 for how interfaces are identified and configured.

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119].

Bjorklund Expires June 11, 2011 [Page 3]

Internet-Draft YANG Interface Configuration December 2010

2. Objectives

 This section describes some of the design objectives for the model
 presented in Section 4.

 o It is recognized that existing implementations will have to map
 the interface data model defined in this memo to their proprietary
 native data model. The new data model should be simple to
 facilitate such mappings.

 o The data model should be suitable for new implementations to use
 as-is, without requiring a mapping to a different native model.

 o The data model must be extensible for different specific interface
 types, including vendor-specific types.

 o References to interfaces should be as simple as possible,
 preferably by using a single leafref.

 o The mapping to ifIndex [RFC2863] used by SNMP to identify
 interfaces must be clear.

 o The model must support interface layering, both simple layering
 where one interface is layered on top of exactly one other
 interface, and more complex scenarios where one interface is
 aggregated over N other interfaces, or when N interfaces are
 multiplexed over one other interface.

 o The data model should support the pre-provisioning of interface
 configuration, i.e, it should be possible to configure an
 interface whose physical interface hardware is not present on the
 device. It is recommended that devices that supports dynamic
 addition and removal of physical interfaces also support pre-
 provisioning.

Bjorklund Expires June 11, 2011 [Page 4]

Internet-Draft YANG Interface Configuration December 2010

3. Interfaces Data Model

3.1. The interface List

 The data model for interface configuration presented in this document
 uses a flat list of interfaces. Each interface in the list is
 identified by its name. Furthermore, each interface has a mandatory
 "type" leaf, and a "location" leaf. The combination of "type" and
 "location" is unique within the interface list.

 The "type" is a YANG identity which must be derived from the base
 identity "interface-type". By using an identity instead of an
 enumeration, the definition of interface types is decentralized.
 Other standard or vendor-specific data models can define their own
 interface types without having to update a central data model.

 It is expected that interface type specific data models augment the
 interface list, and use the "type" leaf to make the augmentation
 conditional.

 As an example of such a interface type specific augmentation,
 consider this YANG snippet. For a more complete example, see
 Appendix A.

 import interfaces {
 prefix "if";
 }

 augment "/if:interfaces/if:interface" {
 when "if:type = ’ethernet’";
 container ethernet {
 leaf duplex {
 ...
 }
 }
 }

 The "location" leaf is a string. It is optional in the data model,
 but if the type represents a physical interface, it is mandatory.
 The format of this string is device- and type-dependent. The device
 uses the location string to identify the physical or logical entity
 that the configuration applies to. For example, if a device has a
 single array of 8 ethernet ports, the location can be one of the
 strings "1" to "8". As another example, if a device has N cards of M
 ports, the location can be on the form "n/m", such as "1/0".

 How a client can learn which types and locations are present on a
 certain device is outside the scope of this document.

Bjorklund Expires June 11, 2011 [Page 5]

Internet-Draft YANG Interface Configuration December 2010

3.2. Interface References

 An interface is uniquely identified by its name. This property is
 captured in the "interface-ref" typedef, which other YANG modules
 SHOULD use when they need to reference an existing interface.

3.3. Interface Layering

 There is no generic mechanism for how an interface is configured to
 be layered on top some other interface. It is expected that
 interface type specific models define their own objects for interface
 layering, by using "interface-ref" types to reference lower layers.

 Below is an example of a model with such objects. For a more
 complete example, see Appendix B.

 identity eth-bonding {
 base if:interface-type;
 }

 augment "/if:interfaces/if:interface" {
 when "if:type = eth-bonding";

 leaf-list slave-if {
 type if:interface-ref;
 must "/if:interfaces/if:interface[if:name = current()]"
 + "/if:type = ’eth:ethernet’" {
 description
 "The type of a slave interface must be ethernet";
 }
 }
 // other bonding config params, failover times etc.
 }

Bjorklund Expires June 11, 2011 [Page 6]

Internet-Draft YANG Interface Configuration December 2010

4. Interfaces YANG module

 RFC Ed.: update the date below with the date of RFC publication and
 remove this note.

 <CODE BEGINS> file "ietf-interfaces@2010-12-08.yang"

 module ietf-interfaces {

 namespace "urn:ietf:params:xml:ns:yang:ietf-interfaces";
 prefix "if";

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 WG Chair: David Kessens
 <mailto:david.kessens@nsn.com>

 WG Chair: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>

 Editor: Martin Bjorklund
 <mailto:mbj@tail-f.com>";

 description
 "This module contains a collection of YANG definitions for
 configuring network interfaces.

 Copyright (c) 2010 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.

Bjorklund Expires June 11, 2011 [Page 7]

Internet-Draft YANG Interface Configuration December 2010

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 revision 2010-12-08 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: A YANG Data Model for Interface Configuration";
 }

 /* Typedefs */

 typedef interface-ref {
 type leafref {
 path "/if:interfaces/if:interface/if:name";
 }
 description
 "This type is used by data models that need to reference
 interfaces.";
 }

 /* Features */

 feature snmp-if-mib {
 description
 "This feature indicates that the server implements IF-MIB,
 accessible over SNMP.";
 }

 /* Identities */

 identity interface-type {
 description
 "The base identity from which media-specific interface
 identities are derived.";
 }

 /* Data nodes */

 container interfaces {
 description
 "Interface parameters.";

 list interface {
 key "name";
 unique "type location";

 description
 "The list of configurable interfaces on the device.";

Bjorklund Expires June 11, 2011 [Page 8]

Internet-Draft YANG Interface Configuration December 2010

 leaf name {
 type string {
 length "1..255";
 }
 description
 "An arbitrary name for the interface.

 A device MAY restrict the allowed values for this leaf,
 possibly depending on the type and location.";
 }

 leaf type {
 type identityref {
 base interface-type;
 }
 mandatory true;
 description
 "The type of the interface.

 When an interface entry is created, a server MAY
 initialize the type leaf with a valid value, e.g. if it
 is possible to derive the type from the name of the
 interface.";
 }

 leaf location {
 type string;
 description
 "The device-specific location of the interface of a
 particular type. The format of the location string
 depends on the interface type and the device.

 Media-specific modules must specify if the location
 is needed for the given type.

 For example, if a device has a single array of 8 ethernet
 ports, the location can be one of ’1’ to ’8’. As another
 example, if a device has N cards of M ports, the location
 can be on the form ’n/m’.

 When an interface entry is created, a server MAY
 initialize the location leaf with a valid value, e.g. if
 it is possible to derive the location from the name of
 the interface.";
 }

 leaf admin-status {
 type enumeration {

Bjorklund Expires June 11, 2011 [Page 9]

Internet-Draft YANG Interface Configuration December 2010

 enum "up";
 enum "down";
 }
 default "up";
 description
 "The desired state of the interface.

 This leaf contains the configured, desired state of the
 interface. Systems that implement the IF-MIB use the
 value of this leaf to set IF-MIB.ifAdminStatus after an
 ifEntry has been initialized, as described in RFC 2863.";
 // FIXME: Can we say that changing ifAdminStatus does NOT
 // change this object? If not, is the opposite
 // always true, i.e. that changing ifAdminStatus
 // results in a change of this object (in running)?
 // Or should we be silent?
 reference
 "RFC 2863: The Interfaces Group MIB - ifAdminStatus";
 }

 leaf-list if-index {
 if-feature snmp-if-mib;
 type int32 {
 range "1..2147483647";
 }
 config false;
 description
 "The list of ifIndex values for all ifEntries that are
 represented by this interface. If there is a one-to-one
 mapping between the interface and entries in the ifTable,
 this leaf-list will have a single value.

 Media-specific modules must specify how the type is
 mapped to entries in the ifTable.";
 reference
 "RFC 2863: The Interfaces Group MIB - ifIndex";
 }

 leaf mtu {
 type uint32;
 description
 "The size, in octets, of the largest packet that the
 interface can send and receive. This node might not be
 valid for all interface types.

 Media-specific modules must specify any restrictions on
 the mtu for their interface type.";
 }

Bjorklund Expires June 11, 2011 [Page 10]

Internet-Draft YANG Interface Configuration December 2010

 }
 }
 }

 <CODE ENDS>

Bjorklund Expires June 11, 2011 [Page 11]

Internet-Draft YANG Interface Configuration December 2010

5. IANA Considerations

 This document registers a URI in the IETF XML registry [RFC3688].
 Following the format in RFC 3688, the following registration is
 requested to be made.

 URI: urn:ietf:params:xml:ns:yang:ietf-interfaces

 Registrant Contact: The NETMOD WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

 This document registers a YANG module in the YANG Module Names
 registry [RFC6020].

 name: ietf-interfaces
 namespace: urn:ietf:params:xml:ns:yang:ietf-interfaces
 prefix: if
 reference: RFC XXXX

Bjorklund Expires June 11, 2011 [Page 12]

Internet-Draft YANG Interface Configuration December 2010

6. Security Considerations

 TBD.

Bjorklund Expires June 11, 2011 [Page 13]

Internet-Draft YANG Interface Configuration December 2010

7. Acknowledgments

 The author wishes to thank Per Hedeland, Ladislav Lhotka, and Juergen
 Schoenwaelder for their helpful comments.

Bjorklund Expires June 11, 2011 [Page 14]

Internet-Draft YANG Interface Configuration December 2010

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, June 2000.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

Bjorklund Expires June 11, 2011 [Page 15]

Internet-Draft YANG Interface Configuration December 2010

Appendix A. Example: Ethernet Interface Module

 This section gives a simple example of how an Ethernet interface
 module could be defined. It demonstrates how a media-specific type
 can be derived from the base identity "interface-type", and how
 media-specific configuration parameters can be conditionally
 augmented to the generic interface list. It is not intended as a
 complete module for ethernet configuration.

Bjorklund Expires June 11, 2011 [Page 16]

Internet-Draft YANG Interface Configuration December 2010

 module ex-ethernet {
 namespace "http://example.com/ethernet";
 prefix "eth";

 import ietf-interfaces {
 prefix if;
 }

 identity ethernet {
 base if:interface-type;
 }

 augment "/if:interfaces/if:interface" {
 when "if:type = ’eth:ethernet’";
 container ethernet {
 must "../if:location" {
 description
 "An ethernet interface must specify the physical location
 of the ethernet hardware.";
 }
 choice transmission-params {
 case auto {
 leaf auto-negotiate {
 type empty;
 }
 }
 case manual {
 leaf duplex {
 type enumeration {
 enum "half";
 enum "full";
 }
 }
 leaf speed {
 type enumeration {
 enum "10Mb";
 enum "100Mb";
 enum "1Gb";
 enum "10Gb";
 }
 }
 }
 }
 // other ethernet specific params...
 }
 }
 }

Bjorklund Expires June 11, 2011 [Page 17]

Internet-Draft YANG Interface Configuration December 2010

Appendix B. Example: Ethernet Bonding Interface Module

 This section gives an example of how interface layering can be
 defined. An ethernet bonding type is defined, which bonds several
 ethernet interfaces into one logical interface.

 module ex-ethernet-bonding {
 namespace "http://example.com/ethernet-bonding";
 prefix "bond";

 import ietf-interfaces {
 prefix if;
 }
 import ex-ethernet {
 prefix eth;
 }

 identity eth-bonding {
 base if:interface-type;
 }

 augment "/if:interfaces/if:interface" {
 when "if:type = ’bond:eth-bonding’";
 leaf-list slave-if {
 type if:interface-ref;
 must "/if:interfaces/if:interface[if:name = current()]"
 + "/if:type = ’eth:ethernet’" {
 description
 "The type of a slave interface must be ethernet.";
 }
 }
 leaf bonding-mode {
 type enumeration {
 enum round-robin;
 enum active-backup;
 enum broadcast;
 }
 }
 // other bonding config params, failover times etc.
 }
 }

Bjorklund Expires June 11, 2011 [Page 18]

Internet-Draft YANG Interface Configuration December 2010

Appendix C. Example: VLAN Interface Module

 This section gives an example of how vlan interface module can be
 defined.

Bjorklund Expires June 11, 2011 [Page 19]

Internet-Draft YANG Interface Configuration December 2010

 module ex-vlan {
 namespace "http://example.com/vlan";
 prefix "vlan";

 import ietf-interfaces {
 prefix if;
 }
 import ex-ethernet {
 prefix eth;
 }
 import ex-ethernet-bonding {
 prefix bond;
 }

 identity vlan {
 base if:interface-type;
 }

 augment "/if:interfaces/if:interface" {
 when "if:type = ’eth:ethernet’ or
 if:type = ’bond:eth-bonding’";
 // Should we list all types that support vlan tagging here, or
 // should we just remove the when, and state in text that not
 // all interfaces support this?
 leaf vlan-tagging {
 type boolean;
 default false;
 }
 }

 augment "/if:interfaces/if:interface" {
 when "if:type = ’vlan:vlan’";
 leaf base-interface {
 type if:interface-ref;
 must "/if:interfaces/if:interface[if:name = current()]"
 + "/vlan:vlan-tagging = true" {
 description
 "The base interface must have vlan tagging enabled.";
 }
 }
 leaf vlan-id {
 type uint16 {
 range "1..4094";
 }
 must "../base-interface";
 }
 }
 }

Bjorklund Expires June 11, 2011 [Page 20]

Internet-Draft YANG Interface Configuration December 2010

Appendix D. Example: IP Module

 This section gives an example how an IP module can be defined.

 module ex-ip {

 namespace "http://example.com/ip";
 prefix "ip";

 import ietf-interfaces {
 prefix if;
 }

 import ietf-inet-types {
 prefix inet;
 }

 augment "/if:interfaces/if:interface" {
 container ip {
 list address {
 key "ip";
 leaf ip {
 type inet:ip-address;
 }
 leaf prefix-length {
 type uint16;
 // range depends on type of address
 }
 }
 }
 }
 }

Bjorklund Expires June 11, 2011 [Page 21]

Internet-Draft YANG Interface Configuration December 2010

Author’s Address

 Martin Bjorklund
 Tail-f Systems

 Email: mbj@tail-f.com

Bjorklund Expires June 11, 2011 [Page 22]

Network Working Group M. Bjorklund
Internet-Draft Tail-f Systems
Intended status: Standards Track J. Schoenwaelder
Expires: April 21, 2011 Jacobs University
 October 18, 2010

 snmp cfg
 draft-bjorklund-netmod-snmp-cfg-00

Abstract

 This document defines a collection of YANG definitions for
 configuring SNMP engines.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 1]

Internet-Draft snmp cfg October 2010

Table of Contents

 1. Introduction . 3
 2. Keywords . 4
 3. Overview . 5
 4. snmp . 6
 5. snmp-common . 7
 6. snmp-agent . 11
 7. snmp-community . 14
 8. snmp-notification . 16
 9. snmp-target . 19
 10. snmp-target-params . 22
 11. snmp-usm . 24
 12. snmp-vacm . 27
 13. IANA Considerations . 32
 14. Security Considerations 33
 15. Normative References . 34
 Appendix A. Example configurations 35
 Authors’ Addresses . 36

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 2]

Internet-Draft snmp cfg October 2010

1. Introduction

 TBD.

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 3]

Internet-Draft snmp cfg October 2010

2. Keywords

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119].

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 4]

Internet-Draft snmp cfg October 2010

3. Overview

 TBD.

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 5]

Internet-Draft snmp cfg October 2010

4. snmp

 <CODE BEGINS> file "snmp.yang"

 module snmp {
 namespace "http://yang-central.org/ns/snmp";
 prefix "snmp";

 include snmp-common {
 revision-date 2010-10-17;
 }
 include snmp-agent {
 revision-date 2010-10-17;
 }
 include snmp-community {
 revision-date 2010-10-17;
 }
 include snmp-notification {
 revision-date 2010-10-17;
 }
 include snmp-target {
 revision-date 2010-10-17;
 }
 include snmp-target-params {
 revision-date 2010-10-17;
 }
 include snmp-vacm {
 revision-date 2010-10-17;
 }
 include snmp-usm {
 revision-date 2010-10-17;
 }

 description
 "This module contains a collection of YANG definitions for
 configuring SNMP engines.";

 revision 2010-10-17 {
 description
 "Initial revision.";
 }

 }

 <CODE ENDS>

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 6]

Internet-Draft snmp cfg October 2010

5. snmp-common

 <CODE BEGINS> file "snmp-common.yang"

 submodule snmp-common {

 belongs-to snmp {
 prefix snmp;
 }

 description
 "This submodule contains a collection of common YANG definitions
 for configuring SNMP engines.";

 revision 2010-10-17 {
 description
 "Initial revision.";
 }

 /* Collection of SNMP features */

 feature proxy {
 description
 "A server implements this feature if it can act as an
 SNMP Proxy";
 }

 feature multiple-contexts {
 description
 "A server implements this feature if it supports other contexts
 than the default context.";
 }

 feature notification-filter {
 description
 "A server implements this feature if it supports SNMP
 notification filtering.";
 }

 /* Collection of SNMP specific data types */

 typedef admin-string {
 type string {
 length "0..255";
 }
 description
 "Represents and SnmpAdminString as defined in RFC 3411.";
 reference

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 7]

Internet-Draft snmp cfg October 2010

 "RFC 3411: An Architecture for Describing SNMP Management
 Frameworks";
 }

 typedef identifier {
 type admin-string {
 length "1..32";
 }
 description
 "Identifiers are used to name items in the SNMP configuration
 data store.";
 }

 typedef context-name {
 type admin-string {
 length "0..32";
 }
 description
 "The context type represents an SNMP context name.";
 }

 typedef sec-name {
 type admin-string;
 description
 "The sec-name type represents an SNMP security name.";
 }

 typedef mp-model {
 type union {
 type enumeration {
 enum any { value 0; }
 enum v1 { value 1; }
 enum v2c { value 2; }
 enum v3 { value 3; }
 }
 type int32 {
 range "0..2147483647";
 }
 }
 reference
 "RFC3411: An Architecture for Describing SNMP Management
 Frameworks";
 }

 typedef sec-model {
 type union {
 type enumeration {
 enum v1 { value 1; }

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 8]

Internet-Draft snmp cfg October 2010

 enum v2c { value 2; }
 enum usm { value 3; }
 }
 type int32 {
 range "1..2147483647";
 }
 }
 reference
 "RFC3411: An Architecture for Describing SNMP Management
 Frameworks";
 }

 typedef sec-model-or-any {
 type union {
 type enumeration {
 enum any { value 0; }
 }
 type sec-model;
 }
 reference
 "RFC3411: An Architecture for Describing SNMP Management
 Frameworks";
 }

 typedef sec-level {
 type enumeration {
 enum no-auth-no-priv { value 1; }
 enum auth-no-priv { value 2; }
 enum auth-priv { value 3; }
 }
 reference
 "RFC3411: An Architecture for Describing SNMP Management
 Frameworks";
 }

 typedef engine-id {
 type string {
 pattern ’(([0-9a-fA-F]){2}(:([0-9a-fA-F]){2}){4,31})?’;
 }
 description
 "The Engine ID specified as a list of colon-specified hexa-
 decimal octets e.g. ’4F:4C:41:71’.";
 reference
 "RFC3411: An Architecture for Describing SNMP Management
 Frameworks";
 }

 typedef wildcard-object-identifier {

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 9]

Internet-Draft snmp cfg October 2010

 type string;
 description
 "The wildcard-object-identifier type represents an SNMP object
 identifier where subidentifiers can be given either as a label,
 in numeric form, or a wildcard, represented by a *.";
 }

 container snmp {
 description
 "Top-level container for SNMP related configuration and
 status objects.";
 }

 }

 <CODE ENDS>

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 10]

Internet-Draft snmp cfg October 2010

6. snmp-agent

 <CODE BEGINS> file "snmp-agent.yang"

 submodule snmp-agent {

 belongs-to snmp {
 prefix snmp;
 }

 import ietf-yang-types {
 prefix yang;
 }
 import ietf-inet-types {
 prefix inet;
 }

 include snmp-common;

 revision 2010-10-17 {
 description
 "Initial revision.";
 }

 augment /snmp:snmp {

 container agent {

 description
 "Configuration of the SNMP agent";

 leaf enabled {
 type boolean;
 default "false";
 description
 "Enables the SNMP agent.";
 }

 // FIXME: support multiple endpoints

 leaf ip {
 type inet:ip-address;
 default "0.0.0.0";
 description
 "The IPv4 or IPv6 address to which the agent listens.";
 }

 leaf udp-port {

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 11]

Internet-Draft snmp cfg October 2010

 type inet:port-number;
 default "161";
 description
 "The UDP port to which the agent listens.";
 }

 container version {
 description
 "SNMP version used by the agent";
 leaf v1 {
 type empty;
 }
 leaf v2c {
 type empty;
 }
 leaf v3 {
 type empty;
 must "../../engine-id" {
 error-message
 "when v3 is configured, an engine-id must be set";
 }
 }
 }

 container engine-id {
 presence "Sets the local engine-id.";

 description
 "The local SNMP engine’s administratively-assigned unique
 identifier.";
 reference "SNMP-FRAMEWORK-MIB.snmpEngineID";

 leaf enterprise-number {
 type uint32;
 mandatory true;
 }
 choice method {
 mandatory true;
 leaf from-ip {
 type inet:ip-address;
 }
 leaf from-mac-address {
 type yang:mac-address;
 }
 leaf from-text {
 type string {
 length 1..27;
 }

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 12]

Internet-Draft snmp cfg October 2010

 }
 leaf other {
 type string {
 pattern "[0-9a-fA-F]{2}(:[0-9a-fA-F]{2}){0,27}";
 }
 }
 }
 }
 }

 container system {

 description
 "System group configuration.";

 leaf contact {
 type admin-string;
 default "";
 reference "SNMPv2-MIB.sysContact";
 }

 leaf name {
 type admin-string;
 default "";
 reference "SNMPv2-MIB.sysName";
 }

 leaf location {
 type admin-string;
 default "";
 reference "SNMPv2-MIB.sysLocation";
 }

 }

 }
 }

 <CODE ENDS>

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 13]

Internet-Draft snmp cfg October 2010

7. snmp-community

 <CODE BEGINS> file "snmp-community.yang"

 submodule snmp-community {

 belongs-to snmp {
 prefix snmp;
 }

 include snmp-common;
 include snmp-target;

 reference
 "RFC3584: Coexistence between Version 1, Version 2, and Version 3
 of the Internet-standard Network Management Framework";

 revision 2010-10-17 {
 description
 "Initial revision.";
 }

 augment /snmp:snmp {

 list community {
 key index;

 description
 "List of communities";
 reference "SNMP-COMMUNITY-MIB.snmpCommunityTable";

 leaf index {
 type snmp:identifier;
 description "Index into the community list.";
 reference "SNMP-COMMUNITY-MIB.snmpCommunityIndex";
 }
 leaf name {
 type string;
 description
 "Use only when the community string is not the same as the
 index.";
 reference "SNMP-COMMUNITY-MIB.snmpCommunityName";
 }
 leaf sec-name {
 type snmp:sec-name;
 description
 "If not set, the value of ’name’ is operationally used";
 reference "SNMP-COMMUNITY-MIB.snmpCommunitySecurityName";

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 14]

Internet-Draft snmp cfg October 2010

 }
 leaf engine-id {
 if-feature snmp:proxy;
 type snmp:engine-id;
 description
 "If not set, the value of the local SNMP engine is
 operationally used by the device.";
 reference "SNMP-COMMUNITY-MIB.snmpCommunityContextEngineID";
 }
 leaf context {
 if-feature snmp:multiple-contexts;
 type snmp:context-name;
 default "";
 reference "SNMP-COMMUNITY-MIB.snmpCommunityContextName";
 }
 leaf target-tag {
 type leafref {
 path "/snmp/target/tag";
 }
 description
 "Used to limit access for this community to the specified
 targets.";
 reference "SNMP-COMMUNITY-MIB.snmpCommunityTransportTag";
 }
 }
 }
 }

 <CODE ENDS>

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 15]

Internet-Draft snmp cfg October 2010

8. snmp-notification

 <CODE BEGINS> file "snmp-notification.yang"

 submodule snmp-notification {

 belongs-to snmp {
 prefix snmp;
 }

 include snmp-common;
 include snmp-target;
 include snmp-target-params;

 reference
 "RFC3413: Simple Network Management Protocol (SNMP) Applications
 SNMP-NOTIFICATION-MIB";

 revision 2010-10-17 {
 description
 "Initial revision.";
 }

 augment /snmp:snmp/snmp:target {
 leaf notify-profile {
 if-feature snmp:notification-filter;
 type leafref {
 path "/snmp/notify-profile/name";
 }
 }
 }

 augment /snmp:snmp {

 list notify {

 key name;

 description
 "Targets that will receive notifications.";
 reference "SNMP-NOTIFY-MIB.snmpNotifyTable";

 leaf name {
 type snmp:identifier;
 description
 "An arbitrary name for the list entry.";
 reference "SNMP-NOTIFY-MIB.snmpNotifyName";
 }

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 16]

Internet-Draft snmp cfg October 2010

 leaf tag {
 type leafref {
 path "/snmp/target/tag";
 }
 mandatory true;
 description
 "Target tag, selects a set of notification targets.";
 reference "SNMP-NOTIFY-MIB.snmpNotifyTag";
 }
 leaf type {
 type enumeration {
 enum trap { value 1; }
 enum inform { value 2; }
 }
 must
 ’. != inform or ’
 + ’not(/snmp/target[tag = current()/../name]’
 + ’ /../usm[../engine-id] != ’
 + ’ /snmp/target[tag = current()/../name]/../usm)’ {
 error-message
 "When inform is configured, all v3 targets must have an
 engine-id configured.";
 }
 default trap;
 description "Defines the notification type to be generated.";
 reference "SNMP-NOTIFY-MIB.snmpNotifyType";
 }
 }

 list notify-profile {
 if-feature snmp:notification-filter;
 key name;

 description
 "Notification filter profiles associated with targets.";
 reference "SNMP-NOTIFY-MIB.snmpNotifyFilterProfileTable";

 leaf name {
 type snmp:identifier;
 description "Name of the filter profile";
 reference "SNMP-NOTIFY-MIB.snmpNotifyFilterProfileName";
 }
 list subtree {
 key "oids";

 reference "SNMP-NOTIFY-MIB.snmpNotifyFilterTable";

 leaf oids {

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 17]

Internet-Draft snmp cfg October 2010

 type wildcard-object-identifier;
 description
 "A family of subtrees included in this filter.";
 reference "SNMP-NOTIFY-MIB.snmpNotifyFilterSubtree
 SNMP-NOTIFY-MIB.snmpNotifyFilterMask";
 }

 choice type {
 mandatory true;
 leaf included {
 type empty;
 description
 "The family of subtrees is included in the filter.";
 }
 leaf excluded {
 type empty;
 description
 "The family of subtrees is excluded from the filter.";
 }
 reference "SNMP-NOTIFY-MIB.snmpNotifyFilterType";
 }
 }
 }
 }
 }

 <CODE ENDS>

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 18]

Internet-Draft snmp cfg October 2010

9. snmp-target

 <CODE BEGINS> file "snmp-target.yang"

 submodule snmp-target {

 belongs-to snmp {
 prefix snmp;
 }

 import ietf-inet-types {
 prefix inet;
 }

 include snmp-common;
 include snmp-usm;

 reference
 "RFC3413: Simple Network Management Protocol (SNMP) Applications
 SNMP-TARGET-MIB";

 revision 2010-10-17 {
 description
 "Initial revision.";
 }

 augment /snmp:snmp {

 list target {
 key name;

 description "List of targets.";
 reference "SNMP-TARGET-MIB.snmpTargetAddrTable";

 leaf name {
 type snmp:identifier;
 description
 "Identifies the target.";
 reference "SNMP-TARGET-MIB.snmpTargetAddrName";
 }

 // make a choice here so we can add other transports, or
 // they can augment.

 leaf ip {
 type inet:ip-address;
 mandatory true;
 description "Transport IP address of the target";

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 19]

Internet-Draft snmp cfg October 2010

 reference "SNMP-TARGET-MIB.snmpTargetAddrTDomain
 SNMP-TARGET-MIB.snmpTargetAddrTAddress";
 }
 leaf udp-port {
 type inet:port-number;
 default 162;
 description "UDP port number";
 reference "SNMP-TARGET-MIB.snmpTargetAddrTDomain
 SNMP-TARGET-MIB.snmpTargetAddrTAddress";
 }
 leaf-list tag {
 type snmp:identifier;
 description
 "List of tag values used to select target address.";
 reference "SNMP-TARGET-MIB.snmpTargetAddrTagList";
 }

 leaf timeout {
 type uint32;
 units "0.01 seconds";
 default 1500;
 description
 "Needed only if this target can receive v3 informs.";
 reference "SNMP-TARGET-MIB.snmpTargetAddrTimeout";
 }
 leaf retries {
 type uint8;
 default 3;
 description
 "Needed only if this target can receive v3 informs.";
 reference "SNMP-TARGET-MIB.snmpTargetAddrRetryCount";
 }
 leaf engine-id {
 type leafref {
 path "/snmp/usm/remote/engine-id";
 }
 must ’../usm/user-name’ {
 error-message
 "When engine-id is set, usm/user-name must also be set.";
 }
 must ’/snmp/usm/remote[engine-id=current()]/’
 + ’user[name=current()/../usm/user-name]’ {
 error-message
 "When engine-id is set, the usm/user-name must exist in the
 /snmp/usm/remote list for this engine-id.";
 }
 description
 "Needed only if this target can receive v3 informs.

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 20]

Internet-Draft snmp cfg October 2010

 This object is not present in the SNMP MIBs. In
 RFC 3412, it is a implementation specific matter how this
 engine-id is handled.";
 reference "RFC 3412 7.1.9a";
 }
 }

 }
 }

 <CODE ENDS>

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 21]

Internet-Draft snmp cfg October 2010

10. snmp-target-params

 <CODE BEGINS> file "snmp-target-params.yang"

 submodule snmp-target-params {

 belongs-to snmp {
 prefix snmp;
 }

 include snmp-common;
 include snmp-community;
 include snmp-target;

 reference
 "RFC3413: Simple Network Management Protocol (SNMP) Applications
 SNMP-TARGET-MIB";

 revision 2010-10-17 {
 description
 "Initial revision.";
 }

 augment /snmp:snmp/snmp:target {

 /* By including the params directly in the target entry we
 lose some flexibility, but we get a simpler model with less
 cross-references. In SNMP, two addrEntries can point to the
 same paramsEntry.
 */
 choice params {
 mandatory true;
 reference "SNMP-TARGET-MIB.snmpTargetParamsTable";
 container v1 {
 description "SNMPv1 parameters type";
 // mp-model is v1, sec-level is noAuthNoPriv
 leaf community {
 type leafref {
 path "/snmp/community/index";
 }
 mandatory true;
 reference "SNMP-TARGET-MIB.snmpTargetParamsSecurityName";
 }
 }
 container v2c {
 description "SNMPv2 community parameters type";
 // mp-model is v2c, sec-level is noAuthNoPriv
 leaf community {

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 22]

Internet-Draft snmp cfg October 2010

 type leafref {
 path "/snmp/community/index";
 }
 mandatory true;
 reference "SNMP-TARGET-MIB.snmpTargetParamsSecurityName";
 }
 }
 container usm {
 description "User based SNMPv3 parameters type";
 // mp-model is v3
 leaf user-name {
 type leafref {
 path "/snmp/usm/local/user/name";
 }
 mandatory true;
 reference "SNMP-TARGET-MIB.snmpTargetParamsSecurityName";
 }
 leaf sec-level {
 type sec-level;
 mandatory true;
 reference "SNMP-TARGET-MIB.snmpTargetParamsSecurityLevel";
 }
 }
 }
 }

 }

 <CODE ENDS>

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 23]

Internet-Draft snmp cfg October 2010

11. snmp-usm

 <CODE BEGINS> file "snmp-usm.yang"

 submodule snmp-usm {

 belongs-to snmp {
 prefix snmp;
 }

 include snmp-common;

 description
 "This submodule contains a collection of YANG definitions for
 configuring the User-based Security Model (USM) of SNMP.";
 reference
 "RFC3414: User-based Security Model (USM) for version 3 of the
 Simple Network Management Protocol (SNMPv3).";

 revision 2010-10-17 {
 description
 "Initial revision.";
 }

 grouping key {
 choice key-type {
 leaf password {
 /* This must be stored in the config; it cannot be derived from
 the SNMP table. Also, if SNMP is used to set the key,
 this password will not be used anymore */
 type string;
 description
 "Will be used to create a localized key.";
 }
 leaf key {
 type string {
 pattern ’([0-9a-fA-F]){2}(:([0-9a-fA-F]){2})*’;
 }
 description
 "Authentication key specified as a list of colon-specified
 hexa-decimal octets";
 }
 }
 }

 grouping user-list {
 list user {
 key "name";

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 24]

Internet-Draft snmp cfg October 2010

 reference "SNMP-USER-BASED-SM-MIB.usmUserTable";

 leaf name {
 type snmp:identifier;
 reference "SNMP-USER-BASED-SM-MIB.usmUserName
 SNMP-USER-BASED-SM-MIB.usmUserSecurityName";
 }
 leaf security-name {
 type snmp:identifier;
 description
 "If not set, the value of ’name’ is operationally used";
 reference "SNMP-USER-BASED-SM-MIB.usmUserSecurityName";
 }
 container auth {
 presence "enables authentication";
 description "Enables authentication protocol of the user";
 choice protocol {
 mandatory true;
 reference "SNMP-USER-BASED-SM-MIB.usmUserAuthProtocol";
 container md5 {
 presence "md5";
 uses key;
 }
 container sha {
 presence "sha";
 uses key;
 }
 }
 }
 container priv {
 must "../auth" {
 error-message
 "when privacy is used, authentication must also be used";
 }
 presence "enables encryption";
 description
 "Enables encryption for the authentication process.";

 choice protocol {
 mandatory true;
 reference "SNMP-USER-BASED-SM-MIB.usmUserPrivProtocol";
 container des {
 presence "des";
 uses key;
 }
 container aes {
 presence "aes";
 uses key;

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 25]

Internet-Draft snmp cfg October 2010

 }
 }
 }
 }
 }

 augment /snmp:snmp {

 container usm {
 description
 "Configuration of the User-based Security Model";
 container local {
 uses user-list;
 }

 list remote {
 key "engine-id";

 leaf engine-id {
 type snmp:engine-id;
 reference "SNMP-USER-BASED-SM-MIB.usmUserEngineID";
 }

 uses user-list;
 }
 }
 }
 }

 <CODE ENDS>

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 26]

Internet-Draft snmp cfg October 2010

12. snmp-vacm

 <CODE BEGINS> file "snmp-vacm.yang"

 submodule snmp-vacm {

 belongs-to snmp {
 prefix snmp;
 }

 include snmp-common;

 description
 "This submodule contains a collection of YANG definitions for
 configuring the View-based Access Control Model (VACM) of SNMP.";
 reference
 "RFC3415: View-based Access Control Model (VACM) for the
 Simple Network Management Protocol (SNMP)";

 revision 2010-10-17 {
 description
 "Initial revision.";
 }

 typedef view-name {
 type snmp:identifier;
 description
 "The view-name type represents an SNMP VACM view name.";
 }

 typedef group-name {
 type snmp:identifier;
 description
 "The group-name type represents an SNMP VACM group name.";
 }

 augment /snmp:snmp {

 container vacm {
 description
 "Configuration of the View-based Access Control Model";

 list group {
 key name;
 description
 "VACM Groups";
 reference "SNMP-VIEW-BASED-ACM-MIB.vacmSecurityToGroupTable";

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 27]

Internet-Draft snmp cfg October 2010

 leaf name {
 type group-name;
 description
 "The name of this VACM group.";
 reference "SNMP-VIEW-BASED-ACM-MIB.vacmGroupName";
 }

 list member {
 key "sec-name";
 min-elements 1;
 description
 "A member of this VACM group. According to VACM, every
 group must have at least one member.

 A certain combination of sec-name and sec-model MUST NOT
 be mapped to more than one group.";

 leaf sec-name {
 type snmp:sec-name;
 description
 "The securityName of a group member.";
 }

 leaf-list sec-model {
 type snmp:sec-model;
 min-elements 1;
 description
 "The security models under which this securityName
 is a member of this group.";
 }
 }

 list access {
 key "context sec-model sec-level";
 description
 "Definition of access right for groups";
 reference "SNMP-VIEW-BASED-ACM-MIB.vacmAccessTable";

 leaf context {
 // FIXME: since this is part of the key, it must not have an if-feature
 // if-feature snmp:multiple-contexts;
 type snmp:context-name;
 description
 "The context (prefix) under which the access rights
 apply.";
 reference
 "SNMP-VIEW-BASED-ACM-MIB.vacmAccessContextPrefix";
 }

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 28]

Internet-Draft snmp cfg October 2010

 leaf context-match {
 if-feature snmp:multiple-contexts;
 type enumeration {
 enum exact;
 enum prefix;
 }
 default exact;
 reference
 "SNMP-VIEW-BASED-ACM-MIB.vacmAccessContextMatch";
 }

 leaf sec-model {
 type snmp:sec-model-or-any;
 description
 "The security model under which the access rights
 apply.";
 reference
 "SNMP-VIEW-BASED-ACM-MIB.vacmAccessSecurityModel";
 }

 leaf sec-level {
 type snmp:sec-level;
 description
 "The minimum security level under which the access rights
 apply.";
 reference
 "SNMP-VIEW-BASED-ACM-MIB.vacmAccessSecurityLevel";
 }

 leaf read-view {
 type leafref {
 path "/snmp/vacm/view/name";
 }
 description
 "The name of the MIB view of the SNMP context authorizing
 read access.";
 reference
 "SNMP-VIEW-BASED-ACM-MIB.vacmAccessReadViewName";
 }

 leaf write-view {
 type leafref {
 path "/snmp/vacm/view/name";
 }
 description
 "The name of the MIB view of the SNMP context authorizing
 write access.";
 reference

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 29]

Internet-Draft snmp cfg October 2010

 "SNMP-VIEW-BASED-ACM-MIB.vacmAccessWriteViewName";
 }

 leaf notify-view {
 type leafref {
 path "/snmp/vacm/view/name";
 }
 description
 "The name of the MIB view of the SNMP context authorizing
 notify access.";
 reference
 "SNMP-VIEW-BASED-ACM-MIB.vacmAccessNotifyViewName";
 }
 }
 }

 list view {
 key name;
 description
 "Definition of MIB views";
 reference
 "SNMP-VIEW-BASED-ACM-MIB.vacmViewTreeFamilyTable";

 leaf name {
 type view-name;
 description
 "The name of this VACM MIB view.";
 reference
 "SNMP-VIEW-BASED-ACM-MIB.vacmViewTreeFamilyName";
 }

 list subtree {
 key "oids";
 reference
 "SNMP-VIEW-BASED-ACM-MIB.vacmViewTreeFamilySubtree";

 leaf oids {
 type snmp:wildcard-object-identifier;
 description
 "A family of subtrees included in this MIB view.";
 reference
 "SNMP-VIEW-BASED-ACM-MIB.vacmViewTreeFamilySubtree
 SNMP-VIEW-BASED-ACM-MIB.vacmViewTreeFamilyMask";
 }

 choice type {
 mandatory true;
 reference "SNMP-VIEW-BASED-ACM-MIB.vacmViewTreeFamilyType";

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 30]

Internet-Draft snmp cfg October 2010

 leaf included {
 type empty;
 description
 "The family of subtrees is included in the MIB view";
 }
 leaf excluded {
 type empty;
 description
 "The family of subtrees is excluded from the MIB view";
 }
 }
 }
 }
 }
 }
 }

 <CODE ENDS>

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 31]

Internet-Draft snmp cfg October 2010

13. IANA Considerations

 TBD.

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 32]

Internet-Draft snmp cfg October 2010

14. Security Considerations

 TBD.

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 33]

Internet-Draft snmp cfg October 2010

15. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 34]

Internet-Draft snmp cfg October 2010

Appendix A. Example configurations

 TBD.

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 35]

Internet-Draft snmp cfg October 2010

Authors’ Addresses

 Martin Bjorklund
 Tail-f Systems

 Email: mbj@tail-f.com

 Juergen Schoenwaelder
 Jacobs University

 Email: j.schoenwaelder@jacobs-university.de

Bjorklund & Schoenwaelder Expires April 21, 2011 [Page 36]

NETCONF Data Modeling Language Q. Chen
Internet-Draft M. Du
Intended status: Informational ZTE Corporation
Expires: April 21, 2011 Oct 18, 2010

 Extending YANG with Revised Types
 draft-chen-netmod-yang-ext-00

Abstract

 YANG - the NETCONF Data Modeling Language - supports modeling of a
 tree of data elements that represent the configuration and runtime
 status of a particular network element managed via NETCONF. This
 document introduces new idea which revises the ID
 [draft-linowski-netmod-yang-abstract-03] and clears some ambiguous
 concepts and descrptions.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

Chen & Du Expires April 21, 2011 [Page 1]

Internet-Draft YANG Extension Oct 2010

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Conventions used in this document 3
 2. Redefing type in YANG abstract 3
 3. Revised types in yang-abstract 3
 3.1. Removing confusion . 3
 3.2. Result . 4
 4. Management Consideration 4
 5. Security Considerations . 4
 6. IANA Considerations . 4
 Authors’ Addresses . 4

Chen & Du Expires April 21, 2011 [Page 2]

Internet-Draft YANG Extension Oct 2010

1. Introduction

 [draft-linowski-netmod-yang-abstract-03] suggests to enhance YANG
 with supplementary modeling features and language abstractions with
 the aim to improve the model extensibility and reuse.

 However, some ideas and description are not defined clearly,this memo
 tries to amend the concepts and gives some suggestions.

1.1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Redefing type in YANG abstract

 section "2.3. instance extension statement" and "2.4. instance-list
 extension statement", the table of substatement list out that "type"
 is allowed, but "instance-type" is not listed. so it is conflict with
 what is wrote in section 3.2. instance-type extension statement.
 suggest that "instance-type" is need not defined, use "type" instead,
 and give description in section 2.3 and 2.4

3. Revised types in yang-abstract

3.1. Removing confusion

 There exists difference between types of a list and types of the node
 of the list,and both types are being used in application
 implementation. But in YANG and yang-abstract, it is not
 distinguished. It will cause confusion in complehension and
 implementation . So it is strongly suggested do not introduce
 subtree/subtype/field in list definition, that is in
 "draft-linowski-netmod-yang-abstract-03.txt" , section "2.4.
 instance-list extension statement" remove choice ,
 container,instance,instance-list,leaf ,leaf-list,list in substatment
 table, only "type" for use a complex-type is allowed.

Chen & Du Expires April 21, 2011 [Page 3]

Internet-Draft YANG Extension Oct 2010

3.2. Result

 +---------------+-------------+
 | substatement | cardinality |
 +---------------+-------------+
 | description | 0..1 |
 | config | 0..1 |
 | if-feature | 0..n |
 | mandatory | 0..1 |
 | must | 0..n |
 | reference | 0..1 |
 | status | 0..1 |
 | type | 1 |
 +---------------+-------------+

 Figure 1: instance’s substatements

4. Management Consideration

5. Security Considerations

 TBD

6. IANA Considerations

 TBD

Authors’ Addresses

 Qiaogang Chen
 ZTE Corporation
 3/F, R.D. Building 3, ZTE Industrial Park, Liuxian Road
 Shenzhen 518055
 P.R.China

 Phone: +86 755 26773712
 Email: chen.qiaogang@zte.com.cn
 URI: http://www.zte.com.cn/

Chen & Du Expires April 21, 2011 [Page 4]

Internet-Draft YANG Extension Oct 2010

 Ming Du
 ZTE Corporation
 3/F, R.D. Building 3, ZTE Industrial Park, Liuxian Road
 Shenzhen 518055
 P.R.China

 Phone: +86 755 26773712
 Email: du.ming@zte.com.cn
 URI: http://www.zte.com.cn/

Chen & Du Expires April 21, 2011 [Page 5]

IP Flow Information Export WG G. Muenz
Internet-Draft TU Muenchen
Intended status: Standards Track B. Claise
Expires: September 10, 2011 P. Aitken
 Cisco Systems, Inc.
 March 9, 2011

 Configuration Data Model for IPFIX and PSAMP
 <draft-ietf-ipfix-configuration-model-09>

Abstract

 This document specifies a data model for configuring and monitoring
 Selection Processes, Caches, Exporting Processes, and Collecting
 Processes of IPFIX and PSAMP compliant Monitoring Devices using the
 NETCONF protocol [RFC4741]. The data model is defined using UML
 (Unified Modeling Language) class diagrams and formally specified
 using YANG [RFC6020]. The configuration data is encoded in
 Extensible Markup Language (XML).

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 1]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 2]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

Table of Contents

 1. Introduction . 5
 1.1. IPFIX Documents Overview 6
 1.2. PSAMP Documents Overview 6

 2. Terminology . 6

 3. Structure of the Configuration Data Model 9
 3.1. Metering Process Decomposition in Selection Process
 and Cache . 10
 3.2. UML Representation 11
 3.3. Exporter Configuration 16
 3.4. Collector Configuration 18

 4. Configuration Parameters 19
 4.1. ObservationPoint Class 19
 4.2. SelectionProcess Class 21
 4.2.1. Selector Class 22
 4.2.2. Sampler Classes 23
 4.2.3. Filter Classes 24
 4.3. Cache Class . 26
 4.3.1. ImmediateCache Class 27
 4.3.2. TimeoutCache, NaturalCache, and PermanentCache
 Class . 27
 4.3.3. CacheLayout Class 29
 4.4. ExportingProcess Class 32
 4.4.1. SctpExporter Class 33
 4.4.2. UdpExporter Class 35
 4.4.3. TcpExporter Class 37
 4.4.4. FileWriter Class 37
 4.4.5. Options Class . 38
 4.5. CollectingProcess Class 40
 4.5.1. SctpCollector Class 41
 4.5.2. UdpCollector Class 42
 4.5.3. TcpCollector Class 43
 4.5.4. FileReader Class 44
 4.6. Transport Layer Security Class 45
 4.7. Transport Session Class 48
 4.8. Template Class . 52

 5. Adaptation to Device Capabilities 53

 6. YANG Module of the IPFIX/PSAMP Configuration Data Model . . . 56

 7. Examples . 100
 7.1. PSAMP Device . 100
 7.2. IPFIX Device . 111

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 3]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 7.3. Export of Flow Records and Packet Reports 114
 7.4. Collector and File Writer 116
 7.5. Deviations . 117

 8. Security Considerations 118

 9. IANA Considerations . 120

 Appendix A. Acknowledgements 120

 10. References . 121
 10.1. Normative References 121
 10.2. Informative References 121

 Authors’ Addresses . 124

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 4]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

1. Introduction

 IPFIX and PSAMP compliant Monitoring Devices (routers, switches,
 monitoring probes, Collectors etc.) offer various configuration
 possibilities that allow adapting network monitoring to the goals and
 purposes of the application, such as accounting and charging, traffic
 analysis, performance monitoring, security monitoring. The use of a
 common vendor-independent configuration data model for IPFIX and
 PSAMP compliant Monitoring Devices facilitates network management and
 configuration, especially if Monitoring Devices of different
 implementers or manufacturers are deployed simultaneously. On the
 one hand, a vendor-independent configuration data model helps storing
 and managing the configuration data of Monitoring Devices in a
 consistent format. On the other hand, it can be used for local and
 remote configuration of Monitoring Devices.

 The purpose of this document is the specification of a vendor-
 independent configuration data model that covers the commonly
 available configuration parameters of Selection Processes, Caches,
 Exporting Processes, and Collecting Processes. In addition, it
 includes common states parameters of a Monitoring Device. The
 configuration data model is defined using UML (Unified Modeling
 Language) class diagrams [UML] while the actual configuration data is
 encoded in Extensible Markup Language (XML) [W3C.REC-xml-20040204].
 An XML document conforming to the configuration data model contains
 the configuration data of one Monitoring Device.

 The configuration data model is designed for being used with the
 NETCONF protocol [RFC4741] in order to configure remote Monitoring
 Devices. With the NETCONF protocol, it is possible to transfer a
 complete set of configuration data to a Monitoring Device, to query
 the current configuration and state parameters of a Monitoring
 Device, and to change specific parameter values of an existing
 Monitoring Device configuration.

 In order to ensure compatibility with the NETCONF protocol [RFC4741],
 YANG [RFC6020] is used to formally specify the configuration data
 model. If required, the YANG specification of the configuration data
 model can be converted into XML Schema language
 [W3C.REC-xmlschema-0-20041028] or DSDL (Document Schema Definition
 Languages) [RFC6110], for example by using the pyang tool [YANG-WEB].
 YANG provides mechanisms to adapt the configuration data model to
 device-specific constraints and to augment the model with additional
 device-specific or vendor-specific parameters.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 5]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

1.1. IPFIX Documents Overview

 The IPFIX protocol [RFC5101] provides network administrators with
 access to IP Flow information. The architecture for the export of
 measured IP Flow information out of an IPFIX Exporting Process to a
 Collecting Process is defined in [RFC5470], per the requirements
 defined in [RFC3917]. The IPFIX protocol [RFC5101] specifies how
 IPFIX Data Records and Templates are carried via a number of
 transport protocols from IPFIX Exporting Processes to IPFIX
 Collecting Process. IPFIX has a formal description of IPFIX
 Information Elements, their name, type and additional semantic
 information, as specified in [RFC5102]. [RFC5815] specifies the
 IPFIX Management Information Base (IPFIX MIB). Finally, [RFC5472]
 describes what type of applications can use the IPFIX protocol and
 how they can use the information provided. It furthermore shows how
 the IPFIX framework relates to other architectures and frameworks.
 Methods for efficient export of bidirectional Flow information and
 common properties in Data Records are specified in [RFC5103] and
 [RFC5473], respectively. [RFC5610] addresses the export of extended
 type information for enterprise-specific Information Elements. The
 storage of IPFIX Messages in a file is specified in [RFC5655].

1.2. PSAMP Documents Overview

 The framework for packet selection and reporting [RFC5474] enables
 network elements to select subsets of packets by statistical and
 other methods, and to export a stream of reports on the selected
 packets to a Collector. The set of packet selection techniques
 (Sampling, Filtering, and hashing) standardized by PSAMP are
 described in [RFC5475]. The PSAMP protocol [RFC5476] specifies the
 export of packet information from a PSAMP Exporting Process to a
 PSAMP Collector. Instead of exporting PSAMP Packet Reports, the
 stream of selected packets may also serve as input to the generation
 of IPFIX Flow Records. Like IPFIX, PSAMP has a formal description of
 its Information Elements, their name, type and additional semantic
 information. The PSAMP information model is defined in [RFC5477].
 [I-D.ietf-ipfix-psamp-mib] describes the PSAMP Management Information
 Base (PSAMP MIB).

2. Terminology

 This document adopts the terminologies used in [RFC5101], [RFC5103],
 [RFC5655], and [RFC5476]. As in these documents, all specific terms
 have the first letter of a word capitalized when used in this
 document. The following listing indicates in which references the
 definitions of those terms that are commonly used throughout this
 document can be found:

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 6]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 o Definitions adopted from [RFC5101]:
 * Collection Process
 * Collector
 * Data Record
 * Exporter
 * Flow
 * Flow Key
 * Flow Record
 * Information Element
 * IPFIX Device
 * IPFIX Message
 * Observation Domain
 * Observation Point
 * (Options) Template

 o Definitions adopted from [RFC5103]:
 * Reverse Information Element

 o Definitions adopted from [RFC5655]:
 * File Reader
 * File Writer

 o Definitions adopted from [RFC5476]:
 * Filtering
 * Observed Packet Stream
 * Packet Report
 * PSAMP Device
 * Sampling
 * Selection Process
 * Selection Sequence
 * Selection Sequence Report Interpretation
 * Selection Sequence Statistics Report Interpretation
 * Selection State
 * Selector, Primitive Selector, Composite Selector
 * Selector Report Interpretation

 The terms Metering Process and Exporting Process have different
 definitions in [RFC5101] and [RFC5476]. In the scope of this
 document, these terms are used according to the following definitions
 which cover the deployment in both PSAMP Devices and IPFIX Devices:

 Metering Process

 The Metering Process generates IPFIX Flow Records or PSAMP Packet
 Reports, depending on its deployment as part of an IPFIX Device or
 PSAMP Device. Inputs to the process are packets observed at one
 or multiple Observation Points, as well as characteristics
 describing the packet treatment at these Observation Points. If

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 7]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 IPFIX Flow Records are generated, the Metering Process MUST NOT
 aggregate packets observed at different Observation Domains in the
 same Flow. The function of the Metering Process is split into two
 functional blocks: Selection Process and Cache.

 Exporting Process

 Depending on its deployment as part of an IPFIX Device or PSAMP
 Device, the Exporting Process sends IPFIX Flow Records or PSAMP
 Packet Reports to one or more Collecting Processes. The IPFIX
 Flow Records or PSAMP Packet Reports are generated by one or more
 Metering Processes.

 In addition to the existing IPFIX and PSAMP terminology, the
 following terms are defined:

 Cache

 The Cache is a functional block in a Metering Process which
 generates IPFIX Flow Records or PSAMP Packet Reports from a
 Selected Packet Stream, in accordance with its configuration. If
 Flow Records are generated, the Cache performs tasks like creating
 new records, updating existing ones, computing Flow statistics,
 deriving further Flow properties, detecting Flow expiration,
 passing Flow Records to the Exporting Process, and deleting Flow
 Records. If Packet Reports are generated, the Cache performs
 tasks like extracting packet contents and derived packet
 properties from the Selected Packet Stream, creating new records,
 and passing them as Packet Reports to the Exporting Process.

 Cache Layout

 The Cache Layout defines the superset of fields that are included
 in the Packet Reports or Flow Records maintained by the Cache.
 The fields are specified by the corresponding Information
 Elements. In general, the largest possible subset of the
 specified fields is derived for every Packet Report or Flow
 Record. More specific rules about which fields must be included
 are given in Section 4.3.3.

 Monitoring Device

 A Monitoring Device implements at least one of the functional
 blocks specified in the context of IPFIX or PSAMP. In particular,
 the term Monitoring Device encompasses Exporters, Collectors,
 IPFIX Devices, and PSAMP Devices.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 8]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Selected Packet Stream

 The Selected Packet Stream is the set of all packets selected by a
 Selection Process.

3. Structure of the Configuration Data Model

 The IPFIX reference model in [RFC5470] describes Metering Processes,
 Exporting Processes, and Collecting Processes as functional blocks of
 IPFIX Devices. The PSAMP framework [RFC5474] provides the
 corresponding information for PSAMP Devices and introduces the
 Selection Process as a functional block within Metering Processes.
 In Section 2 of the document, the Cache is defined as another
 functional block within Metering Processes. Further explanations
 about the relationship between Selection Process and Cache are given
 in Section 3.1. IPFIX File Reader and File Writer are defined as
 specific kinds of Exporting and Collecting Processes in [RFC5655].

 Monitoring Device implementations usually maintain the separation of
 various functional blocks although they do not necessarily implement
 all of them. Furthermore, they provide various configuration
 possibilities; some of them are specified as mandatory by the IPFIX
 protocol [RFC5101] or PSAMP protocol [RFC5476]. The configuration
 data model enables the setting of commonly available configuration
 parameters for Selection Processes, Caches, Exporting Processes, and
 Collecting Processes. In addition, it allows specifying the
 composition of functional blocks within a Monitoring Device
 configuration and their linkage with Observation Points.

 The selection of parameters in the configuration data model is based
 on configuration issues discussed in the IPFIX and PSAMP documents
 [RFC3917], [RFC5101], [RFC5470], [RFC5476], [RFC5474], and [RFC5475].
 Furthermore, the structure and content of the IPFIX MIB module
 [RFC5815] and the PSAMP MIB module [I-D.ietf-ipfix-psamp-mib] have
 been taken into consideration. Consistency between the configuration
 data model and the IPFIX and PSAMP MIB modules is an intended goal.
 Therefore, parameters in the configuration data model are named
 according to corresponding managed objects. Certain IPFIX MIB
 objects containing state data have been adopted as state parameters
 in the configuration data model. State parameters cannot be
 configured, yet their values can be queried from the Monitoring
 Device by a network manager.

 Section 3.2 explains how UML class diagrams are deployed to
 illustrate the structure of the configuration data model.
 Thereafter, Section 3.3 and Section 3.4 explain the class diagrams
 for the configuration of Exporters and Collectors, respectively.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 9]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Each of the presented classes contains specific configuration
 parameters which are specified in Section 4. Section 5 gives a short
 introduction to YANG concepts that allow adapting the configuration
 data model to the capabilities of a device. The formal definition of
 the configuration data model in YANG is given in Section 6.
 Section 7 illustrates the usage of the model with example
 configurations in XML.

3.1. Metering Process Decomposition in Selection Process and Cache

 In a Monitoring Device implementation, the functionality of the
 Metering Process is commonly split into packet Sampling and Filtering
 functions performed by Selection Processes, and the maintenance of
 Flow Records and Packet Reports performed by a Cache. Figure 1
 illustrates this separation with the example of a basic Metering
 Process.

 +-----------------------------------+
 | Metering Process |
 | +-----------+ Selected |
 Observed | | Selection | Packet +-------+ | Stream of
 Packet -->| Process |---------->| Cache |--> Flow Records or
 Stream | +-----------+ Stream +-------+ | Packet Reports
 +-----------------------------------+

 Figure 1: Selection Process and Cache forming a Metering Process

 The configuration data model adopts the separation of Selection
 Processes and Caches in order to support the flexible configuration
 and combination of these functional blocks. As defined in [RFC5476],
 the Selection Process takes an Observed Packet Stream as its input
 and selects a subset of that stream as its output (Selected Packet
 Stream). The action of the Selection Process on a single packet of
 its input is defined by one Selector (called Primitive Selector) or
 an ordered composition of multiple Selectors (called Composite
 Selector). The Cache generates Flow Records or Packet Reports from
 the Selected Packet Stream, depending on its configuration.

 The configuration data model does not allow configuring a Metering
 Process without any Selection Process in front of the Cache. If all
 packets in the Observed Packet Stream shall be selected and passed to
 the Cache without any Filtering or Sampling, a Selection Process
 needs to be configured with a Selector which selects all packets
 ("SelectAll" class in Section 4.2.1).

 The configuration data model enables the configuration of a Selection
 Process which receives packets from multiple Observation Points as
 its input. In this case, the Observed Packet Streams of the

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 10]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Observation Points are processed in independent Selection Sequences.
 As specified in [RFC5476], a distinct set of Selector instances needs
 to be maintained per Selection Sequence in order to keep the
 Selection States and statistics separate.

 With the configuration data model, it is possible to configure a
 Metering Process with more than one Selection Processes whose output
 is processed by a single Cache. This is illustrated in Figure 2.

 +-------------------------------------+
 | Metering Process |
 | +-----------+ Selected |
 Observed | | Selection | Packet |
 Packet -->| Process |----------+ +-------+ |
 Stream | +-----------+ Stream +->| | | Stream of
 | ... | Cache |--> Flow Records or
 | +-----------+ Selected +->| | | Packet Reports
 Observed | | Selection | Packet | +-------+ |
 Packet -->| Process |----------+ |
 Stream | +-----------+ Stream |
 +-------------------------------------+

 Figure 2: Metering Process with multiple Selection Processes

 The Observed Packet Streams at the input of a Metering Process may
 originate from Observation Points belonging to different Observation
 Domains. By definition of the Observation Domain (see [RFC5101]),
 however, a Cache MUST NOT aggregate packets observed at different
 Observation Domains in the same Flow. Hence, if the Cache is
 configured to generate Flow Records, it needs to distinguish packets
 according to their Observation Domains.

3.2. UML Representation

 We use UML class diagrams [UML] to explain the structure of the
 configuration data model. The attributes of the classes are the
 configuration or state parameters. The configuration and state
 parameters of a given Monitoring Device are represented as objects of
 these classes encoded in XML.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 11]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 +------------------------------+
 | SctpExporter |
 +------------------------------+ 0..1 +------------------------+
 | name |<>-------| TransportLayerSecurity |
 | ipfixVersion = 10 | +------------------------+
 | sourceIPAddress[0..*] |
 | destinationIPAddress[1..*] | 0..1 +------------------------+
 | destinationPort = 4739|4740 |<>-------| TransportSession |
 | ifName/ifIndex[0..1] | +------------------------+
 | sendBufferSize {opt.} |
 | rateLimit[0..1] |
 | timedReliability = 0 |
 +------------------------------+

 Figure 3: UML example: SctpExporter class

 As an example, Figure 3 shows the UML diagram of the SctpExporter
 class, which is specified in more detail in Section 4.4.1. The upper
 box contains the name of the class. The lower box lists the
 attributes of the class. Each attribute corresponds to a parameter
 of the configuration data model.

 Behind an attribute’s name, there may appear a multiplicity indicator
 in brackets (i.e., between "[" and "]"). An attribute with
 multiplicity indicator "[0..1]" represents an OPTIONAL configuration
 parameter which is only included in the configuration data if the
 user configures it. Typically, the absence of an OPTIONAL parameter
 has a specific meaning. For example, not configuring rateLimit in an
 object of the SctpExporter class means that no rate limiting will be
 applied to the exported data. In YANG, an OPTIONAL parameter is
 specified as a "leaf" without "mandatory true" substatement. The
 "description" substatement specifies the behavior for the case that
 the parameter is not configured.

 The multiplicity indicator "[0..*]" means that this parameter is
 OPTIONAL and MAY be configured multiple times with different values.
 In the example, multiple source IP addresses (sourceIPAddress) may be
 configured for a multi-homed Exporting Process. In YANG, an
 attribute with multiplicity indicator "[0..*]" corresponds to a
 "leaf-list".

 The multiplicity indicator "[1..*]" means that this parameter MUST be
 configured at least once and MAY be configured multiple times with
 different values. In the example, one or more destination IP
 addresses (destinationIPAddress) must be configured to specify the
 export destination. In YANG, an attribute with multiplicity
 indicator "[1..*]" corresponds to a "leaf-list" with "min-elements 1"
 substatement. Note that attributes without this multiplicity

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 12]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 indicator MUST NOT appear more than once in each object of the class.

 Attributes without multiplicity indicator may be endued with a
 default value which is indicated behind the equality symbol ("=").
 If a default value exists, the parameter does not have to be
 explicitly configured by the user. If the parameter is not
 configured by the user, the Monitoring Device MUST use the specified
 default value for the given parameter. In the example, IPFIX version
 10 must be used unless a different value is configured for
 ipfixVersion. In YANG, an attribute with default value corresponds
 to a "leaf" with "default" substatement.

 In the example, there exist two default values for the destination
 port (destinationPort), namely the registered ports for IPFIX with
 and without transport layer security (i.e., DTLS or TLS), which are
 4740 and 4739, respectively. In the UML diagram, the two default
 values are separated by a vertical bar ("|"). In YANG, such
 conditional default value alternatives cannot be specified formally.
 Instead, they are defined in the "description" substatement of the
 "leaf".

 Further attribute properties are denoted in braces (i.e., between "{"
 and "}"). An attribute with property "{opt.}", such as
 sendBufferSize in the SctpExporter class, represents a parameter that
 MAY be configured by the user. If not configured by the user, the
 Monitoring Device MUST set an appropriate value for this parameter at
 configuration time. As a result, the parameter will always exist in
 the configuration data, yet it is not mandatory for the user to
 configure it. This behavior can be implemented as a static device-
 specific default value, but does not have to. Therefore, the user
 MUST NOT expect that the device always sets the same values for the
 same parameter. Regardless of whether the parameter value has been
 configured by the user or set by the device, the parameter value MUST
 NOT be changed by the device after configuration. Since this
 behavior cannot be specified formally in YANG, it is specified in the
 "description" substatement of the "leaf".

 The availability of a parameter may depend on another parameter
 value. In the UML diagram, such restrictions are indicated as
 attribute properties (e.g., "{SCTP only}"). The given example does
 not show such restrictions. In YANG, the availability of a parameter
 is formally restricted with the "when" substatement of the "leaf".

 Another attribute property not shown in the example is "{readOnly}"
 specifying state parameters which cannot be configured. In YANG,
 this corresponds to the "config false" substatement.

 Attributes without multiplicity indicator, without default value, and

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 13]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 without "{readOnly}" property are mandatory configuration parameters.
 These parameters MUST be configured by the user unless an attribute
 property determines that the parameter is not available. In YANG, a
 mandatory parameter corresponds to a "leaf" with "mandatory true"
 substatement. In the example, the user MUST configure the name
 parameter.

 If some parameters are related to each other, it makes sense to group
 these parameters in a subclass. This is especially useful if
 different subclasses represent choices of different parameter sets,
 or if the parameters of a subclass may appear multiple times. For
 example, the SctpExporter class MAY contain the parameters of the
 TransportLayerSecurity subclass.

 An object of a class is encoded as an XML element. In order to
 distinguish between classes and objects, class names start with an
 upper case character while the associated XML elements start with
 lower case characters. Paramaters appear as XML elements which are
 nested in the XML element of the object. In XML, the parameters of
 an object can appear in any order and do not have to follow the order
 in the UML class diagram. Unless specified differently, the order in
 which parameters appear does not have a meaning. As an example, an
 object of the SctpExporter class corresponds to one occurrence of

 <sctpExporter>
 <name>my-sctp-export</name>
 ...
 </sctpExporter>

 There are various possibilities how objects of classes can be related
 to each other. In the scope of this document, we use two different
 types of relationship between objects: aggregation and unidirectional
 association. In UML class diagrams, two different arrow types are
 used as shown in Figure 4.

 +---+ 0..* +---+ +---+ 0..* 1 +---+
 | A |<>------| B | | A |-------->| B |
 +---+ +---+ +---+ +---+
 (a) Aggregation (b) Unidirectional association

 Figure 4: Class relationships in UML class diagrams

 Aggregation means that one object is part of the other object. In
 Figure 4 (a), an object of class B is part of an object of class A.
 This corresponds to nested XML elements:

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 14]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <a>

 ...

 ...

 In the example, objects of the TransportLayerSecurity class and the
 TransportSession class appear as nested XML elements
 <transportLayerSecurity> and <transportSession> within an object of
 the SctpExporter class <sctpExporter>.

 A unidirectional association is a reference to an object. In
 Figure 4 (b), an object of class A contains a reference to an object
 of class B. This corresponds to separate XML elements that are not
 nested. To distinguish different objects of class B, class B must
 have a key. In the configuration data model, keys are string
 parameters called "name", corresponding to XML elements <name>. The
 names MUST be unique within the given XML subtree. The reference to
 a specific object of class B is encoded with an XML element which
 contains the name of an object. If an object of class A refers to
 the object of class B with name "foo", this looks as follows:

 <a>
 ...
 foo
 ...

 <name>foo</name>
 ...

 In Figure 4, the indicated numbers define the multiplicity:

 "1": one only
 "0..*": zero or more
 "1..*": one or more

 In the case of aggregation, the multiplicity indicates how many
 objects of one class may be included in one object of the other
 class. In Figure 4 (a), an object of class A may contain an
 arbitrary number of objects of class B. In the case of unidirectional
 association, the multiplicity at the arrowhead specifies the number
 of objects of a given class that may be referred to. The
 multiplicity at the arrow tail specifies how many different objects
 of one class may refer to a single object of the other class. In

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 15]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Figure 4 (b), an object of class A refers to single object of class
 B. One object of class B can be referred to from an arbitrary number
 of objects of class A.

 Similar to classes that are referenced in UML associations, classes
 which contain configuration parameters and which occur in an
 aggregation relationship with multiplicity greater than one must have
 a key. This key is necessary because every configuration parameter
 must be addressable in order to manipulate or delete it. The key
 values MUST be unique in the given XML subtree (i.e., unique within
 the aggregating object). Hence, if class B in Figure 4 (a) contains
 a configuration parameter, all objects of class B belonging to the
 same object of class A must have different key values. Again, the
 key appears as an attribute called "name" in the concerned classes.

 A class which contains state parameters but no configuration
 parameters, such as the Template class (see Section 4.8), does not
 have a key. This is because state parameters cannot be manipulated
 or deleted, and therefore do not need to be addressable.

 Note that the usage of keys as described above is required by YANG
 [RFC6020] which mandates the existence of a key for elements which
 appear in a list of configuration data.

 The configuration data model for IPFIX and PSAMP makes use of
 unidirectional associations to specify the data flow between
 different functional blocks. For example, if the output of a
 Selection Process is processed by a Cache, this corresponds to an
 object of the SelectionProcess class that contains a reference to an
 object of the Cache class. The configuration data model does not
 mandate that such a reference exists for every functional block that
 has an output. If such a reference is absent, the output is dropped
 without any further processing. Although such configurations are
 incomplete, we do not consider them as invalid as they may
 temporarily occur if a Monitoring Device is configured in multiple
 steps. Also, it might be useful to pre-configure certain functions
 of a Monitoring Device in order to be able to switch to a new
 configuration more quickly.

3.3. Exporter Configuration

 Figure 5 below shows the main classes of the configuration data model
 which are involved in the configuration of an IPFIX or PSAMP
 Exporter. The role of the classes can be briefly summarized as
 follows:

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 16]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 o The ObservationPoint class specifies an Observation Point (i.e.,
 an interface or linecard) of the Monitoring Device at which
 packets are captured for traffic measurements. An object of the
 ObservationPoint class may be associated with one or more objects
 of the SelectionProcess class configuring Selection Processes that
 process the observed packets in parallel. As long as an
 ObservationPoint object is specified without any references to
 SelectionProcess objects, the captured packets are not considered
 by any Metering Process.

 o The SelectionProcess class contains the configuration and state
 parameters of a Selection Process. The Selection Process may be
 composed of a single Selector or a sequence of Selectors, defining
 a Primitive or Composite Selector, respectively.

 The Selection Process selects packets from one or more Observed
 Packet Streams, each originating from a different Observation
 Point. Therefore, a SelectionProcess object MAY be referred to
 from one or more ObservationPoint objects.

 A Selection Process MAY pass the Selected Packet Stream to a
 Cache. Therefore, the SelectionProcess class contains a reference
 to an object of the Cache class. If a Selection Process is
 configured without any reference to a Cache, the selected packets
 are not accounted in any Packet Report or Flow Record.

 o The Cache class contains configuration and state parameters of a
 Cache. A Cache may receive the output of one or more Selection
 Processes and maintains corresponding Packet Reports or Flow
 Records. Therefore, an object of the Cache class MAY be referred
 to from multiple SelectionProcess objects.

 Configuration parameters of the Cache class specify the size of
 the Cache, the Cache Layout, and expiration parameters if
 applicable. The Cache configuration also determines whether
 Packet Reports or Flow Records are generated.

 A Cache MAY pass its output to one or multiple Exporting Process.
 Therefore, the Cache class enables references to one or multiple
 objects of the ExportingProcess class. If a Cache object does not
 specify any reference to an ExportingProcess object, the Cache
 output is dropped.

 o The ExportingProcess class contains configuration and state
 parameters of an Exporting Process. It includes various transport
 protocol specific parameters and the export destinations. An
 object of the ExportingProcess class MAY be referred to from
 multiple objects of the Cache class.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 17]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 An Exporting Process MAY be configured as a File Writer according
 to [RFC5655].

 +------------------+
 | ObservationPoint |
 +------------------+
 0..* |
 |
 0..* V
 +------------------+
 | SelectionProcess |
 +------------------+
 0..* |
 |
 0..1 V
 +------------------+
 | Cache |
 +------------------+
 0..* |
 |
 0..* V
 +------------------+
 | ExportingProcess |
 +------------------+

 Figure 5: Class diagram of Exporter configuration

3.4. Collector Configuration

 Figure 6 below shows the main classes of the configuration data model
 which are involved in the configuration of a Collector. An object of
 the CollectingProcess class specifies the local IP addresses,
 transport protocols and port numbers of a Collecting Process.
 Alternatively, the Collecting Process MAY be configured as a File
 Reader according to [RFC5655].

 An object of the CollectingProcess class may refer to one or multiple
 ExportingProcess objects configuring Exporting Processes that
 reexport the received data. As an example, an Exporting Process can
 be configured as a File Writer in order to save the received IPFIX
 Messages in a file.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 18]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 +-------------------+
 | CollectingProcess |
 +-------------------+
 0..* |
 |
 0..* V
 +-------------------+
 | ExportingProcess |
 +-------------------+

 Figure 6: Class diagram of Collector configuration

4. Configuration Parameters

 This section specifies the configuration and state parameters of the
 configuration data model separately for each class.

4.1. ObservationPoint Class

 +-------------------------------+
 | ObservationPoint |
 +-------------------------------+
 | name |
 | observationPointId {readOnly} |
 | observationDomainId | 0..*
 | ifName[0..*] |-------------+
 | ifIndex[0..*] | | 0..*
 | entPhysicalName[0..*] | V
 | entPhysicalIndex[0..*] | +------------------+
 | direction = "both" | | SelectionProcess |
 +-------------------------------+ +------------------+

 Figure 7: ObservationPoint class

 Figure 7 shows the ObservationPoint class that specifies an
 Observation Point of the Monitoring Device.

 As defined in [RFC5101], an Observation Point can be any location
 where packets are observed. A Monitoring Device potentially has more
 than one such location. An instance of ObservationPoint class
 defines which location is associated with a specific Observation
 Point. For this purpose, interfaces and physical entities are
 identified using their names. Alternatively, index values of the
 corresponding entries in the ifTable (IF-MIB module [RFC2863]) or the
 entPhysicalTable (ENTITY-MIB modules [RFC4133]) can be used as
 identifiers. However, indexes SHOULD only be used as identifiers if
 an SNMP agent on the same Monitoring Device enables access to the

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 19]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 corresponding MIB objects.

 By its definition in [RFC5101], an Observation Point may be
 associated with a set of interfaces. Therefore, the configuration
 data model allows configuring multiple interfaces and physical
 entities for a single Observation Point.

 The Observation Point ID (i.e., the value of the Information Element
 observationPointId [RFC5102]) is assigned by the Monitoring Device.
 It appears as a state parameter in the ObservationPoint class.

 The configuration parameters of the Observation Point are:

 observationDomainId: This parameter defines the identifier of the
 Observation Domain the Observation Point belongs to. Observation
 Points that are configured with the same Observation Domain ID
 belong to the same Observation Domain.
 Note that this parameter corresponds to
 ipfixObservationPointObservationDomainId in the IPFIX MIB module
 [RFC5815].

 ifName/ifIndex/entPhysicalName/entPhysicalIndex: These parameters
 identify interfaces and physical entities (e.g., linecards) on the
 Monitoring Device which are associated with the given Observation
 Point.
 An interface is either identified by its name (ifName) or the
 ifIndex value of the corresponding object in the IF-MIB module
 [RFC2863]. ifIndex SHOULD only be used if an SNMP agent enables
 access to the corresponding MIB object in the ifTable.
 Similarly, a physical entity is either identified by its name
 (entPhysicalName) or the entPhysicalIndex value of the
 corresponding object in the ENTITY-MIB module [RFC4133].
 entPhysicalIndex SHOULD only be used if an SNMP agent enables
 access to the corresponding MIB object in the entPhysicalTable.
 Note that the parameters ifIndex and entPhysicalIndex correspond
 to ipfixObservationPointPhysicalInterface and
 ipfixObservationPointPhysicalEntity in the IPFIX MIB module
 [RFC5815].

 direction: This parameter specifies if ingress traffic, egress
 traffic, or both ingress and egress traffic is captured, using the
 values "ingress", "egress", and "both", respectively. If not
 configured, ingress and egress traffic is captured (i.e., the
 default value is "both"). If not applicable (e.g., in the case of
 a sniffing interface in promiscuous mode), the value of this
 parameter is ignored.

 An ObservationPoint object MAY refer to one or multiple

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 20]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 SelectionProcess objects configuring Selection Processes that process
 the observed packets in parallel.

4.2. SelectionProcess Class

 +------------------+
 | SelectionProcess |
 +------------------+ 1..* +----------+
 | name |<>------| Selector |
 | | +----------+
 | |
 | | 0..* +--------------------------------+
 | |<>------| SelectionSequence |
 | | +--------------------------------+
 | | | observationDomainId {readOnly} |
 | | | selectionSequenceId {readOnly} |
 | | +--------------------------------+
 | |
 | | 0..* 0..1 +-------+
 | |----------->| Cache |
 +------------------+ +-------+

 Figure 8: SelectionProcess class

 Figure 8 shows the SelectionProcess class. The SelectionProcess
 class contains the configuration and state parameters of a Selection
 Process which selects packets from one or more Observed Packet
 Streams and generates a Selected Packet Stream as its output. A non-
 empty ordered list defines a sequence of Selectors. The actions
 defined by the Selectors are applied to the stream of incoming packet
 in the specified order.

 If the Selection Process receives packets from multiple Observation
 Points, the Observed Packet Streams need to be processed
 independently in separate Selection Sequences. Each Selection
 Sequence is identified by a Selection Sequence ID which is unique
 within the Observation Domain the Observation Point belongs to (see
 [RFC5477]). Selection Sequence IDs are assigned by the Monitoring
 Device. As state parameters, the SelectionProcess class contains the
 list of assigned Selection Sequence IDs and corresponding Observation
 Domain IDs. With this information, it is possible to associate
 Selection Sequence (Statistics) Report Interpretations exported
 according to the PSAMP protocol specifications [RFC5476] with the
 corresponding object of the SelectionProcess class.

 A SelectionProcess object MAY include a reference to an object of the
 Cache class to generate Packet Reports or Flow Records from the
 Selected Packet Stream.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 21]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

4.2.1. Selector Class

 +--------------------------------------+
 | Selector |
 +--------------------------------------+ 1 +-----------------+
 | name |<>------+ SelectAll/ | |
 | packetsObserved {readOnly} | | SampCountBased/ |
 | packetsDropped {readOnly} | | SampTimeBased/ |
 | selectorDiscontinuityTime {readOnly} | | SampRandOutOfN/ |
 | | | SampUniProb/ |
 | | | FilterMatch/ |
 | | | FilterHash/ |
 +--------------------------------------+ +-----------------+

 Figure 9: Selector class

 The Selector class in Figure 9 contains the configuration and state
 parameters of a Selector. Standardized PSAMP Sampling and Filtering
 methods are described in [RFC5475]; their configuration parameters
 are specified in the classes SampCountBased, SampTimeBased,
 SampRandOutOfN, SampUniProb, FilterMatch, and FilterHash. In
 addition, the SelectAll class, which has no parameters, is used for a
 Selector that selects all packets. The Selector class includes
 exactly one of these sampler and filter classes, depending on the
 applied method.

 As state parameters, the Selector class contains the Selector
 statistics packetsObserved and packetsDropped as well as
 selectorDiscontinuityTime, which correspond to the IPFIX MIB module
 objects ipfixSelectionProcessStatsPacketsObserved,
 ipfixSelectionProcessStatsPacketsDropped, and
 ipfixSelectionProcessStatsDiscontinuityTime, respectively [RFC5815]:

 packetsObserved: The total number of packets observed at the input
 of the Selector. If this is the first Selector in the Selection
 Process, this counter corresponds to the total number of packets
 in all Observed Packet Streams at the input of the Selection
 Process. Otherwise, the counter corresponds to the total number
 of packets at the output of the preceding Selector.
 Discontinuities in the value of this counter can occur at re-
 initialization of the management system, and at other times as
 indicated by the value of selectorDiscontinuityTime.

 packetsDropped: The total number of packets discarded by the
 Selector. Discontinuities in the value of this counter can occur
 at re-initialization of the management system, and at other times
 as indicated by the value of selectorDiscontinuityTime.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 22]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 selectorDiscontinuityTime: Timestamp of the most recent occasion at
 which one or more of the Selector counters suffered a
 discontinuity. In contrast to
 ipfixSelectionProcessStatsDiscontinuityTime, the time is absolute
 and not relative to sysUpTime.

 Note that packetsObserved and packetsDropped are aggregate statistics
 calculcated over all Selection Sequences of the Selection Process.
 This is in contrast to the counter values in the Selection Sequence
 Statistics Report Interpretation [RFC5476] which are related to a
 single Selection Sequence only.

4.2.2. Sampler Classes

 +----------------+ +----------------+ +----------------+
 | SampCountBased | | SampTimeBased | | SampRandOutOfN |
 +----------------+ +----------------+ +----------------+
 | packetInterval | | timeInterval | | population |
 | packetSpace | | timeSpace | | size |
 +----------------+ +----------------+ +----------------+

 +----------------+
 | SampUniProb |
 +----------------+
 | probability |
 +----------------+

 Figure 10: Sampler classes

 The Sampler classes in Figure 10 contain the configuration parameters
 of specific Sampling algorithms:

 packetInterval, packetSpace: For systematic count-based sampling,
 packetInterval defines the number of packets that are
 consecutively sampled between gaps of length packetSpace. These
 parameters correspond to the Information Elements
 samplingPacketInterval and samplingPacketSpace [RFC5477].

 timeInterval, timeSpace: For systematic time-based sampling,
 timeInterval defines the time interval during which all arriving
 packets are sampled. timeSpace is the gap between two sampling
 intervals. These parameters correspond to the Information
 Elements samplingTimeInterval and samplingTimeSpace [RFC5477].
 The unit is microseconds.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 23]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 size, population: For n-out-of-N random sampling, size defines the
 number of elements taken from the parent population. population
 defines the number of elements in the parent population. These
 parameters correspond to the Information Elements samplingSize and
 samplingPopulation [RFC5477].

 probability: For uniform probabilistic sampling, probability defines
 the sampling probability. This parameter corresponds to the
 Information Element samplingProbability [RFC5477].

4.2.3. Filter Classes

 +---------------------------+
 | FilterMatch |
 +---------------------------+
 | ieId/ieName |
 | ieEnterpriseNumber = 0 |
 | value |
 +---------------------------+

 +---------------------------+
 | FilterHash |
 +---------------------------+ 1..* +---------------+
 | hashFunction = "BOB" |<>-------| SelectedRange |
 | initializerValue[0..1] | +---------------+
 | ipPayloadOffset = 0 | | name |
 | ipPayloadSize = 8 | | min |
 | digestOutput = "false" | | max |
 | outputRangeMin {readOnly} | +---------------+
 | outputRangeMax {readOnly} |
 +---------------------------+

 Figure 11: Filter classes

 The Filter classes in Figure 11 contain the configuration parameters
 of specific Filtering methods. For property match filtering, the
 configuration parameters are:

 ieId, ieName, ieEnterpriseNumber: The property to be matched is
 specified by either ieId or ieName, specifying the ID or name of
 the Information Element, respectively. If ieEnterpriseNumber is
 zero (which is the default), this Information Element is
 registered in the IANA registry of IPFIX Information Elements
 [IANA-IPFIX]. A non-zero value of ieEnterpriseNumber specifies an
 enterprise-specific Information Element.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 24]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 value: Matching value.

 For hash-based filtering, the configuration and state parameters are:

 hashFunction: Hash function to be used. The following parameter
 values are defined by the configuration data model:
 * BOB: BOB Hash Function as specified in [RFC5475], Appendix A.2
 * IPSX: IP Shift-XOR (IPSX) Hash Function as specified in
 [RFC5475], Appendix A.1
 * CRC: CRC-32 function as specified in [RFC1141]
 Default value is "BOB".

 initializerValue: Initializer value to the hash function. This
 parameter corresponds to the Information Element
 hashInitialiserValue [RFC5477]. If not configured by the user,
 the Monitoring Device arbitrarily chooses an initializer value.

 ipPayloadOffset, ipPayloadSize: ipPayloadOffset and ipPayloadSize
 configure the offset and the size of the payload section used as
 input to the hash function. Default values are 0 and 8,
 respectively, corresponding to the minimum configurable values
 according to [RFC5476], Section 6.2.5.6. These parameters
 correspond to the Information Elements hashIPPayloadOffset and
 hashIPPayloadSize [RFC5477].

 digestOutput: digestOutput enables or disables the inclusion of the
 packet digest in the resulting PSAMP Packet Report. This requires
 that the Cache Layout of the Cache generating the Packet Reports
 includes a digestHashValue field. This parameter corresponds to
 the Information Element hashDigestOutput [RFC5477].

 outputRangeMin, outputRangeMax: The values of these two state
 parameters are the beginning and end of the hash function’s
 potential output range. These parameters correspond to the
 Information Elements hashOutputRangeMin and hashOutputRangeMax
 [RFC5477].

 One or more ranges of matching hash values are defined by the min and
 max parameters of the SelectedRange subclass. These parameters
 correspond to the Information Elements hashSelectedRangeMin and
 hashSelectedRangeMax [RFC5477].

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 25]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

4.3. Cache Class

 +-----------------------------------+
 | Cache |
 +-----------------------------------+ 1 +------------------+
 | name |<>--------| immediateCache/ |
 | dataRecords {readOnly} | | timeoutCache/ |
 | cacheDiscontinuityTime {readOnly} | | naturalCache/ |
 | | | permanentCache |
 | | +------------------+
 | |
 | | 0..* +------------------+
 | |--------->| ExportingProcess |
 +-----------------------------------+ +------------------+

 Figure 12: Cache class

 Figure 12 shows the Cache class that contains the configuration and
 state parameters of a Cache. Most of these parameters are specific
 to the type of the Cache and therefore contained in the subclasses
 immediateCache, timeoutCache, naturalCache, and permanentCache, which
 are presented below in Section 4.3.1 and Section 4.3.2. The
 following two state parameters are common to all Caches and therefore
 included in the Cache class itself:

 dataRecords: The number of Data Records generated by this Cache.
 Discontinuities in the value of this counter can occur at re-
 initialization of the management system, and at other times as
 indicated by the value of cacheDiscontinuityTime.
 Note that this parameter corresponds to
 ipfixMeteringProcessDataRecords in the IPFIX MIB module [RFC5815].

 cacheDiscontinuityTime: Timestamp of the most recent occasion at
 which dataRecords suffered a discontinuity. In contrast to
 ipfixMeteringProcessDiscontinuityTime, the time is absolute and
 not relative to sysUpTime.
 Note that this parameter corresponds to
 ipfixMeteringProcessDiscontinuityTime in the IPFIX MIB module
 [RFC5815].

 A Cache object MAY refer to one or multiple ExportingProcess objects
 configuring different Exporting Processes.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 26]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

4.3.1. ImmediateCache Class

 +-------------------------------+
 | ImmediateCache |
 +-------------------------------+ 1 +-------------+
 | |<>-------| CacheLayout |
 +-------------------------------+ +-------------+

 Figure 13: ImmediateCache class

 The ImmediateCache class depicted in Figure 13 is used to configure a
 Cache which generates a PSAMP Packet Report for each packet at its
 input. The fields contained in the generated Data Records are
 defined in an object of the CacheLayout class which is defined below
 in Section 4.3.3.

4.3.2. TimeoutCache, NaturalCache, and PermanentCache Class

 +-------------------------------+
 | TimeoutCache |
 +-------------------------------+ 1 +-------------+
 | maxFlows {opt.} |<>-------| CacheLayout |
 | activeTimeout {opt.} | +-------------+
 | inactiveTimeout {opt.} |
 | activeFlows {readOnly} |
 | unusedCacheEntries {readOnly} |
 +-------------------------------+

 +-------------------------------+
 | NaturalCache |
 +-------------------------------+ 1 +-------------+
 | maxFlows {opt.} |<>-------| CacheLayout |
 | activeTimeout {opt.} | +-------------+
 | inactiveTimeout {opt.} |
 | activeFlows {readOnly} |
 | unusedCacheEntries {readOnly} |
 +-------------------------------+

 +-------------------------------+
 | PermanentCache |
 +-------------------------------+ 1 +-------------+
 | maxFlows {opt.} |<>-------| CacheLayout |
 | exportInterval {opt.} | +-------------+
 | activeFlows {readOnly} |
 | unusedCacheEntries {readOnly} |
 +-------------------------------+

 Figure 14: TimeoutCache, NaturalCache, and PermanentCache class

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 27]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Figure 14 shows the TimeoutCache class, the NaturalCache class, and
 the PermanentCache class. These classes are used to configure a
 Cache which aggregates the packets at its input and generates IPFIX
 Flow Records. The three classes differ in when Flows expire:

 o TimeoutCache: Flows expire after active or inactive timeout.
 o NaturalCache: Flows expire after active or inactive timeout, or on
 natural termination (e.g., TCP FIN, or TCP RST) of the Flow.
 o PermanentCache: Flows never expire, but are periodically exported
 with the interval set by exportInterval.

 The following configuration and state parameters are common to the
 three classes:

 maxFlows: This parameter configures the maximum number of entries in
 the Cache, which is the maximum number of Flows that can be
 measured simultaneously.
 If this parameter is configured, the Monitoring Device MUST ensure
 that sufficient resources are available to store the configured
 maximum number of Flows. If the maximum number of Cache entries
 is in use, no additional Flows can be measured. However, traffic
 which pertains to existing Flows can continue to be measured.

 activeFlows: This state parameter indicates the number of Flows
 currently active in this Cache (i.e., the number of Cache entries
 currently in use).
 Note that this parameter corresponds to
 ipfixMeteringProcessCacheActiveFlows in the IPFIX MIB module
 [RFC5815].

 unusedCacheEntries: The number of unused cache entries. Note that
 the sum of activeFlows and unusedCacheEntries equals maxFlows if
 maxFlows is configured.
 Note that this parameter corresponds to
 ipfixMeteringProcessCacheUnusedCacheEntries in the IPFIX MIB
 module [RFC5815].

 The following timeout parameters are only available in the
 TimeoutCache class and the NaturalCache class:

 activeTimeout: This parameter configures the time in seconds after
 which a Flow is expired even though packets matching this Flow are
 still received by the Cache. The parameter value zero indicates
 infinity, meaning that there is no active timeout.
 If not configured by the user, the Monitoring Device sets this
 parameter.
 Note that this parameter corresponds to
 ipfixMeteringProcessCacheActiveTimeout in the IPFIX MIB module

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 28]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 [RFC5815].

 inactiveTimeout: This parameter configures the time in seconds after
 which a Flow is expired if no more packets matching this Flow are
 received by the Cache. The parameter value zero indicates
 infinity, meaning that there is no inactive timeout.
 If not configured by the user, the Monitoring Device sets this
 parameter.
 Note that this parameter corresponds to
 ipfixMeteringProcessCacheInactiveTimeout in the IPFIX MIB module
 [RFC5815].

 The following interval parameter is only available in the
 PermanentCache class:

 exportInterval: This parameter configures the interval (in seconds)
 for periodical export of Flow Records.
 If not configured by the user, the Monitoring Device sets this
 parameter.

 Every generated Flow Record MUST be associated with a single
 Observation Domain. Hence, although a Cache MAY be configured to
 process packets observed at multiple Observation Domains, the Cache
 MUST NOT aggregate packets observed at different Observation Domains
 in the same Flow.

 An object of the Cache class contains an object of the CacheLayout
 class that defines which fields are included in the Flow Records.

4.3.3. CacheLayout Class

 +--------------+
 | CacheLayout |
 +--------------+ 1..* +--------------------------------+
 | |<>------| CacheField |
 | | +--------------------------------+
 | | | name |
 | | | ieId/ieName |
 | | | ieLength {opt.} |
 | | | ieEnterpriseNumber = 0 |
 | | | isFlowKey[0..1] {not used with |
 | | | ImmediateCache class} |
 +--------------+ +--------------------------------+

 Figure 15: CacheLayout class

 A Cache generates and maintains Packet Reports or Flow Records
 containing information that has been extracted from the incoming

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 29]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 stream of packets. Using the CacheField class, the CacheLayout class
 specifies the superset of fields that are included in the Packet
 Reports or Flow Records (see Figure 15).

 If Packet Reports are generated (i.e., if ImmediateCache class is
 used to configure the Cache), every field specified by the Cache
 Layout MUST be included in the resulting Packet Report unless the
 corresponding Information Element is not applicable or cannot be
 derived from the content or treatment of the incoming packet. Any
 other field specified by the Cache Layout MAY only be included in the
 Packet Report if it is obvious from the field value itself or from
 the values of other fields in same Packet Report that the field value
 was not determined from the packet.

 For example, if a field is configured to contain the TCP source port
 (Information Element tcpSourcePort [RFC5102]), the field MUST be
 included in all Packet Reports which are related to TCP packets.
 Although the field value cannot be determined for non-TCP packets,
 the field MAY be included in the Packet Reports if another field
 contains the transport protocol identifier (Information Element
 protocolIdentifier [RFC5102]).

 If Flow Records are generated (i.e., if TimeoutCache, NaturalCache,
 or PermanentCache class is used to configure the Cache), the Cache
 Layout differentiates between Flow Key fields and non-key fields.
 Every Flow Key field specified by the Cache Layout MUST be included
 as Flow Key in the resulting Flow Record unless the corresponding
 Information Element is not applicable or cannot be derived from the
 content or treatment of the incoming packet. Any other Flow Key
 field specified by the Cache Layout MAY only be included in the Flow
 Record if it is obvious from the field value itself or from the
 values of other Flow Key fields in same Flow Record that the field
 value was not determined from the packet. Two packets are accounted
 by the same Flow Record if none of their Flow Key fields differ. If
 a Flow Key field can be determined for one packet but not for the
 other, the two packets are accounted in different Flow Records.

 Every non-key field specified by the Cache Layout MUST be included in
 the resulting Flow Record unless the corresponding Information
 Element is not applicable or cannot be derived for the given Flow.
 Any other non-key field specified by the Cache Layout MAY only be
 included in the Flow Record if it is obvious from the field value
 itself or from the values of other fields in same Flow Record that
 the field value was not determined from the packet. Packets which
 are accounted by the same Flow Record may differ in their non-key
 fields, or one or more of the non-key fields can be undetermined for
 all or some of the packets.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 30]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 For example, if a non-key field specifies an Information Element
 whose value is determined by the first packet observed within a Flow
 (which is the default rule according to [RFC5102] unless specified
 differently in the description of the Information Element), this
 field MUST be included in the resulting Flow Record if it can be
 determined from the first packet of the Flow.

 The CacheLayout class does not have any parameters. The
 configuration parameters of the CacheField class are as follows:

 ieId, ieName, ieEnterpriseNumber: These parameters specify a field
 by the combination of the Information Element identifier or name,
 and the Information Element enterprise number. Either ieId or
 ieName MUST be specified. If ieEnterpriseNumber is zero (which is
 the default), this Information Element is registered in the IANA
 registry of IPFIX Information Elements [IANA-IPFIX]. A non-zero
 value of ieEnterpriseNumber specifies an enterprise-specific
 Information Element.
 If the enterprise number is set to 29305, this field contains a
 Reverse Information Element. In this case, the Cache MUST
 generate Data Records in accordance to [RFC5103].

 ieLength: This parameter specifies the length of the field in
 octets. A value of 65535 means that the field is encoded as
 variable-length Information Element. For Information Elements of
 integer and float type, the field length MAY be set to a smaller
 value than the standard length of the abstract data type if the
 rules of reduced size encoding are fulfilled (see [RFC5101],
 Section 6.2). If not configured by the user, the field length is
 set by the Monitoring Device.

 isFlowKey: If present, this field is a Flow Key. If the field
 contains a Reverse Information Element, it MUST NOT be configured
 as Flow Key.
 This parameter is not available if the Cache is configured using
 the ImmediateCache class since there is no distinction between
 Flow Key fields and non-key fields in Packet Reports.

 Note that the use of Information Elements can be restricted to
 certain Cache types as well as to Flow Key or non-key fields. Such
 restrictions may result from Information Element definitions or from
 device-specific constraints. According to Section 5, the Monitoring
 Device MUST notify the user if a Cache field cannot be configured
 with the given Information Element.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 31]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

4.4. ExportingProcess Class

 +-------------------------+
 | ExportingProcess |
 +-------------------------+ 1..*
 | name |<>--------+
 | exportMode = "parallel" | |
 | | +-------------+
 | | | Destination |
 | | +-------------+ 1 +---------------+
 | | | name |<>---| SctpExporter/ |
 | | +-------------+ | UdpExporter/ |
 | | | TcpExporter/ |
 | | | FileWriter |
 | | +---------------+
 | |
 | | 0..* +------------------+
 | |<>------| Options |
 +-------------------------+ +------------------+

 Figure 16: ExportingProcess class

 The ExportingProcess class in Figure 16 specifies destinations to
 which the incoming Packet Reports and Flow Records are exported using
 objects of the Destination class. The Destination class includes one
 object of the SctpExporter, UdpExporter, TcpExporter, or FileWriter
 class which contains further configuration parameters. These classes
 are described in Section 4.4.1, Section 4.4.2, Section 4.4.3, and
 Section 4.4.4.

 The order in which objects of the Destination class appear is defined
 by the user. However, the order has a specific meaning only if the
 exportMode parameter is set to "fallback". The exportMode parameter
 is defined as follows:

 exportMode: This parameter determines to which configured
 destination(s) the incoming Data Records are exported. The
 following parameter values are specified by the configuration data
 model:
 * parallel: every Data Record is exported to all configured
 destinations in parallel
 * loadBalancing: every Data Record is exported to exactly one
 configured destination according to a device-specific load-
 balancing policy
 * fallback: every Data Record is exported to exactly one
 configured destination according to the fallback policy
 described below
 If exportMode is set to "fallback", the first object of the

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 32]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Destination class defines the primary destination; the second
 object of the Destination class defines the secondary destination,
 and so on. If the Exporting Process fails to export Data Records
 to the primary destination, it tries to export them to the
 secondary one. If the secondary destination fails as well, it
 continues with the tertiary, etc.
 "parallel" is the default value if exportMode is not configured.

 Note that the exportMode parameter is related to the
 ipfixExportMemberType object in [RFC5815]. If exportMode is
 "parallel", the ipfixExportMemberType values of the corresponding
 entries in ipfixExportTable are set to parallel(3). If exportMode is
 "loadBalancing", the ipfixExportMemberType values of the
 corresponding entries in ipfixExportTable are set to
 loadBalancing(4). If exportMode is "fallback", the
 ipfixExportMemberType value which refers to the primary destination
 is set to primary(1); the ipfixExportMemberType values which refer to
 the remaining destinations need to be set to secondary(2). The IPFIX
 MIB module does not define any value for tertiary destination, etc.

 The reporting of information with Options Templates is defined with
 objects of the Options class.

 The Exporting Process may modify the Packet Reports and Flow Records
 to enable a more efficient transmission or storage under the
 condition that no information is changed or suppressed. For example,
 the Exporting Process may shorten the length of a field according to
 the rules of reduced size encoding [RFC5101]. The Exporting Process
 may also export certain fields in a separate Data Record as described
 in [RFC5476].

4.4.1. SctpExporter Class

 +------------------------------+
 | SctpExporter |
 +------------------------------+ 0..1 +------------------------+
 | ipfixVersion = 10 |<>-------| TransportLayerSecurity |
 | sourceIPAddress[0..*] | +------------------------+
 | destinationIPAddress[1..*] |
 | destinationPort = 4739|4740 | 0..1 +------------------------+
 | ifName/ifIndex[0..1] |<>-------| TransportSession |
 | sendBufferSize {opt.} | +------------------------+
 | rateLimit[0..1] |
 | timedReliability = 0 |
 +------------------------------+

 Figure 17: SctpExporter class

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 33]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 The SctpExporter class shown in Figure 17 contains the configuration
 parameters of an SCTP export destination. The configuration
 parameters are:

 ipfixVersion: Version number of the IPFIX protocol used. If
 omitted, the default value is 10 (=0x000a) as specified in
 [RFC5101].

 sourceIPAddress: List of source IP addresses used by the Exporting
 Process. If configured, the specified addresses are eligible
 local IP addresses of the multi-homed SCTP endpoint. If not
 configured, all locally assigned IP addresses are eligible local
 IP addresses.

 destinationIPAddress: One or multiple IP addresses of the Collecting
 Process to which IPFIX Messages are sent. The user must ensure
 that all configured IP addresses belong to the same Collecting
 Process. The Exporting Process tries to establish an SCTP
 association to any of the configured destination IP addresses.

 destinationPort: Destination port number to be used. If not
 configured, standard port 4739 (IPFIX without TLS and DTLS) or
 4740 (IPFIX over TLS or DTLS) is used.

 ifIndex/ifName: Either the index or the name of the interface used
 by the Exporting Process to export IPFIX Messages to the given
 destination MAY be specified according to corresponding objects in
 the IF-MIB [RFC2863]. If omitted, the Exporting Process selects
 the outgoing interface based on local routing decision and accepts
 return traffic, such as transport layer acknowledgments, on all
 available interfaces.

 sendBufferSize: Size of the socket send buffer in bytes. If not
 configured by the user, the buffer size is set by the Monitoring
 Device.

 rateLimit: Maximum number of bytes per second the Exporting Process
 may export to the given destination as required by [RFC5476]. The
 number of bytes is calculated from the lengths of the IPFIX
 Messages exported. If this parameter is not configured, no rate
 limiting is performed for this destination.

 timedReliability: Lifetime in milliseconds until an IPFIX Message
 containing Data Sets only is "abandoned" due to the timed
 reliability mechanism of PR-SCTP [RFC3758]. If this parameter is
 set to zero, reliable SCTP transport MUST be used for all Data
 Records. Regardless of the value of this parameter, the Exporting
 Process MAY use reliable SCTP transport for Data Sets associated

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 34]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 with certain Options Templates, such as the Data Record
 Reliability Options Template specified in
 [I-D.ietf-ipfix-export-per-sctp-stream].

 Using the TransportLayerSecurity class described in Section 4.6,
 datagram transport layer security (DTLS) is enabled and configured
 for this export destination.

 If a Transport Session is established to the configured destination,
 the SctpExporter class includes an object of the TransportSession
 class containing state parameters of the Transport Session. The
 TransportSession class is specified in Section 4.7.

4.4.2. UdpExporter Class

 +-------------------------------------+
 | UdpExporter |
 +-------------------------------------+ 0..1 +------------------+
 | ipfixVersion = 10 |<>------| TransportLayer- |
 | sourceIPAddress[0..1] | | Security |
 | destinationIPAddress | +------------------+
 | destinationPort = 4739|4740 |
 | ifName/ifIndex[0..1] | 0..1 +------------------+
 | sendBufferSize {opt.} |<>------| TransportSession |
 | rateLimit[0..1] | +------------------+
 | maxPacketSize {opt.} |
 | templateRefreshTimeout = 600 |
 | optionsTemplateRefreshTimeout = 600 |
 | templateRefreshPacket[0..1] |
 | optionsTemplateRefreshPacket[0..1] |
 +-------------------------------------+

 Figure 18: UdpExporter class

 The UdpExporter class shown in Figure 18 contains the configuration
 parameters of a UDP export destination. The parameters ipfixVersion,
 destinationPort, ifName, ifIndex, sendBufferSize, and rateLimit have
 the same meaning as in the SctpExporter class (see Section 4.4.1).
 The remaining configuration parameters are:

 sourceIPAddress: This parameter specifies the source IP address used
 by the Exporting Process. If this parameter is omitted, the IP
 address assigned to the outgoing interface is used as source IP
 address.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 35]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 destinationIPAddress: Destination IP address to which IPFIX Messages
 are sent (i.e., the IP address of the Collecting Process).

 maxPacketSize: This parameter specifies the maximum size of IP
 packets sent to the Collector. If set to zero, the Exporting
 Device MUST derive the maximum packet size from path MTU discovery
 mechanisms. If not configured by the user, this parameter is set
 by the Monitoring Device.

 templateRefreshTimeout, optionsTemplateRefreshTimeout,
 templateRefreshPacket, optionsTemplateRefreshPacket: These
 parameters specify when (Options) Templates are refreshed by the
 Exporting Process.
 templateRefreshTimeout and optionsTemplateRefreshTimeout are
 specified in seconds between resendings of (Options) Templates.
 If omitted, the default value of 600 seconds (10 minutes) is used
 [RFC5101].
 templateRefreshPacket and optionsTemplateRefreshPacket specify the
 number of IPFIX Messages after which (Options) Templates are
 resent. If omitted, the (Options) Templates are only resent after
 timeout.
 Note that the values configured for templateRefreshTimeout and
 optionsTemplateRefreshTimeout MUST be adapted to the
 templateLifeTime and optionsTemplateLifeTime parameter settings at
 the receiving Collecting Process (see Section 4.5.2).
 Note that these parameters correspond to
 ipfixTransportSessionTemplateRefreshTimeout,
 ipfixTransportSessionOptionsTemplateRefreshTimeout,
 ipfixTransportSessionTemplateRefreshPacket, and
 ipfixTransportSessionOptionsTemplateRefreshPacket in the IPFIX MIB
 module [RFC5815].

 Using the TransportLayerSecurity class described in Section 4.6,
 datagram transport layer security (DTLS) is enabled and configured
 for this export destination.

 If a Transport Session is established to the configured destination,
 the UdpExporter class includes an object of the TransportSession
 class containing state parameters of the Transport Session. The
 TransportSession class is specified in Section 4.7.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 36]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

4.4.3. TcpExporter Class

 +------------------------------+
 | TcpExporter |
 +------------------------------+ 0..1 +------------------------+
 | ipfixVersion = 10 |<>-------| TransportLayerSecurity |
 | sourceIPAddress[0..1] | +------------------------+
 | destinationIPAddress |
 | destinationPort = 4739|4740 | 0..1 +------------------------+
 | ifName/ifIndex[0..1] |<>-------| TransportSession |
 | sendBufferSize {opt.} | +------------------------+
 | rateLimit[0..1] |
 +------------------------------+

 Figure 19: TcpExporter class

 The TcpExporter class shown in Figure 19 contains the configuration
 parameters of a TCP export destination. The parameters have the same
 meaning as in the UdpExporter class (see Section 4.4.2).

 Using the TransportLayerSecurity class described in Section 4.6,
 transport layer security (TLS) is enabled and configured for this
 export destination.

 If a Transport Session is established to the configured destination,
 the TcpExporter class includes an object of the TransportSession
 class containing state parameters of the Transport Session. The
 TransportSession class is specified in Section 4.7.

4.4.4. FileWriter Class

 +---+
 | FileWriter |
 +---+ 0..* +----------+
 | ipfixVersion = 10 |<>-------| Template |
 | file | +----------+
 | status {readOnly} |
 | bytes {readOnly} |
 | messages {readOnly} |
 | discardedMessages {readOnly} |
 | records {readOnly} |
 | templates {readOnly} |
 | optionsTemplates {readOnly} |
 | fileWriterDiscontinuityTime {readOnly} |
 +---+

 Figure 20: FileWriter classes

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 37]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 If an object of the FileWriter class is included in an object of the
 Destination class, IPFIX Messages are written into a file as
 specified in [RFC5655]. The FileWriter class contains the following
 configuration parameters:

 ipfixVersion: Version number of the IPFIX protocol used. If
 omitted, the default value is 10 (=0x000a) as specified in
 [RFC5101].

 file: File name and location specified as URI.

 The state parameters of the FileWriter class are:

 bytes, messages, records, templates, optionsTemplates: The number of
 bytes, IPFIX Messages, Data Records, Template Records, and Options
 Template Records written by the File Writer. Discontinuities in
 the values of these counters can occur at re-initialization of the
 management system, and at other times as indicated by the value of
 fileWriterDiscontinuityTime.

 discardedMessages: The number of IPFIX Messages that could not be
 written by the File Writer due to internal buffer overflows,
 limited storage capacity etc. Discontinuities in the value of
 this counter can occur at re-initialization of the management
 system, and at other times as indicated by the value of
 fileWriterDiscontinuityTime.

 fileWriterDiscontinuityTime: Timestamp of the most recent occasion
 at which one or more File Writer counters suffered a
 discontinuity. In contrast to discontinuity times in the IPFIX
 MIB module, the time is absolute and not relative to sysUpTime.

 Each object of the FileWriter class includes a list of objects of the
 Template class with information and statistics about the Templates
 written to the file. The Template class is specified in Section 4.8.

4.4.5. Options Class

 +-----------------------+
 | Options |
 +-----------------------+
 | name |
 | optionsType |
 | optionsTimeout {opt.} |
 +-----------------------+

 Figure 21: Options class

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 38]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 The Options class in Figure 21 defines the type of specific
 information to be reported, such as statistics, flow keys, Sampling
 and Filtering parameters etc. [RFC5101] and [RFC5476] specify
 several types of reporting information which may be exported. The
 following parameter values are specified by the configuration data
 model:

 meteringStatistics: Export of Metering Process statistics using the
 Metering Process Statistics Options Template [RFC5101].

 meteringReliability: Export of Metering Process reliability
 statistics using the Metering Process Reliability Statistics
 Options Template [RFC5101].

 exportingReliability: Export of Exporting Process reliability
 statistics using the Exporting Process Reliability Statistics
 Options Template [RFC5101].

 flowKeys: Export of the Flow Key specification using the Flow Keys
 Options Template [RFC5101].

 selectionSequence: Export of Selection Sequence Report
 Interpretation and Selector Report Interpretation [RFC5476].

 selectionStatistics: Export of Selection Sequence Statistics Report
 Interpretation [RFC5476].

 accuracy: Export of Accuracy Report Interpretation [RFC5476].

 reducingRedundancy: Enables the utilization of Options Templates to
 reduce redundancy in the exported Data Records according to
 [RFC5473]. The Exporting Process decides when to apply these
 Options Templates.

 extendedTypeInformation: Export of extended type information for
 enterprise-specific Information Elements used in the exported
 Templates [RFC5610].

 The Exporting Process MUST choose a Template definition according to
 the options type and available options data.

 The optionsTimeout parameter specifies the reporting interval (in
 milliseconds) for periodic export of the option data. A parameter
 value of zero means that the export of the option data is not
 triggered periodically, but whenever the available option data has
 changed. This is the typical setting for options types flowKeys,
 selectionSequence, accuracy, and reducingRedundancy. If
 optionsTimeout is not configured by the user, it is set by the

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 39]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Monitoring Device.

4.5. CollectingProcess Class

 +-------------------+
 | CollectingProcess |
 +-------------------+
 | name | 0..* +------------------+
 | |<>----------| SctpCollector |
 | | +------------------+
 | |
 | | 0..* +------------------+
 | |<>----------| UdpCollector |
 | | +------------------+
 | |
 | | 0..* +------------------+
 | |<>----------| TcpCollector |
 | | +------------------+
 | |
 | | 0..* +------------------+
 | |<>----------| FileReader |
 | | +------------------+
 | |
 | | 0..* 0..* +------------------+
 | |----------->| ExportingProcess |
 +-------------------+ +------------------+

 Figure 22: CollectingProcess class

 Figure 22 shows the CollectingProcess class that contains the
 configuration and state parameters of a Collecting Process. Objects
 of the SctpCollector, UdpCollector, and TcpCollector classes specify
 how IPFIX Messages are received from remote Exporters. The
 Collecting Process can also be configured as a File Reader using
 objects of the FileReader class. These classes are described in
 Section 4.5.1, Section 4.5.2, Section 4.5.3, and Section 4.5.4.

 An CollectingProcess object MAY refer to one or multiple
 ExportingProcess objects configuring Exporting Processes that export
 the received data without modifications to a file or to another
 Collector.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 40]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

4.5.1. SctpCollector Class

 +--------------------------+
 | SctpCollector |
 +--------------------------+ 0..1 +------------------------+
 | name |<>-------| TransportLayerSecurity |
 | localIPAddress[0..*] | +------------------------+
 | localPort = 4739|4740 |
 | | 0..* +------------------------+
 | |<>-------| TransportSession |
 +--------------------------+ +------------------------+

 Figure 23: SctpCollector class

 The SctpCollector class contains the configuration parameters of a
 listening SCTP socket at a Collecting Process. The parameters are:

 localIPAddress: List of local IP addresses on which the Collecting
 Process listens for IPFIX Messages. The IP addresses are used as
 eligible local IP addresses of the multi-homed SCTP endpoint
 [RFC4960]. If omitted, the Collecting Process listens on all
 local IP addresses.

 localPort: Local port number on which the Collecting Process listens
 for IPFIX Messages. If omitted, standard port 4739 (IPFIX without
 TLS and DTLS) or 4740 (IPFIX over TLS or DTLS) is used.

 Using the TransportLayerSecurity class described in Section 4.6,
 datagram transport layer security (DTLS) is enabled and configured
 for this receiving socket.

 As state data, the SctpCollector class contains the list of currently
 established Transport Sessions that terminate at the given SCTP
 socket of the Collecting Process. The TransportSession class is
 specified in Section 4.7.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 41]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

4.5.2. UdpCollector Class

 +---------------------------------+
 | UdpCollector |
 +---------------------------------+ 0..1 +------------------------+
 | name |<>------| TransportLayerSecurity |
 | localIPAddress[0..*] | +------------------------+
 | localPort = 4739|4740 |
 | templateLifeTime = 1800 | 0..* +------------------------+
 | optionsTemplateLifeTime = 1800 |<>------| TransportSession |
 | templateLifePacket[0..*] | +------------------------+
 | optionsTemplateLifePacket[0..*] |
 +---------------------------------+

 Figure 24: UdpCollector class

 The UdpCollector class contains the configuration parameters of a
 listening UDP socket at a Collecting Process. The parameter
 localPort has the same meaning as in the SctpCollector class (see
 Section 4.5.1). The remaining parameters are:

 localIPAddress: List of local IP addresses on which the Collecting
 Process listens for IPFIX Messages. If omitted, the Collecting
 Process listens on all local IP addresses.

 templateLifeTime, optionsTemplateLifeTime: (Options) Template
 lifetime in seconds for all UDP Transport Sessions terminating at
 this UDP socket. (Options) Templates which are not received again
 within the configured lifetime become invalid at the Collecting
 Process.
 As specified in [RFC5101], Section 10.3.7, the lifetime of
 Templates and Options Templates MUST be at least three times
 higher than the templateRefreshTimeout and
 optionTemplatesRefreshTimeout parameter values configured on the
 corresponding Exporting Processes.
 If not configured, the default value 1800 is used, which is three
 times the default (Options) Template refresh timeout (see
 Section 4.4.2) as specified in [RFC5101].
 Note that these parameters correspond to
 ipfixTransportSessionTemplateRefreshTimeout and
 ipfixTransportSessionOptionsTemplateRefreshTimeout in the IPFIX
 MIB module [RFC5815].

 templateLifePacket, optionsTemplateLifePacket: If templateLifePacket
 is configured, Templates defined in a UDP Transport Session become
 invalid if they are neither included in a sequence of more than
 this number of IPFIX Messages nor received again within the period
 of time specified by templateLifeTime. Similarly, if

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 42]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 optionsTemplateLifePacket is configured, Options Templates become
 invalid if they are neither included in a sequence of more than
 this number of IPFIX Messages nor received again within the period
 of time specified by optionsTemplateLifeTime.
 If not configured, Templates and Options Templates only become
 invalid according to the lifetimes specified by templateLifeTime
 and optionsTemplateLifeTime, respectively.
 Note that these parameters correspond to
 ipfixTransportSessionTemplateRefreshPacket and
 ipfixTransportSessionOptionsTemplateRefreshPacket in the IPFIX MIB
 module [RFC5815].

 Using the TransportLayerSecurity class described in Section 4.6,
 datagram transport layer security (DTLS) is enabled and configured
 for this receiving socket.

 As state data, the UdpCollector class contains the list of currently
 established Transport Sessions that terminate at the given UDP socket
 of the Collecting Process. The TransportSession class is specified
 in Section 4.7.

4.5.3. TcpCollector Class

 +--------------------------+
 | TcpCollector |
 +--------------------------+ 0..1 +------------------------+
 | name |<>-------| TransportLayerSecurity |
 | localIPAddress[0..*] | +------------------------+
 | localPort = 4739|4740 |
 | | 0..* +------------------------+
 | |<>-------| TransportSession |
 +--------------------------+ +------------------------+

 Figure 25: TcpCollector class

 The TcpCollector class contains the configuration parameters of a
 listening TCP socket at a Collecting Process. The parameters have
 the same meaning as in the UdpCollector class (see Section 4.5.2).

 Using the TransportLayerSecurity class described in Section 4.6,
 transport layer security (TLS) is enabled and configured for this
 receiving socket.

 As state data, the TcpCollector class contains the list of currently
 established Transport Sessions that terminate at the given TCP socket
 of the Collecting Process. The TransportSession class is specified
 in Section 4.7.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 43]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

4.5.4. FileReader Class

 +---+
 | FileReader |
 +---+ 0..* +----------+
 | name |<>-------| Template |
 | file | +----------+
 | bytes {readOnly} |
 | messages {readOnly} |
 | records {readOnly} |
 | templates {readOnly} |
 | optionsTemplates {readOnly} |
 | fileReaderDiscontinuityTime {readOnly} |
 +---+

 Figure 26: FileReader classes

 The Collecting Process may import IPFIX Messages from a file as
 specified in [RFC5655]. The FileReader class defines the following
 configuration parameter:

 file: File name and location specified as URI.

 The state parameters of the FileReader class are:

 bytes, messages, records, templates, optionsTemplates: The number of
 bytes, IPFIX Messages, Data Records, Template Records, and Options
 Template Records read by the File Reader. Discontinuities in the
 values of these counters can occur at re-initialization of the
 management system, and at other times as indicated by the value of
 fileReaderDiscontinuityTime.

 fileReaderDiscontinuityTime: Timestamp of the most recent occasion
 at which one or more File Reader counters suffered a
 discontinuity. In contrast to discontinuity times in the IPFIX
 MIB module, the time is absolute and not relative to sysUpTime.

 Each object of the FileReader class includes a list of objects of the
 Template class with information and statistics about the Templates
 read from the file. The Template class is specified in Section 4.8.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 44]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

4.6. Transport Layer Security Class

 +--------------------------------------+
 | TransportLayerSecurity |
 +--------------------------------------+
 | localCertificationAuthorityDN[0..*] |
 | localSubjectDN[0..*] |
 | localSubjectFQDN[0..*] |
 | remoteCertificationAuthorityDN[0..*] |
 | remoteSubjectDN[0..*] |
 | remoteSubjectFQDN[0..*] |
 +--------------------------------------+

 Figure 27: TransportLayerSecurity class

 The TransportLayerSecurity class is used in the Exporting Process’s
 SctpExporter, UdpExporter, and TcpExporter classes and the Collecting
 Process’s SctpCollector, UdpCollector, and TcpCollector classes to
 enable and configure transport layer security for IPFIX. Transport
 layer security can be enabled without configuring any additional
 parameters. In this case, an empty XML element
 <transportLayerSecurity /> appears in the configuration. If
 transport layer security is enabled, the endpoint must use DTLS
 [RFC4347] if the transport protocol is SCTP or UDP, and TLS [RFC5246]
 if the transport protocol is TCP.

 [RFC5101] mandates strong mutual authentication of Exporting
 Processes and Collecting Process:

 "IPFIX Exporting Processes and IPFIX Collecting Processes are
 identified by the fully qualified domain name of the interface on
 which IPFIX Messages are sent or received, for purposes of X.509
 client and server certificates as in [RFC5280].

 To prevent man-in-the-middle attacks from impostor Exporting or
 Collecting Processes, the acceptance of data from an unauthorized
 Exporting Process, or the export of data to an unauthorized
 Collecting Process, strong mutual authentication via asymmetric
 keys MUST be used for both TLS and DTLS. Each of the IPFIX
 Exporting and Collecting Processes MUST verify the identity of its
 peer against its authorized certificates, and MUST verify that the
 peer’s certificate matches its fully qualified domain name, or, in
 the case of SCTP, the fully qualified domain name of one of its
 endpoints.

 The fully qualified domain name used to identify an IPFIX
 Collecting Process or Exporting Process may be stored either in a
 subjectAltName extension of type dNSName, or in the most specific

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 45]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Common Name field of the Subject field of the X.509 certificate.
 If both are present, the subjectAltName extension is given
 preference."

 In order to use transport layer security, appropriate certificates
 and keys have to be previously installed on the Monitoring Devices.
 For security reasons, the configuration data model does not offer the
 possibility to upload any certificates or keys on a Monitoring
 Device. If transport layer security is enabled on a Monitoring
 Device which does not dispose of appropriate certificates and keys,
 the configuration MUST be rejected with an error.

 The configuration data model allows restricting the authorization of
 remote endpoints to certificates issued by specific certification
 authorities or identifying specific fully qualified domain names for
 authorization. Furthermore, the configuration data model allows
 restricting the utilization of certificates identifying the local
 endpoint. This is useful if the Monitoring Device disposes of more
 than one certificate for the given local endpoint.

 The configuration parameters are defined as follows:

 localCertificationAuthorityDN: This parameter MAY appear one or
 multiple times to restrict the identification of the local
 endpoint during the TLS/DTLS handshake to certificates issued by
 the configured certification authorities. Each occurrence of this
 parameter contains the distinguished name of one certification
 authority.
 To identify the local endpoint, the Exporting Process or
 Collecting Process MUST use a certificate issued by one of the
 configured certification authority. Certificates issued by any
 other certification authority MUST NOT be sent to the remote peer
 during TLS/DTLS handshake. If none of the certificates installed
 on the Monitoring Device fulfills the specified restrictions, the
 configuration MUST be rejected with an error.
 If localCertificationAuthorityDN is not configured, the choice of
 certificates identifying the local endpoint is not restricted with
 respect to the issuing certification authority.

 localSubjectDN, localSubjectFQDN: Each of these parameters MAY
 appear one or multiple times to restrict the identification of the
 local endpoint during the TLS/DTLS handshake to certificates
 issued for specific subjects or for specific fully qualified
 domain names. Each occurrence of localSubjectDN contains a
 distinguished name identifying the local endpoint. Each
 occurrence of localSubjectFQDN contains a fully qualified domain
 name which is assigned to the local endpoint.
 To identify the local endpoint, the Exporting Process or

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 46]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Collecting Process MUST use a certificate that contains either one
 of the configured distinguished names in the subject field or at
 least one of the configured fully qualified domain names in a
 dNSName component of the subject alternative extension field or in
 the most specific commonName component of the subject field. If
 none of the certificates installed on the Monitoring Device
 fulfills the specified restrictions, the configuration MUST be
 rejected with an error.
 If any of the parameters localSubjectDN and localSubjectFQDN is
 configured at the same time as the localCertificationAuthorityDN
 parameter, certificates MUST also fulfill the specified
 restrictions regarding the certification authority.
 If localSubjectDN and localSubjectFQDN are not configured, the
 choice of certificates identifying the local endpoint is not
 restricted with respect to the subject’s distinguished name or
 fully qualified domain name.

 remoteCertificationAuthorityDN: This parameter MAY appear one or
 multiple times to restrict the authentication of remote endpoints
 during the TLS/DTLS handshake to certificates issued by the
 configured certification authorities. Each occurrence of this
 parameter contains the distinguished name of one certification
 authority.
 To authenticate the remote endpoint, the remote Exporting Process
 or Collecting Process MUST provide a certificate issued by one of
 the configured certification authority. Certificates issued by
 any other certification authority MUST be rejected during TLS/DTLS
 handshake.
 If the Monitoring Device is not able to validate certificates
 issued by the configured certification authorities (e.g., because
 of missing public keys), the configuration must be rejected with
 an error.
 If remoteCertificationAuthorityDN is not configured, the
 authorization of remote endpoints is not restricted with respect
 to the issuing certification authority of the delivered
 certificate.

 remoteSubjectDN, remoteSubjectFQDN: Each of these parameters MAY
 appear one or multiple times to restrict the authentication of
 remote endpoints during the TLS/DTLS handshake to certificates
 issued for specific subjects or for specific fully qualified
 domain names. Each occurrence of remoteSubjectDN contains a
 distinguished name identifying a remote endpoint. Each occurrence
 of remoteSubjectFQDN contains a fully qualified domain name which
 is assigned to a remote endpoint.
 To authenticate a remote endpoint, the remote Exporting Process or
 Collecting Process MUST provide a certificate that contains either
 one of the configured distinguished names in the subject field or

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 47]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 at least one of the configured fully qualified domain names in a
 dNSName component of the subject alternative extension field or in
 the most specific commonName component of the subject field.
 Certificates not fulfilling this condition MUST be rejected during
 TLS/DTLS handshake.
 If any of the parameters remoteSubjectDN and remoteSubjectFQDN is
 configured at the same time as the remoteCertificationAuthorityDN
 parameter, certificates MUST also fulfill the specified
 restrictions regarding the certification authority in order to be
 accepted.
 If remoteSubjectDN and remoteSubjectFQDN are not configured, the
 authorization of remote endpoints is not restricted with respect
 to the subject’s distinguished name or fully qualified domain name
 of the delivered certificate.

4.7. Transport Session Class

 +--+
 | TransportSession |
 +--+ 0..* +----------+
 | ipfixVersion {readOnly} |<>-------| Template |
 | sourceAddress {readOnly} | +----------+
 | destinationAddress {readOnly} |
 | sourcePort {readOnly} |
 | destinationPort {readOnly} |
 | sctpAssocId {readOnly} {SCTP only} |
 | status {readOnly} |
 | rate {readOnly} |
 | bytes {readOnly} |
 | messages {readOnly} |
 | discardedMessages {readOnly} |
 | records {readOnly} |
 | templates {readOnly} |
 | optionsTemplates {readOnly} |
 | transportSessionStartTime {readOnly} |
 | transportSessionDiscontinuityTime {readOnly} |
 +--+

 Figure 28: TransportSession class

 The TransportSession class contains state data about Transport
 Sessions originating from an Exporting Process or terminating at a
 Collecting Process. In general, the state parameters correspond to
 the managed objects in the ipfixTransportSessionTable and
 ipfixTransportSessionStatsTable of the IPFIX MIB module [RFC5815].
 An exception is the usage of the parameters sourceAddress and
 destinationAddress. If SCTP is transport protocol, Exporter or
 Collector may be multi-homed SCTP endpoints (see [RFC4960], Section

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 48]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 6.4) and use more than one IP address. In the IPFIX MIB module,
 ipfixTransportSessionSctpAssocId is used instead of
 ipfixTransportSessionSourceAddress and
 ipfixTransportSessionDestinationAddress to point to an entry in the
 sctpAssocTable defined in the SCTP MIB module [RFC3871]. Since we
 cannot assume that an SNMP agent offering access to the SCTP MIB
 module exists on the Monitoring Device, the configuration data model
 cannot rely on this parameter. Therefore, the state parameters
 sourceAddress and destinationAddress are used for SCTP as well,
 containing one of the potentially many Exporter and Collector IP
 addresses in the SCTP association. Preferably, the IP addresses of
 the path which is usually selected by the Exporter to send IPFIX
 Messages to the Collector SHOULD be contained.

 Several MIB objects of the ipfixTransportSessionTable are omitted in
 the TransportSession class. The MIB object
 ipfixTransportSessionDeviceMode is not included because its value can
 be derived from the context in which a TransportSession object
 appears: exporting(1) if it belongs to an Exporting Process,
 collecting(2) if it belongs to a Collecting Process. Similarly, the
 MIB object ipfixTransportSessionProtocol is not included as the
 transport protocol is known from the context as well. The MIB
 objects ipfixTransportSessionTemplateRefreshTimeout,
 ipfixTransportSessionOptionsTemplateRefreshTimeout,
 ipfixTransportSessionTemplateRefreshPacket, and
 ipfixTransportSessionOptionsTemplateRefreshPacket are not included
 since they correspond to configuration parameters of the UdpExporter
 class (templateRefreshTimeout, optionsTemplateRefreshTimeout,
 templateRefreshPacket, optionsTemplateRefreshPacket) and the
 UdpCollector class (templateLifeTime, optionsTemplateLifeTime,
 templateLifePacket, optionsTemplateLifePacket).

 ipfixVersion: Used for Exporting Processes, this parameter contains
 the version number of the IPFIX protocol that the Exporter uses to
 export its data in this Transport Session. Hence, it is identical
 to the value of the configuration parameter ipfixVersion of the
 outer SctpExporter, UdpExporter, or TcpExporter object.
 Used for Collecting Processes, this parameter contains the version
 number of the IPFIX protocol it receives for this Transport
 Session. If IPFIX Messages of different IPFIX protocol versions
 are received, this parameter contains the maximum version number.
 This state parameter is identical to
 ipfixTransportSessionIpfixVersion in the IPFIX MIB module
 [RFC5815].

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 49]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 sourceAddress, destinationAddress: If TCP or UDP is transport
 protocol, sourceAddress contains the IP address of the Exporter;
 destinationAddress contains the IP addresses of the Collector.
 Hence, the two parameters have identical values as
 ipfixTransportSessionSourceAddress and
 ipfixTransportSessionDestinationAddress in the IPFIX MIB module
 [RFC5815].
 If SCTP is transport protocol, sourceAddress contains one of the
 IP addresses of the Exporter and destinationAddress one of the IP
 addresses of the Collector. Preferably, the IP addresses of the
 path which is usually selected by the Exporter to send IPFIX
 Messages to the Collector SHOULD be contained.

 sourcePort, destinationPort: These state parameters contain the
 transport protocol port numbers of the Exporter and the Collector
 of the Transport Session and thus are identical to
 ipfixTransportSessionSourcePort and
 ipfixTransportSessionDestinationPort in the IPFIX MIB module
 [RFC5815].

 sctpAssocId: The association id used for the SCTP session between
 the Exporter and the Collector of the Transport Session. It is
 equal to the sctpAssocId entry in the sctpAssocTable defined in
 the SCTP-MIB [RFC3871].
 This parameter is only available if the transport protocol is SCTP
 and if an SNMP agent on the same Monitoring Device enables access
 to the corresponding MIB objects in the sctpAssocTable.
 This state parameter is identical to
 ipfixTransportSessionSctpAssocId in the IPFIX MIB module
 [RFC5815].

 status: Status of the Transport Session, which can be one of the
 following:
 * inactive: Transport Session is established, but no IPFIX
 Messages are currently transferred (e.g., because this is a
 backup (secondary) session)
 * active: Transport Session is established and transfers IPFIX
 Messages
 * unknown: Transport Session status cannot be determined
 This state parameter is identical to ipfixTransportSessionStatus
 in the IPFIX MIB module [RFC5815].

 rate: The number of bytes per second transmitted by the Exporting
 Process or received by the Collecting Process. This parameter is
 updated every second.
 This state parameter is identical to ipfixTransportSessionRate in
 the IPFIX MIB module [RFC5815].

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 50]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 bytes, messages, records, templates, optionsTemplates: The number of
 bytes, IPFIX Messages, Data Records, Template Records, and Options
 Template Records transmitted by the Exporting Process or received
 by the Collecting Process. Discontinuities in the values of these
 counters can occur at re-initialization of the management system,
 and at other times as indicated by the value of
 transportSessionDiscontinuityTime.

 discardedMessages: Used for Exporting Processes, this parameter
 indicates the number of messages that could not be sent due to
 internal buffer overflows, network congestion, routing issues,
 etc.
 Used for Collecting Process, this parameter indicates the number
 of received IPFIX Message that are malformed, cannot be decoded,
 are received in the wrong order or are missing according to the
 sequence number.
 Discontinuities in the value of this counter can occur at re-
 initialization of the management system, and at other times as
 indicated by the value of transportSessionDiscontinuityTime.

 transportSessionStartTime: Timestamp of the start of the given
 Transport Session.
 This state parameter does not correspond to any object in the
 IPFIX MIB module.

 transportSessionDiscontinuityTime: Timestamp of the most recent
 occasion at which one or more of the Transport Session counters
 suffered a discontinuity. In contrast to
 ipfixTransportSessionDiscontinuityTime, the time is absolute and
 not relative to sysUpTime.

 Note that, if used for Exporting Processes, the values of the state
 parameters destinationAddress and destinationPort match the values of
 the configuration parameters destinationIPAddress and destinationPort
 of the outer SctpExporter, TcpExporter, and UdpExporter objects (in
 the case of SctpExporter, one of the configured destinationIPAddress
 values); if the transport protocol is UDP or SCTP and if the
 parameter sourceIPAddress is configured in the outer UdpExporter or
 SctpExporter object, the value of sourceAddress equals the configured
 value or one of the configured values. Used for Collecting
 Processes, the value of destinationAddress equals the value (or one
 of the values) of the parameter localIPAddress if this parameter is
 configured in the outer UdpCollector, TcpCollector, or SctpCollector
 object; destinationPort equals the value of the configuration
 parameter localPort.

 Each object of the TransportSession class includes a list of objects
 of the Template class with information and statistics about the

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 51]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Templates transmitted or received on the given Transport Session.
 The Template class is specified in Section 4.8.

4.8. Template Class

 +--------------------------------------+
 | Template |
 +--------------------------------------+
 | observationDomainId {readOnly} |<>---+ 0..*
 | templateId {readOnly} | |
 | setId {readOnly} | |
 | accessTime {readOnly} | |
 | templateDataRecords {readOnly} | |
 | templateDiscontinuityTime {readOnly} | |
 +--------------------------------------+ |
 |
 +--------------------------------------+
 | Field |
 +--------------------------------------+
 | ieId {readOnly} |
 | ieLength {readOnly} |
 | ieEnterpriseNumber {readOnly} |
 | isFlowKey {readOnly} {non-Options |
 | Template only} |
 | isScope {readOnly} {Options Template |
 | only} |
 +--------------------------------------+

 Figure 29: Template class

 The Template class contains state data about Templates used by an
 Exporting Process or received by a Collecting Process in a specific
 Transport Session. The Field class defines one field of the
 Template. The names and semantics of the state parameters correspond
 to the managed objects in the ipfixTemplateTable,
 ipfixTemplateDefinitionTable, and ipfixTemplateStatsTable of the
 IPFIX MIB module [RFC5815]:

 observationDomainId: The ID of the Observation Domain for which this
 Template is defined.

 templateId: This number indicates the Template Id in the IPFIX
 message.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 52]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 setId: This number indicates the Set ID of the Template.
 Currently, there are two values defined [RFC5101]. The value 2 is
 used for Sets containing Template definitions. The value 3 is
 used for Sets containing Options Template definitions.

 accessTime: Used for Exporting Processes, this parameter contains
 the time when this (Options) Template was last sent to the
 Collector or written to the file.
 Used for Collecting Processes, this parameter contains the time
 when this (Options) Template was last received from the Exporter
 or read from the file.

 templateDataRecords: The number of transmitted or received Data
 Records defined by this (Options) Template since the point in time
 indicated by templateDefinitionTime.

 templateDiscontinuityTime: Timestamp of the most recent occasion at
 which the counter templateDataRecords suffered a discontinuity.
 In contrast to ipfixTemplateDiscontinuityTime, the time is
 absolute and not relative to sysUpTime.

 ieId, ieLength, ieEnterpriseNumber: Information Element ID, length,
 and enterprise number of a field in the Template. If this is not
 an enterprise-specific Information Element, ieEnterpriseNumber is
 zero.
 These state parameters are identical to
 ipfixTemplateDefinitionIeId, ipfixTemplateDefinitionIeLength, and
 ipfixTemplateDefinitionIeEnterpriseNumber in the IPFIX MIB module
 [RFC5815].

 isFlowKey: If this state parameter is present, this is a Flow Key
 field.
 This parameter is only available for non-Options Templates (i.e.,
 if setId is 2).

 isFlowKey: If this state parameter is present, this is a scope
 field.
 This parameter is only available for Options Templates (i.e., if
 setId is 3).

5. Adaptation to Device Capabilities

 The configuration data model standardizes a superset of common IPFIX
 and PSAMP configuration parameters. A typical Monitoring Device
 implementation will not support the entire range of possible
 configurations. Certain functions may not be supported, such as the
 Collecting Process that does not exist on a Monitoring Device which

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 53]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 is conceived as Exporter only. The configuration of other functions
 may be subject to resource limitations or functional restrictions.
 For example, the Cache size is typically limited according to the
 available memory on the device. It is also possible that a
 Monitoring Device implementation requires the configuration of
 additional parameters which are not part of the configuration data
 model in order to function properly.

 YANG [RFC6020] offers several possibilities to restrict and adapt a
 configuration data model. The current version of YANG defines the
 concepts of features, deviations, and extensions.

 The feature concept allows the author of a configuration data model
 to make proportions of the model conditional in a manner that is
 controlled by the device. Devices do not have to support these
 conditional parts to conform to the model. If the NETCONF protocol
 is used, features which are supported by the device are announced in
 the <hello> message [RFC4741].

 The configuration data model for IPFIX and PSAMP covers the
 configuration of Exporters, Collectors, and devices that may act as
 both. As Exporters and Collectors implement different functions, the
 corresponding proportions of the model are conditional on the
 following features:

 exporter: If this feature is supported, Exporting Processes can be
 configured.

 collector: If this feature is supported, Collecting Processes can be
 configured.

 Exporters do not necessarily implement any Selection Processes,
 Caches, or even Observation Points in particular cases. Therefore,
 the corresponding proportions of the model are conditional on the
 following feature:

 meter: If this feature is supported, Observation Points, Selection
 Processes, and Caches can be configured.

 Additional features refer to different PSAMP Sampling and Filtering
 methods as well as to the supported types of Caches:

 psampSampCountBased: If this feature is supported, Sampling method
 sampCountBased can be configured.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 54]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 psampSampTimeBased: If this feature is supported, Sampling method
 sampTimeBased can be configured.

 psampSampRandOutOfN: If this feature is supported, Sampling method
 sampRandOutOfN can be configured.

 psampSampUniProb: If this feature is supported, Sampling method
 sampUniProb can be configured.

 psampFilterMatch: If this feature is supported, Filtering method
 filterMatch can be configured.

 psampFilterHash: If this feature is supported, Filtering method
 filterHash can be configured.

 immediateCache: If this feature is supported, a Cache generating
 PSAMP Packet Reports can be configured using the ImmediateCache
 class.

 timeoutCache: If this feature is supported, a Cache generating IPFIX
 Flow Records can be configured using the TimeoutCache class.

 naturalCache: If this feature is supported, a Cache generating IPFIX
 Flow Records can be configured using the NaturalCache class.

 permanentCache: If this feature is supported, a Cache generating
 IPFIX Flow Records can be configured using the PermanentCache
 class.

 The following features concern the support of UDP and TCP as
 transport protocols and the support of File Readers and File Writers:

 udpTransport: If this feature is supported, UDP can be used as
 transport protocol by Exporting Processes and Collecting
 Processes.

 tcpTransport: If this feature is supported, TCP can be used as
 transport protocol by Exporting Processes and Collecting
 Processes.

 fileReader: If this feature is supported, File Readers can be
 configured as part of Collecting Processes.

 fileWriter: If this feature is supported, File Writers can be
 configured as part of Exporting Processes.

 The deviation concept enables a device to announce deviations from
 the standard model using the "deviation" statement. For example, it

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 55]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 is possible to restrict the value range of a specific parameter or to
 define that the configuration of a certain parameter is not supported
 at all. Hence, deviations are typically used to specify limitations
 due to resource constraints or functional restrictions. Deviations
 concern existing parameters of the original configuration data model
 and must not be confused with model extensions. Model extensions are
 specified with the "augment" statement and allow adding new
 parameters to the original configuration data model.

 If certain device-specific constraints cannot be formally specified
 with YANG, they MUST be expressed with human-readable text using the
 "description" statement. The provided information MUST enable the
 user to define a configuration which is entirely supported by the
 Monitoring Device. On the other hand, if a Monitoring Device is
 configured, it MUST notify the user about any part of the
 configuration which is not supported. The Monitoring Device MUST NOT
 silently accept configuration data which cannot be completely
 enforced. If the NETCONF protocol is used to send configuration data
 to the Monitoring Device, the error handling is specified in the
 NETCONF protocol specification [RFC4741].

 Just like features, deviations and model extensions are announced in
 NETCONF’s <hello> message. A usage example of deviations is given in
 Section 7.5.

6. YANG Module of the IPFIX/PSAMP Configuration Data Model

 The YANG module specification of the configuration data model is
 listed below. It makes use of the common YANG types defined in the
 modules urn:ietf:params:xml:ns:yang:ietf-yang-types and
 urn:ietf:params:xml:ns:yang:ietf-inet-types [RFC6021].

 <CODE BEGINS> file "ietf-ipfix-psamp@2011-03-09.yang"
 module ietf-ipfix-psamp {
 namespace "urn:ietf:params:xml:ns:yang:ietf-ipfix-psamp";
 prefix ipfix;

 import ietf-yang-types { prefix yang; }
 import ietf-inet-types { prefix inet; }

 organization
 "IETF IPFIX Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/ipfix/>
 WG List: <mailto:ipfix@ietf.org>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 56]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 WG Chair: Nevil Brownlee
 <n.brownlee@auckland.ac.nz>

 WG Chair: Juergen Quittek
 <quittek@neclab.eu>

 Editor: Gerhard Muenz
 <mailto:muenz@net.in.tum.de>";

 description
 "IPFIX/PSAMP Configuration Data Model

 Copyright (c) 2010 IETF Trust and the persons identified as
 the document authors. All rights reserved.
 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).";

 revision 2011-03-09 {
 description "Version of draft-ietf-ipfix-configuration-model-09";
 reference "RFC XXXX: IPFIX/PSAMP Configuration Data Model";
 }

 /***
 * Features
 ***/

 feature exporter {
 description "If supported, the Monitoring Device can be used as
 an Exporter. Exporting Processes can be configured.";
 }

 feature collector {
 description "If supported, the Monitoring Device can be used as
 a Collector. Collecting Processes can be configured.";
 }

 feature meter {
 description "If supported, Observation Points, Selection
 Processes, and Caches can be configured.";
 }

 feature psampSampCountBased {
 description "If supported, the Monitoring Device supports
 count-based Sampling. The Selector method sampCountBased can

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 57]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 be configured.";
 }

 feature psampSampTimeBased {
 description "If supported, the Monitoring Device supports
 time-based Sampling. The Selector method sampTimeBased can
 be configured.";
 }

 feature psampSampRandOutOfN {
 description "If supported, the Monitoring Device supports
 random n-out-of-N Sampling. The Selector method
 sampRandOutOfN can be configured.";
 }

 feature psampSampUniProb {
 description "If supported, the Monitoring Device supports
 uniform probabilistic Sampling. The Selector method
 sampUniProb can be configured.";
 }

 feature psampFilterMatch {
 description "If supported, the Monitoring Device supports
 property match Filtering. The Selector method filterMatch
 can be configured.";
 }

 feature psampFilterHash {
 description "If supported, the Monitoring Device supports
 hash-based Filtering. The Selector method filterHash can be
 configured.";
 }

 feature immediateCache {
 description "If supported, the Monitoring Device supports
 Caches generating PSAMP Packet Reports by configuration with
 immediateCache.";
 }

 feature timeoutCache {
 description "If supported, the Monitoring Device supports
 Caches generating IPFIX Flow Records by configuration with
 timeoutCache.";
 }

 feature naturalCache {
 description "If supported, the Monitoring Device supports
 Caches generating IPFIX Flow Records by configuration with

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 58]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 naturalCache.";
 }

 feature permanentCache {
 description "If supported, the Monitoring Device supports
 Caches generating IPFIX Flow Records by configuration with
 permanentCache.";
 }

 feature udpTransport {
 description "If supported, the Monitoring Device supports UDP
 as transport protocol.";
 }

 feature tcpTransport {
 description "If supported, the Monitoring Device supports TCP
 as transport protocol.";
 }

 feature fileReader {
 description "If supported, the Monitoring Device supports the
 configuration of Collecting Processes as File Readers.";
 }

 feature fileWriter {
 description "If supported, the Monitoring Device supports the
 configuration of Exporting Processes as File Writers.";
 }

 /***
 * Identities
 ***/

 /*** Hash function identities ***/
 identity hashFunction {
 description "Base identity for all hash functions used for
 hash-based packet filtering. Identities derived from
 this base are used by the leaf
 /ipfix/selectionProcess/selector/filterHash/hashFunction.";
 }
 identity BOB {
 base "hashFunction";
 description "BOB hash function";
 reference "RFC5475, Section 6.2.4.1.";
 }
 identity IPSX {
 base "hashFunction";
 description "IPSX hash function";

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 59]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 reference "RFC5475, Section 6.2.4.1.";
 }
 identity CRC {
 base "hashFunction";
 description "CRC hash function";
 reference "RFC5475, Section 6.2.4.1.";
 }

 /*** Export mode identities ***/
 identity exportMode {
 description "Base identity for different usages of export
 destinations configured for an Exporting Process.
 Identities derived from this base are used by the leaf
 /ipfix/exportingProcess/exportMode.";
 }
 identity parallel {
 base "exportMode";
 description "Parallel export of Data Records to all
 destinations configured for the Exporting Process.";
 }
 identity loadBalancing {
 base "exportMode";
 description "Load-balancing between the different destinations
 configured for the Exporting Process.";
 }
 identity fallback {
 base "exportMode";
 description "Export to the primary destination (i.e., the first
 SCTP, UDP, TCP, or file destination configured for the
 Exporting Process). If the export to the primary destination
 fails, the Exporting Process tries to export to the secondary
 destination. If the secondary destination fails as well, it
 continues with the tertiary, etc.";
 }

 /*** Options type identities ***/
 identity optionsType {
 description "Base identity for report types exported with
 options. Identities derived from this base are used by the leaf
 /ipfix/exportingProcess/options/optionsType.";
 }
 identity meteringStatistics {
 base "optionsType";
 description "Metering Process Statistics.";
 reference "RFC 5101, Section 4.1.";
 }
 identity meteringReliability {
 base "optionsType";

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 60]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 description "Metering Process Reliability Statistics.";
 reference "RFC 5101, Section 4.2.";
 }
 identity exportingReliability {
 base "optionsType";
 description "Exporting Process Reliability
 Statistics.";
 reference "RFC 5101, Section 4.3.";
 }
 identity flowKeys {
 base "optionsType";
 description "Flow Keys.";
 reference "RFC 5101, Section 4.4.";
 }
 identity selectionSequence {
 base "optionsType";
 description "Selection Sequence and Selector Reports.";
 reference "RFC5476, Sections 6.5.1 and 6.5.2.";
 }
 identity selectionStatistics {
 base "optionsType";
 description "Selection Sequence Statistics Report.";
 reference "RFC5476, Sections 6.5.3.";
 }
 identity accuracy {
 base "optionsType";
 description "Accuracy Report.";
 reference "RFC5476, Section 6.5.4.";
 }
 identity reducingRedundancy {
 base "optionsType";
 description "Enables the utilization of Options Templates to
 reduce redundancy in the exported Data Records.";
 reference "RFC5473.";
 }
 identity extendedTypeInformation {
 base "optionsType";
 description "Export of extended type information for
 enterprise-specific Information Elements used in the
 exported Templates.";
 reference "RFC5610.";
 }

 /***
 * Type definitions
 ***/

 typedef ieNameType {

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 61]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 type string {
 length "1..max";
 pattern "\S+";
 }
 description "Type for Information Element names. Whitespaces
 are not allowed.";
 }

 typedef ieIdType {
 type uint16 {
 range "1..32767" {
 description "Valid range of Information Element
 identifiers.";
 reference "RFC5102, Section 4.";
 }
 }
 description "Type for Information Element identifiers.";
 }

 typedef nameType {
 type string {
 length "1..max";
 pattern "\S(.*\S)?";
 }
 description "Type for ’name’ leafs which are used to identify
 specific instances within lists etc.
 Leading and trailing whitespaces are not allowed.";
 }

 typedef ifNameType {
 type string {
 length "1..255";
 }
 description "This corresponds to the DisplayString textual
 convention of SNMPv2-TC, which is used for ifName in the IF
 MIB module.";
 reference "RFC2863 (ifName).";
 }

 typedef direction {
 type enumeration {
 enum ingress {
 description "This value is used for monitoring incoming
 packets.";
 }
 enum egress {
 description "This value is used for monitoring outgoing
 packets.";

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 62]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 }
 enum both {
 description "This value is used for monitoring incoming and
 outgoing packets.";
 }
 }
 description "Direction of packets going through an interface or
 linecard.";
 }

 typedef transportSessionStatus {
 type enumeration {
 enum inactive {
 description "This value MUST be used for Transport Sessions
 that are specified in the system but currently not active.
 The value can be used for Transport Sessions that are
 backup (secondary) sessions.";
 }
 enum active {
 description "This value MUST be used for Transport Sessions
 that are currently active and transmitting or receiving
 data.";
 }
 enum unknown {
 description "This value MUST be used if the status of the
 Transport Sessions cannot be detected by the device. This
 value should be avoided as far as possible.";
 }
 }
 description "Status of a Transport Session.";
 reference "RFC5815, Section 8 (ipfixTransportSessionStatus).";
 }

 /***
 * Groupings
 ***/

 grouping observationPointParameters {
 description "Interface as input to Observation Point.";
 leaf observationPointId {
 type uint32;
 config false;
 description "Observation Point ID (i.e., the value of the
 Information Element observationPointId) assigned by the
 Monitoring Device.";
 reference "RFC5102, Section 5.1.10.";
 }
 leaf observationDomainId {

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 63]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 type uint32;
 mandatory true;
 description "The Observation Domain ID associates the
 Observation Point to an Observation Domain. Observation
 Points with identical Observation Domain ID belong to the
 same Observation Domain.
 Note that this parameter corresponds to
 ipfixObservationPointObservationDomainId in the IPFIX MIB
 module.";
 reference "RFC5101; RFC5815, Section 8
 (ipfixObservationPointObservationDomainId).";
 }
 leaf-list ifName {
 type ifNameType;
 description "List of names identifying interfaces of the
 Monitoring Device. The Observation Point observes packets at
 the specified interfaces.";
 }
 leaf-list ifIndex {
 type uint32;
 description "List of ifIndex values pointing to entries in the
 ifTable of the IF-MIB module maintained by the Monitoring
 Device. The Observation Point observes packets at the
 specified interfaces.
 This parameter SHOULD only be used if an SNMP agent enables
 access to the corresponding MIB objects in the ifTable.
 Note that this parameter corresponds to
 ipfixObservationPointPhysicalInterface in the IPFIX MIB
 module.";
 reference "RFC 1229; RFC5815, Section 8
 (ipfixObservationPointPhysicalInterface).";
 }
 leaf-list entPhysicalName {
 type string;
 description "List of names identifying physical entities of the
 Monitoring Device. The Observation Point observes packets at
 the specified entities.";
 }
 leaf-list entPhysicalIndex {
 type uint32;
 description "List of entPhysicalIndex values pointing to entries
 in the entPhysicalTable of the ENTITY-MIB module maintained by
 the Monitoring Device. The Observation Point observes packets
 at the specified entities.
 This parameter SHOULD only be used if an SNMP agent enables
 access to the corresponding MIB objects in the
 entPhysicalTable.
 Note that this parameter corresponds to

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 64]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 ipfixObservationPointPhysicalEntity in the IPFIX MIB
 module.";
 reference "RFC 4133; RFC5815, Section 8
 (ipfixObservationPointPhysicalInterface).";
 }
 leaf direction {
 type direction;
 default both;
 description "Direction of packets. If not applicable (e.g., in
 the case of a sniffing interface in promiscuous mode), this
 parameter is ignored.";
 }
 }

 grouping sampCountBasedParameters {
 description "Configuration parameters of a Selector applying
 systematic count-based packet sampling to the packet
 stream.";
 reference "RFC5475, Section 5.1; RFC5476, Section 6.5.2.1.";
 leaf packetInterval {
 type uint32;
 units packets;
 mandatory true;
 description "The number of packets that are consecutively
 sampled between gaps of length packetSpace.
 This parameter corresponds to the Information Element
 samplingPacketInterval.";
 reference "RFC5477, Section 8.2.2.";
 }
 leaf packetSpace {
 type uint32;
 units packets;
 mandatory true;
 description "The number of unsampled packets between two
 sampling intervals.
 This parameter corresponds to the Information Element
 samplingPacketSpace.";
 reference "RFC5477, Section 8.2.3.";
 }
 }

 grouping sampTimeBasedParameters {
 description "Configuration parameters of a Selector applying
 systematic time-based packet sampling to the packet
 stream.";
 reference "RFC5475, Section 5.1; RFC5476, Section 6.5.2.2.";
 leaf timeInterval {
 type uint32;

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 65]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 units microseconds;
 mandatory true;
 description "The time interval in microseconds during
 which all arriving packets are sampled between gaps
 of length timeSpace.
 This parameter corresponds to the Information Element
 samplingTimeInterval.";
 reference "RFC5477, Section 8.2.4.";
 }
 leaf timeSpace {
 type uint32;
 units microseconds;
 mandatory true;
 description "The time interval in microseconds during
 which no packets are sampled between two sampling
 intervals specified by timeInterval.
 This parameter corresponds to the Information Element
 samplingTimeInterval.";
 reference "RFC5477, Section 8.2.5.";
 }
 }

 grouping sampUniProbParameters {
 description "Configuration parameters of a Selector applying
 uniform probabilistic packet sampling (with equal
 probability per packet) to the packet stream.";
 reference "RFC5475, Section 5.2.2.1;
 RFC5476, Section 6.5.2.4.";
 leaf probability {
 type decimal64 {
 fraction-digits 18;
 range "0..1";
 }
 mandatory true;
 description "Probability that a packet is sampled,
 expressed as a value between 0 and 1. The probability
 is equal for every packet.
 This parameter corresponds to the Information Element
 samplingProbability.";
 reference "RFC5477, Section 8.2.8.";
 }
 }

 grouping filterMatchParameters {
 description "Configuration parameters of a Selector applying
 property match filtering to the packet stream.
 The field to be matched is specified as Information
 Element.";

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 66]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 reference "RFC5475, Section 6.1; RFC5476, Section 6.5.2.5.";
 choice nameOrId {
 mandatory true;
 description "The field to be matched is specified by
 either the name or the ID of the Information
 Element.";
 leaf ieName {
 type ieNameType;
 description "Name of the Information Element.";
 }
 leaf ieId {
 type ieIdType;
 description "ID of the Information Element.";
 }
 }
 leaf ieEnterpriseNumber {
 type uint32;
 default 0;
 description "If this parameter is zero, the Information
 Element is registered in the IANA registry of IPFIX
 Information Elements.
 If this parameter is configured with a non-zero private
 enterprise number, the Information Element is
 enterprise-specific.";
 reference "RFC5102.";
 }
 leaf value {
 type string;
 mandatory true;
 description "Matching value of the Information Element.";
 }
 }

 grouping filterHashParameters {
 description "Configuration parameters of a Selector applying
 hash-based filtering to the packet stream.";
 reference "RFC5475, Section 6.2; RFC5476, Section 6.5.2.6.";
 leaf hashFunction {
 type identityref {
 base "hashFunction";
 }
 default BOB;
 description "Hash function to be applied. According to
 RFC5475, Section 6.2.4.1, ’BOB’ must be used in order to
 be compliant with PSAMP.";
 }
 leaf initializerValue {
 type uint64;

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 67]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 description "Initializer value to the hash function.
 If not configured by the user, the Monitoring Device
 arbitrarily chooses an initializer value.";
 reference "RFC5477, Section 8.3.9.";
 }
 leaf ipPayloadOffset {
 type uint64;
 units octets;
 default 0;
 description "IP payload offset indicating the position of
 the first payload byte considered as input to the hash
 function.
 Default value 0 corresponds to the minimum offset that
 must be configurable according to RFC5476, Section
 6.2.5.6.
 This parameter corresponds to the Information Element
 hashIPPayloadOffset.";
 reference "RFC5477, Section 8.3.2.";
 }
 leaf ipPayloadSize {
 type uint64;
 units octets;
 default 8;
 description "Number of IP payload bytes used as input to
 the hash function, counted from the payload offset.
 If the IP payload is shorter than the payload range,
 all available payload octets are used as input.
 Default value 8 corresponds to the minimum IP payload
 size that must be configurable according to RFC5476,
 Section 6.2.5.6.
 This parameter corresponds to the Information Element
 hashIPPayloadSize.";
 reference "RFC5477, Section 8.3.3.";
 }
 leaf digestOutput {
 type boolean;
 default false;
 description "If true, the output from this Selector is
 included in the Packet Report as a packet digest.
 Therefore, the configured Cache Layout needs to contain
 a digestHashValue field.
 This parameter corresponds to the Information Element
 hashDigestOutput.";
 reference "RFC5477, Section 8.3.8.";
 }
 leaf outputRangeMin {
 type uint64;
 config false;

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 68]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 description "Beginning of the hash function’s potential
 range.
 This parameter corresponds to the Information Element
 hashOutputRangeMin.";
 reference "RFC5477, Section 8.3.4.";
 }
 leaf outputRangeMax {
 type uint64;
 config false;
 description "End of the hash function’s potential range.
 This parameter corresponds to the Information Element
 hashOutputRangeMax.";
 reference "RFC5477, Section 8.3.5.";
 }
 list selectedRange {
 key name;
 min-elements 1;
 description "List of hash function return ranges for
 which packets are selected.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 leaf min {
 type uint64;
 description "Beginning of the hash function’s selected
 range.
 This parameter corresponds to the Information Element
 hashSelectedRangeMin.";
 reference "RFC5477, Section 8.3.6.";
 }
 leaf max {
 type uint64;
 description "End of the hash function’s selected range.
 This parameter corresponds to the Information Element
 hashSelectedRangeMax.";
 reference "RFC5477, Section 8.3.7.";
 }
 }
 }

 grouping sampRandOutOfNParameters {
 description "Configuration parameters of a Selector applying
 n-out-of-N packet sampling to the packet stream.";
 reference "RFC5475, Section 5.2.1; RFC5476, Section 6.5.2.3.";
 leaf size {
 type uint32;
 units packets;

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 69]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 mandatory true;
 description "The number of elements taken from the parent
 population.
 This parameter corresponds to the Information Element
 samplingSize.";
 reference "RFC5477, Section 8.2.6.";
 }
 leaf population {
 type uint32;
 units packets;
 mandatory true;
 description "The number of elements in the parent
 population.
 This parameter corresponds to the Information Element
 samplingPopulation.";
 reference "RFC5477, Section 8.2.7.";
 }
 }

 grouping selectorParameters {
 description "Configuration and state parameters of a Selector.";
 choice Method {
 mandatory true;
 description "Packet selection method applied by the Selector.";
 leaf selectAll {
 type empty;
 description "Method which selects all packets.";
 }
 container sampCountBased {
 if-feature psampSampCountBased;
 description "Systematic count-based packet sampling.";
 uses sampCountBasedParameters;
 }
 container sampTimeBased {
 if-feature psampSampTimeBased;
 description "Systematic time-based packet sampling.";
 uses sampTimeBasedParameters;
 }
 container sampRandOutOfN {
 if-feature psampSampRandOutOfN;
 description "n-out-of-N packet sampling.";
 uses sampRandOutOfNParameters;
 }
 container sampUniProb {
 if-feature psampSampUniProb;
 description "Uniform probabilistic packet sampling.";
 uses sampUniProbParameters;
 }

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 70]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 container filterMatch {
 if-feature psampFilterMatch;
 description "Property match filtering.";
 uses filterMatchParameters;
 }
 container filterHash {
 if-feature psampFilterHash;
 description "Hash-based filtering.";
 uses filterHashParameters;
 }
 }
 leaf packetsObserved {
 type yang:counter64;
 config false;
 description "The number of packets observed at the input of
 the Selector.
 If this is the first Selector in the Selection Process,
 this counter corresponds to the total number of packets in
 all Observed Packet Streams at the input of the Selection
 Process. Otherwise, the counter corresponds to the total
 number of packets at the output of the preceding Selector.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 selectorDiscontinuityTime.";
 reference "RFC5815, Section 8
 (ipfixSelectorStatsPacketsObserved).";
 }
 leaf packetsDropped {
 type yang:counter64;
 config false;
 description "The total number of packets discarded by the
 Selector.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 selectorDiscontinuityTime.";
 reference "RFC5815, Section 8
 (ipfixSelectorStatsPacketsDropped).";
 }
 leaf selectorDiscontinuityTime {
 type yang:date-and-time;
 config false;
 description "Timestamp of the most recent occasion at which
 one or more of the Selector counters suffered a
 discontinuity.
 In contrast to ipfixSelectionProcessStatsDiscontinuityTime
 in the IPFIX MIB module, the time is absolute and not

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 71]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 relative to sysUpTime.";
 reference "RFC5815, Section 8
 (ipfixSelectionProcessStatsDiscontinuityTime).";
 }
 }

 grouping cacheLayoutParameters {
 description "Cache Layout parameters used by immediateCache,
 timeoutCache, naturalCache, and permanentCache.";
 container cacheLayout {
 description "Cache Layout parameters.";
 list cacheField {
 key name;
 min-elements 1;
 description "Superset of fields that are included in the
 Packet Reports or Flow Records generated by the Cache.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 choice nameOrId {
 mandatory true;
 description "Name or ID of the Information Element.";
 reference "RFC5102.";
 leaf ieName {
 type ieNameType;
 description "Name of the Information Element.";
 }
 leaf ieId {
 type ieIdType;
 description "ID of the Information Element.";
 }
 }
 leaf ieLength {
 type uint16;
 units octets;
 description "Length of the field in which the Information
 Element is encoded. A value of 65535 specifies a
 variable-length Information Element. For Information
 Elements of integer and float type, the field length MAY
 be set to a smaller value than the standard length of the
 abstract data type if the rules of reduced size encoding
 are fulfilled.
 If not configured by the user, this parameter is set by
 the Monitoring Device.";
 reference "RFC5101, Section 6.2; RFC5102.";
 }
 leaf ieEnterpriseNumber {

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 72]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 type uint32;
 default 0;
 description "If this parameter is zero, the Information
 Element is registered in the IANA registry of IPFIX
 Information Elements.
 If this parameter is configured with a non-zero private
 enterprise number, the Information Element is
 enterprise-specific.
 If the enterprise number is set to 29305, this field
 contains a Reverse Information Element. In this case,
 the Cache MUST generate Data Records in accordance to
 RFC5103.";
 reference "RFC5101; RFC5102; RFC5103.";
 }
 leaf isFlowKey {
 when "(name(../../..) != ’immediateCache’)
 and
 ((count(../ieEnterpriseNumber) = 0)
 or
 (../ieEnterpriseNumber != 29305))" {
 description "This parameter is not available for
 Reverse Information Elements (which have enterprise
 number 29305) or if the Cache Mode is ’immediate’.";
 }
 type empty;
 description "If present, this is a flow key.";
 }
 }
 }
 }

 grouping flowCacheParameters {
 description "Configuration and state parameters of a Cache
 generating Flow Records.";
 leaf maxFlows {
 type uint32;
 units flows;
 description "This parameter configures the maximum number of
 Flows in the Cache, which is the maximum number of Flows
 that can be measured simultaneously.
 The Monitoring Device MUST ensure that sufficient resources
 are available to store the configured maximum number of
 Flows.
 If the maximum number of Flows is measured, no additional
 Flows can be measured before any of the existing entries is
 removed. However, traffic which pertains to existing Flows
 can continue to be measured.";
 }

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 73]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 leaf activeTimeout {
 when "(name(..) = ’timeoutCache’) or
 (name(..) = ’naturalCache’)" {
 description "This parameter is only available for
 timeoutCache and naturalCache.";
 }
 type uint32;
 units seconds;
 description "This parameter configures the time in
 seconds after which a Flow is expired even though packets
 matching this Flow are still received by the Cache.
 The parameter value zero indicates infinity, meaning that
 there is no active timeout.
 If not configured by the user, the Monitoring Device sets
 this parameter.
 Note that this parameter corresponds to
 ipfixMeteringProcessCacheActiveTimeout in the IPFIX
 MIB module.";
 reference "RFC5815, Section 8
 (ipfixMeteringProcessCacheActiveTimeout).";
 }
 leaf inactiveTimeout {
 when "(name(..) = ’timeoutCache’) or
 (name(..) = ’naturalCache’)" {
 description "This parameter is only available for
 timeoutCache and naturalCache.";
 }
 type uint32;
 units seconds;
 description "This parameter configures the time in
 seconds after which a Flow is expired if no more packets
 matching this Flow are received by the Cache.
 The parameter value zero indicates infinity, meaning that
 there is no inactive timeout.
 If not configured by the user, the Monitoring Device sets
 this parameter.
 Note that this parameter corresponds to
 ipfixMeteringProcessCacheInactiveTimeout in the IPFIX
 MIB module.";
 reference "RFC5815, Section 8
 (ipfixMeteringProcessCacheInactiveTimeout).";
 }
 leaf exportInterval {
 when "name(..) = ’permanentCache’" {
 description "This parameter is only available for
 permanentCache.";
 }
 type uint32;

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 74]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 units seconds;
 description "This parameter configures the interval (in seconds)
 for periodical export of Flow Records.
 If not configured by the user, the Monitoring Device sets
 this parameter.";
 }
 leaf activeFlows {
 type yang:gauge32;
 units flows;
 config false;
 description "The number of Flows currently active in this
 Cache.";
 reference "RFC5815, Section 8
 (ipfixMeteringProcessCacheActiveFlows).";
 }
 leaf unusedCacheEntries {
 type yang:gauge32;
 units flows;
 config false;
 description "The number of unused Cache entries in this
 Cache.";
 reference "RFC5815, Section 8
 (ipfixMeteringProcessCacheUnusedCacheEntries).";
 }
 }

 grouping exportingProcessParameters {
 description "Parameters of an Exporting Process.";
 leaf exportMode {
 type identityref {
 base "exportMode";
 }
 default parallel;
 description "This parameter determines to which configured
 destination(s) the incoming Data Records are exported.";
 }
 list destination {
 key name;
 min-elements 1;
 description "List of export destinations.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 choice DestinationParameters {
 mandatory true;
 description "Configuration parameters depend on whether
 SCTP, UDP, or TCP are used as transport protocol, and

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 75]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 whether the destination is a file.";
 container sctpExporter {
 description "SCTP parameters.";
 uses sctpExporterParameters;
 }
 container udpExporter {
 if-feature udpTransport;
 description "UDP parameters.";
 uses udpExporterParameters;
 }
 container tcpExporter {
 if-feature tcpTransport;
 description "TCP parameters.";
 uses tcpExporterParameters;
 }
 container fileWriter {
 if-feature fileWriter;
 description "File Writer parameters.";
 uses fileWriterParameters;
 }
 }
 }
 list options {
 key name;
 description "List of options reported by the Exporting
 Process.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 uses optionsParameters;
 }
 }

 grouping commonExporterParameters {
 description "Parameters of en export destination which are
 common to all transport protocols.";
 leaf ipfixVersion {
 type uint16;
 default 10;
 description "IPFIX version number.";
 reference "RFC 5101.";
 }
 leaf destinationPort {
 type inet:port-number;
 description "If not configured by the user, the Monitoring
 Device uses the default port number for IPFIX, which is
 4739 without transport layer security and 4740 if transport

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 76]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 layer security is activated.";
 }
 choice indexOrName {
 description "Index or name of the interface as stored in the
 ifTable of IF-MIB.
 If configured, the Exporting Process MUST use the given
 interface to export IPFIX Messages to the export
 destination.
 If omitted, the Exporting Process selects the outgoing
 interface based on local routing decision and accepts
 return traffic, such as transport layer acknowledgments,
 on all available interfaces.";
 reference "RFC 1229.";
 leaf ifIndex {
 type uint32;
 description "Index of an interface as stored in the ifTable
 of IF-MIB.";
 reference "RFC 1229.";
 }
 leaf ifName {
 type string;
 description "Name of an interface as stored in the ifTable
 of IF-MIB.";
 reference "RFC 1229.";
 }
 }
 leaf sendBufferSize {
 type uint32;
 units bytes;
 description "Size of the socket send buffer.
 If not configured by the user, this parameter is set by
 the Monitoring Device.";
 }
 leaf rateLimit {
 type uint32;
 units "bytes per second";
 description "Maximum number of bytes per second the Exporting
 Process may export to the given destination. The number of
 bytes is calculated from the lengths of the IPFIX Messages
 exported. If not configured, no rate limiting is performed.";
 reference "RFC5476, Section 6.3.";
 }
 container transportLayerSecurity {
 presence "If transportLayerSecurity is present, DTLS is
 enabled if the transport protocol is SCTP or UDP, and TLS
 is enabled if the transport protocol is TCP.";
 description "Transport layer security configuration.";
 uses transportLayerSecurityParameters;

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 77]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 }
 container transportSession {
 config false;
 description "State parameters of the Transport Session
 directed to the given destination.";
 uses transportSessionParameters;
 }
 }

 grouping sctpExporterParameters {
 description "SCTP specific export destination parameters.";
 uses commonExporterParameters;
 leaf-list sourceIPAddress {
 type inet:ip-address;
 description "List of source IP addresses used by the
 Exporting Process.
 If configured, the specified addresses are eligible local
 IP addresses of the multi-homed SCTP endpoint.
 If not configured, all locally assigned IP addresses are
 eligible local IP addresses.";
 reference "RFC 4960, Section 6.4.";
 }
 leaf-list destinationIPAddress {
 type inet:ip-address;
 min-elements 1;
 description "One or multiple IP addresses of the Collecting
 Process to which IPFIX Messages are sent.
 The user MUST ensure that all configured IP addresses
 belong to the same Collecting Process.
 The Exporting Process tries to establish an SCTP
 association to any of the configured destination IP
 addresses.";
 reference "RFC 4960, Section 6.4.";
 }
 leaf timedReliability {
 type uint32;
 units milliseconds;
 default 0;
 description "Lifetime in milliseconds until an IPFIX
 Message containing Data Sets only is ’abandoned’ due to
 the timed reliability mechanism of PR-SCTP.
 If this parameter is set to zero, reliable SCTP
 transport is used for all Data Records.
 Regardless of the value of this parameter, the Exporting
 Process MAY use reliable SCTP transport for Data Sets
 associated with Options Templates.";
 reference "RFC 3758; RFC 4960.";
 }

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 78]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 }

 grouping udpExporterParameters {
 description "Parameters of a UDP export destination.";
 uses commonExporterParameters;
 leaf sourceIPAddress {
 type inet:ip-address;
 description "Source IP address used by the Exporting Process.
 If not configured, the IP address assigned to the outgoing
 interface is used as source IP address.";
 }
 leaf destinationIPAddress {
 type inet:ip-address;
 mandatory true;
 description "IP address of the Collection Process to which
 IPFIX Messages are sent.";
 }
 leaf maxPacketSize {
 type uint16;
 units octets;
 description "This parameter specifies the maximum size of
 IP packets sent to the Collector. If set to zero, the
 Exporting Device MUST derive the maximum packet size
 from path MTU discovery mechanisms.
 If not configured by the user, this parameter is set by
 the Monitoring Device.";
 }
 leaf templateRefreshTimeout {
 type uint32;
 units seconds;
 default 600;
 description "Sets time after which Templates are resent in the
 UDP Transport Session.
 Note that the configured lifetime MUST be adapted to the
 templateLifeTime parameter value at the receiving Collecting
 Process.
 Note that this parameter corresponds to
 ipfixTransportSessionTemplateRefreshTimeout in the IPFIX
 MIB module.";
 reference "RFC5101, Section 10.3.6; RFC5815, Section 8
 (ipfixTransportSessionTemplateRefreshTimeout).";
 }
 leaf optionsTemplateRefreshTimeout {
 type uint32;
 units seconds;
 default 600;
 description "Sets time after which Options Templates are
 resent in the UDP Transport Session.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 79]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Note that the configured lifetime MUST be adapted to the
 optionsTemplateLifeTime parameter value at the receiving
 Collecting Process.
 Note that this parameter corresponds to
 ipfixTransportSessionOptionsTemplateRefreshTimeout in the
 IPFIX MIB module.";
 reference "RFC5101, Section 10.3.6; RFC5815, Section 8
 (ipfixTransportSessionOptionsTemplateRefreshTimeout).";
 }
 leaf templateRefreshPacket {
 type uint32;
 units "IPFIX Messages";
 description "Sets number of IPFIX Messages after which
 Templates are resent in the UDP Transport Session.
 Note that this parameter corresponds to
 ipfixTransportSessionTemplateRefreshPacket in the IPFIX
 MIB module.
 If omitted, Templates are only resent after timeout.";
 reference "RFC5101, Section 10.3.6; RFC5815, Section 8
 (ipfixTransportSessionTemplateRefreshPacket).";
 }
 leaf optionsTemplateRefreshPacket {
 type uint32;
 units "IPFIX Messages";
 description "Sets number of IPFIX Messages after which
 Options Templates are resent in the UDP Transport Session
 protocol.
 Note that this parameter corresponds to
 ipfixTransportSessionOptionsTemplateRefreshPacket in the
 IPFIX MIB module.
 If omitted, Templates are only resent after timeout.";
 reference "RFC5101, Section 10.3.6; RFC5815, Section 8
 (ipfixTransportSessionOptionsTemplateRefreshPacket).";
 }
 }

 grouping tcpExporterParameters {
 description "Parameters of a TCP export destination.";
 uses commonExporterParameters;
 leaf sourceIPAddress {
 type inet:ip-address;
 description "Source IP address used by the Exporting Process.
 If not configured by the user, this parameter is set by
 the Monitoring Device to an IP address assigned to the
 outgoing interface.";
 }
 leaf destinationIPAddress {
 type inet:ip-address;

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 80]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 mandatory true;
 description "IP address of the Collection Process to which
 IPFIX Messages are sent.";
 }
 }

 grouping fileWriterParameters {
 description "File Writer parameters.";
 leaf ipfixVersion {
 type uint16;
 default 10;
 description "IPFIX version number.";
 reference "RFC 5101.";
 }
 leaf file {
 type inet:uri;
 mandatory true;
 description "URI specifying the location of the file.";
 }
 leaf bytes {
 type yang:counter64;
 units octets;
 config false;
 description "The number of bytes written by the File Writer.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 fileWriterDiscontinuityTime.";
 }
 leaf messages {
 type yang:counter64;
 units "IPFIX Messages";
 config false;
 description "The number of IPFIX Messages written by the File
 Writer.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 fileWriterDiscontinuityTime.";
 }
 leaf discardedMessages {
 type yang:counter64;
 units "IPFIX Messages";
 config false;
 description "The number of IPFIX Messages that could not be
 written by the File Writer due to internal buffer
 overflows, limited storage capacity etc.
 Discontinuities in the value of this counter can occur at

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 81]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 re-initialization of the management system, and at other
 times as indicated by the value of
 fileWriterDiscontinuityTime.";
 }
 leaf records {
 type yang:counter64;
 units "Data Records";
 config false;
 description "The number of Data Records written by the File
 Writer.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 fileWriterDiscontinuityTime.";
 }
 leaf templates {
 type yang:counter32;
 units "Templates";
 config false;
 description "The number of Template Records (excluding
 Options Template Records) written by the File Writer.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 fileWriterDiscontinuityTime.";
 }
 leaf optionsTemplates {
 type yang:counter32;
 units "Options Templates";
 config false;
 description "The number of Options Template Records written
 by the File Writer.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 fileWriterDiscontinuityTime.";
 }
 leaf fileWriterDiscontinuityTime {
 type yang:date-and-time;
 config false;
 description "Timestamp of the most recent occasion at which
 one or more File Writer counters suffered a discontinuity.
 In contrast to discontinuity times in the IPFIX MIB module,
 the time is absolute and not relative to sysUpTime.";
 }
 list template {
 config false;
 description "This list contains the Templates and Options

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 82]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Templates that have been written by the File Reader.
 Withdrawn or invalidated (Options) Template MUST be removed
 from this list.";
 uses templateParameters;
 }
 }

 grouping optionsParameters {
 description "Parameters specifying the data export using an
 Options Template.";
 leaf optionsType {
 type identityref {
 base "optionsType";
 }
 mandatory true;
 description "Type of the exported options data.";
 }
 leaf optionsTimeout {
 type uint32;
 units milliseconds;
 description "Time interval for periodic export of the options
 data. If set to zero, the export is triggered when the
 options data has changed.
 If not configured by the user, this parameter is set by the
 Monitoring Device.";
 }
 }

 grouping collectingProcessParameters {
 description "Parameters of a Collecting Process.";
 list sctpCollector {
 key name;
 description "List of SCTP receivers (sockets) on which the
 Collecting Process receives IPFIX Messages.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 uses sctpCollectorParameters;
 }
 list udpCollector {
 if-feature udpTransport;
 key name;
 description "List of UDP receivers (sockets) on which the
 Collecting Process receives IPFIX Messages.";
 leaf name {
 type nameType;
 description "Key of this list.";

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 83]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 }
 uses udpCollectorParameters;
 }
 list tcpCollector {
 if-feature tcpTransport;
 key name;
 description "List of TCP receivers (sockets) on which the
 Collecting Process receives IPFIX Messages.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 uses tcpCollectorParameters;
 }
 list fileReader {
 if-feature fileReader;
 key name;
 description "List of File Readers from which the Collecting
 Process reads IPFIX Messages.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 uses fileReaderParameters;
 }
 }

 grouping commonCollectorParameters {
 description "Parameters of a Collecting Process which are
 common to all transport protocols.";
 leaf localPort {
 type inet:port-number;
 description "If not configured, the Monitoring Device uses the
 default port number for IPFIX, which is 4739 without
 transport layer security and 4740 if transport layer
 security is activated.";
 }
 container transportLayerSecurity {
 presence "If transportLayerSecurity is present, DTLS is enabled
 if the transport protocol is SCTP or UDP, and TLS is enabled
 if the transport protocol is TCP.";
 description "Transport layer security configuration.";
 uses transportLayerSecurityParameters;
 }
 list transportSession {
 config false;
 description "This list contains the currently established
 Transport Sessions terminating at the given socket.";

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 84]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 uses transportSessionParameters;
 }
 }

 grouping sctpCollectorParameters {
 description "Parameters of a listening SCTP socket at a
 Collecting Process.";
 uses commonCollectorParameters;
 leaf-list localIPAddress {
 type inet:ip-address;
 description "List of local IP addresses on which the
 Collecting Process listens for IPFIX Messages. The IP
 addresses are used as eligible local IP addresses of the
 multi-homed SCTP endpoint.";
 reference "RFC 4960, Section 6.4.";
 }
 }

 grouping udpCollectorParameters {
 description "Parameters of a listening UDP socket at a
 Collecting Process.";
 uses commonCollectorParameters;
 leaf-list localIPAddress {
 type inet:ip-address;
 description "List of local IP addresses on which the Collecting
 Process listens for IPFIX Messages.";
 }
 leaf templateLifeTime {
 type uint32;
 units seconds;
 default 1800;
 description "Sets the lifetime of Templates for all UDP
 Transport Sessions terminating at this UDP socket.
 Templates which are not received again within the configured
 lifetime become invalid at the Collecting Process.
 As specified in RFC5101, the Template lifetime MUST be at
 least three times higher than the templateRefreshTimeout
 parameter value configured on the corresponding Exporting
 Processes.
 Note that this parameter corresponds to
 ipfixTransportSessionTemplateRefreshTimeout in the IPFIX
 MIB module.";
 reference "RFC5101, Section 10.3.7; RFC5815, Section 8
 (ipfixTransportSessionTemplateRefreshTimeout).";
 }
 leaf optionsTemplateLifeTime {
 type uint32;
 units seconds;

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 85]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 default 1800;
 description "Sets the lifetime of Options Templates for all
 UDP Transport Sessions terminating at this UDP socket.
 Options Templates which are not received again within the
 configured lifetime become invalid at the Collecting
 Process.
 As specified in RFC5101, the Options Template lifetime MUST
 be at least three times higher than the
 optionsTemplateRefreshTimeout parameter value configured on
 the corresponding Exporting Processes.
 Note that this parameter corresponds to
 ipfixTransportSessionOptionsTemplateRefreshTimeout in the
 IPFIX MIB module.";
 reference "RFC5101, Section 10.3.7; RFC5815, Section 8
 (ipfixTransportSessionOptionsTemplateRefreshTimeout).";
 }
 leaf templateLifePacket {
 type uint32;
 units "IPFIX Messages";
 description "If this parameter is configured, Templates
 defined in a UDP Transport Session become invalid if they
 are neither included in a sequence of more than this number
 of IPFIX Messages nor received again within the period of
 time specified by templateLifeTime.
 Note that this parameter corresponds to
 ipfixTransportSessionTemplateRefreshPacket in the IPFIX
 MIB module.";
 reference "RFC5101, Section 10.3.7; RFC5815, Section 8
 (ipfixTransportSessionTemplateRefreshPacket).";
 }
 leaf optionsTemplateLifePacket {
 type uint32;
 units "IPFIX Messages";
 description "If this parameter is configured, Options
 Templates defined in a UDP Transport Session become
 invalid if they are neither included in a sequence of more
 than this number of IPFIX Messages nor received again
 within the period of time specified by
 optionsTemplateLifeTime.
 Note that this parameter corresponds to
 ipfixTransportSessionOptionsTemplateRefreshPacket in the
 IPFIX MIB module.";
 reference "RFC5101, Section 10.3.7; RFC5815, Section 8
 (ipfixTransportSessionOptionsTemplateRefreshPacket).";
 }
 }

 grouping tcpCollectorParameters {

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 86]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 description "Parameters of a listening TCP socket at a
 Collecting Process.";
 uses commonCollectorParameters;
 leaf-list localIPAddress {
 type inet:ip-address;
 description "List of local IP addresses on which the Collecting
 Process listens for IPFIX Messages.";
 }
 }

 grouping fileReaderParameters {
 description "File Reader parameters.";
 leaf file {
 type inet:uri;
 mandatory true;
 description "URI specifying the location of the file.";
 }
 leaf bytes {
 type yang:counter64;
 units octets;
 config false;
 description "The number of bytes read by the File Reader.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 fileReaderDiscontinuityTime.";
 }
 leaf messages {
 type yang:counter64;
 units "IPFIX Messages";
 config false;
 description "The number of IPFIX Messages read by the File
 Reader.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 fileReaderDiscontinuityTime.";
 }
 leaf records {
 type yang:counter64;
 units "Data Records";
 config false;
 description "The number of Data Records read by the File
 Reader.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 fileReaderDiscontinuityTime.";

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 87]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 }
 leaf templates {
 type yang:counter32;
 units "Templates";
 config false;
 description "The number of Template Records (excluding
 Options Template Records) read by the File Reader.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 fileReaderDiscontinuityTime.";
 }
 leaf optionsTemplates {
 type yang:counter32;
 units "Options Templates";
 config false;
 description "The number of Options Template Records read by
 the File Reader.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 fileReaderDiscontinuityTime.";
 }
 leaf fileReaderDiscontinuityTime {
 type yang:date-and-time;
 config false;
 description "Timestamp of the most recent occasion at which
 one or more File Reader counters suffered a discontinuity.
 In contrast to discontinuity times in the IPFIX MIB module,
 the time is absolute and not relative to sysUpTime.";
 }
 list template {
 config false;
 description "This list contains the Templates and Options
 Templates that have been read by the File Reader.
 Withdrawn or invalidated (Options) Template MUST be removed
 from this list.";
 uses templateParameters;
 }
 }

 grouping transportLayerSecurityParameters {
 description "Transport layer security parameters.";
 leaf-list localCertificationAuthorityDN {
 type string;
 description "Distinguished names of certification authorities
 whose certificates may be used to identify the local
 endpoint.";

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 88]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 reference "RFC5280.";
 }
 leaf-list localSubjectDN {
 type string;
 description "Distinguished names which may be used in the
 certificates to identify the local endpoint.";
 reference "RFC5280.";
 }
 leaf-list localSubjectFQDN {
 type inet:domain-name;
 description "Fully qualified domain names which may be used to
 in the certificates to identify the local endpoint.";
 reference "RFC5280.";
 }
 leaf-list remoteCertificationAuthorityDN {
 type string;
 description "Distinguished names of certification authorities
 whose certificates are accepted to authorize remote
 endpoints.";
 reference "RFC5280.";
 }
 leaf-list remoteSubjectDN {
 type string;
 description "Distinguished names which are accepted in
 certificates to authorize remote endpoints.";
 reference "RFC5280.";
 }
 leaf-list remoteSubjectFQDN {
 type inet:domain-name;
 description "Fully qualified domain name which are accepted in
 certificates to authorize remote endpoints.";
 reference "RFC5280.";
 }
 }

 grouping templateParameters {
 description "State parameters of a Template used by an Exporting
 Process or received by a Collecting Process in a specific
 Transport Session. Parameter names and semantics correspond to
 the managed objects in IPFIX-MIB";
 reference "RFC5101; RFC5815, Section 8 (ipfixTemplateEntry,
 ipfixTemplateDefinitionEntry, ipfixTemplateStatsEntry)";
 leaf observationDomainId {
 type uint32;
 description "The ID of the Observation Domain for which this
 Template is defined.";
 reference "RFC5815, Section 8
 (ipfixTemplateObservationDomainId).";

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 89]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 }
 leaf templateId {
 type uint16 {
 range "256..65535" {
 description "Valid range of Template IDs.";
 reference "RFC5101";
 }
 }
 description "This number indicates the Template Id in the IPFIX
 message.";
 reference "RFC5815, Section 8 (ipfixTemplateId).";
 }
 leaf setId {
 type uint16;
 description "This number indicates the Set ID of the Template.
 Currently, there are two values defined. The value 2 is used
 for Sets containing Template definitions. The value 3 is
 used for Sets containing Options Template definitions.";
 reference "RFC5815, Section 8 (ipfixTemplateSetId).";
 }
 leaf accessTime {
 type yang:date-and-time;
 description "Used for Exporting Processes, this parameter
 contains the time when this (Options) Template was last
 sent to the Collector(s) or written to the file.
 Used for Collecting Processes, this parameter contains the
 time when this (Options) Template was last received from the
 Exporter or read from the file.";
 reference "RFC5815, Section 8 (ipfixTemplateAccessTime).";
 }
 leaf templateDataRecords {
 type yang:counter64;
 description "The number of transmitted or received Data
 Records defined by this (Options) Template.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 templateDiscontinuityTime.";
 reference "RFC5815, Section 8 (ipfixTemplateDataRecords).";
 }
 leaf templateDiscontinuityTime {
 type yang:date-and-time;
 description "Timestamp of the most recent occasion at which
 the counter templateDataRecords suffered a discontinuity.
 In contrast to ipfixTemplateDiscontinuityTime in the IPFIX
 MIB module, the time is absolute and not relative to
 sysUpTime.";
 reference "RFC5815, Section 8

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 90]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 (ipfixTemplateDiscontinuityTime).";
 }
 list field {
 description "This list contains the (Options) Template
 fields of which the (Options) Template is defined.
 The order of the list corresponds to the order of the fields
 in the (Option) Template Record.";
 leaf ieId {
 type ieIdType;
 description "This parameter indicates the Information
 Element Id of the field.";
 reference "RFC5815, Section 8 (ipfixTemplateDefinitionIeId);
 RFC5102.";
 }
 leaf ieLength {
 type uint16;
 units octets;
 description "This parameter indicates the length of the
 Information Element of the field.";
 reference "RFC5815, Section 8
 (ipfixTemplateDefinitionIeLength); RFC5102.";
 }
 leaf ieEnterpriseNumber {
 type uint32;
 description "This parameter indicates the IANA enterprise
 number of the authority defining the Information Element
 Id.
 If the Information Element is not enterprise-specific,
 this state parameter is zero.";
 reference "RFC5815, Section 8
 (ipfixTemplateDefinitionIeEnterpriseNumber).";
 }
 leaf isFlowKey {
 when "../../setId = 2" {
 description "This parameter is available for non-Options
 Templates (Set ID is 2).";
 }
 type empty;
 description "If present, this is a Flow Key field.";
 reference "RFC5815, Section 8
 (ipfixTemplateDefinitionFlags).";
 }
 leaf isScope {
 when "../../setId = 3" {
 description "This parameter is available for Options
 Templates (Set ID is 3).";
 }
 type empty;

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 91]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 description "If present, this is a scope field.";
 reference "RFC5815, Section 8
 (ipfixTemplateDefinitionFlags).";
 }
 }
 }

 grouping transportSessionParameters {
 description "State parameters of a Transport Session originating
 from an Exporting or terminating at a Collecting Process.
 Parameter names and semantics correspond to the managed
 objects in IPFIX-MIB.";
 reference "RFC5101; RFC5815, Section 8
 (ipfixTransportSessionEntry,
 ipfixTransportSessionStatsEntry).";
 leaf ipfixVersion {
 type uint16;
 description "Used for Exporting Processes, this parameter
 contains the version number of the IPFIX protocol that the
 Exporter uses to export its data in this Transport Session.
 Hence, it is identical to the value of the configuration
 parameter ipfixVersion of the outer SctpExporter,
 UdpExporter, or TcpExporter node.
 Used for Collecting Processes, this parameter contains the
 version number of the IPFIX protocol it receives for
 this Transport Session. If IPFIX Messages of different
 IPFIX protocol versions are received, this parameter
 contains the maximum version number.";
 reference "RFC5815, Section 8
 (ipfixTransportSessionIpfixVersion).";
 }
 leaf sourceAddress {
 type inet:ip-address;
 description "The source address of the Exporter of the
 IPFIX Transport Session.
 If the transport protocol is SCTP, this is one of the
 potentially many IP addresses of the Exporter.
 Preferably, the source IP address of the path which is
 usually selected by the Exporter to send IPFIX Messages to
 the Collector SHOULD be used.";
 reference "RFC5815, Section 8
 (ipfixTransportSessionSourceAddressType,
 ipfixTransportSessionSourceAddress);
 RFC4960, Section 6.4.";
 }
 leaf destinationAddress {
 type inet:ip-address;
 description "The destination address of the Collector of

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 92]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 the IPFIX Transport Session.
 If the transport protocol is SCTP, this is one of the
 potentially many IP addresses of the Collector.
 Preferably, the destination IP address of the path which is
 usually selected by the Exporter to send IPFIX Messages to
 the Collector SHOULD be used.";
 reference "RFC5815, Section 8
 (ipfixTransportSessionDestinationAddressType,
 ipfixTransportSessionDestinationAddress);
 RFC4960, Section 6.4.";
 }
 leaf sourcePort {
 type inet:port-number;
 description "The transport protocol port number of the
 Exporter of the IPFIX Transport Session.";
 reference "RFC5815, Section 8
 (ipfixTransportSessionSourcePort).";
 }
 leaf destinationPort {
 type inet:port-number;
 description "The transport protocol port number of the
 Collector of the IPFIX Transport Session.";
 reference "RFC5815, Section 8
 (ipfixTransportSessionDestinationPort).";
 }
 leaf sctpAssocId {
 type uint32;
 description "The association id used for the SCTP session
 between the Exporter and the Collector of the IPFIX
 Transport Session. It is equal to the sctpAssocId entry
 in the sctpAssocTable defined in the SCTP-MIB.
 This parameter is only available if the transport protocol
 is SCTP and if an SNMP agent on the same Monitoring Device
 enables access to the corresponding MIB objects in the
 sctpAssocTable.";
 reference "RFC5815, Section 8
 (ipfixTransportSessionSctpAssocId);
 RFC3871";
 }
 leaf status {
 type transportSessionStatus;
 description "Status of the Transport Session.";
 reference "RFC5815, Section 8 (ipfixTransportSessionStatus).";
 }
 leaf rate {
 type yang:gauge32;
 units "bytes per second";
 description "The number of bytes per second transmitted by the

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 93]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Exporting Process or received by the Collecting Process.
 This parameter is updated every second.";
 reference "RFC5815, Section 8 (ipfixTransportSessionRate).";
 }
 leaf bytes {
 type yang:counter64;
 units bytes;
 description "The number of bytes transmitted by the
 Exporting Process or received by the Collecting Process.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 transportSessionDiscontinuityTime.";
 reference "RFC5815, Section 8 (ipfixTransportSessionBytes).";
 }
 leaf messages {
 type yang:counter64;
 units "IPFIX Messages";
 description "The number of messages transmitted by the
 Exporting Process or received by the Collecting Process.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 transportSessionDiscontinuityTime.";
 reference "RFC5815, Section 8
 (ipfixTransportSessionMessages).";
 }
 leaf discardedMessages {
 type yang:counter64;
 units "IPFIX Messages";
 description "Used for Exporting Processes, this parameter
 indicates the number of messages that could not be sent due
 to internal buffer overflows, network congestion, routing
 issues, etc. Used for Collecting Process, this parameter
 indicates the number of received IPFIX Message that are
 malformed, cannot be decoded, are received in the wrong
 order or are missing according to the sequence number.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 transportSessionDiscontinuityTime.";
 reference "RFC5815, Section 8
 (ipfixTransportSessionDiscardedMessages).";
 }
 leaf records {
 type yang:counter64;
 units "Data Records";
 description "The number of Data Records transmitted by the

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 94]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Exporting Process or received by the Collecting Process.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 transportSessionDiscontinuityTime.";
 reference "RFC5815, Section 8
 (ipfixTransportSessionRecords).";
 }
 leaf templates {
 type yang:counter32;
 units "Templates";
 description "The number of Templates transmitted by the
 Exporting Process or received by the Collecting Process.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 transportSessionDiscontinuityTime.";
 reference "RFC5815, Section 8
 (ipfixTransportSessionTemplates).";
 }
 leaf optionsTemplates {
 type yang:counter32;
 units "Options Templates";
 description "The number of Option Templates transmitted by the
 Exporting Process or received by the Collecting Process.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 transportSessionDiscontinuityTime.";
 reference "RFC5815, Section 8
 (ipfixTransportSessionOptionsTemplates).";
 }
 leaf transportSessionStartTime {
 type yang:date-and-time;
 description "Timestamp of the start of the given Transport
 Session.
 This state parameter does not correspond to any object in
 the IPFIX MIB module.";
 }
 leaf transportSessionDiscontinuityTime {
 type yang:date-and-time;
 description "Timestamp of the most recent occasion at which
 one or more of the Transport Session counters suffered a
 discontinuity.
 In contrast to ipfixTransportSessionDiscontinuityTime
 in the IPFIX MIB module, the time is absolute and not
 relative to sysUpTime.";
 reference "RFC5815, Section 8

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 95]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 (ipfixTransportSessionDiscontinuityTime).";
 }
 list template {
 description "This list contains the Templates and Options
 Templates that are transmitted by the Exporting Process
 or received by the Collecting Process.
 Withdrawn or invalidated (Options) Template MUST be removed
 from this list.";
 uses templateParameters;
 }
 }

 /***
 * Main container
 ***/

 container ipfix {
 description "Top-level node of the IPFIX/PSAMP configuration
 data model.";
 list collectingProcess {
 if-feature collector;
 key name;
 description "Collecting Process of the Monitoring Device.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 uses collectingProcessParameters;
 leaf-list exportingProcess {
 if-feature exporter;
 type leafref { path "/ipfix/exportingProcess/name"; }
 description "Export of received records without any
 modifications. Records are processed by all Exporting
 Processes in the list.";
 }
 }

 list observationPoint {
 if-feature meter;
 key name;
 description "Observation Point of the Monitoring Device.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 uses observationPointParameters;
 leaf-list selectionProcess {
 type leafref { path "/ipfix/selectionProcess/name"; }

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 96]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 description "Selection Processes in this list process packets
 in parallel.";
 }
 }

 list selectionProcess {
 if-feature meter;
 key name;
 description "Selection Process of the Monitoring Device.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 list selector {
 key name;
 min-elements 1;
 ordered-by user;
 description "List of Selectors that define the action of the
 Selection Process on a single packet. The Selectors are
 serially invoked in the same order as they appear in this
 list.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 uses selectorParameters;
 }
 list selectionSequence {
 config false;
 description "This list contains the Selection Sequence IDs
 which are assigned by the Monitoring Device to distinguish
 different Selection Sequences passing through the
 Selection Process.
 As Selection Sequence IDs are unique per Observation
 Domain, the corresponding Observation Domain IDs are
 included as well.
 With this information, it is possible to associate
 Selection Sequence (Statistics) Report Interpretations
 exported according to the PSAMP protocol with a Selection
 Process in the configuration data.";
 reference "RFC5476.";
 leaf observationDomainId {
 type uint32;
 description "Observation Domain ID for which the
 Selection Sequence ID is assigned.";
 }
 leaf selectionSequenceId {
 type uint64;

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 97]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 description "Selection Sequence ID used in the Selection
 Sequence (Statistics) Report Interpretation.";
 }
 }
 leaf cache {
 type leafref { path "/ipfix/cache/name"; }
 description "Cache which receives the output of the
 Selection Process.";
 }
 }

 list cache {
 if-feature meter;
 key name;
 description "Cache of the Monitoring Device.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 leaf dataRecords {
 type yang:counter64;
 units "Data Records";
 config false;
 description "The number of Data Records generated by this
 Cache.
 Discontinuities in the value of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of
 cacheDiscontinuityTime.";
 reference "RFC5815, Section 8
 (ipfixMeteringProcessDataRecords).";
 }
 leaf cacheDiscontinuityTime {
 type yang:date-and-time;
 config false;
 description "Timestamp of the most recent occasion at which
 the counter dataRecords suffered a discontinuity.
 In contrast to ipfixMeteringProcessDiscontinuityTime
 in the IPFIX MIB module, the time is absolute and not
 relative to sysUpTime.";
 reference "RFC5815, Section 8
 (ipfixMeteringProcessDiscontinuityTime).";
 }
 choice CacheType {
 mandatory true;
 description "Type of Cache and specific parameters.";
 container immediateCache {
 if-feature immediateCache;

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 98]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 description "Flow expiration after the first packet;
 generation of Packet Records.";
 uses cacheLayoutParameters;
 }
 container timeoutCache {
 if-feature timeoutCache;
 description "Flow expiration after active and inactive
 timeout; generation of Flow Records.";
 uses flowCacheParameters;
 uses cacheLayoutParameters;
 }
 container naturalCache {
 if-feature naturalCache;
 description "Flow expiration after active and inactive
 timeout, or on natural termination (e.g. TCP FIN, or
 TCP RST) of the Flow; generation of Flow Records.";
 uses flowCacheParameters;
 uses cacheLayoutParameters;
 }
 container permanentCache {
 if-feature permanentCache;
 description "No flow expiration, periodical export with
 time interval exportInterval; generation of Flow
 Records.";
 uses flowCacheParameters;
 uses cacheLayoutParameters;
 }
 }
 leaf-list exportingProcess {
 if-feature exporter;
 type leafref { path "/ipfix/exportingProcess/name"; }
 description "Records are exported by all Exporting Processes
 in the list.";
 }
 }

 list exportingProcess {
 if-feature exporter;
 key name;
 description "Exporting Process of the Monitoring Device.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 uses exportingProcessParameters;
 }
 }
 }

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 99]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <CODE ENDS>

7. Examples

 This section shows example configurations conforming to the YANG
 module specified in Section 6.

7.1. PSAMP Device

 This configuration example configures two Observation Points
 capturing ingress traffic at eth0 and all traffic at eth1. Both
 Observed Packet Streams enter two different Selection Processes. The
 first Selection Process implements a Composite Selectors of a filter
 for UDP packets and a random sampler. The second Selection Process
 implements a Primitive Selector of an ICMP filter. The Selected
 Packet Streams of both Selection Processes enter the same Cache. The
 Cache generates a PSAMP Packet Report for every selected packet.

 The associated Exporting Process exports to a Collector using PR-SCTP
 and DTLS. The transport layer security parameters specify that the
 collector must supply a certificate for the fully qualified domain
 name collector.example.net. Valid certificates from any
 certification authority will be accepted. As the destination
 transport port is omitted, the standard IPFIX-over-DTLS port 4740 is
 used.

 The parameters of the Selection Processes are reported as Selection
 Sequence Report Interpretations and Selector Report Interpretations
 [RFC5476]. There will be two Selection Sequence Report
 Interpretations per Selection Process, one for each Observation
 Point. Selection Sequence Statistics Report Interpretations are
 exported every 30 seconds (30000 milliseconds).

 <ipfix xmlns="urn:ietf:params:xml:ns:yang:ietf-ipfix-psamp">

 <observationPoint>
 <name>OP at eth0 (ingress)</name>
 <observationDomainId>123</observationDomainId>
 <ifName>eth0</ifName>
 <direction>ingress</direction>
 <selectionProcess>Sampled UDP packets</selectionProcess>
 <selectionProcess>ICMP packets</selectionProcess>
 </observationPoint>

 <observationPoint>
 <name>OP at eth1</name>
 <observationDomainId>123</observationDomainId>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 100]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <ifName>eth1</ifName>
 <selectionProcess>Sampled UDP packets</selectionProcess>
 <selectionProcess>ICMP packets</selectionProcess>
 </observationPoint>

 <selectionProcess>
 <name>Sampled UDP packets</name>
 <selector>
 <name>UDP filter</name>
 <filterMatch>
 <ieId>4</ieId>
 <value>17</value>
 </filterMatch>
 </selector>
 <selector>
 <name>10-out-of-100 sampler</name>
 <sampRandOutOfN>
 <size>10</size>
 <population>100</population>
 </sampRandOutOfN>
 </selector>
 <cache>PSAMP cache</cache>
 </selectionProcess>

 <selectionProcess>
 <name>ICMP packets</name>
 <selector>
 <name>ICMP filter</name>
 <filterMatch>
 <ieId>4</ieId>
 <value>1</value>
 </filterMatch>
 </selector>
 <cache>PSAMP cache</cache>
 </selectionProcess>

 <cache>
 <name>PSAMP cache</name>
 <immediateCache>
 <cacheLayout>
 <cacheField>
 <name>Field 1: ipHeaderPacketSection</name>
 <ieId>313</ieId>
 <ieLength>64</ieLength>
 </cacheField>
 <cacheField>
 <name>Field 2: observationTimeMilliseconds</name>
 <ieId>322</ieId>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 101]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 </cacheField>
 </cacheLayout>
 </immediateCache>
 <exportingProcess>The only exporter</exportingProcess>
 </cache>

 <exportingProcess>
 <name>The only exporter</name>
 <destination>
 <name>PR-SCTP collector</name>
 <sctpExporter>
 <destinationIPAddress>192.0.2.1</destinationIPAddress>
 <rateLimit>1000000</rateLimit>
 <timedReliability>500</timedReliability>
 <transportLayerSecurity>
 <remoteSubjectFQDN>coll-1.example.net</remoteSubjectFQDN>
 </transportLayerSecurity>
 </sctpExporter>
 </destination>
 <options>
 <name>Options 1</name>
 <optionsType>selectionSequence</optionsType>
 <optionsTimeout>0</optionsTimeout>
 </options>
 <options>
 <name>Options 2</name>
 <optionsType>selectionStatistics</optionsType>
 <optionsTimeout>30000</optionsTimeout>
 </options>
 </exportingProcess>

 </ipfix>

 The above configuration results in one Template and six Options
 Templates. For the remainder of the example, we assume Template ID
 256 for the Template and Template IDs 257 to 262 for the Options
 Templates. The Template is used to export the Packet Reports and has
 the following fields:

 Template ID: 256
 ipHeaderPacketSection (ID = 313, length = 64)
 observationTimeMilliseconds (ID = 322, length = 8)

 Two Options Template are used for the Selection Sequence Report
 Interpretations. The first one has one selectorId field and is used
 for the Selection Process "ICMP packets". The second one has two
 selectorId fields to describe the two selectors of the Selection
 Process "Sampled UDP packets".

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 102]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Template ID: 257
 Scope: selectionSequenceId (ID = 301, length = 8)
 observationPointId (ID = 138, length = 4)
 selectorId (ID = 302, length = 4)

 Template ID: 258
 Scope: selectionSequenceId (ID = 301, length = 8)
 observationPointId (ID = 138, length = 4)
 selectorId (ID = 302, length = 4)
 selectorId (ID = 302, length = 4)

 Another Options Template is used to carry the Property Match
 Filtering Selector Report Interpretation for the Selectors "UDP
 filter" and "ICMP filter":

 Template ID: 259
 Scope: selectorId (ID = 302, length = 4)
 selectorAlgorithm (ID = 304, length = 2)
 protocolIdentifier (ID = 4, length = 1)

 Yet another Options Template is used to carry the Random n-out-of-N
 Sampling Selector Report Interpretation for the Selector "10-out-of-
 100 sampler":

 Template ID: 260
 Scope: selectorId (ID = 302, length = 4)
 selectorAlgorithm (ID = 304, length = 2)
 samplingSize (ID = 319, length = 4)
 samplingPopulation (ID = 310, length = 4)

 The last two Options Template are used to carry the Selection
 Sequence Statistics Report Interpretation for the Selection
 Processes, containing the statistics for one and two Selectors,
 respectively:

 Template ID: 261
 Scope: selectionSequenceId (ID = 301, length = 8)
 selectorIdTotalPktsObserved (ID = 318, length = 8)
 selectorIdTotalPktsSelected (ID = 319, length = 8)

 Template ID: 262
 Scope: selectionSequenceId (ID = 301, length = 8)
 selectorIdTotalPktsObserved (ID = 318, length = 8)
 selectorIdTotalPktsSelected (ID = 319, length = 8)
 selectorIdTotalPktsObserved (ID = 318, length = 8)
 selectorIdTotalPktsSelected (ID = 319, length = 8)

 After a short runtime, 100 packets have been observed at the two

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 103]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 Obervations Points, including 20 UDP and 5 ICMP packets. 3 of the UDP
 packets are selected by the random sampler, which results in a total
 of 8 Packet Reports generated by the Cache. Under these
 circumstances, the complete configuration and state data of the PSAMP
 Device may look as follows:

 <ipfix xmlns="urn:ietf:params:xml:ns:yang:ietf-ipfix-psamp">

 <observationPoint>
 <name>OP at eth0 (ingress)</name>
 <observationPointId>1</observationPointId>
 <observationDomainId>123</observationDomainId>
 <ifName>eth0</ifName>
 <direction>ingress</direction>
 <selectionProcess>Sampled UDP packets</selectionProcess>
 <selectionProcess>ICMP packets</selectionProcess>
 </observationPoint>

 <observationPoint>
 <name>OP at eth1</name>
 <observationPointId>2</observationPointId>
 <observationDomainId>123</observationDomainId>
 <ifName>eth1</ifName>
 <direction>both</direction>
 <selectionProcess>Sampled UDP packets</selectionProcess>
 <selectionProcess>ICMP packets</selectionProcess>
 </observationPoint>

 <selectionProcess>
 <name>Sampled UDP packets</name>
 <selector>
 <name>UDP filter</name>
 <filterMatch>
 <ieId>4</ieId>
 <value>17</value>
 </filterMatch>
 <packetsObserved>100</packetsObserved>
 <packetsDropped>80</packetsDropped>
 <selectorDiscontinuityTime>2010-03-15T00:00:00.00Z
 </selectorDiscontinuityTime>
 </selector>
 <selector>
 <name>10-out-of-100 sampler</name>
 <sampRandOutOfN>
 <size>10</size>
 <population>100</population>
 </sampRandOutOfN>
 <packetsObserved>20</packetsObserved>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 104]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <packetsDropped>17</packetsDropped>
 <selectorDiscontinuityTime>2010-03-15T00:00:00.00Z
 </selectorDiscontinuityTime>
 </selector>
 <selectionSequence>
 <observationDomainId>123</observationDomainId>
 <selectionSequenceId>1</selectionSequenceId>
 </selectionSequence>
 <selectionSequence>
 <observationDomainId>123</observationDomainId>
 <selectionSequenceId>2</selectionSequenceId>
 </selectionSequence>
 <cache>PSAMP cache</cache>
 </selectionProcess>

 <selectionProcess>
 <name>ICMP packets</name>
 <selector>
 <name>ICMP filter</name>
 <filterMatch>
 <ieId>4</ieId>
 <value>1</value>
 </filterMatch>
 <packetsObserved>100</packetsObserved>
 <packetsDropped>95</packetsDropped>
 <selectorDiscontinuityTime>2010-03-15T00:00:00.00Z
 </selectorDiscontinuityTime>
 </selector>
 <selectionSequence>
 <observationDomainId>123</observationDomainId>
 <selectionSequenceId>3</selectionSequenceId>
 </selectionSequence>
 <selectionSequence>
 <observationDomainId>123</observationDomainId>
 <selectionSequenceId>4</selectionSequenceId>
 </selectionSequence>
 <cache>PSAMP cache</cache>
 </selectionProcess>

 <cache>
 <name>PSAMP cache</name>
 <immediateCache>
 <cacheLayout>
 <cacheField>
 <name>Field 1: ipHeaderPacketSection</name>
 <ieId>313</ieId>
 <ieLength>64</ieLength>
 </cacheField>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 105]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <cacheField>
 <name>Field 2: observationTimeMilliseconds</name>
 <ieId>322</ieId>
 </cacheField>
 </cacheLayout>
 </immediateCache>
 <dataRecords>8</dataRecords>
 <cacheDiscontinuityTime>2010-03-15T00:00:00.00Z
 </cacheDiscontinuityTime>
 <exportingProcess>The only exporter</exportingProcess>
 </cache>

 <exportingProcess>
 <name>The only exporter</name>
 <exportMode>parallel</exportMode>
 <destination>
 <name>PR-SCTP collector</name>
 <sctpExporter>
 <ipfixVersion>10</ipfixVersion>
 <destinationIPAddress>192.0.2.1</destinationIPAddress>
 <destinationPort>4740</destinationPort>
 <sendBufferSize>32768</sendBufferSize>
 <rateLimit>1000000</rateLimit>
 <timedReliability>500</timedReliability>
 <transportLayerSecurity>
 <remoteSubjectFQDN>coll-1.example.net</remoteSubjectFQDN>
 </transportLayerSecurity>
 <transportSession>
 <ipfixVersion>10</ipfixVersion>
 <sourceAddress>192.0.2.100</sourceAddress>
 <destinationAddress>192.0.2.1</destinationAddress>
 <sourcePort>45687</sourcePort>
 <destinationPort>4740</destinationPort>
 <sctpAssocId>1</sctpAssocId>
 <status>active</status>
 <rate>230</rate>
 <bytes>978</bytes>
 <messages>3</messages>
 <records>19</records>
 <templates>1</templates>
 <optionsTemplates>6</optionsTemplates>
 <transportSessionStartTime>2010-03-15T00:00:00.50Z
 </transportSessionStartTime>
 <template>
 <observationDomainId>123</observationDomainId>
 <templateId>256</templateId>
 <setId>2</setId>
 <accessTime>2010-03-15T00:00:02.15Z</accessTime>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 106]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <templateDataRecords>8</templateDataRecords>
 <templateDiscontinuityTime>2010-03-15T00:00:01.10Z
 </templateDiscontinuityTime>
 <field>
 <ieId>313</ieId>
 <ieLength>64</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 <field>
 <ieId>154</ieId>
 <ieLength>4</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 </template>
 <template>
 <observationDomainId>123</observationDomainId>
 <templateId>257</templateId>
 <setId>3</setId>
 <accessTime>2010-03-15T00:00:02.15Z</accessTime>
 <templateDataRecords>2</templateDataRecords>
 <templateDiscontinuityTime>2010-03-15T00:00:01.10Z
 </templateDiscontinuityTime>
 <field>
 <ieId>301</ieId>
 <ieLength>8</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 <isScope/>
 </field>
 <field>
 <ieId>138</ieId>
 <ieLength>4</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 <field>
 <ieId>302</ieId>
 <ieLength>4</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 </template>
 <template>
 <observationDomainId>123</observationDomainId>
 <templateId>258</templateId>
 <setId>3</setId>
 <accessTime>2010-03-15T00:00:02.15Z</accessTime>
 <templateDataRecords>2</templateDataRecords>
 <templateDiscontinuityTime>2010-03-15T00:00:01.10Z
 </templateDiscontinuityTime>
 <field>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 107]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <ieId>301</ieId>
 <ieLength>8</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 <isScope/>
 </field>
 <field>
 <ieId>138</ieId>
 <ieLength>4</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 <field>
 <ieId>302</ieId>
 <ieLength>4</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 <field>
 <ieId>302</ieId>
 <ieLength>4</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 </template>
 <template>
 <observationDomainId>123</observationDomainId>
 <templateId>259</templateId>
 <setId>3</setId>
 <accessTime>2010-03-15T00:00:02.15Z</accessTime>
 <templateDataRecords>2</templateDataRecords>
 <templateDiscontinuityTime>2010-03-15T00:00:01.10Z
 </templateDiscontinuityTime>
 <field>
 <ieId>302</ieId>
 <ieLength>4</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 <isScope/>
 </field>
 <field>
 <ieId>304</ieId>
 <ieLength>2</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 <field>
 <ieId>4</ieId>
 <ieLength>1</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 </template>
 <template>
 <observationDomainId>123</observationDomainId>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 108]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <templateId>260</templateId>
 <setId>3</setId>
 <accessTime>2010-03-15T00:00:02.15Z</accessTime>
 <templateDataRecords>1</templateDataRecords>
 <templateDiscontinuityTime>2010-03-15T00:00:01.10Z
 </templateDiscontinuityTime>
 <field>
 <ieId>302</ieId>
 <ieLength>4</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 <isScope/>
 </field>
 <field>
 <ieId>304</ieId>
 <ieLength>2</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 <field>
 <ieId>309</ieId>
 <ieLength>4</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 <field>
 <ieId>310</ieId>
 <ieLength>4</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 </template>
 <template>
 <observationDomainId>123</observationDomainId>
 <templateId>261</templateId>
 <setId>3</setId>
 <accessTime>2010-03-15T00:00:03.10Z</accessTime>
 <templateDataRecords>2</templateDataRecords>
 <templateDiscontinuityTime>2010-03-15T00:00:01.10Z
 </templateDiscontinuityTime>
 <field>
 <ieId>301</ieId>
 <ieLength>8</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 <isScope/>
 </field>
 <field>
 <ieId>318</ieId>
 <ieLength>8</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 <field>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 109]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <ieId>319</ieId>
 <ieLength>8</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 </template>
 <template>
 <observationDomainId>123</observationDomainId>
 <templateId>262</templateId>
 <setId>3</setId>
 <accessTime>2010-03-15T00:00:03.10Z</accessTime>
 <templateDataRecords>2</templateDataRecords>
 <templateDiscontinuityTime>2010-03-15T00:00:01.10Z
 </templateDiscontinuityTime>
 <field>
 <ieId>301</ieId>
 <ieLength>8</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 <isScope/>
 </field>
 <field>
 <ieId>318</ieId>
 <ieLength>8</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 <field>
 <ieId>319</ieId>
 <ieLength>8</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 <field>
 <ieId>318</ieId>
 <ieLength>8</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 <field>
 <ieId>319</ieId>
 <ieLength>8</ieLength>
 <ieEnterpriseNumber>0</ieEnterpriseNumber>
 </field>
 </template>
 </transportSession>
 </sctpExporter>
 </destination>
 <options>
 <name>Options 1</name>
 <optionsType>selectionSequence</optionsType>
 <optionsTimeout>0</optionsTimeout>
 </options>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 110]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <options>
 <name>Options 2</name>
 <optionsType>selectionStatistics</optionsType>
 <optionsTimeout>30000</optionsTimeout>
 </options>
 </exportingProcess>

 </ipfix>

7.2. IPFIX Device

 This configuration example demonstrates the shared usage of a Cache
 for maintaining Flow Records from two Observation Points belonging to
 different Observation Domains. Packets are selected using different
 Sampling techniques: count-based Sampling for the first Observation
 Point (eth0) and selection of all packets for the second Observation
 Point (eth1). The Exporting Process sends the Flow Records to a
 primary destination using SCTP. A UDP Collector is specified as
 secondary destination.

 Exporting Process reliability statistics [RFC5101] are exported
 periodically every minute (60000 milliseconds). Selection Sequence
 Report Interpretations and Selector Report Interpretations [RFC5476]
 are exported once after configuring the Selection Processes. In
 total, two Selection Sequence Report Interpretations will be
 exported, one for each Selection Process.

 <ipfix xmlns="urn:ietf:params:xml:ns:yang:ietf-ipfix-psamp">

 <observationPoint>
 <name>OP at eth0 (ingress)</name>
 <observationDomainId>123</observationDomainId>
 <ifName>eth0</ifName>
 <direction>ingress</direction>
 <selectionProcess>Count-based packet selection</selectionProcess>
 </observationPoint>

 <observationPoint>
 <name>OP at eth1</name>
 <observationDomainId>456</observationDomainId>
 <ifName>eth1</ifName>
 <selectionProcess>All packet selection</selectionProcess>
 </observationPoint>

 <selectionProcess>
 <name>Count-based packet selection</name>
 <selector>
 <name>Count-based sampler</name>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 111]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <sampCountBased>
 <packetInterval>1</packetInterval>
 <packetSpace>99</packetSpace>
 </sampCountBased>
 </selector>
 <cache>Flow cache</cache>
 </selectionProcess>

 <selectionProcess>
 <name>All packet selection</name>
 <selector>
 <name>Select all</name>
 <selectAll/>
 </selector>
 <cache>Flow cache</cache>
 </selectionProcess>

 <cache>
 <name>Flow cache</name>
 <timeoutCache>
 <maxFlows>4096</maxFlows>
 <activeTimeout>5000</activeTimeout>
 <inactiveTimeout>10000</inactiveTimeout>
 <cacheLayout>
 <cacheField>
 <name>Field 1</name>
 <ieName>sourceIPv4Address</ieName>
 <isFlowKey/>
 </cacheField>
 <cacheField>
 <name>Field 2</name>
 <ieName>destinationIPv4Address</ieName>
 <isFlowKey/>
 </cacheField>
 <cacheField>
 <name>Field 3</name>
 <ieName>transportProtocol</ieName>
 <isFlowKey/>
 </cacheField>
 <cacheField>
 <name>Field 4</name>
 <ieName>sourceTransportPort</ieName>
 <isFlowKey/>
 </cacheField>
 <cacheField>
 <name>Field 5</name>
 <ieName>destinationTransportPort</ieName>
 <isFlowKey/>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 112]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 </cacheField>
 <cacheField>
 <name>Field 6</name>
 <ieName>flowStartMilliSeconds</ieName>
 </cacheField>
 <cacheField>
 <name>Field 7</name>
 <ieName>flowEndSeconds</ieName>
 </cacheField>
 <cacheField>
 <name>Field 8</name>
 <ieName>octetDeltaCount</ieName>
 </cacheField>
 <cacheField>
 <name>Field 9</name>
 <ieName>packetDeltaCount</ieName>
 </cacheField>
 </cacheLayout>
 </timeoutCache>
 <exportingProcess>SCTP export with UDP backup</exportingProcess>
 </cache>

 <exportingProcess>
 <name>SCTP export with UDP backup</name>
 <exportMode>fallback</exportMode>
 <destination>
 <name>SCTP destination (primary)</name>
 <sctpExporter>
 <destinationPort>4739</destinationPort>
 <destinationIPAddress>192.0.2.1</destinationIPAddress>
 </sctpExporter>
 </destination>
 <destination>
 <name>UDP destination (secondary)</name>
 <udpExporter>
 <destinationPort>4739</destinationPort>
 <destinationIPAddress>192.0.2.2</destinationIPAddress>
 <templateRefreshTimeout>300</templateRefreshTimeout>
 <optionsTemplateRefreshTimeout>300
 </optionsTemplateRefreshTimeout>
 </udpExporter>
 </destination>
 <options>
 <name>Options 1</name>
 <optionsType>selectionSequence</optionsType>
 <optionsTimeout>0</optionsTimeout>
 </options>
 <options>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 113]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <name>Options 2</name>
 <optionsType>exportingReliability</optionsType>
 <optionsTimeout>60000</optionsTimeout>
 </options>
 </exportingProcess>

 </ipfix>

7.3. Export of Flow Records and Packet Reports

 This configuration example demonstrates the combined export of Flow
 Records and Packet Reports for a single Observation Point. One
 Selection Process applies random Sampling to the Observed Packet
 Stream. Its output is passed to a Cache generating Flow Records. In
 parallel, the Observed Packet Stream enters a second Selection
 Process which discards all non-ICMP packets and passes the selected
 packets to a second Cache for generating Packet Reports. The output
 of both Caches is exported to a single Collector using SCTP.

 <ipfix xmlns="urn:ietf:params:xml:ns:yang:ietf-ipfix-psamp">

 <observationPoint>
 <name>OP at linecard 3</name>
 <observationDomainId>9876</observationDomainId>
 <ifIndex>4</ifIndex>
 <direction>ingress</direction>
 <selectionProcess>Sampling</selectionProcess>
 <selectionProcess>ICMP</selectionProcess>
 </observationPoint>

 <selectionProcess>
 <name>Sampling</name>
 <selector>
 <name>Random sampler</name>
 <sampUniProb>
 <probability>0.01</probability>
 </sampUniProb>
 </selector>
 <cache>Flow cache</cache>
 </selectionProcess>

 <selectionProcess>
 <name>ICMP</name>
 <selector>
 <name>ICMP filter</name>
 <filterMatch>
 <ieId>4</ieId>
 <value>1</value>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 114]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 </filterMatch>
 </selector>
 <cache>Packet reporting</cache>
 </selectionProcess>

 <cache>
 <name>Flow cache</name>
 <timeoutCache>
 <maxFlows>4096</maxFlows>
 <activeTimeout>5</activeTimeout>
 <inactiveTimeout>10</inactiveTimeout>
 <cacheLayout>
 <cacheField>
 <name>Field 1</name>
 <ieName>sourceIPv4Address</ieName>
 <isFlowKey/>
 </cacheField>
 <cacheField>
 <name>Field 2</name>
 <ieName>destinationIPv4Address</ieName>
 <isFlowKey/>
 </cacheField>
 <cacheField>
 <name>Field 6</name>
 <ieName>flowStartMilliSeconds</ieName>
 </cacheField>
 <cacheField>
 <name>Field 7</name>
 <ieName>flowEndSeconds</ieName>
 </cacheField>
 <cacheField>
 <name>Field 8</name>
 <ieName>octetDeltaCount</ieName>
 </cacheField>
 <cacheField>
 <name>Field 9</name>
 <ieName>packetDeltaCount</ieName>
 </cacheField>
 </cacheLayout>
 </timeoutCache>
 <exportingProcess>Export</exportingProcess>
 </cache>

 <cache>
 <name>Packet reporting</name>
 <immediateCache>
 <cacheLayout>
 <cacheField>

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 115]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <name>Field 1</name>
 <ieId>313</ieId>
 <ieLength>64</ieLength>
 </cacheField>
 <cacheField>
 <name>Field 2</name>
 <ieId>154</ieId>
 </cacheField>
 </cacheLayout>
 </immediateCache>
 <exportingProcess>Export</exportingProcess>
 </cache>

 <exportingProcess>
 <name>Export</name>
 <destination>
 <name>SCTP collector</name>
 <sctpExporter>
 <destinationIPAddress>192.0.2.1</destinationIPAddress>
 <timedReliability>0</timedReliability>
 </sctpExporter>
 </destination>
 <options>
 <name>Options 1</name>
 <optionsType>selectionSequence</optionsType>
 <optionsTimeout>0</optionsTimeout>
 </options>
 </exportingProcess>

 </ipfix>

7.4. Collector and File Writer

 This configuration example configures a Collector which writes the
 received data to a file.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 116]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 <ipfix xmlns="urn:ietf:params:xml:ns:yang:ietf-ipfix-psamp">

 <collectingProcess>
 <name>SCTP collector</name>
 <sctpCollector>
 <name>Listening port 4739</name>
 <localPort>4739</localPort>
 <localIPAddress>192.0.2.1</localIPAddress>
 </sctpCollector>
 <exportingProcess>File writer</exportingProcess>
 </collectingProcess>

 <exportingProcess>
 <name>File writer</name>
 <destination>
 <name>Write to /tmp folder</name>
 <fileWriter>
 <file>file://tmp/collected-records.ipfix</file>
 </fileWriter>
 </destination>
 </exportingProcess>

 </ipfix>

7.5. Deviations

 Assume that a Monitoring Device has only two interfaces ifIndex=1 and
 ifIndex=2 which can be configured as Observation Points. The
 Observation Point ID is always identical to the ifIndex.

 The following YANG module specifies these deviations.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 117]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

module my-ipfix-psamp-deviation {
 namespace "urn:my-company:xml:ns:ietf-ipfix-psamp";
 prefix my;

 import ietf-ipfix-psamp { prefix ipfix; }

 deviation /ipfix:ipfix/ipfix:observationPoint/ipfix:entPhysicalIndex {
 deviate not-supported;
 }
 deviation /ipfix:ipfix/ipfix:observationPoint/ipfix:entPhysicalName {
 deviate not-supported;
 }
 deviation /ipfix:ipfix/ipfix:observationPoint/ipfix:ifName {
 deviate not-supported;
 }
 deviation /ipfix:ipfix/ipfix:observationPoint {
 deviate add {
 must "ipfix:ifIndex=1 or ipfix:ifIndex=2";
 }
 }
 deviation
 /ipfix:ipfix/ipfix:observationPoint/ipfix:observationPointId {
 deviate add {
 must "current()=../ipfix:ifIndex";
 }
 }
}

8. Security Considerations

 The YANG module defined in this memo is designed to be accessed via
 the NETCONF protocol [RFC4741]. The lowest NETCONF layer is the
 secure transport layer and the mandatory to implement secure
 transport is SSH [RFC4742].

 There are a number of data nodes defined in this YANG module which
 are writable/creatable/deletable (i.e. config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g. edit-config) to
 these data nodes without proper protection can have a negative effect
 on network operations. These are the subtrees and data nodes and
 their sensitivity/vulnerability:

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 118]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 /ipfix/observationPoint
 The configuration parameters in this subtree specify where packets
 are observed and by which Selection Processes they will be
 processed. Write access to this subtree allows observing packets
 at arbitrary interfaces or linecards of the Monitoring Device and
 may thus lead to the export of sensitive traffic information.
 /ipfix/selectionProcess
 The configuration parameters in this subtree specify for which
 packets information will be reported in Packet Reports or Flow
 Records. Write access to this subtree allows changing the subset
 of packets for which information will be reported and may thus
 lead to the export of sensitive traffic information.
 /ipfix/cache
 The configuration parameters in this subtree specify the fields
 included in Packet Reports or Flow Records. Write access to this
 subtree allows adding fields which may contain sensitive traffic
 information, such as IP addresses or parts of the packet payload.
 /ipfix/exportingProcess
 The configuration parameters in this subtree specify to which
 Collectors Packet Reports or Flow Records are exported. Write
 access to this subtree allows exporting potentially sensitive
 traffic information to illegitimate Collectors. Furthermore,
 transport layer security parameters can be changed, which may
 affect the mutual authentication between Exporters and Collectors
 as well as the encrypted transport of the data.
 /ipfix/collectingProcess
 The configuration parameters in this subtree may specify that
 collected Packet Reports and Flow Records are reexported to
 another Collector or written to a file. Write access to this
 subtree potentially allows reexporting or storing the sensitive
 traffic information.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g. via get, get-config or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 /ipfix/observationPoint
 Parameters in this subtree may be sensitive because they reveal
 information about the Monitoring Device itself and the network
 infrastructure.
 /ipfix/selectionProcess
 Parameters in this subtree may be sensitive because they reveal
 information about the Monitoring Device itself and the observed
 traffic. For example, the counters packetsObserved and
 packetsDropped inferring the number of observed packets.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 119]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 /ipfix/cache
 Parameters in this subtree may be sensitive because they reveal
 information about the Monitoring Device itself and the observed
 traffic. For example, the counters activeFlows and dataRecords
 allow inferring the number of measured Flows or packets.
 /ipfix/exportingProcess
 Parameters in this subtree may be sensitive because they reveal
 information about the network infrastructure and the outgoing
 IPFIX Transport Sessions. For example, it discloses the IP
 addresses of Collectors as well as the deployed transport layer
 security configuration, which may facilitate the interception of
 outgoing IPFIX Messages.
 /ipfix/collectingProcess
 Parameters in this subtree may be sensitive because they reveal
 information about the network infrastructure and the incoming
 IPFIX Transport Sessions. For example, it discloses the IP
 addresses of Exporters as well as the deployed transport layer
 security configuration, which may facilitate the interception of
 incoming IPFIX Messages.

9. IANA Considerations

 This document registers a URI in the IETF XML registry [RFC3688].
 Following the format in RFC 3688, the following registration is
 requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-ipfix-psamp
 Registrant Contact: The IPFIX WG of the IETF.
 XML: N/A, the requested URI is an XML namespace.

 This document registers a YANG module in the YANG Module Names
 registry [RFC6020].

 name: ietf-ipfix-psamp
 namespace: urn:ietf:params:xml:ns:yang:ietf-ipfix-psamp
 prefix: ipfix
 reference: RFCXXXX

Appendix A. Acknowledgements

 The authors thank Martin Bjorklund, Andy Bierman, and Ladislav Lhotka
 for helping specifying the configuration data model in YANG, as well
 as Atsushi Kobayashi, Andrew Johnson, Lothar Braun, and Brian
 Trammell for their valuable reviews of this document.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 120]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5101] Claise, B., "Specification of the IP Flow Information
 Export (IPFIX) Protocol for the Exchange of IP Traffic
 Flow Information", RFC 5101, January 2008.

 [RFC5102] Quittek, J., Bryant, S., Claise, B., Aitken, P., and J.
 Meyer, "Information Model for IP Flow Information Export",
 RFC 5102, January 2008.

 [RFC5103] Trammell, B. and E. Boschi, "Bidirectional Flow Export
 Using IP Flow Information Export (IPFIX)", RFC 5103,
 January 2008.

 [RFC5475] Zseby, T., Molina, M., Duffield, N., Niccolini, S., and F.
 Raspall, "Sampling and Filtering Techniques for IP Packet
 Selection", RFC 5475, March 2009.

 [RFC5476] Claise, B., Johnson, A., and J. Quittek, "Packet Sampling
 (PSAMP) Protocol Specifications", RFC 5476, March 2009.

 [RFC5477] Dietz, T., Claise, B., Aitken, P., Dressler, F., and G.
 Carle, "Information Model for Packet Sampling Exports",
 RFC 5477, March 2009.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6021] Schoenwaelder, J., "Common YANG Data Types", RFC 6021,
 October 2010.

 [UML] "OMG Unified Modeling Language (OMG UML), Superstructure,
 V2.2", OMG formal/2009-02-02, February 2009.

10.2. Informative References

 [RFC1141] Mallory, T. and A. Kullberg, "Incremental updating of the
 Internet checksum", RFC 1141, January 1990.

 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, June 2000.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 121]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P.
 Conrad, "Stream Control Transmission Protocol (SCTP)
 Partial Reliability Extension", RFC 3758, May 2004.

 [RFC3871] Jones, G., "Operational Security Requirements for Large
 Internet Service Provider (ISP) IP Network
 Infrastructure", RFC 3871, September 2004.

 [RFC3917] Quittek, J., Zseby, T., Claise, B., and S. Zander,
 "Requirements for IP Flow Information Export (IPFIX)",
 RFC 3917, October 2004.

 [RFC4133] Bierman, A. and K. McCloghrie, "Entity MIB (Version 3)",
 RFC 4133, August 2005.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, April 2006.

 [RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC4742] Wasserman, M. and T. Goddard, "Using the NETCONF
 Configuration Protocol over Secure SHell (SSH)", RFC 4742,
 December 2006.

 [RFC4960] Stewart, R., "Stream Control Transmission Protocol",
 RFC 4960, September 2007.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5470] Sadasivan, G., Brownlee, N., Claise, B., and J. Quittek,
 "Architecture for IP Flow Information Export", RFC 5470,
 March 2009.

 [RFC5472] Zseby, T., Boschi, E., Brownlee, N., and B. Claise, "IP
 Flow Information Export (IPFIX) Applicability", RFC 5472,
 March 2009.

 [RFC5473] Boschi, E., Mark, L., and B. Claise, "Reducing Redundancy

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 122]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 in IP Flow Information Export (IPFIX) and Packet Sampling
 (PSAMP) Reports", RFC 5473, March 2009.

 [RFC5474] Duffield, N., Chiou, D., Claise, B., Greenberg, A.,
 Grossglauser, M., and J. Rexford, "A Framework for Packet
 Selection and Reporting", RFC 5474, March 2009.

 [RFC5610] Boschi, E., Trammell, B., Mark, L., and T. Zseby,
 "Exporting Type Information for IP Flow Information Export
 (IPFIX) Information Elements", RFC 5610, July 2009.

 [RFC5655] Trammell, B., Boschi, E., Mark, L., Zseby, T., and A.
 Wagner, "Specification of the IP Flow Information Export
 (IPFIX) File Format", RFC 5655, October 2009.

 [RFC5815] Dietz, T., Kobayashi, A., Claise, B., and G. Muenz,
 "Definitions of Managed Objects for IP Flow Information
 Export", RFC 5815, April 2010.

 [RFC6110] Lhotka, L., "Mapping YANG to Document Schema Definition
 Languages and Validating NETCONF Content", RFC 6110,
 February 2011.

 [I-D.ietf-ipfix-psamp-mib]
 Dietz, T., Claise, B., and J. Quittek, "Definitions of
 Managed Objects for Packet Sampling",
 draft-ietf-ipfix-psamp-mib-03 (work in progress),
 March 2011.

 [I-D.ietf-ipfix-export-per-sctp-stream]
 Claise, B., Aitken, P., Johnson, A., and G. Muenz, "IPFIX
 Export per SCTP Stream",
 draft-ietf-ipfix-export-per-sctp-stream-08 (work in
 progress), May 2010.

 [W3C.REC-xml-20040204]
 Sperberg-McQueen, C., Maler, E., Yergeau, F., Paoli, J.,
 and T. Bray, "Extensible Markup Language (XML) 1.0 (Third
 Edition)", World Wide Web Consortium FirstEdition REC-xml-
 20040204, February 2004,
 <http://www.w3.org/TR/2004/REC-xml-20040204>.

 [W3C.REC-xmlschema-0-20041028]
 Walmsley, P. and D. Fallside, "XML Schema Part 0: Primer
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-0-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-0-20041028>.

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 123]

Internet-Draft IPFIX/PSAMP Configuration Data Model March 2011

 [YANG-WEB]
 Bjoerklund, M., "YANG WebHome",
 Homepage http://www.yang-central.org, March 2011.

 [IANA-IPFIX]
 "IANA Registry of IPFIX Information Elements",
 Homepage http://www.iana.org/assignments/ipfix/
 ipfix.xhtml.

Authors’ Addresses

 Gerhard Muenz
 Technische Universitaet Muenchen
 Department of Informatics
 Chair for Network Architectures and Services (I8)
 Boltzmannstr. 3
 Garching D-85748
 Germany

 Email: muenz@net.in.tum.de
 URI: http://www.net.in.tum.de/˜muenz

 Benoit Claise
 Cisco Systems, Inc.
 De Kleetlaan 6a b1
 Diegem 1831
 Belgium

 Phone: +32 2 704 5622
 Email: bclaise@cisco.com

 Paul Aitken
 Cisco Systems, Inc.
 96 Commercial Quay
 Commercial Street
 Edinburgh EH6 6LX
 United Kingdom

 Phone: +44 131 561 3616
 Email: paitken@cisco.com

Muenz, et al. draft-ietf-ipfix-configuration-model-09.txt [Page 124]

Internet Engineering Task Force A. Bierman
Internet-Draft Brocade
Intended status: Standards Track M. Bjorklund
Expires: September 12, 2011 Tail-f Systems
 March 11, 2011

 Network Configuration Protocol Access Control Model
 draft-ietf-netconf-access-control-03

Abstract

 The standardization of network configuration interfaces for use with
 the NETCONF protocol requires a structured and secure operating
 environment, which promotes human usability and multi-vendor
 interoperability. There is a need for standard mechanisms to
 restrict NETCONF protocol access for particular users to a pre-
 configured subset of all available NETCONF operations and content.
 This document discusses requirements for a suitable access control
 model, and provides one solution which meets these requirements.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Bierman & Bjorklund Expires September 12, 2011 [Page 1]

Internet-Draft NACM March 2011

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Terminology . 4
 1.1.1. Requirements Notation 4
 1.1.2. NETCONF Terms . 4
 1.1.3. YANG Terms . 5
 1.1.4. NACM Terms . 5
 2. Access Control Requirements 6
 2.1. Protocol Control Points 6
 2.2. Simplicity . 7
 2.3. Procedural Interface 7
 2.4. Datastore Access . 7
 2.4.1. Access Rights . 8
 2.4.2. <get> and <get-config> Operations 8
 2.4.3. <edit-config> Operation 8
 2.4.4. <copy-config> Operation 9
 2.5. Users and Groups . 10
 2.6. Maintenance . 10
 2.7. Configuration Capabilities 10
 2.8. Identifying Security Holes 11
 2.9. Data Shadowing . 12
 2.10. NETCONF Specific Requirements 12
 3. NETCONF Access Control Model (NACM) 14
 3.1. Introduction . 14
 3.1.1. Features . 14
 3.1.2. External Dependencies 15
 3.1.3. Message Processing Model 15
 3.2. Model Components . 17
 3.2.1. Users . 17
 3.2.2. Groups . 18
 3.2.3. Sessions . 18
 3.2.4. Access Permissions 18
 3.2.5. Global Enforcement Controls 19
 3.2.6. Access Control Rules 19
 3.3. Access Control Enforcement Procedures 19
 3.3.1. Initial Operation 19
 3.3.2. Session Establishment 20
 3.3.3. ’access-denied’ Error Handling 20
 3.3.4. Incoming RPC Message Validation 20
 3.3.5. Data Node Access Validation 23
 3.3.6. Outgoing <rpc-reply> Authorization 26

Bierman & Bjorklund Expires September 12, 2011 [Page 2]

Internet-Draft NACM March 2011

 3.3.7. Outgoing <notification> Authorization 26
 3.4. Data Model Definitions 29
 3.4.1. High Level Procedures 29
 3.4.2. Data Organization 29
 3.4.3. YANG Module . 30
 3.5. IANA Considerations 41
 3.6. Security Considerations 41
 4. References . 44
 4.1. Normative References 44
 4.2. Informative References 44
 Appendix A. Usage Examples 45
 A.1. <groups> Example . 45
 A.2. <module-rule> Example 46
 A.3. <rpc-rule> Example . 47
 A.4. <data-rule> Example 49
 A.5. <notification-rule> Example 51
 Appendix B. Change Log . 52
 B.1. 02-03 . 52
 B.2. 01-02 . 52
 B.3. 00-01 . 52
 B.4. 00 . 52
 Authors’ Addresses . 53

Bierman & Bjorklund Expires September 12, 2011 [Page 3]

Internet-Draft NACM March 2011

1. Introduction

 The NETCONF protocol does not provide any standard mechanisms to
 restrict the operations and content that each user is authorized to
 use.

 There is a need for inter-operable management of the controlled
 access to operator selected portions of the available NETCONF content
 within a particular server.

 This document addresses access control mechanisms for the Operation
 and Content layers of NETCONF, as defined in
 [I-D.ietf-netconf-4741bis], and [RFC5277]. It contains three main
 sections:

 1. Access Control Requirements

 2. NETCONF Access Control Model (NACM)

 3. YANG Data Model (ietf-netconf-acm.yang)

1.1. Terminology

1.1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.1.2. NETCONF Terms

 The following terms are defined in [I-D.ietf-netconf-4741bis] and are
 not redefined here:

 o client

 o datastore

 o operation

 o protocol operation

 o server

 o session

 o user

Bierman & Bjorklund Expires September 12, 2011 [Page 4]

Internet-Draft NACM March 2011

1.1.3. YANG Terms

 The following terms are defined in [RFC6020] and are not redefined
 here:

 o data node

1.1.4. NACM Terms

 The following terms are used throughout this documentation:

 access control: A security feature provided by the NETCONF server,
 which allows an operator to restrict access to a subset of all
 NETCONF protocol operations and data, based on various criteria.

 access control model (ACM): A conceptual model used to configure and
 monitor the access control procedures desired by the operator to
 enforce a particular access control policy.

 access control rule: The conceptual criteria used to determine if a
 particular NETCONF protocol operation will be permitted or denied.

 authentication: The process of verifying a user’s identity.

 superuser: The special administrative user account which is given
 unlimited NETCONF access, and is exempt from all access control
 enforcement.

Bierman & Bjorklund Expires September 12, 2011 [Page 5]

Internet-Draft NACM March 2011

2. Access Control Requirements

2.1. Protocol Control Points

 The NETCONF protocol allows new operations to be added at any time,
 and the YANG data modeling language supports this feature. It is not
 possible to design an ACM for NETCONF which only focuses on a static
 set of operations, like some other protocols. Since few assumptions
 can be made about an arbitrary protocol operation, the NETCONF
 architectural server components need to be protected at several
 conceptual control points.

 +-------------+ +-------------+
 client | protocol | | prune | client
 request --> | operation | | restricted | ---> reply
 | allowed? | | <rpc-reply> |
 +-------------+ | nodes? |
 | +-------------+
 | if any datastore or
 | state data is accessed
 | by the operation
 V
 +-------------+ +----------------+
 | data node | | prune |
 | access | | restricted |
 | allowed? | | <notification> | ---> client
 +-------------+ | event or data? | session
 +----------------+

 Figure 1

 The following access control points are defined:

 protocol operation: Configurable permission to invoke specific
 protocol operations is required. Wildcard or multiple target
 mechanisms to reduce configuration and effort are also required.

 NETCONF datastore: Configurable permission to read and/or alter
 specific data nodes within any conceptual datastore is required.
 Wildcard or multiple target mechanisms to reduce configuration and
 effort are also required.

 RPC Reply Content: Configurable permission to read specific data
 nodes within any conceptual RPC output section is required.
 Unauthorized data is silently omitted from the reply, instead of
 dropping the reply or sending an ’access-denied’ error.

Bierman & Bjorklund Expires September 12, 2011 [Page 6]

Internet-Draft NACM March 2011

 Notification Content: Configurable permission to receive specific
 notification event types is required.

2.2. Simplicity

 Experience has shown that a complicated ACM will not be widely
 deployed, because it is too hard to use. The key factor that is
 ignored in such solutions is the concept of ’localized cost’. It
 needs to be easy to do simple things, and hard to do complex things,
 instead of hard to do everything.

 Configuration of the access control system needs to be simple to use.
 Simple and common tasks need to be easy to configure, and require
 little expertise or domain-specific knowledge. Complex tasks are
 possible using additional mechanisms, which may require additional
 expertise.

 A single set of access control rules SHOULD be able to control all
 types of NETCONF protocol operation invocation, all conceptual
 datastore access, and all NETCONF session output.

 Default access control policy needs to be as secure as possible.

 Protocol access SHOULD be defined with a small and familiar set of
 permissions, while still allowing full control of NETCONF datastore
 access.

 Access control does not need to be applied to NETCONF <hello>
 messages.

2.3. Procedural Interface

 The NETCONF protocol uses a procedural interface model, and an
 extensible set of protocol operations. Access control for any
 possible protocol operation is required.

 It MUST be possible to configure the ACM to permit or deny access to
 specific NETCONF operations.

 YANG modules SHOULD be designed so that different access levels for
 input parameters to protocol operations is not required.

2.4. Datastore Access

 It MUST be possible to control access to specific nodes and sub-trees
 within the conceptual NETCONF datastore.

 In order for a user to obtain access to a particular datastore node,

Bierman & Bjorklund Expires September 12, 2011 [Page 7]

Internet-Draft NACM March 2011

 the user MUST be authorized to have the same requested access to the
 specified node, and all of its ancestors.

 The same access control rules apply to all conceptual datastores.
 For example, the candidate configuration or the running
 configuration.

 Only the standard NETCONF datastores (candidate, running, and
 startup) are controlled by the ACM. Local or remote files or
 datastores accessed via the <url> parameter are optional to support.

 The non-volatile startup configuration needs to be loaded into the
 running configuration without applying any access control rules.

2.4.1. Access Rights

 A small set of hard-wired datastore access rights is needed to
 control access to all possible NETCONF datastore operations,
 including vendor extensions to the standard operation set.

 The familiar ’CRUDX’ model can support all NETCONF operations:

 o Create: Allows the client to add a new data node instance to a
 datastore.

 o Read: Allows the client to read a data node instance from a
 datastore, or receive the notification event type.

 o Update: Allows the client to update an existing data node instance
 in a datastore.

 o Delete: Allows the client to delete a data node instance from a
 datastore.

 o eXec: Allows the client to execute the protocol operation.

2.4.2. <get> and <get-config> Operations

 Data nodes to which the client does not have ’read’ access, either
 directly or via wildcard access, are silently omitted from the <rpc-
 reply> message.

2.4.3. <edit-config> Operation

 The NACM access rights are not directly coupled to the <edit-config>
 "operation" attribute, although they are similar. Instead, a NACM
 access right applies to all operations which would result in a
 particular access operation to the target datastore. This section

Bierman & Bjorklund Expires September 12, 2011 [Page 8]

Internet-Draft NACM March 2011

 describes how these access rights apply to the specific datastore
 operations supported by the <edit-config> operation.

 If the effective operation is ’none’ (i.e., default-operation=’none’)
 for a particular data node, then no access control is applied to that
 data node.

 A ’create’, ’merge’, or ’replace’ operation on a datastore node which
 would result in the creation of a new data node instance, for which
 the user does not have ’create’ access permission, is rejected with
 an ’access-denied’ error.

 A ’merge’ or ’replace’ operation on a datastore node which would
 result in the modification of an existing data node instance, for
 which the user does not have ’update’ access permission, is rejected
 with an ’access-denied’ error.

 A ’replace’, ’delete’, or ’remove’ operation on a datastore node
 which would result in the deletion of an existing data node instance,
 for which the user does not have ’delete’ access permission, is
 rejected with an ’access-denied’ error.

 A ’merge’ operation may include data nodes which do not alter
 portions of the existing datastore. For example, a container or list
 nodes may be present for naming purposes, which do not actually alter
 the corresponding datastore node. These unaltered data nodes within
 the scope of a ’merge’ operation are ignored by the server, and do
 not require any access rights by the client.

 A ’merge’ operation may include data nodes, but not include
 particular child data nodes that are present in the datastore. These
 missing data nodes within the scope of a ’merge’ operation are
 ignored by the server, and do not require any access rights by the
 client.

 The contents of specific restricted datastore nodes MUST NOT be
 exposed in any <rpc-error> elements within the reply.

2.4.4. <copy-config> Operation

 Access control for the <copy-config> operation requires special
 consideration because the operator is replacing the entire target
 datastore. Read access to the entire source datastore, and write
 access to the entire target datastore is needed for this operation to
 succeed.

 A client MUST have access to every datastore node, even ones that are
 not present in the source configuration data.

Bierman & Bjorklund Expires September 12, 2011 [Page 9]

Internet-Draft NACM March 2011

 For example, consider a common use-case such as a simple backup and
 restore procedure. The operator (client) MUST have full read access
 to the datastore in order to receive a complete copy of its contents.
 If not, the server will simply omit these sub-trees from the reply.
 If that copy is later used to restore the server datastore, the
 server will interpret the missing nodes as a request to delete those
 nodes, and return an error.

2.5. Users and Groups

 The server MUST obtain a user name from the underlying NETCONF
 transport, such as an SSH user name.

 It MUST be possible to specify access control rules for a single user
 or a configurable group of users.

 A configurable superuser account may be needed which bypasses all
 access control rules. This could be needed in case the access
 control rules are mis-configured, and all access is denied by
 mistake.

 The ACM MUST support the concept of administrative groups, to support
 the well-established distinction between a root account and other
 types of less-privileged conceptual user accounts. These groups MUST
 be configurable by the operator.

 It MUST be possible to delegate the user-to-group mapping to a
 central server, such as RADIUS [RFC2865] [RFC5607]. Since
 authentication is performed by the NETCONF transport layer, and
 RADIUS performs authentication and service authorization at the same
 time, it MUST be possible for the underlying NETCONF transport to
 report a set of group names associated with the user to the server.

2.6. Maintenance

 It SHOULD be possible to disable part or all of the access control
 model without deleting any configuration. By default, only the
 ’superuser’ SHOULD be able to perform this task.

 It SHOULD be possible to configure a ’superuser’ account so that all
 access control is disabled for just this user. This allows the
 access control rules to always be modified without completely
 disabling access control for all users.

2.7. Configuration Capabilities

 Suitable control and monitoring mechanisms are needed to allow an
 operator to easily manage all aspects of the ACM behavior. A

Bierman & Bjorklund Expires September 12, 2011 [Page 10]

Internet-Draft NACM March 2011

 standard data model, suitable for use with the <edit-config>
 operation MUST be available for this purpose.

 Access control rules to restrict operations on specific sub-trees
 within the configuration datastore MUST be supported. Existing
 mechanisms can be used to identify the sub-tree(s) for this purpose.

2.8. Identifying Security Holes

 One of the most important aspects of the data model documentation,
 and biggest concerns during deployment, is the identification of
 security-sensitive content. This applies to operations in NETCONF,
 not just data and notifications.

 It is mandatory for security-sensitive objects to be documented in
 the Security Considerations section of an RFC. This is nice, but it
 is not good enough, for the following reasons:

 o This documentation-only approach forces operators to study the RFC
 and determine if there are any potential security holes introduced
 by a new YANG module.

 o If any security holes are identified, then the operator can study
 some more RFC text, and determine how to close the security
 hole(s).

 o The ACM on each server can be configured to close the security
 holes, e.g., require privileged access to read or write the
 specific data identified in the Security Considerations section.

 o If the ACM is not pre-configured, then there will be a time window
 of vulnerability, after the new module is loaded, and before the
 new access control rules for that module are configured, enabled,
 and debugged.

 Often, the operator just wants to disable default access to the
 secure content, so no inadvertent or malicious changes can be made to
 the server. This allows the default rules to be more lenient,
 without significantly increasing the security risk.

 A data model designer needs to be able to use machine-readable
 statements to identify NETCONF content which needs to be protected by
 default. This will allow client and server tools to automatically
 close data-model specific security holes, by denying access to
 sensitive data unless the user is explicitly authorized to perform
 the requested operation.

Bierman & Bjorklund Expires September 12, 2011 [Page 11]

Internet-Draft NACM March 2011

2.9. Data Shadowing

 One of the more complicated security administration problems is
 identifying data nodes which shadow or mirror the content of another
 data node. An access control rule to prevent read operations for a
 particular node may be insufficient to prevent access to the data
 node with the copied value.

 If the YANG leafref data type is used, then this data shadowing can
 be detected by applications (and the server stack), and prevented.

 If the description statement, other documentation, or no
 documentation exists to identify a data shadow problem, then it may
 not be detected.

 Since NETCONF allows any vendor operation to be added to the
 protocol, there is no way to reliably identify all of the operations
 that may expose copies of sensitive data nodes in <rpc-reply>
 messages.

 A NETCONF server MUST ensure that unauthorized access to its
 conceptual datastores and non-configuration data nodes is prevented.

 It is beyond the scope of this document to define access control
 enforcement procedures for underlying device instrumentation that may
 exist to support the NETCONF server operation. An operator can
 identify each operation that the server provides, and decide if it
 needs any access control applied to it.

 Proprietary protocol operations SHOULD be properly documented by the
 vendor, so it is clear to operators what data nodes (if any) are
 affected by the operation, and what information (if any) is returned
 in the <rpc-reply> message.

2.10. NETCONF Specific Requirements

 The server MUST be able to identify the specific protocol access
 request at the 4 access control points defined above.

 The server MUST be able to identify any datastore access request,
 even for proprietary operations.

 A client MUST always be authorized to invoke the <close-session>
 operation, defined in [I-D.ietf-netconf-4741bis].

 A client MUST always be authorized to receive the <replayComplete>
 and <notificationComplete> notification events, defined in [RFC5277]

Bierman & Bjorklund Expires September 12, 2011 [Page 12]

Internet-Draft NACM March 2011

 The set of module name strings used within one particular server MUST
 be unique.

Bierman & Bjorklund Expires September 12, 2011 [Page 13]

Internet-Draft NACM March 2011

3. NETCONF Access Control Model (NACM)

3.1. Introduction

 This section provides a high-level overview of the access control
 model structure. It describes the NETCONF protocol message
 processing model, and the conceptual access control requirements
 within that model.

3.1.1. Features

 The NACM data model provides the following features:

 o Independent control of RPC, data, and notification access.

 o Very simple access control rules configuration data model which is
 easy to use.

 o The concept of a ’superuser’ type of account is supported, but
 configuration such an account is beyond the scope of this
 document. If the server supports a ’superuser’ account, then it
 MUST be able to determine the actual user name for this account.
 A session associated with the superuser account will bypass all
 access control enforcement.

 o A simple and familiar set of datastore permissions is used.

 o Support for YANG security tagging (e.g., nacm:secure extension)
 allows default security modes to automatically exclude sensitive
 data.

 o Separate default access modes for read, write, and execute
 permissions.

 o Access control rules are applied to configurable groups of users.

 o The entire ACM can be disabled during operation, in order to debug
 operational problems.

 o Access control rules are simple to configure.

 o The number of denied protocol operation requests and denied
 datastore write requests can be monitored by the client.

 o Simple unconstrained YANG instance identifiers are used to
 configure access control rules for specific data nodes.

Bierman & Bjorklund Expires September 12, 2011 [Page 14]

Internet-Draft NACM March 2011

3.1.2. External Dependencies

 The NETCONF [I-D.ietf-netconf-4741bis] protocol is used for all
 management purposes within this document. It is expected that the
 mandatory transport mapping NETCONF Over SSH
 [I-D.ietf-netconf-rfc4742bis] is also supported by the server, and
 that the server has access to the user name associated with each
 session.

 The YANG Data Modeling Language [RFC6020] is used to define the
 NETCONF data models specified in this document. The YANG instance-
 identifier data type is used to configure data-node-specific access
 control rules.

3.1.3. Message Processing Model

 The following diagram shows the NETCONF message flow model, including
 the points at which access control is applied, during NETCONF message
 processing.

Bierman & Bjorklund Expires September 12, 2011 [Page 15]

Internet-Draft NACM March 2011

 +-------------------------+
 | session |
 | (username) |
 +-------------------------+
 | ^
 V |
 +--------------+ +---------------+
 | message | | message |
 | dispatcher | | generator |
 +--------------+ +---------------+
 | ^ ^
 V | |
 +===========+ +-------------+ +----------------+
 | <rpc> |---> | <rpc-reply> | | <notification> |
 | acc. ctl | | generator | | generator |
 +===========+ +-------------+ +----------------+
 | ^ ^ ^
 V +------+ | |
 +-----------+ | +=============+ +================+
 | <rpc> | | | <rpc-reply> | | <notification> |
 | processor |-+ | acc. ctl | | access ctl |
 +-----------+ +=============+ +================+
 | | ^ ^
 V +----------------+ | |
 +===========+ | | |
 | data node | | | |
 | acc. ctl | -----------+ | | |
 +===========+ | | | |
 | | | | |
 V V V | |
 +---------------+ +-----------------+
 | configuration | ---> | server |
 | datastore | | instrumentation |
 | | <--- | |
 +---------------+ +-----------------+

 Figure 2

 The following high-level sequence of conceptual processing steps is
 executed for each received <rpc> message, if access control
 enforcement is enabled:

 o Access control is applied to all <rpc> messages (except <close-
 session>) received by the server, individually, for each active
 session, unless the session is associated with the ’superuser’
 account.

Bierman & Bjorklund Expires September 12, 2011 [Page 16]

Internet-Draft NACM March 2011

 o If the session is authorized to execute the specified RPC
 operation, then processing continues, otherwise the request is
 rejected with an ’access-denied’ error.

 o If the configuration datastore or conceptual state data is
 accessed by the protocol operation, then the data node access MUST
 be authorized. If the session is authorized to perform the
 requested operation on the requested data, then processing
 continues.

 The following sequence of conceptual processing steps is executed for
 each generated notification event, if access control enforcement is
 enabled:

 o Server instrumentation generates a conceptual notification, for a
 particular subscription.

 o The notification access control enforcer checks the notification
 event type, and if it is one which the session is not authorized
 to read, then the notification is dropped for that subscription.

3.2. Model Components

 This section defines the conceptual components related to access
 control model.

3.2.1. Users

 A ’user’ is the conceptual entity, which is associated with the
 access permissions granted to a particular session. A user is
 identified by a string which MUST be unique within the server.

 As described in [I-D.ietf-netconf-4741bis], the user name string is
 derived from the transport layer during session establishment. If
 the transport layer cannot authenticate the user, the session is
 terminated.

 The server MAY support a ’superuser’ administrative user account,
 which will bypass all access control enforcement. This is useful for
 restricting initial access and repairing a broken access control
 configuration. This account may be configurable to use a specific
 user, or disabled completely. Some systems have factory-selected
 superuser account names. There is no need to standardize the exact
 user name for the superuser account. If no such account exists, then
 all NETCONF access will be controlled by NACM.

Bierman & Bjorklund Expires September 12, 2011 [Page 17]

Internet-Draft NACM March 2011

3.2.2. Groups

 Access to a specific NETCONF operation is granted to a session,
 associated with a group, not a user.

 A group is identified by its name. All group names MUST be unique
 within the server.

 A group member is identified by a user name string.

 The same user may be configured in multiple groups.

3.2.3. Sessions

 A session is simply a NETCONF session, which is the entity which is
 granted access to specific NETCONF operations.

 A session is associated with a single user name for the lifetime of
 the session.

3.2.4. Access Permissions

 The access permissions are the NETCONF protocol specific set of
 permissions that have been assigned to a particular session.

 The same access permissions MUST stay in effect for the processing of
 a particular message.

 The server MUST use the access control rules in effect at the time
 the message is processed.

 The access control model treats protocol operation execution
 separately from configuration datastore access and outgoing messages:

 create: Permission to create conceptual server data.

 read: Read access to conceptual server data, <rpc-reply> and
 <notification> content.

 update: Permission to modify existing conceptual server data.

 delete: Permission to delete existing conceptual server data.

 exec: Permission to invoke an protocol operation.

Bierman & Bjorklund Expires September 12, 2011 [Page 18]

Internet-Draft NACM March 2011

3.2.5. Global Enforcement Controls

 A global on/off switch is provided to enable or disable all access
 control enforcement.

 An on/off switch is provided to enable or disable default access to
 invoke protocol operations.

 An on/off switch is provided to enable or disable default permission
 to receive data in replies and notifications.

 An on/off switch is provided to enable or disable default access to
 alter configuration data.

3.2.6. Access Control Rules

 There are 4 types of rules available in NACM:

 module rule: Controls access for definitions in a specific module,
 identified by its name.

 protocol operation rule: Controls access for a specific protocol
 operation, identified by its module and name.

 data node rule: Controls access for a specific data node, identified
 by its path location within the conceptual XML document for the
 data node.

 notification rule: Controls access for a specific notification event
 type, identified by its module and name.

3.3. Access Control Enforcement Procedures

 There are seven separate phases that need to be addressed, four of
 which are related to the NETCONF message processing model. In
 addition, the initial start-up mode for a NETCONF server, session
 establishment, and ’access-denied’ error handling procedures also
 need to be considered.

3.3.1. Initial Operation

 Upon the very first start-up of the NETCONF server, the access
 control configuration will probably not be present. If not, a server
 MUST NOT allow any write access to any session role except
 ’superuser’ type of account in this state.

 There is no requirement to enforce access control rules before or
 while the non-volatile configuration data is processed and loaded

Bierman & Bjorklund Expires September 12, 2011 [Page 19]

Internet-Draft NACM March 2011

 into the running configuration.

3.3.2. Session Establishment

 The access control model applies specifically to the well-formed XML
 content transferred between a client and a server, after session
 establishment has been completed, and after the <hello> exchange has
 been successfully completed.

 A server SHOULD NOT include any sensitive information in any
 <capability> elements within the <hello> exchange.

 Once session establishment is completed, and a user identity has been
 authenticated, the NETCONF transport layer reports the username and a
 possibly empty set of group names associated with the user to the
 NETCONF server. The NETCONF server will enforce the access control
 rules, based on the supplied user identity, group names, and the
 configuration data stored on the server.

3.3.3. ’access-denied’ Error Handling

 The ’access-denied’ error-tag is generated when the access control
 system denies access to either a request to invoke a protocol
 operation or a request to perform a particular operation on the
 configuration datastore.

 A server MUST NOT include any sensitive information in any <error-
 info> elements within the <rpc-error> response.

3.3.4. Incoming RPC Message Validation

 The diagram below shows the basic conceptual structure of the access
 control processing model for incoming NETCONF <rpc> messages, within
 a server.

Bierman & Bjorklund Expires September 12, 2011 [Page 20]

Internet-Draft NACM March 2011

 NETCONF server
 +------------+
 | XML |
 | message |
 | dispatcher |
 +------------+
 |
 |
 V
 +------------+
 | NC-base NS |
 | <rpc> |
 +------------+
 | | |
 | | +-------------------------+
 | +------------+ |
 V V V
 +-----------+ +---------------+ +------------+
 | acme NS | | NC-base NS | | NC-base NS |
 | <my-edit> | | <edit-config> | | <unlock> |
 +-----------+ +---------------+ +------------+
 | |
 | |
 V V
 +----------------------+
 | |
 | configuration |
 | datastore |
 +----------------------+

 Figure 3

 Access control begins with the message dispatcher. Only well-formed
 XML messages will be processed by the server.

 After the server validates the <rpc> element, and determines the
 namespace URI and the element name of the protocol operation being
 requested, the RPC access control enforcer verifies that the session
 is authorized to invoke the protocol operation.

 The protocol operation is authorized by following these steps:

 1. If the <enable-nacm> parameter is set to ’false’, then the
 protocol operation is permitted.

Bierman & Bjorklund Expires September 12, 2011 [Page 21]

Internet-Draft NACM March 2011

 2. If the session is associated with the ’superuser’ account, then
 the protocol operation is permitted.

 3. If the requested operation is the NETCONF <close-session>
 operation, then the protocol operation is permitted.

 4. Check all the <group> entries for ones that contain a <user-
 name> entry that matches the user name for the session making
 the request. Add to these groups the set of groups provided by
 the transport layer.

 5. If no groups are found:

 * If the requested protocol operation is associated with a YANG
 module advertised in the server capabilities, and the rpc
 statement contains a nacm:secure or nacm:very-secure
 extension, then the protocol operation is denied.

 * If the <exec-default> parameter is set to ’permit’, then
 permit the protocol operation, otherwise deny the request.

 6. Check if there are any matching <rpc-rule> entries for the
 requested protocol operation. Any matching rules are processed
 in user-defined order, in case there are multiple <rpc-rule>
 entries for the requested protocol operation.

 7. If an <rpc-rule> entry is found, then check the <allowed-rights>
 bits field for the entry, otherwise continue. The ’exec’ bit
 MUST be present in the <allowed-rights> bits field for an <rpc-
 rule>, so it is not used in this procedure.

 8. If the <rpc-rule> entry is considered a match, then the ’nacm-
 action’ leaf is checked. If is equal to ’permit’, then the
 protocol operation is permitted, otherwise it is denied.

 9. Check if there are any matching <module-rule> entries for the
 same module as the requested protocol operation. Any matching
 rules are processed in user-defined order, in case there are
 multiple <module-rule> entries for the module containing the
 requested protocol operation.

 10. If a <module-rule> entry is found, then check the <allowed-
 rights> bits field for the entry, otherwise continue. If the
 ’exec’ bit is present in the <allowed-rights> bits field then
 the RPC rule is considered a match. otherwise it is not
 considered to match the request.

Bierman & Bjorklund Expires September 12, 2011 [Page 22]

Internet-Draft NACM March 2011

 11. If the <module-rule> entry is considered a match, then the
 ’nacm-action’ leaf is checked. If is equal to ’permit’, then
 the protocol operation is permitted, otherwise it is denied.

 12. If the requested operation is identified an a nacm:secure or
 nacm:very-secure protocol operation, then the protocol operation
 is denied.

 13. If the <exec-default> parameter is set to ’permit’, then permit
 the protocol operation, otherwise the protocol operation is
 denied.

 If the session is not authorized to invoke the protocol operation
 then an <rpc-error> is generated with the following information:

 error-tag: access-denied

 error-path: /rpc/method-QName, where ’method-QName’ is a qualified
 name identifying the actual protocol operation name. For example,
 ’/rpc/edit-config’ represents the <edit-config> operation in the
 NETCONF base namespace.

 If the configuration datastore is accessed, either directly or as a
 side effect of the protocol operation, then the server MUST intercept
 the operation and make sure the session is authorized to perform the
 requested operation on the specified data.

3.3.5. Data Node Access Validation

 If a data node within a configuration datastore is accessed, or a
 conceptual non-configuration node is accessed, then the server MUST
 ensure that the client session is authorized to perform the requested
 operation create, read, update, or delete operation on the specified
 data node.

 The data node access request is authorized by following these steps:

 1. If the <enable-nacm> parameter is set to ’false’, then the data
 node access request is permitted.

 2. If the session is associated with the ’superuser’ account, then
 the data node access request is permitted.

 3. Check all the <group> entries for ones that contain a <user-
 name> entry that matches the user name for the session making
 the request. Add to these groups the set of groups provided by
 the transport layer.

Bierman & Bjorklund Expires September 12, 2011 [Page 23]

Internet-Draft NACM March 2011

 4. If no groups are found:

 * If the requested data node is associated with a YANG module
 advertised in the server capabilities, and the data
 definition statement or any of its ancestors contains a nacm:
 secure or nacm:very-secure extension, then the data node
 access request is denied.

 * For a read request, if the <read-default> parameter is set to
 ’permit’, then permit the data node access request, otherwise
 deny the request. For a read operation, this means that the
 requested node is not included in the rpc-reply.

 * For a write request, if the <write-default> parameter is set
 to ’permit’, then permit the data node access request,
 otherwise deny the request.

 5. Check if there are any matching <data-rule> entries for the
 requested data node access request. Any matching rules are
 processed in user-defined order, in case there are multiple
 <data-rule> entries for the requested data node.

 6. If an <data-rule> entry is found, then check the <allowed-
 rights> bits field for the entry, otherwise continue.

 1. For a creation operation, if the ’create’ bit is present in
 the <allowed-rights> bits field then the entry is considered
 to be a match.

 2. For a read operation, if the ’read’ bit is present in the
 <allowed-rights> bits field, then the entry is considered to
 be a match.

 3. For an update (e.g., ’merge’ or ’replace’) operation, if the
 ’update’ bit is present in the <allowed-rights> bits field
 then the entry is considered to be a match.

 4. For a deletion (e.g., ’delete’) operation, if the ’delete’
 bit is present in the <allowed-rights> bits field then the
 entry is considered to be a match.

 7. If the <data-rule> entry is considered a match, then the ’nacm-
 action’ leaf is checked. If it is equal to ’permit’, then the
 data operation is permitted, otherwise it is denied. For ’read’
 operations, ’denied’ means the requested data is not returned in
 the reply.

Bierman & Bjorklund Expires September 12, 2011 [Page 24]

Internet-Draft NACM March 2011

 8. Check if there are any matching <module-rule> entries for the
 same module as the requested data node. Any matching rules are
 processed in user-defined order, in case there are multiple
 <module-rule> entries for the module containing the requested
 data node.

 9. If a <module-rule> entry is found, then check the <allowed-
 rights> bits field for the entry, otherwise continue.

 1. For a creation operation, if the ’create’ bit is present in
 the <allowed-rights> bits field then the entry is considered
 to be a match.

 2. For a read operation, if the ’read’ bit is present in the
 <allowed-rights> bits field, then the entry is considered to
 be a match.

 3. For an update (e.g., ’merge’ or ’replace’) operation, if the
 ’update’ bit is present in the <allowed-rights> bits field
 then the entry is considered to be a match.

 4. For a deletion (e.g., ’delete’) operation, if the ’delete’
 bit is present in the <allowed-rights> bits field then the
 entry is considered to be a match.

 10. If the <module-rule> entry is considered a match, then the
 ’nacm-action’ leaf is checked. If it is equal to ’permit’, then
 the data operation is permitted, otherwise it is denied. For
 ’read’ operations, ’denied’ means the requested data is not
 returned in the reply.

 11. For a read request, if the requested data node is identified an
 a nacm:very-secure definition, then the requested data node is
 not included in the reply.

 12. For a write request, if the requested data node is identified an
 a nacm:secure or nacm:very-secure definition, then the data node
 access request is denied.

 13. For a read request, if the <read-default> parameter is set to
 ’permit’, then include the requested data in the reply,
 otherwise do not include the requested data in the reply.

 14. For a write request, if the <write-default> parameter is set to
 ’permit’, then permit the data node access request, otherwise
 deny the request.

Bierman & Bjorklund Expires September 12, 2011 [Page 25]

Internet-Draft NACM March 2011

3.3.6. Outgoing <rpc-reply> Authorization

 The <rpc-reply> message MUST be checked by the server to make sure no
 unauthorized data is contained within it. If so, the restricted data
 MUST be removed from the message before it is sent to the client.

 For protocol operations which do not access any data nodes, then any
 client authorized to invoke the protocol operation is also authorized
 to receive the <rpc-reply> for that protocol operation.

3.3.7. Outgoing <notification> Authorization

 The <notification> message MUST be checked by the server to make sure
 no unauthorized data is contained within it. If so, the restricted
 data MUST be removed from the message before it is sent to the
 client.

 Configuration of access control rules specifically for descendent
 nodes of the notification event type element are outside the scope of
 this document. If the session is authorized to receive the
 notification event type, then it is also authorized to receive any
 data it contains.

 The following figure shows the conceptual message processing model
 for outgoing <notification> messages.

Bierman & Bjorklund Expires September 12, 2011 [Page 26]

Internet-Draft NACM March 2011

 NETCONF server
 +------------+
 | XML |
 | message |
 | generator |
 +------------+
 ^
 |
 +----------------+
 | <notification> |
 | generator |
 +----------------+
 ^
 |
 +=================+
 | <notification> |
 | access control |
 | <eventType> |
 +=================+
 ^
 |
 +------------------------+
 | server instrumentation |
 +------------------------+
 | ^
 V |
 +----------------------+
 | configuration |
 | datastore |
 +----------------------+

 Figure 4

 The generation of a notification event for a specific subscription is
 authorized by following these steps:

 1. If the <enable-nacm> parameter is set to ’false’, then the
 notification event is permitted.

 2. If the session is associated with the ’superuser’ account, then
 the notification event is permitted.

 3. If the requested operation is the NETCONF <replayComplete> or
 <notificationComplete> event type, then the notification event
 is permitted.

Bierman & Bjorklund Expires September 12, 2011 [Page 27]

Internet-Draft NACM March 2011

 4. Check all the <group> entries for ones that contain a <user-
 name> entry that matches the user name for the session that
 started the notification subscription. Add to these groups the
 set of groups provided by the transport layer.

 5. If no groups are found:

 * If the requested notification is associated with a YANG
 module advertised in the server capabilities, and the
 notification statement contains a nacm:secure or nacm:very-
 secure extension, then the notification event is dropped for
 the associated subscription.

 * If the <read-default> parameter is set to ’permit’, then
 permit the notification event, otherwise drop this event type
 for the associated subscription.

 6. Check if there are any matching <notification-rule> entries for
 the specific notification event type being delivered to the
 subscription. Any matching rules are processed in user-defined
 order, in case there are multiple <notification-rule> entries
 for the requested notification event type.

 7. If a <notification-rule> entry is found, then check the
 <allowed-rights> bits field for the entry, otherwise continue.
 If the ’read’ bit is present in the <allowed-rights> bits field
 then the notification event type is permitted, otherwise it is
 dropped for the associated subscription.

 8. Check if there are any matching <module-rule> entries for the
 same module as the notification event type. Any matching rules
 are processed in user-defined order, in case there are multiple
 <module-rule> entries for the module containing the notification
 event type.

 9. If a <module-rule> entry is found, then check the <allowed-
 rights> bits field for the entry, otherwise continue. If the
 ’read’ bit is present in the <allowed-rights> bits field then
 the notification event type is permitted, otherwise it is
 dropped for the associated subscription.

 10. If the requested event type is identified an a nacm:very-secure
 notification definition, then the notification event type is
 denied.

 11. If the <read-default> parameter is set to ’permit’, then permit
 the notification event type, otherwise it is dropped for the
 associated subscription.

Bierman & Bjorklund Expires September 12, 2011 [Page 28]

Internet-Draft NACM March 2011

3.4. Data Model Definitions

 This section defines the semantics of the conceptual data structures
 found in the data model in Section 3.4.

3.4.1. High Level Procedures

 There are some high level management procedures that an administrator
 needs to consider before using this access control model:

 1. Configure the global settings.

 2. Configure one or more user groups.

 3. Configure zero or more access control rules for specific modules.

 4. Configure zero or more access control rules for specific protocol
 operations.

 5. Configure zero or more access control rules for data node access.

 6. Configure zero or more access control rules for notification
 event type access.

3.4.2. Data Organization

 The top-level element is called <nacm>, and it is defined in the
 ’ietf-netconf-acm’ module namespace.

 There are several data structures defined as child nodes of the
 <nacm> element:

 leaf <enable-nacm>: On/off boolean switch to enable or disable
 access control enforcement.

 leaf <read-default>: Enumeration to permit or deny default read
 access requests.

 leaf <write-default>: Enumeration to permit or deny default write
 access requests.

 leaf <exec-default>: Enumeration to permit or deny default protocol
 operation execution requests.

 leaf <denied-rpcs>: Read-only counter of the number of times the
 server has denied an RPC operation request, since the last reboot
 of the server.

Bierman & Bjorklund Expires September 12, 2011 [Page 29]

Internet-Draft NACM March 2011

 leaf <denied-data-writes>: Read-only counter of the number of times
 the server has denied a data node write request, since the last
 reboot of the server.

 container <groups>: Configures the groups used within the access
 control system.

 list <group>: A list of user names belonging to the same
 administrative group.

 container <rules>: Configures the access control rules used within
 the server.

 list <module-rule>: Configures the access control rules for a
 specific module.

 list <rpc-rule>: Configures the access control rules for protocol
 operation invocation.

 list <data-rule>: Configures the access control rules for
 configuration datastore access.

 list <notification-rule>: Configures the access control rules for
 controlling delivery of <notification> events.

3.4.3. YANG Module

 The following YANG module is provided to specify the normative
 NETCONF content that MUST by supported by the server.

 The ietf-netconf-acm YANG module imports typedefs from [RFC6021].

 // RFC Ed.: please update the date to the date of publication
 <CODE BEGINS> file="ietf-netconf-acm@2011-03-11.yang"

 module ietf-netconf-acm {

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-acm";

 prefix "nacm";

 import ietf-yang-types {
 prefix yang;
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

Bierman & Bjorklund Expires September 12, 2011 [Page 30]

Internet-Draft NACM March 2011

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

 WG Chair: Bert Wijnen
 <mailto:bertietf@bwijnen.net>

 Editor: Andy Bierman
 <mailto:andy.bierman@brocade.com>

 Editor: Martin Bjorklund
 <mailto:mbj@tail-f.com>";

 description
 "NETCONF Server Access Control Model.

 Copyright (c) 2011 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD
 License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";
 // RFC Ed.: replace XXXX with actual RFC number and
 // remove this note

 // RFC Ed.: remove this note
 // Note: extracted from draft-ietf-netconf-access-control-03.txt

 // RFC Ed.: please update the date to the date of publication
 revision "2011-03-11" {
 description
 "Initial version";
 reference
 "RFC XXXX: Network Configuration Protocol
 Access Control Model";
 }

 /*
 * Extension statements

Bierman & Bjorklund Expires September 12, 2011 [Page 31]

Internet-Draft NACM March 2011

 */

 extension secure {
 description
 "Used to indicate that the data model node
 represents a sensitive security system parameter.

 If present, and the NACM module is enabled
 (i.e., /nacm/enable-nacm object equals ’true’),
 the NETCONF server will only allow
 the designated ’superuser’ to have write or execute
 default nacm-rights-type for the node. An explicit access
 control rule is required for all other users.

 The ’secure’ extension MAY appear within a data, rpc,
 or notification node definition. It is ignored
 otherwise.";
 }

 extension very-secure {
 description
 "Used to indicate that the data model node
 controls a very sensitive security system parameter.

 If present, and the NACM module is enabled
 (i.e., /nacm/enable-nacm object equals ’true’),
 the NETCONF server will only allow
 the designated ’superuser’ to have read, write, or execute
 default nacm-rights-type for the node. An explicit access
 control rule is required for all other users.

 The ’very-secure’ extension MAY appear within a data, rpc,
 or notification node definition. It is ignored
 otherwise.";
 }

 /*
 * Derived types
 */

 typedef nacm-user-name-type {
 type string {
 length "1..max";
 }
 description
 "General Purpose User Name string.";
 }

Bierman & Bjorklund Expires September 12, 2011 [Page 32]

Internet-Draft NACM March 2011

 typedef nacm-matchall-string-type {
 type string {
 pattern "*";
 }
 description
 "The string containing a single asterisk ’*’ is used
 to conceptually represent all possible values
 for the particular leaf using this data type.";
 }

 typedef nacm-rights-type {
 type union {
 type nacm-matchall-string-type;

 type bits {
 bit create {
 description
 "Create access allowed to all specified data.
 Any protocol operation that creates a
 new instance of the specified data is a create
 operation.";
 }
 bit read {
 description
 "Read access allowed to all specified data.
 Any protocol operation or notification that
 returns data to an application is a read
 operation.";
 }
 bit update {
 description
 "Update access allowed to all specified data.
 Any protocol operation that alters an existing
 data node is an update operation.";
 }
 bit delete {
 description
 "Delete access allowed to all specified data.
 Any protocol operation that removes a datastore
 node instance is a delete operation.";
 }
 bit exec {
 description
 "Execution access to the specified RPC operation.
 Any RPC operation invocation is an exec operation.";
 }
 }
 }

Bierman & Bjorklund Expires September 12, 2011 [Page 33]

Internet-Draft NACM March 2011

 description
 "NETCONF Access Rights.
 The string ’*’ indicates that all possible access
 rights apply to the access rule. Otherwise, only
 the specific access rights represented by the bit names
 that are present apply to the access rule.";
 }

 typedef nacm-group-name-type {
 type string {
 length "1..max";
 pattern "[^*].*";
 }
 description
 "Name of administrative group that can be
 assigned to the user, and specified in
 an access control rule.";
 }

 typedef nacm-action-type {
 type enumeration {
 enum permit {
 description
 "Requested action is permitted.";
 }
 enum deny {
 description
 "Requested action is denied.";
 }
 }
 description
 "Action taken by the server when a particular
 rule matches.";
 }

 typedef schema-instance-identifier {
 type yang:xpath1.0;
 description
 "Path expression used to represent a special
 schema-instance identifier string.

 A schema-instance-identifier value is an
 unrestricted YANG instance-identifier expression.
 All the same rules as an instance-identifier apply
 except predicates for keys are optional. If a key
 predicate is missing, then the schema-instance-identifier
 represents all possible server instances for that key.

Bierman & Bjorklund Expires September 12, 2011 [Page 34]

Internet-Draft NACM March 2011

 This XPath expression is evaluated in the following context:

 o The set of namespace declarations are those in scope on
 the leaf element where this type is used.

 o The set of variable bindings contains one variable,
 ’USER’, which contains the name of user of the current
 session.

 o The function library is the core function library, but
 note that due to the syntax restrictions of an
 instance-identifier, no functions are allowed.

 o The context node is the root node in the data tree.";
 }

 container nacm {
 nacm:very-secure;

 description
 "Parameters for NETCONF Access Control Model.";

 leaf enable-nacm {
 type boolean;
 default true;
 description
 "Enable or disable all NETCONF access control
 enforcement. If ’true’, then enforcement
 is enabled. If ’false’, then enforcement
 is disabled.";
 }

 leaf read-default {
 type nacm-action-type;
 default "permit";
 description
 "Controls whether read access is granted if
 no appropriate rule is found for a
 particular read request.";
 }

 leaf write-default {
 type nacm-action-type;
 default "deny";
 description
 "Controls whether create, update, or delete access
 is granted if no appropriate rule is found for a
 particular write request.";

Bierman & Bjorklund Expires September 12, 2011 [Page 35]

Internet-Draft NACM March 2011

 }

 leaf exec-default {
 type nacm-action-type;
 default "permit";
 description
 "Controls whether exec access is granted if no appropriate
 rule is found for a particular RPC operation request.";
 }

 leaf denied-rpcs {
 type yang:zero-based-counter32;
 config false;
 mandatory true;
 description
 "Number of times an RPC operation request was denied
 since the server last restarted.";
 }

 leaf denied-data-writes {
 type yang:zero-based-counter32;
 config false;
 mandatory true;
 description
 "Number of times a request to alter a data node
 was denied, since the server last restarted.";
 }

 container groups {
 description
 "NETCONF Access Control Groups.";

 list group {
 key name;

 description
 "One NACM Group Entry.";

 leaf name {
 type nacm-group-name-type;
 description
 "Group name associated with this entry.";
 }

 leaf-list user-name {
 type nacm-user-name-type;
 description
 "Each entry identifies the user name of

Bierman & Bjorklund Expires September 12, 2011 [Page 36]

Internet-Draft NACM March 2011

 a member of the group associated with
 this entry.";
 }
 }
 }

 container rules {
 description
 "NETCONF Access Control Rules.";

 grouping common-rule-parms {
 description
 "Common rule parameters.";

 leaf rule-name {
 type string {
 length "1..256";
 }
 description
 "Arbitrary name assigned to the
 access control rule.";
 }

 leaf allowed-rights {
 type nacm-rights-type;
 description
 "List of access rights granted to
 specified administrative groups for the
 content specified by the associated path.";
 }

 leaf-list allowed-group {
 type union {
 type nacm-matchall-string-type;
 type nacm-group-name-type;
 }
 min-elements 1;
 description
 "List of administrative groups which will be
 assigned the associated access rights
 for the content specified by the associated path.

 The string ’*’ indicates that all configured
 administrative groups apply to the entry.";
 }

 leaf nacm-action {
 type nacm-action-type;

Bierman & Bjorklund Expires September 12, 2011 [Page 37]

Internet-Draft NACM March 2011

 mandatory true;
 description
 "The access control action associated with the
 rule. If a rule is determined to match a
 particular request, then this object is used
 to determine whether to permit or deny the
 request.";
 }

 leaf comment {
 type string {
 length "1..4095";
 }
 description
 "A textual description of the access rule.";
 }
 }

 list module-rule {
 key "module-name rule-name";
 ordered-by user;

 description
 "One Module Access Rule.

 Rules are processed in user-defined order. A module rule
 is considered a match if the XML namespace for the
 specified module name matches the XML namespace used
 within a NETCONF PDU, and the administrative group
 associated with the requesting session is specified in the
 ’allowed-group’ leaf-list, and the requested operation
 is included in the ’allowed-rights’ leaf.";

 leaf module-name {
 type string;
 description
 "Name of the module associated with this rule.";
 }

 uses common-rule-parms {
 refine allowed-rights {
 mandatory true;
 }
 }
 }

 list rpc-rule {
 key "module-name rpc-name rule-name";

Bierman & Bjorklund Expires September 12, 2011 [Page 38]

Internet-Draft NACM March 2011

 ordered-by user;

 description
 "One RPC Operation Access Rule.

 Rules are processed in user-defined order. An RPC rule is
 considered a match if the module name of the requested RPC
 operation matches ’module-name’, the requested RPC
 operation matches ’rpc-name’, and an administrative group
 associated with the session user is listed in the
 ’allowed-group’ leaf-list. The ’allowed-rights’ leaf
 is ignored by the server if it is present.
 Only the ’exec’ bit can possibly cause
 a match for an RPC rule.";

 leaf module-name {
 type string;
 description
 "Name of the module defining this RPC operation.";
 }

 leaf rpc-name {
 type string;
 description
 "Name of the RPC operation.";
 }

 uses common-rule-parms;
 }

 list data-rule {
 key "rule-name";
 ordered-by user;

 description
 "One Data Access Control Rule.

 Rules are processed in user-defined order. A data rule is
 considered to match when the path expression identifies
 the same node that is being accessed in the NETCONF
 datastore, and the administrative group associated with the
 session is identified in the ’allowed-group’ leaf-list,
 and the requested operation is included in the
 ’allowed-rights’ leaf.";

 leaf path {
 type schema-instance-identifier;
 mandatory true;

Bierman & Bjorklund Expires September 12, 2011 [Page 39]

Internet-Draft NACM March 2011

 description
 "Schema Instance Identifier associated with the data node
 controlled by this rule.

 Configuration data or state data instance identifiers
 start with a top-level data node. A complete instance
 identifier is required for this type of path value.

 The special value ’/’ refers to all possible datastore
 contents.";
 }

 uses common-rule-parms {
 refine allowed-rights {
 mandatory true;
 }
 }
 }

 list notification-rule {
 key "module-name
 notification-name
 rule-name";
 ordered-by user;

 description
 "One Notification Access Rule.

 A notification is considered a match if the module name of
 the requested event type matches
 ’module-name’, the requested event type
 matches the ’notification-name’, and the administrative
 group associated with the requesting session is listed in
 the ’allowed-group’ leaf-list. If the ’allowed-rights’
 leaf is present, it is ignored by the server.
 Only the ’read’ bit can possibly cause
 a match for a notification rule.";

 leaf module-name {
 type string;
 description
 "Name of the module defining this
 notification event type.";
 }

 leaf notification-name {
 type string;
 description

Bierman & Bjorklund Expires September 12, 2011 [Page 40]

Internet-Draft NACM March 2011

 "Name of the notification event.";
 }

 uses common-rule-parms;
 }
 }
 }
 }

 <CODE ENDS>

 Figure 5

3.5. IANA Considerations

 There are two actions that are requested of IANA: This document
 registers one URI in "The IETF XML Registry". Following the format
 in [RFC3688], the following has been registered.

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-acm
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 This document registers one module in the "YANG Module Names"
 registry. Following the format in [RFC6020], the following has been
 registered.

 name: ietf-netconf-acm
 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-acm
 prefix: nacm
 reference: RFC XXXX
 // RFC Ed.: Replace XXX with actual RFC number
 // and remove this note

3.6. Security Considerations

 This entire document discusses access control requirements and
 mechanisms for restricting NETCONF protocol behavior within a given
 session.

 Configuration of the access control system is highly sensitive to
 system security. A server may choose not to allow any user
 configuration to some portions of it, such as the global security
 level, or the groups which allowed access to system resources.

 This document incorporates the optional use of a ’superuser’ account,

Bierman & Bjorklund Expires September 12, 2011 [Page 41]

Internet-Draft NACM March 2011

 which can be used to bypass access control enforcement. It is
 suggested that the ’root’ account not be used for NETCONF over SSH
 servers, because ’root’ SSH logins SHOULD be disabled in the SSH
 server.

 If the server chooses to allow user configuration of the access
 control system, then only sessions using the ’superuser’
 administrative user SHOULD be allowed to have write access to the
 data model.

 If the server chooses to allow user retrieval of the access control
 system configuration, then only sessions using the ’superuser’
 administrative user SHOULD be allowed to have read access to the data
 model.

 There is a risk that invocation of non-standard protocol operations
 will have undocumented side effects. An administrator needs to
 construct access control rules such that the configuration datastore
 is protected from such side effects. Also, such protocol operations
 SHOULD never be invoked by a session using the ’superuser’
 administrative user.

 There is a risk that non-standard protocol operations, or even the
 standard <get> operation, may return data which ’aliases’ or ’copies’
 sensitive data from a different data object. In this case, the
 namespace and/or the element name will not match the values for the
 sensitive data, which is then fully or partially copied into a
 different namespace and/or element. An administrator needs to avoid
 using data models which use this practice.

 An administrator needs to restrict write access to all configurable
 objects within this data model. It is suggested that only sessions
 using the ’superuser’ administrative role be permitted to configure
 the data model defined in this document.

 If write access is allowed for configuration of access control rules,
 then care needs to be taken not to disrupt the access control
 enforcement.

 An administrator needs to restrict read access to the following
 objects within this data model, which reveal access control
 configuration which could be considered sensitive.

 o enable-nacm

 o read-default

Bierman & Bjorklund Expires September 12, 2011 [Page 42]

Internet-Draft NACM March 2011

 o write-default

 o exec-default

 o groups

 o rules

Bierman & Bjorklund Expires September 12, 2011 [Page 43]

Internet-Draft NACM March 2011

4. References

4.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, July 2008.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6021] Schoenwaelder, J., "Common YANG Data Types", RFC 6021,
 October 2010.

 [I-D.ietf-netconf-4741bis]
 Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)",
 draft-ietf-netconf-4741bis-09 (work in progress),
 February 2011.

 [I-D.ietf-netconf-rfc4742bis]
 Wasserman, M. and T. Goddard, "Using the NETCONF
 Configuration Protocol over Secure Shell (SSH)",
 draft-ietf-netconf-rfc4742bis-07 (work in progress),
 February 2011.

4.2. Informative References

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, June 2000.

 [RFC5607] Nelson, D. and G. Weber, "Remote Authentication Dial-In
 User Service (RADIUS) Authorization for Network Access
 Server (NAS) Management", RFC 5607, July 2009.

Bierman & Bjorklund Expires September 12, 2011 [Page 44]

Internet-Draft NACM March 2011

Appendix A. Usage Examples

 The following XML snippets are provided as examples only, to
 demonstrate how NACM can be configured to perform some access control
 tasks.

A.1. <groups> Example

 There needs to be at least one <group> entry in order for any of the
 access control rules to be useful.

 The following XML shows arbitrary groups, and is not intended to
 represent any particular use-case.

 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm">
 <groups>
 <group>
 <name>admin</name>
 <user-name>admin</user-name>
 <user-name>andy</user-name>
 </group>

 <group>
 <name>monitor</name>
 <user-name>wilma</user-name>
 <user-name>bam-bam</user-name>
 </group>

 <group>
 <name>guest</name>
 <user-name>guest</user-name>
 <user-name>guest@example.com</user-name>
 </group>
 </groups>
 </nacm>

 This example shows 3 groups:

 1. The nacm:admin group contains 2 users named ’admin’ and ’andy’.

 2. The nacm:monitor group contains 2 users named ’wilma’ and ’bam-
 bam’.

Bierman & Bjorklund Expires September 12, 2011 [Page 45]

Internet-Draft NACM March 2011

 3. The nacm:guest group contains 2 users named ’guest’ and
 ’guest@example.com’.

A.2. <module-rule> Example

 Module rules are used to control access to all the content defined in
 a specific module. These rules are checked after none of the
 specific rules (i.e., rpc-rule, data-rule, or notification-rule)
 matched the current access request.

 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm">
 <rules>
 <module-rule>
 <module-name>ietf-netconf-monitoring</module-name>
 <rule-name>mod-1</rule-name>
 <allowed-rights>*</allowed-rights>
 <allowed-group>guest</allowed-group>
 <nacm-action>deny</nacm-action>
 <comment>
 Do not allow guests any access to the netconf
 monitoring information.
 </comment>
 </module-rule>

 <module-rule>
 <module-name>ietf-netconf-monitoring</module-name>
 <rule-name>mod-2</rule-name>
 <allowed-rights>read</allowed-rights>
 <allowed-group>monitor</allowed-group>
 <nacm-action>permit</nacm-action>
 <comment>
 Allow the monitor group read access to the netconf
 monitoring information.
 </comment>
 </module-rule>

 <module-rule>
 <module-name>*</module-name>
 <rule-name>mod-3</rule-name>
 <allowed-rights>exec</allowed-rights>
 <allowed-group>monitor</allowed-group>
 <nacm-action>permit</nacm-action>
 <comment>
 Allow the monitor group to invoke any of the
 supported server operations.
 </comment>
 </module-rule>

Bierman & Bjorklund Expires September 12, 2011 [Page 46]

Internet-Draft NACM March 2011

 <module-rule>
 <module-name>*</module-name>
 <rule-name>mod-4</rule-name>
 <allowed-rights>*</allowed-rights>
 <allowed-group>admin</allowed-group>
 <nacm-action>permit</nacm-action>
 <comment>
 Allow the admin group complete access to all
 operations and data.
 </comment>
 </module-rule>

 </rules>
 </nacm>

 This example shows 4 module rules:

 mod-1: This rule prevents the guest group from reading any
 monitoring information in the ietf-netconf-monitoring YANG module.

 mod-2: This rule allows the monitor group to read the ietf-netconf-
 monitoring YANG module.

 mod-3: This rule allows the monitor group to invoke any protocol
 operation supported by the server.

 mod-4: This rule allows the admin group complete access to all
 content in the server. No subsequent rule will match for the
 admin group, because of this module rule.

A.3. <rpc-rule> Example

 RPC rules are used to control access to a specific protocol
 operation.

Bierman & Bjorklund Expires September 12, 2011 [Page 47]

Internet-Draft NACM March 2011

 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm">
 <rules>
 <rpc-rule>
 <module-name>ietf-netconf</module-name>
 <rpc-name>kill-session</rpc-name>
 <rule-name>rpc-1</rule-name>
 <allowed-group>monitor</allowed-group>
 <allowed-group>guest</allowed-group>
 <nacm-action>deny</nacm-action>
 <comment>
 Do not allow the monitor or guest group
 to kill another session.
 </comment>
 </rpc-rule>

 <rpc-rule>
 <module-name>ietf-netconf</module-name>
 <rpc-name>delete-config</rpc-name>
 <rule-name>rpc-2</rule-name>
 <allowed-group>monitor</allowed-group>
 <allowed-group>guest</allowed-group>
 <nacm-action>deny</nacm-action>
 <comment>
 Do not allow monitor or guest group
 to delete any configurations.
 </comment>
 </rpc-rule>

 <rpc-rule>
 <module-name>ietf-netconf</module-name>
 <rpc-name>edit-config</rpc-name>
 <rule-name>rpc-3</rule-name>
 <allowed-group>monitor</allowed-group>
 <nacm-action>permit</nacm-action>
 <comment>
 Allow the monitor group to edit the configuration.
 </comment>
 </rpc-rule>
 </rules>
 </nacm>

 This example shows 3 protocol operation rules:

Bierman & Bjorklund Expires September 12, 2011 [Page 48]

Internet-Draft NACM March 2011

 rpc-1: This rule prevents the monitor or guest groups from invoking
 the NETCONF <kill-session> protocol operation.

 rpc-2: This rule prevents the monitor or guest groups from invoking
 the NETCONF <delete-config> protocol operation.

 rpc-3: This rule allows the monitor group to invoke the NETCONF
 <edit-config> protocol operation. This rule will have no real
 affect unless the ’exec-default’ leaf is set to ’deny’.

A.4. <data-rule> Example

 Data rules are used to control access to specific (config and non-
 config) data nodes within the NETCONF content provided by the server.

 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm">
 <rules>
 <data-rule>
 <rule-name>data-1</rule-name>
 <path>/nacm</path>
 <allowed-rights>*</allowed-rights>
 <allowed-group>guest</allowed-group>
 <nacm-action>deny</nacm-action>
 <comment>
 Deny the guest group any access to the /nacm data.
 </comment>
 </data-rule>

 <data-rule>
 <rule-name>data-acme-config</rule-name>
 <path xmlns:acme="http://example.com/ns/netconf">
 /acme:acme-netconf/acme:config-parameters
 </path>
 <allowed-rights>read create update delete</allowed-rights>
 <allowed-group>monitor</allowed-group>
 <nacm-action>permit</nacm-action>
 <comment>
 Allow the monitor group complete access to the acme
 netconf configuration parameters. Showing long form
 of ’allowed-rights’ instead of shorthand.
 </comment>
 </data-rule>

 <data-rule>
 <rule-name>dummy-itf</rule-name>
 <path xmlns:acme="http://example.com/ns/itf">
 /acme:interfaces/acme:interface[acme:name=’dummy’]

Bierman & Bjorklund Expires September 12, 2011 [Page 49]

Internet-Draft NACM March 2011

 </path>
 <allowed-rights>read update</allowed-rights>
 <allowed-group>monitor</allowed-group>
 <allowed-group>guest</allowed-group>
 <nacm-action>permit</nacm-action>
 <comment>
 Allow the monitor and guest groups read
 and update access to the dummy interface.
 </comment>
 </data-rule>

 <data-rule>
 <rule-name>admin-itf</rule-name>
 <path xmlns:acme="http://example.com/ns/itf">
 /acme:interfaces/acme:interface
 </path>
 <allowed-rights>*</allowed-rights>
 <allowed-group>admin</allowed-group>
 <nacm-action>permit</nacm-action>
 <comment>
 Allow admin full access to all acme interfaces.
 This is an example of an unreachable rule,
 because the admin group already has full access
 to all modules (see rule ’mod-4’).
 All ’module-rule’ entries will be checked
 before this ’data-rule’ entry is checked.
 </comment>
 </data-rule>
 </rules>
 </nacm>

 This example shows 4 data rules:

 data-1: This rule denies the guest group any access to the <nacm>
 sub-tree. Note that the default namespace is only applicable
 because this sub-tree is defined in the same namespace as the
 <data-rule> element.

 data-acme-config: This rule gives the monitor group read-write
 access to the acme <config-parameters>.

 dummy-itf: This rule gives the monitor and guest groups read-update
 access to the acme <interface>. entry named ’dummy’. This entry
 cannot be created or deleted by these groups, just altered.

Bierman & Bjorklund Expires September 12, 2011 [Page 50]

Internet-Draft NACM March 2011

 admin-itf: This rule gives the admin group read-write access to all
 acme <interface>. entries. This is an example of an unreachable
 rule because the ’mod-3’ rule already gives the admin group full
 access to this data.

A.5. <notification-rule> Example

 Notification rules are used to control access to a specific
 notification event type.

 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm">
 <rules>
 <notification-rule>
 <module-name>acme-system</module-name>
 <notification-name>sys-config-change</notification-name>
 <rule-name>notif-1</rule-name>
 <allowed-group>monitor</allowed-group>
 <allowed-group>guest</allowed-group>
 <nacm-action>deny</nacm-action>
 <comment>
 Do not allow the guest or monitor groups
 to receive config change events.
 </comment>
 </notification-rule>
 </rules>
 </nacm>

 This example shows 1 notification rule:

 notif-1: This rule prevents the monitor or guest groups from
 receiving the acme <sys-config-change> event type.

Bierman & Bjorklund Expires September 12, 2011 [Page 51]

Internet-Draft NACM March 2011

Appendix B. Change Log

 -- RFC Ed.: remove this section before publication.

B.1. 02-03

 Fixed improper usage of RFC 2119 keywords.

 Changed term usage of ’database’ to ’datastore’.

 Clarified that ’secure’ and ’very-secure’ extensions only apply if
 the /nacm/enable-nacm object is ’true’.

B.2. 01-02

 Removed authentication text and objects.

 Changed module name from ietf-nacm to ietf-netconf-acm.

 Updated NETCONF and YANG terminology.

 Removed open issues section.

 Changed some must to MUST in requirements section.

B.3. 00-01

 Updated YANG anf YANG Types references.

 Updated module namespace URI to standard format.

 Updated module header meta-data to standard format.

 Filled in IANA section.

B.4. 00

 Initial version cloned from
 draft-bierman-netconf-access-control-02.txt.

Bierman & Bjorklund Expires September 12, 2011 [Page 52]

Internet-Draft NACM March 2011

Authors’ Addresses

 Andy Bierman
 Brocade

 Email: andy.bierman@brocade.com

 Martin Bjorklund
 Tail-f Systems

 Email: mbj@tail-f.com

Bierman & Bjorklund Expires September 12, 2011 [Page 53]

NETCONF A. Bierman
Internet-Draft Brocade
Intended status: Standards Track March 9, 2011
Expires: September 10, 2011

 Network Configuration Protocol System Notifications
 draft-ietf-netconf-system-notifications-03

Abstract

 The NETCONF protocol provides mechanisms to manipulate configuration
 datastores. However, client applications often need to be aware of
 common NETCONF system events such as a change in NETCONF
 capabilities, which may impact management applications. Standard
 mechanisms are needed to support the monitoring of the NETCONF system
 events within the NETCONF server. This document defines a YANG
 module which allows a NETCONF client to receive notifications for
 some common events.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Bierman Expires September 10, 2011 [Page 1]

Internet-Draft NETCONF System Notifications March 2011

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 2. YANG Module for NETCONF System Notifications 3
 2.1. Overview . 3
 2.1.1. Notifications . 4
 2.2. Definitions . 4
 3. IANA Considerations . 11
 4. Security Considerations 11
 5. Normative References . 11
 Appendix A. Change Log . 12
 A.1. 02-03 . 12
 A.2. 01-02 . 13
 A.3. 00-01 . 13
 A.4. 00 . 13
 Author’s Address . 13

Bierman Expires September 10, 2011 [Page 2]

Internet-Draft NETCONF System Notifications March 2011

1. Introduction

 The NETCONF protocol [I-D.ietf-netconf-4741bis] provides mechanisms
 to manipulate configuration datastores. However, client applications
 often need to be aware of common NETCONF system events such as a
 change in NETCONF capabilities, which may impact management
 applications. Standard mechanisms are needed to support the
 monitoring of the NETCONF system events within the NETCONF server.
 This document defines a YANG module [RFC6020] which allows a NETCONF
 client to receive notifications for some common events.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [I-D.ietf-netconf-4741bis]:
 o client
 o datastore
 o operation
 o server

 The following terms are defined in [RFC5277]:
 o event
 o stream
 o subscription

 The following term is defined in [RFC6020]:
 o data node

2. YANG Module for NETCONF System Notifications

2.1. Overview

 The YANG module defined within this document specifies a small number
 of notification event messages for use within the ’NETCONF’ stream,
 and accessible to clients via the subscription mechanism in
 [RFC5277].

 These notifications pertain to the NETCONF portion of the managed
 system, not the entire system.

 The YANG language is defined in [RFC6020].

Bierman Expires September 10, 2011 [Page 3]

Internet-Draft NETCONF System Notifications March 2011

2.1.1. Notifications

 This module defines some events for the ’NETCONF’ stream to notify a
 client application that the NETCONF server state has changed.
 o netconf-config-change: Generated when the NETCONF server detects
 that the <running> or <startup> configuration datastore has
 changed. Summarizes each edit being reported.
 o netconf-capability-change: Generated when the NETCONF server
 capabilities are changed. Indicates which capabilities have been
 added, deleted, and/or modified.
 o netconf-session-start: Generated when a NETCONF session is
 started. Indicates the identity of the user that started the
 session.
 o netconf-session-end: Generated when a NETCONF server detects that
 a session has terminated. Indicates the identity of the user that
 owned the session, and why the session was terminated.
 o netconf-confirmed-commit: Generated when a NETCONF confirmed-
 commit event occurs. Indicates the current state of the
 confirmed-commit operation in progress.

2.2. Definitions

 <CODE BEGINS> file="ietf-netconf-system-notifications@2011-03-08.yang"

 module ietf-netconf-system-notifications {

 namespace
 "urn:ietf:params:xml:ns:yang:ietf-netconf-system-notifications";

 prefix ncsys;

 import ietf-inet-types { prefix inet; }
 import ietf-netconf { prefix nc; }

 organization
 "IETF NETCONF (Network Configuration Protocol) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Bert Wijnen
 <mailto:bertietf@bwijnen.net>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

Bierman Expires September 10, 2011 [Page 4]

Internet-Draft NETCONF System Notifications March 2011

 Editor: Andy Bierman
 <mailto:andy.bierman@brocade.com>";

 description
 "This module defines an YANG data model for use with the
 NETCONF protocol that allows the NETCONF client to
 receive common NETCONF system notification events.

 Copyright (c) 2011 IETF Trust and the persons identified as
 the document authors. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";
 // RFC Ed.: replace XXXX with actual RFC number and remove this note

 // RFC Ed.: remove this note
 // Note: extracted from
 // draft-ietf-netconf-system-notifications-03.txt

 revision 2011-03-08 {
 description
 "Initial version.";
 reference
 "RFC XXXX: NETCONF System Notifications";
 }
 // RFC Ed.: replace XXXX with actual
 // RFC number and remove this note

 grouping common-session-parms {
 leaf username {
 description
 "Name of the user for the session.";
 type string;
 mandatory true;
 }

 leaf session-id {
 description
 "Identifier of the session.
 A non-NETCONF session will be identified by the value zero.";

Bierman Expires September 10, 2011 [Page 5]

Internet-Draft NETCONF System Notifications March 2011

 type nc:session-id-or-zero-type;
 mandatory true;
 }

 leaf source-host {
 description
 "Address of the remote host for the session.";
 type inet:ip-address;
 }
 }

 grouping changed-by-parms {
 container changed-by {
 description
 "Indicates who caused this change.
 If caused by internal action, then the
 empty leaf ’server’ will be present.
 If caused by a management session, then
 the name, remote host address, and session ID
 of the session that made the change will be reported.";
 choice server-or-user {
 mandatory true;
 leaf server {
 type empty;
 description
 "If present, the change was caused
 by the server.";
 }

 case by-user {
 uses common-session-parms;
 }
 } // choice server-or-user
 } // container changed-by-parms;
 }

 notification netconf-config-change {
 description
 "Generated when the NETCONF server detects that the
 <running> or <startup> configuration datastore has changed.";

 uses changed-by-parms;

 leaf target-datastore {
 type enumeration {
 enum running {

Bierman Expires September 10, 2011 [Page 6]

Internet-Draft NETCONF System Notifications March 2011

 description "The running datastore has changed.";
 }
 enum startup {
 description "The startup datastore has changed";
 }
 }
 description
 "Indicates which configuration datastore has changed.";
 default "running";
 }

 list edit {
 description
 "An edit record will be present for each distinct
 edit operation on the target datastore.";

 leaf target {
 type instance-identifier;
 description
 "Topmost node associated with the configuration change.
 A server SHOULD set this object to the node within
 the datastore which is being altered. A server MAY
 set this object to one of the ancestors of the actual
 node that was changed, or omit this object, if the
 exact node is not known.";
 }

 leaf operation {
 type nc:edit-operation-type;
 description
 "Type of edit operation performed.
 A server MUST set this object to the NETCONF edit
 operation performed on the target datastore.";
 }
 } // list edit
 } // notification netconf-config-change

 notification netconf-capability-change {
 description
 "Generated when a <capability> is added, deleted,
 or modified.";

 uses changed-by-parms;

 leaf-list added-capability {
 type inet:uri;
 description

Bierman Expires September 10, 2011 [Page 7]

Internet-Draft NETCONF System Notifications March 2011

 "List of capabilities that have just been added.";
 }

 leaf-list deleted-capability {
 type inet:uri;
 description
 "List of capabilities that have just been deleted.";
 }

 leaf-list modified-capability {
 type inet:uri;
 description
 "List of capabilities that have just been modified.
 A capability is considered to be modified if the
 base URI for the capability has not changed, but
 one or more of the parameters encoded at the end of
 the capability URI has changed.
 The new modified value of the complete URI is returned.";
 }
 } // notification netconf-capability-change

 notification netconf-session-start {
 description
 "Generated when a new NETCONF session is started.";
 uses common-session-parms;
 } // notification netconf-session-start

 notification netconf-session-end {
 description
 "Generated when a NETCONF session is terminated.";

 uses common-session-parms;

 leaf killed-by {
 when "../termination-reason = ’killed’";
 type nc:session-id-type;
 description
 "Session ID that issued the <kill-session>
 if the session was terminated by this operation.";
 }

 leaf termination-reason {
 type enumeration {
 enum "closed" {
 value 0;
 description

Bierman Expires September 10, 2011 [Page 8]

Internet-Draft NETCONF System Notifications March 2011

 "The session was terminated with
 the NETCONF <close-session> operation.";
 }
 enum "killed" {
 value 1;
 description
 "The session was terminated with
 the NETCONF <kill-session> operation.";
 }
 enum "dropped" {
 value 2;
 description
 "The session was terminated because
 the transport layer connection was
 unexpectedly closed.";
 }
 enum "timeout" {
 value 3;
 description
 "The session was terminated because
 of inactivity, either waiting for
 the <hello> or <rpc> messages.";
 }
 enum "bad-hello" {
 value 4;
 description
 "The client’s <hello> message was invalid.";
 }
 enum "other" {
 value 5;
 description
 "The session was terminated for
 some other reason.";
 }
 }
 mandatory "true";
 description "Reason the session was terminated.";
 }
 } // notification netconf-session-end

 notification netconf-confirmed-commit {
 description
 "Generated when a confirmed-commit event occurs.";
 reference
 "I-D draft-ietf-netconf-4741bis section 8.4";

 uses common-session-parms {

Bierman Expires September 10, 2011 [Page 9]

Internet-Draft NETCONF System Notifications March 2011

 when "../confirm-event != ’timeout’";
 }

 leaf confirm-event {
 description
 "Indicates the event that caused the notification.";
 type enumeration {
 enum "start" {
 value 0;
 description
 "The confirm-commit procedure has started.";
 }
 enum "cancel" {
 value 1;
 description
 "The confirm-commit procedure has been canceled,
 due to the session being terminated, or an
 explicit <cancel-commit> operation.";
 }
 enum "timeout" {
 value 2;
 description
 "The confirm-commit procedure has been canceled,
 due to the confirm-timeout interval expiring.
 The common session parameters will not be present
 in this sub-mode.";
 }
 enum "extend" {
 value 3;
 description
 "The confirm-commit timeout has been extended.";
 }
 enum "complete" {
 value 4;
 description
 "The confirm-commit procedure has been completed.";
 }
 }
 mandatory "true";
 }

 leaf timeout {
 when
 "../confirm-event = ’start’ or ../confirm-event = ’extend’";
 description
 "The configured timeout value if the event type
 is ’start’ or ’extend’. This value represents the
 the approximate number of seconds from the event

Bierman Expires September 10, 2011 [Page 10]

Internet-Draft NETCONF System Notifications March 2011

 time when the ’timeout’ event might occur.";
 units "seconds";
 type uint32;
 }
 } // notification netconf-confirmed-commit

 }

 <CODE ENDS>

3. IANA Considerations

 This document registers one XML namespace URN in the ’IETF XML
 registry’, following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-system-notifications

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

 This document registers one module name in the ’YANG Module Names’
 registry, defined in [RFC6020] .

 name: ietf-netconf-system-notifications
 prefix: ncsys
 namespace:
 urn:ietf:params:xml:ns:yang:ietf-netconf-system-notifications
 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

4. Security Considerations

 This document defines a YANG module for reporting of particular
 system events. Although unlikely, it is possible that data obtained
 from this module could be used in an attack of some kind, although no
 specific information in this module is considered sensitive.

 TBD: follow Security Consideration guidelines from new template text.

5. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Bierman Expires September 10, 2011 [Page 11]

Internet-Draft NETCONF System Notifications March 2011

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, July 2008.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6021] Schoenwaelder, J., "Common YANG Data Types", RFC 6021,
 October 2010.

 [I-D.ietf-netconf-4741bis]
 Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)",
 draft-ietf-netconf-4741bis-09 (work in progress),
 February 2011.

Appendix A. Change Log

 -- RFC Ed.: remove this section before publication.

A.1. 02-03

 Renamed module back to NETCONF system notifications. The module is
 now ietf-netconf-system-notifications. The namespace and prefix are
 now changed as well.

 Leaf user-name is now username, and is now mandatory, to be
 consistent with netconf monitoring module.

 Leaf remote-host is now source-host to be consistent with netconf
 monitoring module.

 The changed-by choice (server-or-user) is now mandatory.

 The netconf-config-change description was updated and leaf target-
 database is now named target-datastore.

 Term ’database’ changed to term ’datastore’ in text.

 netconf-confirmed-commit: changed uses common-session-parms to use
 when-stmt not refine-stmt.

 netconf-capability-change: updated description text.

Bierman Expires September 10, 2011 [Page 12]

Internet-Draft NETCONF System Notifications March 2011

A.2. 01-02

 Renamed module NETCONF Events instead of NETCONF system
 notifications. Note that ietf-netconf-notifications is being
 reserved for the XML content defined in RFC 5277.

 Made changes based on mailing list comments and latest WG consensus.

 Filled in IANA section.

A.3. 00-01

 Removed sys-startup notification.

 Make changed-by into a grouping, and added usage to sys-config-change
 notification.

 Added target-database leaf to sys-config-change to distinguish
 between running and startup changes.

 Removed ’bad-start’ from termination-reason leaf in sys-session-end
 notification.

A.4. 00

 Initial version, based on
 draft-bierman-netconf-system-monitoring-00.txt.

Author’s Address

 Andy Bierman
 Brocade

 Email: andy.bierman@brocade.com

Bierman Expires September 10, 2011 [Page 13]

NETCONF A. Bierman
Internet-Draft Brocade
Intended status: Standards Track B. Lengyel
Expires: May 15, 2011 Ericsson
 November 11, 2010

 With-defaults capability for NETCONF
 draft-ietf-netconf-with-defaults-14

Abstract

 The NETCONF protocol defines ways to read and edit configuration data
 from a NETCONF server. In some cases, part of this data may not be
 set by the NETCONF client, but rather a default value known to the
 server is used instead. In many situations the NETCONF client has a
 priori knowledge about default data, so the NETCONF server does not
 need to save it in a NETCONF configuration datastore or send it to
 the client in a retrieval operation reply. In other situations the
 NETCONF client will need this data from the server. Not all server
 implementations treat this default data the same way. This document
 defines a capability-based extension to the NETCONF protocol that
 allows the NETCONF client to identify how defaults are processed by
 the server, and also defines new mechanisms for client control of
 server processing of default data.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 15, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Bierman & Lengyel Expires May 15, 2011 [Page 1]

Internet-Draft with-defaults November 2010

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Terminology . 4
 1.2. Defaults Handling Behavior 5
 1.3. Client Controlled Retrieval of Default Data 5
 2. Defaults Handling Basic Modes 6
 2.1. ’report-all’ Basic Mode 6
 2.1.1. ’report-all’ Basic Mode Retrieval 7
 2.1.2. ’report-all’ <with-defaults> Retrieval 7
 2.1.3. ’report-all’ <edit-config> and <copy-config>
 Behavior . 7
 2.2. ’trim’ Basic Mode . 7
 2.2.1. ’trim’ Basic Mode Retrieval 7
 2.2.2. ’trim’ <with-defaults> Retrieval 7
 2.2.3. ’trim’ <edit-config> and <copy-config> Behavior . . . 8
 2.3. ’explicit’ Basic Mode 8
 2.3.1. ’explicit’ Basic Mode Retrieval 8
 2.3.2. ’explicit’ <with-defaults> Retrieval 8
 2.3.3. ’explicit’ <edit-config> and <copy-config> Behavior . 8
 3. Retrieval of Default Data 9
 3.1. ’report-all’ Retrieval Mode 9
 3.2. ’trim’ Retrieval Mode 9
 3.3. ’explicit’ Retrieval Mode 9
 3.4. ’report-all-tagged’ Retrieval Mode 10
 4. With-defaults Capability 10
 4.1. Overview . 10
 4.2. Dependencies . 11
 4.3. Capability Identifier 11
 4.4. New Operations . 11
 4.5. Modifications to Existing Operations 11
 4.5.1. <get>, <get-config>, and <copy-config> Operations . . 11
 4.5.2. <edit-config> Operation 13
 4.5.3. Other Operations 13
 4.6. Interactions with Other Capabilities 14
 5. YANG Module for the <with-defaults> Parameter 14
 6. XSD for the ’default’ Attribute 17

Bierman & Lengyel Expires May 15, 2011 [Page 2]

Internet-Draft with-defaults November 2010

 7. IANA Considerations . 19
 8. Security Considerations 19
 9. Acknowledgements . 19
 10. Normative References . 20
 Appendix A. Usage Examples 20
 A.1. Example YANG Module 20
 A.2. Example Data Set . 22
 A.3. Protocol Operation Examples 23
 A.3.1. <with-defaults> = ’report-all’ 23
 A.3.2. <with-defaults> = ’report-all-tagged’ 24
 A.3.3. <with-defaults> = ’trim’ 27
 A.3.4. <with-defaults> = ’explicit’ 28
 Appendix B. Change Log . 29
 B.1. 13-14 . 29
 B.2. 12-13 . 29
 B.3. 11-12 . 29
 B.4. 10-11 . 29
 B.5. 09-10 . 29
 B.6. 08-09 . 29
 B.7. 07-08 . 30
 B.8. 06-07 . 30
 B.9. 05-06 . 30
 B.10. 04-05 . 31
 B.11. 03-04 . 31
 B.12. 02-03 . 31
 B.13. 01-02 . 32
 B.14. 00-01 . 32
 B.15. -00 . 32
 Authors’ Addresses . 32

Bierman & Lengyel Expires May 15, 2011 [Page 3]

Internet-Draft with-defaults November 2010

1. Introduction

 The NETCONF protocol [I-D.ietf-netconf-4741bis] defines ways to read
 configuration and state data from a NETCONF server. Part of the
 configuration data may not be set by the NETCONF client, but rather
 by a default value from the data model. In many situations the
 NETCONF client has a priori knowledge about default data, so the
 NETCONF server does not need to send it to the client. A priori
 knowledge can be obtained, e.g., a document formally describing the
 data models supported by the NETCONF server.

 It can be important for a client to know exactly how a server
 implementation will handle default data. There are subtle
 differences in some protocol operations where the defaults handling
 behavior of the server will affect the outcome of the operation.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Data model schema: A document or set of documents describing the
 data models supported by the NETCONF server.
 Management Application: A computer program running outside the
 NETCONF server that configures or supervises the NETCONF server.
 A management application can reach the device e.g. via NETCONF,
 command line interface (CLI) or Simple Network Management Protocol
 (SNMP).
 Schema default data: Data specified in the data model schema as
 default, that is set or used by the device whenever the NETCONF
 client or other management application/user does not provide a
 specific value for the relevant data node. Schema default data
 may or may not be stored as part of a configuration datastore,
 depending on the basic mode used by a particular server.
 Default data: Conceptual data containing a default value. Default
 data is not kept in a datastore. Not all servers use the same
 criteria to decide if a data node is actually instantiated in a
 datastore. If a data node is not present in a datastore, and a
 schema default definition is in use by the server instead, then it
 is considered to be a default data node.
 Default value: A default value is a value for a data node instance
 that is conceptually in use by the server, when the data node
 instance does not exist.

Bierman & Lengyel Expires May 15, 2011 [Page 4]

Internet-Draft with-defaults November 2010

 Explicitly set data: Data that is set to any value by a NETCONF
 client or other management application by the way of an explicit
 management operation, including any data model schema default
 value. Any value set by the NETCONF server which is not the
 schema defined default value is also considered explicitly set
 data.
 <with-defaults> retrieval: Refers to a protocol operation which
 includes the <with-default> parameter to control the handling of
 default data.
 :with-defaults: The shorthand notation for the with-defaults
 capability identifier.

 The following terms are defined in [I-D.ietf-netconf-4741bis]:
 o client
 o datastore
 o operation
 o server

 The following term is defined in [RFC6020]:
 o data node

1.2. Defaults Handling Behavior

 The defaults handling behavior used by a server will impact NETCONF
 protocol operations in two ways:

 1. Data retrieval: A server is normally allowed to exclude data
 nodes which it considers to contain the default value. The
 actual nodes omitted depends on the defaults handling behavior
 used by the server.

 2. Create and delete operations: The <edit-config> ’operation’
 attribute can be used to create and/or delete specific data
 nodes. These operations depend on whether the target node
 currently exists or not. The server’s defaults handling behavior
 will determine whether the requested node currently exists in the
 configuration datastore or not.

1.3. Client Controlled Retrieval of Default Data

 A networking device may have a large number of default values. Often
 the default values are specifically defined with a reasonable value,
 documented and well-known, so that the management user does not need
 to handle them. For these reasons it is quite common for networking
 devices to suppress the output of parameters having the default
 value.

Bierman & Lengyel Expires May 15, 2011 [Page 5]

Internet-Draft with-defaults November 2010

 However, there are use-cases when a NETCONF client will need the
 default data from the server:

 o The management application often needs a single, definitive and
 complete set of configuration values that determine how the
 networking device works.
 o Documentation about default values can be unreliable or
 unavailable.
 o Some management applications might not have the capabilities to
 correctly parse and interpret formal data models.
 o Human users might want to understand the received data without
 consultation of the documentation.

 In all these cases, the NETCONF client will need a mechanism to
 retrieve default data from a NETCONF server.

 This document defines a NETCONF protocol capability to identify the
 server defaults handling behavior, an XML attribute to identify
 default data, and a YANG module extension to the NETCONF protocol
 that allows the NETCONF client to control whether default data is
 returned by the server.

2. Defaults Handling Basic Modes

 Not all server implementations treat default data in the same way.
 Instead of forcing a single implementation strategy, this document
 allows a server to advertise a particular style of defaults handling,
 and the client can adjust accordingly.

 NETCONF servers report default data in different ways. This document
 specifies three standard defaults handling basic modes that a server
 implementor may choose from:

 o report-all
 o trim
 o explicit

 A server MUST select one of the three basic modes defined in this
 section for handling default data.

2.1. ’report-all’ Basic Mode

 A server which uses the ’report-all’ basic mode does not consider any
 data node to be default data, even schema default data.

Bierman & Lengyel Expires May 15, 2011 [Page 6]

Internet-Draft with-defaults November 2010

2.1.1. ’report-all’ Basic Mode Retrieval

 When data is retrieved from a server using the ’report-all’ basic
 mode, and the <with-defaults> parameter is not present, all data
 nodes MUST be reported.

2.1.2. ’report-all’ <with-defaults> Retrieval

 If the ’report-all’ basic mode is used by the server, then the server
 MUST support the <with-defaults> parameter with a value equal to
 ’report-all’, as specified in Section 3.1.

2.1.3. ’report-all’ <edit-config> and <copy-config> Behavior

 The server MUST consider every data node to exist, even those
 containing a schema default value. A valid ’create’ operation
 attribute for a data node that contains its schema default value MUST
 fail with a ’data-exists’ error-tag. A valid ’delete’ operation
 attribute for a data node that contains its schema default value MUST
 succeed, even though the data node is immediately replaced by the
 server with the default value.

 A server which uses the ’report-all’ basic-mode has no concept of a
 default node, so the ’report-all-tagged’ <with-defaults> retrieval
 mode is not relevant. There will never be any tagged nodes, since
 there are no nodes which are omitted in a basic-mode retrieval
 operation. If the ’default’ attribute is present in any
 configuration data, the server MUST return an <rpc-error> response
 with an ’unknown-attribute’ error-tag.

2.2. ’trim’ Basic Mode

 A server which uses the ’trim’ basic mode MUST consider any data node
 set to its schema default value to be default data.

2.2.1. ’trim’ Basic Mode Retrieval

 When data is retrieved from a server using the ’trim’ basic mode, and
 the <with-defaults> parameter is not present, data nodes MUST NOT be
 reported if they contain the schema default value. Non-configuration
 data nodes containing the schema default value MUST NOT be reported.

2.2.2. ’trim’ <with-defaults> Retrieval

 If the ’trim’ basic mode is used by the server, then the server MUST
 support the <with-defaults> parameter with a value equal to ’trim’,
 as specified in Section 3.2.

Bierman & Lengyel Expires May 15, 2011 [Page 7]

Internet-Draft with-defaults November 2010

2.2.3. ’trim’ <edit-config> and <copy-config> Behavior

 The server MUST consider any data node that does not contain its
 schema default value to exist. A valid ’create’ operation attribute
 for a data node that has a schema default value defined MUST succeed.
 A valid ’delete’ operation attribute for a missing data node that has
 a schema default value MUST fail. The server MUST return an <rpc-
 error> response with a ’data-missing’ error-tag.

 If a client sets a data node to its schema default value, using any
 valid operation, it MUST succeed, although the data node MUST NOT be
 saved in the NETCONF configuration datastore. This has the same
 effect as removing the data node and treating it as default data.

 If the server supports the ’report-all-tagged’ value for the <with-
 defaults> parameter, then the ’default’ attribute MUST be accepted in
 configuration input, as described in Section 4.5.1 and Section 4.5.2.

2.3. ’explicit’ Basic Mode

 A server which uses the ’explicit’ basic mode MUST consider any data
 node that is not explicitly set data to be default data.

2.3.1. ’explicit’ Basic Mode Retrieval

 When data is retrieved from a server using the ’explicit’ basic mode,
 and the <with-defaults> parameter is not present, data nodes MUST be
 reported if explicitly set by the client, even if they contain the
 schema default value. Non-configuration data nodes containing the
 schema default value MUST be reported.

2.3.2. ’explicit’ <with-defaults> Retrieval

 If the ’explicit’ basic mode is used by the server, the server MUST
 support the <with-defaults> parameter with a value equal to
 ’explicit’, as specified in Section 3.3.

2.3.3. ’explicit’ <edit-config> and <copy-config> Behavior

 The server considers any data node that is explicitly set data to
 exist. A valid ’create’ operation attribute for a data node that has
 been set by a client to its schema default value MUST fail with a
 ’data-exists’ error-tag. A valid ’create’ operation attribute for a
 data node that has been set by the server to its schema default value
 MUST succeed. A valid ’delete’ operation attribute for a data node
 that has been set by a client to its schema default value MUST
 succeed. A valid ’delete’ operation attribute for a data node that
 has been set by the server to its schema default value MUST fail with

Bierman & Lengyel Expires May 15, 2011 [Page 8]

Internet-Draft with-defaults November 2010

 a ’data-missing’ error-tag.

 If the server supports the ’report-all-tagged’ retrieval mode in its
 :with-defaults capability, then the ’default’ attribute MUST be
 accepted in configuration input. If all NETCONF <edit-config> or
 <copy-config> parameters are valid, then the server will treat a
 tagged data node (i.e., the ’default’ attribute set to ’true’ or ’1’)
 as a request to return that node to default data. If this request is
 valid within the context of the requested NETCONF operation, then the
 data node is removed and returned to its default value. The data
 node within the NETCONF message MUST contain a value in this case,
 which MUST be equal to the schema default value. If not, the server
 MUST return an <rpc-error> response with a ’invalid-value’ error-tag.

3. Retrieval of Default Data

 This document defines a new parameter, called <with-defaults>, which
 can be added to specific NETCONF operation request messages to
 control how retrieval of default data is treated by the server.

 A server which implements this specification MUST accept the <with-
 defaults> parameter containing the enumeration for any of the
 defaults handling modes it supports. The <with-defaults> parameter
 contains one of the four enumerations defined in this section.

3.1. ’report-all’ Retrieval Mode

 When data is retrieved with a <with-defaults> parameter equal to
 ’report-all’, all data nodes MUST be reported, including any data
 nodes considered to be default data by the server.

3.2. ’trim’ Retrieval Mode

 When data is retrieved with a <with-defaults> parameter equal to
 ’trim’, data nodes MUST NOT be reported if they contain the schema
 default value. Non-configuration data nodes containing the schema
 default value MUST NOT be reported.

3.3. ’explicit’ Retrieval Mode

 When data is retrieved with a <with-defaults> parameter equal to
 ’explicit’, a data node which was set by a client to its schema
 default value MUST be reported. A conceptual data node which would
 be set by the server to the schema default value MUST NOT be
 reported. Non-configuration data nodes containing the schema default
 value MUST be reported.

Bierman & Lengyel Expires May 15, 2011 [Page 9]

Internet-Draft with-defaults November 2010

3.4. ’report-all-tagged’ Retrieval Mode

 In addition to the basic modes, a special variant of the ’report-all’
 basic mode is available called ’report-all-tagged’. This mode MUST
 be supported on a server if the ’also-supported’ parameter in the
 :with-defaults capability contains the ’report-all-tagged’ option.
 Refer to Section 4 for encoding details for this capability.

 In this mode the server returns all data nodes, just like the
 ’report-all’ mode, except a data node that is considered by the
 server to contain default data will include an XML attribute to
 indicate this condition. This is useful for an application to
 determine which nodes are considered to contain default data by the
 server, within a single retrieval operation.

 A server which supports ’report-all-tagged’ MUST also accept the
 ’default’ XML attribute within configuration input to the <edit-
 config> or <copy-config> operations. Refer to Section 6 for XML
 encoding details of the ’default’ XML attribute.

4. With-defaults Capability

4.1. Overview

 The :with-defaults capability indicates which defaults handling basic
 mode is supported by the server. It may also indicate support for
 additional defaults retrieval modes. These retrieval modes allow a
 NETCONF client to control whether default data is returned by the
 server. The capability affects both configuration and state data
 (while acknowledging that the usage of default values for state data
 is less prevalent). Sending of default data is controlled for each
 individual operation separately.

 A NETCONF server implementing the :with-defaults capability:

 o MUST indicate its basic mode behavior by including the ’basic-
 mode’ parameter in the capability URI, as defined in Section 4.3.
 o MUST support the YANG module defined in Section 5 for the defaults
 handling mode indicated by the ’basic-mode’ parameter.
 o SHOULD support the YANG module in Section 5 for the defaults
 handling mode identified by the ’report-all’ or ’report-all-
 tagged’ enumeration value.
 o If the ’report-all-tagged’ defaults handling mode is supported,
 then the ’default’ attribute MUST be supported.
 o MAY support the YANG module in Section 5 for additional defaults
 handling modes.

Bierman & Lengyel Expires May 15, 2011 [Page 10]

Internet-Draft with-defaults November 2010

4.2. Dependencies

 None

4.3. Capability Identifier

 urn:ietf:params:netconf:capability:with-defaults:1.0

 The identifier MUST have a parameter: "basic-mode". This indicates
 how the server will treat default data, as defined in Section 2. The
 allowed values of this parameter are ’report-all’, ’trim’, and
 ’explicit’, as defined in Section 2.

 The identifier MAY have another parameter: "also-supported". This
 parameter indicates which additional enumeration values (besides the
 basic-mode enumeration), the server will accept for the <with-
 defaults> parameter in Section 5. The value of the parameter is a
 comma separated list of one or more modes that are supported beside
 the mode indicated in the ’basic-mode’ parameter. Possible modes are
 ’report-all’, ’report-all-tagged’, ’trim’, and ’explicit’, as defined
 in Section 3.

 Note that this protocol capability URI is separate from the YANG
 module capability URI for the YANG module in Section 5. A server
 which implements this module MUST also advertise a YANG module
 capability URI according to the rules specified in [RFC6020].

 Examples:

 urn:ietf:params:netconf:capability:with-defaults:1.0?basic-
 mode=explicit

 urn:ietf:params:netconf:capability:with-defaults:1.0?basic-
 mode=explicit&also-supported=report-all,report-all-tagged

4.4. New Operations

 None

4.5. Modifications to Existing Operations

4.5.1. <get>, <get-config>, and <copy-config> Operations

 A new <with-defaults> XML element is added to the input for the
 <get>, <get-config> and <copy-config> operations. If the <with-
 defaults> element is present, it controls the reporting of default
 data. The server MUST return default data in the NETCONF <rpc-reply>
 messages according to the value of this element, if the server

Bierman & Lengyel Expires May 15, 2011 [Page 11]

Internet-Draft with-defaults November 2010

 supports the specified retrieval mode.

 This parameter only controls these specified retrieval operations,
 and does not impact any other operations or the non-volatile storage
 of configuration data.

 The <with-defaults> element is defined in the XML namespace for the
 ietf-netconf-with-defaults.yang module in Section 5, not the XML
 namespace for the <get>, <get-config> and <copy-config> operations.

 Allowed values of the with-defaults element are taken from the ’with-
 defaults-type’ typedef in Section 5. The allowed values for a
 particular server are restricted to the values that the server
 indicates it supports within the :with-defaults capability, in the
 ’basic-mode’ and ’also-supported’ parameters.

 If an unsupported value is used, the NETCONF server MUST return an
 <rpc-error> response with an ’invalid-value’ error-tag.

 If the <with-defaults> element is not present, the server MUST follow
 its basic mode behavior as indicated by the :with-defaults capability
 identifier’s ’basic-mode’ parameter, defined in Section 4.3.

 The <get> and <get-config> operations support a separate filtering
 mechanism, using the <filter> parameter. The defaults filtering is
 conceptually done before the <filter> parameter is processed. For
 example, if the <with-defaults> parameter is equal to ’report-all’,
 then the <filter> parameter is conceptually applied to all data nodes
 and all default data.

 The <copy-config> operation is only affected by the <with-defaults>
 parameter if the target of the operation is specified with the <url>
 parameter. If the target is a NETCONF configuration datastore (i.e.,
 running, candidate or startup), the <with-defaults> parameter has no
 effect. The server MUST use its basic mode when copying data to a
 NETCONF configuration datastore. If the <with-defaults> parameter is
 present in this case, it MUST be silently ignored by the server.

 If the server supports the ’report-all-tagged’ mode, then the
 ’default’ attribute defined in Section 6 also impacts the <copy-
 config> operation. If the ’default’ attribute is present and set to
 ’true’ or ’1’, then the server MUST treat the new data node as a
 request to return that node to its default value (i.e., remove it
 from the configuration datastore). The data node within the NETCONF
 message MUST contain a value in this case, which MUST be equal to the
 schema default value. If not, the server MUST return an <rpc-error>
 response with a ’invalid-value’ error-tag.

Bierman & Lengyel Expires May 15, 2011 [Page 12]

Internet-Draft with-defaults November 2010

4.5.2. <edit-config> Operation

 The <edit-config> operation has several editing modes. The ’create’
 and ’delete’ editing operations are affected by the defaults handling
 basic mode. The other enumeration values for the NETCONF operation
 attribute are not affected.

 If the operation attribute contains the value ’create’, and the data
 node already exists in the target configuration datastore, then the
 server MUST return an <rpc-error> response with a ’invalid-value’
 error-tag.

 If the client sets a data node to its schema default value, the
 server MUST accept the request if it is valid. The server MUST keep
 or discard the new value based on its defaults handling basic mode.
 For the ’trim’ basic mode, all schema default values are discarded,
 otherwise a client-provided schema default value is saved in a
 NETCONF configuration datastore.

 If the server supports the ’report-all-tagged’ mode, then the
 ’default’ attribute defined in Section 6 also impacts the <edit-
 config> operation. If the ’default’ attribute is present and set to
 ’true’ or ’1’, then the server MUST treat the new data node as a
 request to return that node to its default value (i.e., remove it
 from the configuration datastore). The data node within the NETCONF
 message MUST contain a value in this case, which MUST be equal to the
 schema default value. If not, the server MUST return an <rpc-error>
 response with a ’invalid-value’ error-tag.

 If the ’default’ attribute is present, then the effective operation
 for the target data node MUST be ’create’, ’merge’ or ’replace’. If
 not, then the server MUST return an <rpc-error> response with an
 ’invalid-value’ error-tag. For example, if ’create’ is the effective
 operation, then the create request must be valid on its own (e.g.,
 current data node MUST NOT exist). The procedure for determining the
 effective operation is defined in [I-D.ietf-netconf-4741bis]. It is
 derived from the ’default-operation’ parameter and/or any operation
 attributes that are present in the data node or any of its ancestor
 nodes, within the <edit-config> request.

4.5.3. Other Operations

 Other operations that return configuration data SHOULD also handle
 default data according to the rules set in this document, and
 explicitly state this in their documentation. If this is not
 specified in the document defining the respective operation, the
 default handling rules described herein do not affect these
 operations.

Bierman & Lengyel Expires May 15, 2011 [Page 13]

Internet-Draft with-defaults November 2010

4.6. Interactions with Other Capabilities

 None

5. YANG Module for the <with-defaults> Parameter

 The following YANG module defines the addition of the with-defaults
 element to the <get>, <get-config>, and <copy-config> operations.
 The YANG language is defined in [RFC6020]. The above operations are
 defined in YANG in [I-D.ietf-netconf-4741bis]. Every NETCONF server
 which supports the :with-defaults capability MUST implement this YANG
 module.

 <CODE BEGINS> file="ietf-netconf-with-defaults@2010-11-11.yang"

 module ietf-netconf-with-defaults {

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults";

 prefix ncwd;

 import ietf-netconf { prefix nc; }

 organization
 "IETF NETCONF (Network Configuration Protocol) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netconf/>
 WG List: <mailto:netconf@ietf.org>

 WG Chair: Bert Wijnen
 <mailto:bertietf@bwijnen.net>

 WG Chair: Mehmet Ersue
 <mailto:mehmet.ersue@nsn.com>

 Editor: Andy Bierman
 <mailto:andy.bierman@brocade.com>

 Editor: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>";

 description
 "This module defines an extension to the NETCONF protocol
 that allows the NETCONF client to control how default

Bierman & Lengyel Expires May 15, 2011 [Page 14]

Internet-Draft with-defaults November 2010

 values are handled by the server in particular NETCONF operations.

 Copyright (c) 2010 IETF Trust and the persons identified as
 the document authors. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";
 // RFC Ed.: replace XXXX with actual RFC number and remove this note

 // RFC Ed.: remove this note
 // Note: extracted from draft-ietf-netmod-with-defaults-14.txt

 revision 2010-11-11 {
 description
 "Initial version.";
 reference
 "RFC XXXX: With-defaults capability for NETCONF";
 }
 // RFC Ed.: replace XXXX with actual
 // RFC number and remove this note

 typedef with-defaults-mode {
 description
 "Possible modes to report default data.";
 reference
 "RFC XXXX; section 3.";
 // RFC Ed.: replace XXXX with actual
 // RFC number and remove this note

 type enumeration {
 enum report-all {
 description
 "All default data is reported.";
 reference
 "RFC XXXX; section 3.1";
 // RFC Ed.: replace XXXX with actual
 // RFC number and remove this note

 }
 enum report-all-tagged {
 description

Bierman & Lengyel Expires May 15, 2011 [Page 15]

Internet-Draft with-defaults November 2010

 "All default data is reported.
 Any nodes considered to be default data
 will contain a ’default’ XML attribute,
 set to ’true’ or ’1’.";
 reference
 "RFC XXXX; section 3.4";
 // RFC Ed.: replace XXXX with actual
 // RFC number and remove this note
 }
 enum trim {
 description
 "Values are not reported if they contain the default.";
 reference
 "RFC XXXX; section 3.2";
 // RFC Ed.: replace XXXX with actual
 // RFC number and remove this note

 }
 enum explicit {
 description
 "Report values that contain the definition of
 explicitly set data.";
 reference
 "RFC XXXX; section 3.3";
 // RFC Ed.: replace XXXX with actual
 // RFC number and remove this note
 }
 }
 }

 grouping with-defaults-parameters {
 description
 "Contains the <with-defaults> parameter for control
 of defaults in NETCONF retrieval operations.";

 leaf with-defaults {
 description
 "The explicit defaults processing mode requested.";
 reference
 "RFC XXXX; section 4.6.1";
 // RFC Ed.: replace XXXX with actual
 // RFC number and remove this note

 type with-defaults-mode;
 }
 }

 // extending the get-config operation

Bierman & Lengyel Expires May 15, 2011 [Page 16]

Internet-Draft with-defaults November 2010

 augment /nc:get-config/nc:input {
 description
 "Adds the <with-defaults> parameter to the
 input of the NETCONF <get-config> operation.";
 reference
 "RFC XXXX; section 4.6.1";
 // RFC Ed.: replace XXXX with actual
 // RFC number and remove this note

 uses with-defaults-parameters;
 }

 // extending the get operation
 augment /nc:get/nc:input {
 description
 "Adds the <with-defaults> parameter to
 the input of the NETCONF <get> operation.";
 reference
 "RFC XXXX; section 4.6.1";
 // RFC Ed.: replace XXXX with actual
 // RFC number and remove this note

 uses with-defaults-parameters;
 }

 // extending the copy-config operation
 augment /nc:copy-config/nc:input {
 description
 "Adds the <with-defaults> parameter to
 the input of the NETCONF <copy-config> operation.";
 reference
 "RFC XXXX; section 4.6.1";
 // RFC Ed.: replace XXXX with actual
 // RFC number and remove this note

 uses with-defaults-parameters;
 }

 }

 <CODE ENDS>

6. XSD for the ’default’ Attribute

 The following XML Schema document [W3C.REC-xml-20081126] defines the
 ’default’ attribute, described within this document. This XSD is

Bierman & Lengyel Expires May 15, 2011 [Page 17]

Internet-Draft with-defaults November 2010

 only relevant if the server supports the ’report-all-tagged’ defaults
 retrieval mode.

 The ’default’ attribute uses the XSD data type ’boolean’. In
 accordance with Section 3.2.2.1 of XML Schema Part 2: Datatypes, the
 allowable lexical representations for the xs:boolean datatype are the
 strings "0" and "false" for the concept of false and the strings "1"
 and "true" for the concept of true. Implementations MUST support
 both styles of lexical representation.

 <CODE BEGINS> file="defaults.xsd"

 <?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:ietf:params:xml:ns:netconf:default:1.0"
 targetNamespace="urn:ietf:params:xml:ns:netconf:default:1.0"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 xml:lang="en">

 <xs:annotation>
 <xs:documentation>
 This schema defines the syntax for the ’default’ attribute
 described within this document.
 </xs:documentation>
 </xs:annotation>

 <!--
 default attribute
 -->
 <xs:attribute name="default" type="xs:boolean" default="false">
 <xs:annotation>
 <xs:documentation>
 This attribute indicates whether the data node represented
 by the XML element containing this attribute is considered
 by the server to be default data. If set to ’true’ or ’1’ then
 the data node is default data. If ’false’ or ’0’, then the
 data node is not default data.
 </xs:documentation>
 </xs:annotation>
 </xs:attribute>

 </xs:schema>

 <CODE ENDS>

Bierman & Lengyel Expires May 15, 2011 [Page 18]

Internet-Draft with-defaults November 2010

7. IANA Considerations

 This document registers the following capability identifier URN in
 the ’Network Configuration Protocol Capability URNs registry’:

 urn:ietf:params:netconf:capability:with-defaults:1.0

 Note that the capability URN is compliant to
 [I-D.ietf-netconf-4741bis] section 10.3.

 This document registers two XML namespace URNs in the ’IETF XML
 registry’, following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:netconf:default:1.0
 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults

 Registrant Contact: The NETCONF WG of the IETF.

 XML: N/A, the requested URIs are XML namespaces.

 This document registers one module name in the ’YANG Module Names’
 registry, defined in [RFC6020] .

 name: ietf-netconf-with-defaults
 prefix: ncwd
 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults
 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

8. Security Considerations

 This document defines an extension to existing NETCONF protocol
 operations. It does not introduce any new or increased security
 risks into the management system.

 The ’with-defaults’ capability gives clients control over the
 retrieval of default data from a NETCONF datastore. The security
 consideration of [I-D.ietf-netconf-4741bis] apply to this document as
 well.

9. Acknowledgements

 Thanks to Martin Bjorklund, Sharon Chisholm, Phil Shafer, Juergen
 Schoenwaelder, Kent Watsen, Washam Fan and many other members of the
 NETCONF WG for providing important input to this document.

Bierman & Lengyel Expires May 15, 2011 [Page 19]

Internet-Draft with-defaults November 2010

10. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [I-D.ietf-netconf-4741bis]
 Enns, R., Bjorklund, M., Schoenwaelder, J., and A.
 Bierman, "Network Configuration Protocol (NETCONF)",
 draft-ietf-netconf-4741bis-06 (work in progress),
 October 2010.

 [W3C.REC-xml-20081126]
 Maler, E., Yergeau, F., Sperberg-McQueen, C., Paoli, J.,
 and T. Bray, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

 [W3C.REC-xmlschema-0-20041028]
 Walmsley, P. and D. Fallside, "XML Schema Part 0: Primer
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-0-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-0-20041028>.

Appendix A. Usage Examples

A.1. Example YANG Module

 The following YANG module defines an example interfaces table to
 demonstrate how the <with-defaults> parameter behaves for a specific
 data model.

 Note that this is not a real module, and implementation of this
 module is not required for conformance to the :with-defaults
 capability, defined in Section 4. This module is not to be
 registered with IANA, and is not considered to be a code component.
 It is intentionally very terse, and includes few descriptive
 statements.

Bierman & Lengyel Expires May 15, 2011 [Page 20]

Internet-Draft with-defaults November 2010

 module example {

 namespace "http://example.com/ns/interfaces";

 prefix exam;

 typedef status-type {
 description "Interface status";
 type enumeration {
 enum ok;
 enum ’waking up’;
 enum ’not feeling so good’;
 enum ’better check it out’;
 enum ’better call for help’;
 }
 default ok;
 }

 container interfaces {
 description "Example interfaces group";

 list interface {
 description "Example interface entry";
 key name;

 leaf name {
 description
 "The administrative name of the interface.
 This is an identifier which is only unique
 within the scope of this list, and only
 within a specific server.";
 type string {
 length "1 .. max";
 }
 }

 leaf mtu {
 description
 "The maximum transmission unit (MTU) value assigned to
 this interface.";
 type uint32;
 default 1500;
 }

 leaf status {
 description
 "The current status of this interface.";
 type status-type;

Bierman & Lengyel Expires May 15, 2011 [Page 21]

Internet-Draft with-defaults November 2010

 config false;
 }
 }
 }
 }

A.2. Example Data Set

 The following data element shows the conceptual contents of the
 example server for the protocol operation examples in the next
 section. This includes all the configuration data nodes, non-
 configuration data nodes, and default leafs.

 <data xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <interfaces xmlns="http://example.com/ns/interfaces">
 <interface>
 <name>eth0</name>
 <mtu>8192</mtu>
 <status>up</status>
 </interface>
 <interface>
 <name>eth1</name>
 <mtu>1500</mtu>
 <status>up</status>
 </interface>
 <interface>
 <name>eth2</name>
 <mtu>9000</mtu>
 <status>not feeling so good</status>
 </interface>
 <interface>
 <name>eth3</name>
 <mtu>1500</mtu>
 <status>waking up</status>
 </interface>
 </interfaces>
 </data>

 In this example, the ’mtu’ field for each interface entry is set in
 the following manner:

Bierman & Lengyel Expires May 15, 2011 [Page 22]

Internet-Draft with-defaults November 2010

 +--------------+--------------+--------------+
 | name | set by | mtu |
 +--------------+--------------+--------------+
 | eth0 | client | 8192 |
 | eth1 | server | 1500 |
 | eth2 | client | 9000 |
 | eth3 | client | 1500 |
 +--------------+--------------+--------------+

A.3. Protocol Operation Examples

 The following examples shows some <get> operations using the ’with-
 defaults’ element. The data model used for these examples is defined
 in Appendix A.1.

 The client is retrieving all the data nodes within the ’interfaces’
 object, filtered with the <with-defaults> parameter.

A.3.1. <with-defaults> = ’report-all’

 The behavior of the <with-defaults> parameter handling for the value
 ’report-all’ is demonstrated in this example.

Bierman & Lengyel Expires May 15, 2011 [Page 23]

Internet-Draft with-defaults November 2010

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/ns/interfaces"/>
 </filter>
 <with-defaults
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">
 report-all
 </with-defaults>
 </get>
 </rpc>

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="http://example.com/ns/interfaces">
 <interface>
 <name>eth0</name>
 <mtu>8192</mtu>
 <status>up</status>
 </interface>
 <interface>
 <name>eth1</name>
 <mtu>1500</mtu>
 <status>up</status>
 </interface>
 <interface>
 <name>eth2</name>
 <mtu>9000</mtu>
 <status>not feeling so good</status>
 </interface>
 <interface>
 <name>eth3</name>
 <mtu>1500</mtu>
 <status>waking up</status>
 </interface>
 </interfaces>
 </data>
 </rpc-reply>

A.3.2. <with-defaults> = ’report-all-tagged’

 The behavior of the <with-defaults> parameter handling for the value
 ’report-all-tagged’ is demonstrated in this example. A ’tagged’ data
 node is an element that contains the ’default’ XML attribute, set to

Bierman & Lengyel Expires May 15, 2011 [Page 24]

Internet-Draft with-defaults November 2010

 ’true’ or ’1’.

 The actual data nodes tagged by the server depends on the defaults
 handling basic mode used by the server. Only the data nodes that are
 considered to be default data will be tagged.

 In this example, the server’s basic mode is equal to ’trim’, so all
 data nodes that would contain the schema default value are tagged.
 If the server’s basic mode is ’explicit’, then only data nodes that
 are not explicitly set data are tagged. If the server’s basic mode
 is ’report-all’, then no data nodes are tagged.

Bierman & Lengyel Expires May 15, 2011 [Page 25]

Internet-Draft with-defaults November 2010

 <rpc message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/ns/interfaces"/>
 </filter>
 <with-defaults
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">
 report-all-tagged
 </with-defaults>
 </get>
 </rpc>

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:wd="urn:ietf:params:xml:ns:netconf:default:1.0">
 <data>
 <interfaces xmlns="http://example.com/ns/interfaces">
 <interface>
 <name>eth0</name>
 <mtu>8192</mtu>
 <status wd:default="true">up</status>
 </interface>
 <interface>
 <name>eth1</name>
 <mtu wd:default="true">1500</mtu>
 <status wd:default="true">up</status>
 </interface>
 <interface>
 <name>eth2</name>
 <mtu>9000</mtu>
 <status>not feeling so good</status>
 </interface>
 <interface>
 <name>eth3</name>
 <mtu wd:default="true">1500</mtu>
 <status>waking up</status>
 </interface>
 </interfaces>
 </data>
 </rpc-reply>

Bierman & Lengyel Expires May 15, 2011 [Page 26]

Internet-Draft with-defaults November 2010

A.3.3. <with-defaults> = ’trim’

 The behavior of the <with-defaults> parameter handling for the value
 ’trim’ is demonstrated in this example.

 <rpc message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/ns/interfaces"/>
 </filter>
 <with-defaults
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">
 trim
 </with-defaults>
 </get>
 </rpc>

 <rpc-reply message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="http://example.com/ns/interfaces">
 <interface>
 <name>eth0</name>
 <mtu>8192</mtu>
 </interface>
 <interface>
 <name>eth1</name>
 </interface>
 <interface>
 <name>eth2</name>
 <mtu>9000</mtu>
 <status>not feeling so good</status>
 </interface>
 <interface>
 <name>eth3</name>
 <status>waking up</status>
 </interface>
 </interfaces>
 </data>
 </rpc-reply>

Bierman & Lengyel Expires May 15, 2011 [Page 27]

Internet-Draft with-defaults November 2010

A.3.4. <with-defaults> = ’explicit’

 The behavior of the <with-defaults> parameter handling for the value
 ’explicit’ is demonstrated in this example.

 <rpc message-id="104"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/ns/interfaces"/>
 </filter>
 <with-defaults
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-defaults">
 explicit
 </with-defaults>
 </get>
 </rpc>

 <rpc-reply message-id="104"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="http://example.com/ns/interfaces">
 <interface>
 <name>eth0</name>
 <mtu>8192</mtu>
 <status>up</status>
 </interface>
 <interface>
 <name>eth1</name>
 <status>up</status>
 </interface>
 <interface>
 <name>eth2</name>
 <mtu>9000</mtu>
 <status>not feeling so good</status>
 </interface>
 <interface>
 <name>eth3</name>
 <mtu>1500</mtu>
 <status>waking up</status>
 </interface>
 </interfaces>
 </data>
 </rpc-reply>

Bierman & Lengyel Expires May 15, 2011 [Page 28]

Internet-Draft with-defaults November 2010

Appendix B. Change Log

 -- RFC Ed.: remove this section before publication.

B.1. 13-14

 Removed reference to RFC 4741 and using 4741bis instead.

B.2. 12-13

 Removed with-defaults capability conformance section.

 Changed ’wd:default’ to ’default’.

 Added normative reference to XSD.

 Clarified conditional support for with-defaults enumerations, based
 on capability parameters.

 Clarified that all xs:boolean encoding values must be supported.

 Clarified purpose of also-supported parameter in capability URI.

B.3. 11-12

 Made editorial clarifications based on AD review.

B.4. 10-11

 Changed term ’database’ to ’configuration datastore’ or generic
 ’datastore’.

B.5. 09-10

 Changed term ’datastore’ to ’database’.

 Added term ’default value’.

 Clarified verbage for data node containing a default value.

B.6. 08-09

 Removed non-volatile server requirements.

 Moved some text from basic-mode section into the the retrieval modes
 section.

 Added description and reference statements to the YANG module.

Bierman & Lengyel Expires May 15, 2011 [Page 29]

Internet-Draft with-defaults November 2010

 Many bugfixes and clarifications, based on WGLC review comments.

B.7. 07-08

 Added report-all-tagged mode.

 Changed conformance so report-all or report-all-tagged mode SHOULD be
 supported.

 Clarified capability requirements for each mode, for edit-config and
 NV storage requirements.

 Changed rpc-error details for unsupported with-defaults value.

 Added XSD for wd:default attribute

 Expanded example to show report-all-tagged for a basic-mode=trim
 server.

B.8. 06-07

 Removed text in capability identifier section about adding YANG
 module capability URI parameters.

 Changed YANG module namespace to match YANG format, and updated
 examples to use this new namespace.

 Fixed some typos.

B.9. 05-06

 Removed ’:1.0’ from capability URI.

 Removed open issues section because all known issues are closed.

 Moved examples to a separate appendix, and expanded them.

 Added example.yang as an appendix to properly explain the examples
 used within the document.

 Replaced normative term ’SHALL’ with ’MUST’ to be consistent within
 this document.

 Clarified <with-defaults> behavior for non-configuration data nodes.

 Clarified various sections based on WGLC comments on mailing list.

 Removed some unused terms.

Bierman & Lengyel Expires May 15, 2011 [Page 30]

Internet-Draft with-defaults November 2010

 Reversed the order of the change log sections so the most recent
 changes are shown first.

B.10. 04-05

 Updated I-D and YANG module boiler-plate.

 Removed redundant ’with-defaults’ YANG feature.

 Changed definition of ’explicit’ mode to match the YANG definition

 Removed XSD because the YANG is normative and the XSD is
 unconstrained, and does not properly extend the 3 affected NETCONF
 operations.

 Made the YANG module a normative section instead of non-normative
 appendix.

 Changed YANG from an informative to a normative reference,

 Changed 4741bis from an informative to a normative reference because
 the YANG module imports the ietf-netconf module in order to augment
 some operations.

 Updated capability requirements to include YANG module capability
 parameters.

 Added a description statement to the with-defaults leaf definition.

 Update open issues section; ready to close all open issues.

B.11. 03-04

 Clarifications

 Added non-netconf interfaces to the definition of explicitly set
 default data

B.12. 02-03

 Clarifications

 YAM added

 Use the same URN for the capability and the XML namespace to
 accommodate YANG, and avoid two separate URN/URIs being advertised in
 the HELLO message, for such a small function.

Bierman & Lengyel Expires May 15, 2011 [Page 31]

Internet-Draft with-defaults November 2010

B.13. 01-02

 report-all made mandatory

 Placeholder for YAM added, XSD will be removed when 4741 provides the
 NETCONF YAM

 with-defaults is valid for state data as well (if state data has a
 defined default which might not be so frequent). The definition of
 explicit was modified for state data.

B.14. 00-01

 Changed value set of with-default capability and element

 Added version to URI

B.15. -00

 Created from draft-bierman-netconf-with-defaults-01.txt

 It was decided by the NETCONF mailing list, that with-defaults should
 be a sub-element of each affected operation. While this violates the
 XSD of RFC4741 this is acceptable and follows the ideas behind
 NETCONF and YANG.

 Hopefully it will be clarified in the 4741bis RFC whether such
 extensions are allowed.

Authors’ Addresses

 Andy Bierman
 Brocade

 Email: andy.bierman@brocade.com

 Balazs Lengyel
 Ericsson
 Budapest,
 Hungary

 Email: balazs.lengyel@ericsson.com

Bierman & Lengyel Expires May 15, 2011 [Page 32]

Network Working Group P. Shafer
Internet-Draft Juniper Networks
Intended status: Informational September 23, 2010
Expires: March 27, 2011

 An Architecture for Network Management using NETCONF and YANG
 draft-ietf-netmod-arch-10

Abstract

 The Network Configuration Protocol (NETCONF) gives access to native
 capabilities of the devices within a network, defining methods for
 manipulating configuration databases, retrieving operational data,
 and invoking specific operations. YANG provides the means to define
 the content carried via NETCONF, both data and operations. Using
 both technologies, standard modules can be defined to give
 interoperability and commonality to devices, while still allowing
 devices to express their unique capabilities.

 This document describes how NETCONF and YANG help build network
 management applications that meet the needs of network operators.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 27, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Shafer Expires March 27, 2011 [Page 1]

Internet-Draft NETMODARCH September 2010

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Shafer Expires March 27, 2011 [Page 2]

Internet-Draft NETMODARCH September 2010

Table of Contents

 1. Origins of NETCONF and YANG 4
 2. Elements of the Architecture 6
 2.1. NETCONF . 6
 2.1.1. NETCONF Transport Mappings 8
 2.2. YANG . 9
 2.2.1. Constraints . 11
 2.2.2. Flexibility . 12
 2.2.3. Extensibility Model 12
 2.3. YANG Translations . 13
 2.3.1. YIN . 14
 2.3.2. DSDL (RELAX NG) 14
 2.4. YANG Types . 15
 2.5. IETF Guidelines . 15
 3. Working with YANG . 16
 3.1. Building NETCONF- and YANG-based Solutions 16
 3.2. Addressing Operator Requirements 17
 3.3. Roles in Building Solutions 20
 3.3.1. Modeler . 20
 3.3.2. Reviewer . 20
 3.3.3. Device Developer 20
 3.3.4. Application Developer 21
 4. Modeling Considerations 24
 4.1. Default Values . 24
 4.2. Compliance . 25
 4.3. Data Distinctions . 26
 4.3.1. Background . 26
 4.3.2. Definitions . 27
 4.3.3. Implications . 28
 4.4. Direction . 29
 5. Security Considerations 30
 6. IANA Considerations . 31
 7. Normative References . 32
 Author’s Address . 34

Shafer Expires March 27, 2011 [Page 3]

Internet-Draft NETMODARCH September 2010

1. Origins of NETCONF and YANG

 Networks are increasing in complexity and capacity, as well as the
 density of the services deployed upon them. Uptime, reliability, and
 predictable latency requirements drive the need for automation. The
 problems with network management are not simple. They are complex
 and intricate. But these problems must be solved for networks to
 meet the stability needs of existing services while incorporating new
 services in a world where the growth of networks is exhausting the
 supply of qualified networking engineers.

 In June of 2002, Internet Architecture Board (IAB) held a workshop on
 Network Management ([RFC3535]). The members of this workshop made a
 number of observations and recommendations for the IETF’s
 consideration concerning the issues operators were facing in their
 network management-related work as well as issues they were having
 with the direction of the IETF activities in this area.

 The output of this workshop was focused on current problems. The
 observations were reasonable and straight forward, including the need
 for transactions, rollback, low implementation costs, and the ability
 to save and restore the device’s configuration data. Many of the
 observations give insight into the problems operators were having
 with existing network management solutions, such as the lack of full
 coverage of device capabilities and the ability to distinguish
 between configuration data and other types of data.

 Based on these directions, the NETCONF working group was formed and
 the Network Configuration (NETCONF) protocol was created. This
 protocol defines a simple mechanism where network management
 applications, acting as clients, can invoke operations on the
 devices, which act as servers. The NETCONF specification ([RFC4741])
 defines a small set of operations, but goes out of its way to avoid
 making any requirements on the data carried in those operations,
 preferring to allow the protocol to carry any data. This "data model
 agnostic" approach allows data models to be defined independently.

 But lacking a means of defining data models, the NETCONF protocol was
 not usable for standards-based work. Existing data modeling
 languages such as the XML Schema Language (XSD) ([W3CXSD]) and the
 Document Schema Definition Languages (DSDL) ([ISODSDL]) were
 considered, but were rejected because the problem domains have little
 natural overlap. Defining a data model or protocol that is encoded
 in XML is a distinct problem from defining an XML document. The use
 of NETCONF operations place requirements on the data content that are
 not shared with the static document problem domain addressed by
 schema languages like XSD or RELAX NG.

Shafer Expires March 27, 2011 [Page 4]

Internet-Draft NETMODARCH September 2010

 In 2007 and 2008, the issue of a data modeling language for NETCONF
 was discussed in the OPS and APPS areas of IETF 70 and 71, and a
 design team was tasked with creating a requirements document (expired
 I-D draft-presuhn-rcdml-03.txt). After discussing the available
 options at the CANMOD BoF at IETF71, the community wrote a charter
 for the NETMOD working group. An excellent description of this time
 period is available at
 http://www.ietf.org/mail-archive/web/ietf/current/msg51644.html

 In 2008 and 2009, the NETMOD working group produced a specification
 for YANG ([RFCYANG]) as a means for defining data models for NETCONF,
 allowing both standard and proprietary data models to be published in
 a form that is easily digestible by human readers and satisfies many
 of the issues raised in the IAB NM workshop. This brings NETCONF to
 a point where is can be used to develop standard data models within
 the IETF.

 YANG allows a modeler to create a data model, to define the
 organization of the data in that model, and to define constraints on
 that data. Once published, the YANG module acts as a contract
 between the client and server, with both parties understanding how
 their peer will expect them to behave. A client knows how to create
 valid data for the server, and knows what data will be sent from the
 server. A server knows the rules that govern the data and how it
 should behave.

 YANG also incorporates a level of extensibility and flexibility not
 present in other model languages. New modules can augment the data
 hierarchies defined in other modules, seamlessly adding data at
 appropriate places in the existing data organization. YANG also
 allows new statements to be defined, allowing the language itself to
 be expanded in a consistent way.

 This document presents an architecture for YANG, describing how YANG-
 related technologies work and how solutions built on them can address
 the network management problem domain.

Shafer Expires March 27, 2011 [Page 5]

Internet-Draft NETMODARCH September 2010

2. Elements of the Architecture

2.1. NETCONF

 NETCONF defines an XML-based remote procedure call (RPC) mechanism
 that leverages the simplicity and availability of high-quality XML
 parsers. XML gives a rich, flexible, hierarchical, standard
 representation of data that matches the needs of networking devices.
 NETCONF carries configuration data and operations as requests and
 replies using RPCs encoded in XML over a connection-oriented
 transport.

 XML’s hierarchical data representation allows complex networking data
 to be rendered in a natural way. For example, the following
 configuration places interfaces in OSPF areas. The <ospf> element
 contains a list of <area> elements, each of which contain a list of
 <interface> elements. The <name> element identifies the specific
 area or interface. Additional configuration for each area or
 interface appears directly inside the appropriate element.

Shafer Expires March 27, 2011 [Page 6]

Internet-Draft NETMODARCH September 2010

 <ospf xmlns="http://example.org/netconf/ospf">

 <area>
 <name>0.0.0.0</name>

 <interface>
 <name>ge-0/0/0.0</name>
 <!-- The priority for this interface -->
 <priority>30</priority>
 <metric>100</metric>
 <dead-interval>120</dead-interval>
 </interface>

 <interface>
 <name>ge-0/0/1.0</name>
 <metric>140</metric>
 </interface>
 </area>

 <area>
 <name>10.1.2.0</name>

 <interface>
 <name>ge-0/0/2.0</name>
 <metric>100</metric>
 </interface>

 <interface>
 <name>ge-0/0/3.0</name>
 <metric>140</metric>
 <dead-interval>120</dead-interval>
 </interface>
 </area>
 </ospf>

 NETCONF includes mechanisms for controlling configuration datastores.
 Each datastore is a specific collection of configuration data that
 can be used as source or target of the configuration-related
 operations. The device can indicate whether it has a distinct
 "startup" configuration datastore, whether the current or "running"
 datastore is directly writable, or whether there is a "candidate"
 configuration datastore where configuration changes can be made that
 will not affect the device until a "commit-configuration" operation
 is invoked.

 NETCONF defines operations that are invoked as RPCs from the client
 (the application) to the server (running on the device). The
 following table lists some of these operations:

Shafer Expires March 27, 2011 [Page 7]

Internet-Draft NETMODARCH September 2010

 +---------------+---+
 | Operation | Description |
 +---------------+---+
commit	Commits the "candidate" configuration to
	"running"
copy-config	Copy one configuration datastore to another
delete-config	Delete a configuration datastore
edit-config	Change the contents of a configuration datastore
get-config	Retrieve all or part of a configuration datastore
lock	Prevent changes to a datastore from another party
unlock	Release a lock on a datastore
 +---------------+---+

 NETCONF’s "capability" mechanism allows the device to announce the
 set of capabilities that the device supports, including protocol
 operations, datastores, data models, and other abilities. These are
 announced during session establishment as part of the <hello>
 message. A client can inspect the hello message to determine what
 the device is capable of and how to interact with the device to
 perform the desired tasks.

 NETCONF also defines a means of sending asynchronous notifications
 from the server to the client, described in [RFC5277].

 In addition, NETCONF can fetch state data, receive notifications, and
 invoke additional RPC methods defined as part of a capability.
 Complete information about NETCONF can be found in [RFC4741].

2.1.1. NETCONF Transport Mappings

 NETCONF can run over any transport protocol that meets the
 requirements defined in RFC4741, including

 o connection-oriented operation

 o authentication

 o integrity

 o confidentiality

 [RFC4742] defines an mapping for the SSH ([RFC4251]) protocol, which
 is the mandatory transport protocol. Others include SOAP
 ([RFC4743]), BEEP ([RFC4744]), and TLS ([RFC5539]).

Shafer Expires March 27, 2011 [Page 8]

Internet-Draft NETMODARCH September 2010

2.2. YANG

 YANG is a data modeling language for NETCONF. It allows the
 description of hierarchies of data nodes ("nodes") and the
 constraints that exist among them. YANG defines data models and how
 to manipulate those models via NETCONF protocol operations.

 Each YANG module defines a data model, uniquely identified by a
 namespace URI. These data models are extensible in a manner that
 allows tight integration of standard data models and proprietary data
 models. Models are built from organizational containers, lists of
 data nodes and data node forming leafs of the data tree.

Shafer Expires March 27, 2011 [Page 9]

Internet-Draft NETMODARCH September 2010

 module example-ospf {
 namespace "http://example.org/netconf/ospf";
 prefix ospf;

 import network-types { // Access another module’s def’ns
 prefix nett;
 }

 container ospf { // Declare the top-level tag
 list area { // Declare a list of "area" nodes
 key name; // The key "name" identifies list members
 leaf name {
 type nett:area-id;
 }
 list interface {
 key name;
 leaf name {
 type nett:interface-name;
 }
 leaf priority {
 description "Designated router priority";
 type uint8; // The type is a constraint on
 // valid values for "priority".
 }
 leaf metric {
 type uint16 {
 range 1..65535;
 }
 }
 leaf dead-interval {
 units seconds;
 type uint16 {
 range 1..65535;
 }
 }
 }
 }
 }
 }

 A YANG module defines a data model in terms of the data, its
 hierarchical organization, and the constraints on that data. YANG
 defines how this data is represented in XML and how that data is used
 in NETCONF operations.

 The following table briefly describes some common YANG statements:

Shafer Expires March 27, 2011 [Page 10]

Internet-Draft NETMODARCH September 2010

 +--------------+--+
 | Statement | Description |
 +--------------+--+
augment	Extends existing data hierarchies
choice	Defines mutually exclusive alternatives
container	Defines a layer of the data hierarchy
extension	Allows new statements to be added to YANG
feature	Indicates parts of the model are optional
grouping	Groups data definitions into reusable sets
key	Defines the key leafs for lists
leaf	Defines a leaf node in the data hierarchy
leaf-list	A leaf node that can appear multiple times
list	A hierarchy that can appear multiple times
notification	Defines notification
rpc	Defines input and output parameters for an RPC
	operation
typedef	Defines a new type
uses	Incorporates the contents of a "grouping"
 +--------------+--+

2.2.1. Constraints

 YANG allows the modeler to add constraints to the data model to
 prevent impossible or illogical data. These constraints give clients
 information about the data being sent from the device, and also allow
 the client to know as much as possible about the data the device will
 accept, so the client can send correct data. These constraints apply
 to configuration data, but can also be used for rpc and notification
 data.

 The principal constraint is the "type" statement, which limits the
 contents of a leaf node to that of the named type. The following
 table briefly describes some other common YANG constraints:

 +--------------+--+
 | Statement | Description |
 +--------------+--+
length	Limits the length of a string
mandatory	Requires the node appear
max-elements	Limits the number of instances in a list
min-elements	Limits the number of instances in a list
must	XPath expression must be true
pattern	Regular expression must be satisfied
range	Value must appear in range
reference	Value must appear elsewhere in the data
unique	Value must be unique within the data
when	Node is only present when XPath expression is true
 +--------------+--+

Shafer Expires March 27, 2011 [Page 11]

Internet-Draft NETMODARCH September 2010

 The "must" and "when" statements use XPath ([W3CXPATH]) expressions
 to specify conditions that are semantically evaluated against the
 data hierarchy, but neither the client nor the server are required to
 implement the XPath specification. Instead they can use any means to
 ensure these conditions are met.

2.2.2. Flexibility

 YANG uses the "union" type and the "choice" and "feature" statements
 to give modelers flexibility in defining their data models. The
 "union" type allows a single leaf to accept multiple types, like an
 integer or the word "unbounded":

 type union {
 type int32;
 type enumeration {
 enum "unbounded";
 }
 }

 The "choice" statement lists a set of mutually exclusive nodes, so a
 valid configuration can choose any one node (or case). The "feature"
 statement allows the modeler to identify parts of the model which can
 be optional, and allows the device to indicate whether it implements
 these optional portions.

 The "deviation" statement allows the device, to indicate parts of a
 YANG module which the device does not faithfully implement. While
 devices are encouraged to fully abide according to the contract
 presented in the YANG module, real world situations may force the
 device to break the contract. Deviations give a means of declaring
 this limitation, rather than leaving it to be discovered via run-time
 errors.

2.2.3. Extensibility Model

 XML includes the concept of namespaces, allowing XML elements from
 different sources to be combined in the same hierarchy without
 risking collision. YANG modules define content for specific
 namespaces, but one module may augment the definition of another
 module, introducing elements from that module’s namespace into the
 first module’s hierarchy.

 Since one module can augment another module’s definition, hierarchies
 of definitions are allowed to grow, as definitions from multiple
 sources are added to the base hierarchy. These augmentations are
 qualified using the namespace of the source module, helping to avoid
 issues with name conflicts as the modules change over time.

Shafer Expires March 27, 2011 [Page 12]

Internet-Draft NETMODARCH September 2010

 For example, if the above OSPF configuration were the standard, a
 vendor module may augment this with vendor-specific extensions.

 module vendorx-ospf {
 namespace "http://vendorx.example.com/ospf";
 prefix vendorx;

 import example-ospf {
 prefix ospf;
 }

 augment /ospf:ospf/ospf:area/ospf:interfaces {
 leaf no-neighbor-down-notification {
 type empty;
 description "Don’t inform other protocols about"
 + " neighbor down events";
 }
 }
 }

 The <no-neighbor-down-notification> element is then placed in the
 vendorx namespace:

 <ospf xmlns="http://example.org/netconf/ospf"
 xmlns:vendorx=""http://vendorx.example.com/ospf">

 <area>
 <name>0.0.0.0</name>

 <interface>
 <name>ge-0/0/0.0</name>
 <priority>30</priority>
 <vendorx:no-neighbor-down-notification/>
 </interface>

 </area>
 </ospf>

 Augmentations are seamlessly integrated with base modules, allowing
 them to be fetched, archived, loaded, and deleted within their
 natural hierarchy. If a client application asks for the
 configuration for a specific OSPF area, it will receive the sub-
 hierarchy for that area, complete with any augmented data.

2.3. YANG Translations

 The YANG data modeling language is the central piece of a group of
 related technologies. The YANG language itself, described in

Shafer Expires March 27, 2011 [Page 13]

Internet-Draft NETMODARCH September 2010

 [RFCYANG], defines the syntax of the language and its statements, the
 meaning of those statements, and how to combine them to build the
 hierarchy of nodes that describe a data model.

 That document also defines the "on the wire" XML content for NETCONF
 operations on data models defined in YANG modules. This includes the
 basic mapping between YANG data tree nodes and XML elements, as well
 as mechanisms used in <edit-config> content to manipulate that data,
 such as arranging the order of nodes within a list.

 YANG uses a syntax that is regular and easily described, primarily
 designed for human readability. YANG’s syntax is friendly to email,
 diff, patch, and the constraints of RFC formatting.

2.3.1. YIN

 In some environments, incorporating a YANG parser may not be an
 acceptable option. For those scenarios, an XML grammar for YANG is
 defined as YIN (YANG Independent Notation). YIN allows the use of
 XML parsers which are readily available in both open source and
 commercial versions. Conversion between YANG and YIN is direct,
 loss-less and reversible. YANG statements are converted to XML
 elements, preserving the structure and content of YANG, but enabling
 the use of off-the-shelf XML parsers rather than requiring the
 integration of a YANG parser. YIN maintains complete semantic
 equivalence with YANG.

2.3.2. DSDL (RELAX NG)

 Since NETCONF content is encoded in XML, it is natural to use XML
 schema languages for their validation. To facilitate this, YANG
 offers a standardized mapping of YANG modules into Document Schema
 Description Languages ([RFCYANGDSDL]), of which RELAX NG is a major
 component.

 DSDL is considered to be the best choice as a standard schema
 language because it addresses not only grammar and datatypes of XML
 documents but also semantic constraints and rules for modifying the
 information set of the document.

 In addition, DSDL offers formal means for coordinating multiple
 independent schemas and specifying how to apply the schemas to the
 various parts of the document. This is useful since YANG content is
 typically composed of multiple vocabularies.

Shafer Expires March 27, 2011 [Page 14]

Internet-Draft NETMODARCH September 2010

2.4. YANG Types

 YANG supports a number of builtin types, and allows additional types
 to be derived from those types in an extensible manner. New types
 can add additional restrictions to allowable data values.

 A standard type library for use by YANG is available [RFCYANGTYPES].
 These YANG modules define commonly used data types for IETF-related
 standards.

2.5. IETF Guidelines

 A set of additional guidelines are defined that indicate desirable
 usage for authors and reviewers of standards track specifications
 containing YANG data model modules ([RFCYANGUSAGE]). These
 guidelines should be used as a basis for reviews of other YANG data
 model documents.

Shafer Expires March 27, 2011 [Page 15]

Internet-Draft NETMODARCH September 2010

3. Working with YANG

3.1. Building NETCONF- and YANG-based Solutions

 In the typical YANG-based solution, the client and server are driven
 by the content of YANG modules. The server includes the definitions
 of the modules as meta-data that is available to the NETCONF engine.
 This engine processes incoming requests, uses the meta-data to parse
 and verify the request, performs the requested operation, and returns
 the results to the client.

 +----------------------------+
 |Server (device) |
 | +--------------------+ |
 | | configuration | |
 +----+ | | ---------------| |
 |YANG|+ | | m d state data | |
 |mods||+ | | e a ---------------| |
 +----+|| -----> | t t notifications | |
 +----+| | | a a ---------------| |
 +----+ | | operations | |
 | +--------------------+ |
 | ^ |
 | | |
 | v |
 +------+ | +-------------+ |
 | | -------------> | | | |
 |Client| <rpc> | | NETCONF | |
 | (app)| | | engine | |
 | | <------------ | | |
 +------+ <rpc-reply> +-------------+ |
 | / \ |
 | / \ |
 | / \ |
 | +--------+ +---------+ |
 | | config | |system |+ | | |
 | | data- | |software ||+ |
 | | base | |component||| |
 | +--------+ +---------+|| |
 | +---------+| |
 | +---------+ |
 +----------------------------+

 To use YANG, YANG modules must be defined to model the specific
 problem domain. These modules are then loaded, compiled, or coded
 into the server.

 The sequence of events for the typical client/server interaction may

Shafer Expires March 27, 2011 [Page 16]

Internet-Draft NETMODARCH September 2010

 be as follows:

 o A client application ([C]) opens a NETCONF session to the server
 (device) ([S])

 o [C] and [S] exchange <hello> messages containing the list of
 capabilities supported by each side, allowing [C] to learn the
 modules supported by [S]

 o [C] builds and sends an operation defined in the YANG module,
 encoded in XML, within NETCONF’s <rpc> element

 o [S] receives and parses the <rpc> element

 o [S] verifies the contents of the request against the data model
 defined in the YANG module

 o [S] performs the requested operation, possibly changing the
 configuration datastore

 o [S] builds the response, containing the response, any requested
 data, and any errors

 o [S] sends the response, encoded in XML, within NETCONF’s
 <rpc-reply> element

 o [C] receives and parses the <rpc-reply> element

 o [C] inspects the response and processes it as needed

 Note that there is no requirement for the client or server to process
 the YANG modules in this way. The server may hard code the contents
 of the data model, rather than handle the content via a generic
 engine. Or the client may be targeted at the specific YANG model,
 rather than being driven generically. Such a client might be a
 simple shell script that stuffs arguments into an XML payload
 template and sends it to the server.

3.2. Addressing Operator Requirements

 NETCONF and YANG address many of the issues raised in the IAB NM
 workshop.

 o Ease of use: YANG is designed to be human friendly, simple and
 readable. Many tricky issues remain due to the complexity of the
 problem domain, but YANG strives to make them more visible and
 easier to deal with.

Shafer Expires March 27, 2011 [Page 17]

Internet-Draft NETMODARCH September 2010

 o Configuration and state data: YANG clearly divides configuration
 data from other types of data.

 o Transactions: NETCONF provides a simple transaction mechanism.

 o Generation of deltas: A YANG module gives enough information to
 generate the delta needed to change between two configuration data
 sets.

 o Dump and restore: NETCONF gives the ability to save and restore
 configuration data. This can also performed for a specific YANG
 module.

 o Network-wide configuration: NETCONF supports robust network-wide
 configuration transactions via the commit and confirmed-commit
 capability. When a change is attempted that affects multiple
 devices, these capabilities simplifies the management of failure
 scenarios, resulting in the ability to have transactions that will
 dependably succeed or fail atomically.

 o Text-friendly: YANG modules are very text friendly, as is the data
 they define.

 o Configuration handling: NETCONF addresses the ability to
 distinguish between distributing configuration data and activating
 it.

 o Task-oriented: A YANG module can define specific tasks as RPC
 operations. A client can choose to invoke the RPC operation or to
 access any underlying data directly.

 o Full coverage: YANG modules can be defined that give full coverage
 to all the native abilities of the device. Giving this access
 avoids the need to resort to the command line interface (CLI)
 using tools such as Expect ([SWEXPECT]).

 o Timeliness: YANG modules can be tied to CLI operations, so all
 native operations and data are immediately available.

 o Implementation difficulty: YANG’s flexibility enables modules that
 can be more easily implemented. Adding "features" and replacing
 "third normal form" with a natural data hierarchy should reduce
 complexity.

 o Simple data modeling language: YANG has sufficient power to be
 usable in other situations. In particular, on-box API and native
 CLI can be integrated to achieve simplification of the
 infrastructure.

Shafer Expires March 27, 2011 [Page 18]

Internet-Draft NETMODARCH September 2010

 o Internationalization: YANG uses UTF-8 ([RFC3629]) encoded unicode
 characters.

 o Event correlation: YANG integrates RPC operations, notification,
 configuration and state data, enabling internal references. For
 example, a field in a notification can be tagged as pointing to a
 BGP peer, and the client application can easily find that peer in
 the configuration data.

 o Implementation costs: Significant effort has been made to keep
 implementation costs as low as possible.

 o Human friendly syntax: YANG’s syntax is optimized for the reader,
 specifically the reviewer on the basis that this is the most
 common human interaction.

 o Post-processing: Use of XML will maximize the opportunities for
 post-processing of data, possibly using XML-based technologies
 like XPath ([W3CXPATH], XQuery ([W3CXQUERY]), and XSLT
 ([W3CXSLT]).

 o Semantic mismatch: Richer, more descriptive data models will
 reduce the possibility of semantic mismatch. With the ability to
 define new primitives, YANG modules will be more specific in
 content, allowing more enforcement of rules and constraints.

 o Security: NETCONF runs over transport protocols secured by SSH or
 TLS, allowing secure communications and authentication using well-
 trusted technology. The secure transport can use existing key and
 credential management infrastructure, reducing deployment costs.

 o Reliable: NETCONF and YANG are solid and reliable technologies.
 NETCONF is connection based, and includes automatic recovery
 mechanisms when the connection is lost.

 o Delta friendly: YANG-based models support operations that are
 delta friendly. Add, change, insert, and delete operations are
 all well defined.

 o Method-oriented: YANG allows new RPC operations to be defined,
 including an operation name, which is essentially a method. The
 input and output parameters of the RPC operations are also defined
 in the YANG module.

Shafer Expires March 27, 2011 [Page 19]

Internet-Draft NETMODARCH September 2010

3.3. Roles in Building Solutions

 Building NETCONF- and YANG-based solutions requires interacting with
 many distinct groups. Modelers must understand how to build useful
 models that give structure and meaning to data while maximizing the
 flexibility of that data to "future proof" their work. Reviewers
 need to quickly determine if that structure is accurate. Device
 developers need to code that data model into their devices, and
 application developers need to code their applications to take
 advantage of that data model. There are a variety of strategies for
 performing each piece of this work. This section discusses some of
 those strategies.

3.3.1. Modeler

 The modeler defines a data model based on their in-depth knowledge of
 the problem domain being modeled. This model should be as simple as
 possible, but should balance complexity with expressiveness. The
 organization of the model should target not only the current model,
 but should allow for extensibility from other modules and for
 adaptability to future changes.

 Additional modeling issues are discussed in Section 4.

3.3.2. Reviewer

 The reviewer role is perhaps the most important and the time
 reviewers are willing to give is precious. To help the reviewer,
 YANG stresses readability, with a human-friendly syntax, natural data
 hierarchy, and simple, concise statements.

3.3.3. Device Developer

 The YANG model tells the device developer what data is being modeled.
 The developer reads the YANG models and writes code that supports the
 model. The model describes the data hierarchy and associated
 constraints, and the description and reference material helps the
 developer understand how to transform the models view into the
 device’s native implementation.

3.3.3.1. Generic Content Support

 The YANG model can be compiled into a YANG-based engine for either
 the client or server side. Incoming data can be validated, as can
 outgoing data. The complete configuration datastore may be validated
 in accordance with the constraints described in the data model.

 Serializers and deserializers for generating and receiving NETCONF

Shafer Expires March 27, 2011 [Page 20]

Internet-Draft NETMODARCH September 2010

 content can be driven by the meta-data in the model. As data is
 received, the meta-data is consulted to ensure the validity of
 incoming XML elements.

3.3.3.2. XML Definitions

 The YANG module dictates the XML encoding for data sent via NETCONF.
 The rules that define the encoding are fixed, so the YANG module can
 be used to ascertain whether a specific NETCONF payload is obeying
 the rules.

3.3.4. Application Developer

 The YANG module tells the application developer what data can be
 modeled. Developers can inspect the modules and take one of three
 distinct views. In this section, we will consider them and the
 impact of YANG on their design. In the real world, most applications
 are a mixture of these approaches.

3.3.4.1. Hard Coded

 An application can be coded against the specific, well-known contents
 of YANG modules, implementing their organization, rules, and logic
 directly with explicit knowledge. For example, a script could be
 written to change the domain name of a set of devices using a
 standard YANG module that includes such a leaf node. This script
 takes the new domain name as an argument and inserts it into a string
 containing the rest of the XML encoding as required by the YANG
 module. This content is then sent via NETCONF to each of the
 devices.

 This type of application is useful for small, fixed problems where
 the cost and complexity of flexibility is overwhelmed by the ease of
 hard coding direct knowledge into the application.

3.3.4.2. Bottom Up

 An application may take a generic, bottom up approach to
 configuration, concentrating on the device’s data directly and
 treating that data without specific understanding.

 YANG modules may be used to drive the operation of the YANG
 equivalent of a "MIB Browser". Such an application manipulates the
 device’s configuration data based on the data organization contained
 in the YANG module. For example, a GUI may present a straight-
 forward visualization where elements of the YANG hierarchy are
 depicted in a hierarchy of folders or GUI panels. Clicking on a line
 expands to the contents of the matching XML hierarchy.

Shafer Expires March 27, 2011 [Page 21]

Internet-Draft NETMODARCH September 2010

 This type of GUI can easily be built by generating XSLT stylesheets
 from the YANG data models. An XSLT engine can then be used to turn
 configuration data into a set of web pages.

 The YANG modules allow the application to enforce a set of
 constraints without understanding the semantics of the YANG module.

3.3.4.3. Top Down

 In contrast to the bottom-up approach, the top-down approach allows
 the application to take a view of the configuration data which is
 distinct from the standard and/or proprietary YANG modules. The
 application is free to construct its own model for data organization
 and to present this model to the user. When the application needs to
 transmit data to a device, the application transforms its data from
 the problem-oriented view of the world into the data needed for that
 particular device. This transformation is under the control and
 maintenance of the application, allowing the transformation to be
 changed and updated without affecting the device.

 For example, an application could be written that models VPNs in a
 network-oriented view. The application would need to transform these
 high-level VPN definitions into the configuration data that would be
 handed to any particular device within a VPN.

 Even in this approach, YANG is useful since it can be used to model
 the VPN. For example, the following VPN straw-man models a list of
 VPNs, each with a protocol, a topology, a list of member interfaces,
 and a list of classifiers.

Shafer Expires March 27, 2011 [Page 22]

Internet-Draft NETMODARCH September 2010

 list example-bgpvpn {
 key name;
 leaf name { ... }
 leaf protocol {
 type enumeration {
 enum bgpvpn;
 enum l2vpn;
 }
 }
 leaf topology {
 type enumeration {
 enum hub-n-spoke;
 enum mesh;
 }
 }
 list members {
 key "device interface";
 leaf device { ... }
 leaf interface { ... }
 }
 list classifiers {
 ...
 }
 }

 The application can use such a YANG module to drive its operation,
 building VPN instances in a database and then pushing the
 configuration for those VPNs to individual devices using either a
 standard device model (e.g. example-bgpvpn.yang) or by transforming
 that standard device content into some proprietary format for devices
 that do not support that standard.

Shafer Expires March 27, 2011 [Page 23]

Internet-Draft NETMODARCH September 2010

4. Modeling Considerations

 This section discusses considerations the modeler should be aware of
 while developing models in YANG.

4.1. Default Values

 The concept of default values is simple, but their details,
 representation, and interaction with configuration data can be
 difficult issues. NETCONF leaves default values as a data model
 issue, and YANG gives flexibility to the device implementation in
 terms of how default values are handled. The requirement is that the
 device "MUST operationally behave as if the leaf was present in the
 data tree with the default value as its value". This gives the
 device implementation choices in how default values are handled.

 One choice is to view the configuration as a set of instructions for
 how the device should be configured. If a data value that is given
 as part of those instructions is the default value, then it should be
 retained as part of the configuration, but if it is not explicitly
 given, then the value is not considered to be part of configuration.

 Another choice is to trim values that are identical to the default
 values, implicitly removing them from the configuration datastore.
 The act of setting a leaf to its default value effectively deletes
 that leaf.

 The device could also choose to report all default values, regardless
 of whether they were explicitly set. This choice eases the work of a
 client that needs default values, but may significantly increase the
 size of the configuration data.

 These choices reflect the default handling schemes of widely deployed
 networking devices and supporting them allows YANG to reduce
 implementation and deployment costs of YANG-based models.

 When the client retrieves data from the device, it must be prepared
 to handle the absence of leaf nodes with the default value, since the
 server is not required to send such leaf elements. This permits the
 device to implement either of the first two default handling schemes
 given above.

 Regardless of the implementation choice, the device can support the
 "with-defaults" capability ([RFCWITHDEFAULTS]) and give the client
 the ability to select the desired handling of default values.

 When evaluating the XPath expressions for constraints like "must" and
 "when", the evaluation context for the expressions will include any

Shafer Expires March 27, 2011 [Page 24]

Internet-Draft NETMODARCH September 2010

 appropriate default values, so the modeler can depend on consistent
 behavior from all devices.

4.2. Compliance

 In developing good data models, there are many conflicting interests
 the data modeler must keep in mind. Modelers need to be aware of
 five issues with models and devices:

 o usefulness

 o compliance

 o flexibility

 o extensibility

 o deviations

 For a model to be interesting, it must be useful, solving a problem
 in a more direct or more powerful way than can be accomplished
 without the model. The model should maximize the usefulness of the
 model with in the problem domain.

 Modelers should build models that maximize the number of devices that
 can faithfully implement the model. If the model is drawn too
 narrowly, or includes too many assumptions about the device, then the
 difficulty and cost of accurately implementing the model will lead to
 low quality implementations, interoperability issues, and will reduce
 the value of the model.

 Modelers can use the "feature" statement in their models to give the
 device some flexibility by partitioning their model and allowing the
 device to indicate which portions of the model are implemented on the
 device. For example, if the model includes some a "logging" feature
 , a device with no storage facilities for the log can tell the client
 that it does not support this feature of the model.

 Models can be extended via the "augment" statement, and the modeler
 should consider how their model is likely to be extended. These
 augmentations can be defined by vendors, applications, or standards
 bodies.

 Deviations are a means of allowing the devices to indicate where its
 implementation is not in full compliance with the model. For
 example, once a model is published, an implementer may decide to make
 a particular node configurable, where the standard model describes it
 as state data. The implementation reports the value normally and may

Shafer Expires March 27, 2011 [Page 25]

Internet-Draft NETMODARCH September 2010

 declare a deviation that this device behaves in a different manner
 than the standard. Applications capable of discovering this
 deviation can make allowances, but applications that do not discover
 the deviation can continue treating the implementation as if it were
 compliant.

 Rarely, implementations may make decisions that prevent compliance
 with the standard. Such occasions are regrettable, but they remain a
 part of reality, and modelers and application writers ignore them at
 their own risk. An implementation that emits an integer leaf as
 "cow" would be difficult to manage, but applications should expect to
 encounter such misbehaving devices in the field.

 Despite this, both client and server should view the YANG module as a
 contract, with both sides agreeing to abide by the terms. The
 modeler should be explicit about the terms of such a contract, and
 both client and server implementations should strive to faithfully
 and accurately implement the data model described in the YANG module.

4.3. Data Distinctions

 The distinction between configuration data, operational state data,
 and statistics is important to understand for data model writers and
 people who plan to extend the NETCONF protocol. This section first
 discusses some background and then provides a definition and some
 examples.

4.3.1. Background

 During the IAB NM workshop, operators did formulate the following two
 requirements:

 2. It is necessary to make a clear distinction between
 configuration data, data that describes operational state
 and statistics. Some devices make it very hard to determine
 which parameters were administratively configured and which
 were obtained via other mechanisms such as routing
 protocols.

 3. It is required to be able to fetch separately configuration
 data, operational state data, and statistics from devices,
 and to be able to compare these between devices.

 The NETCONF protocol defined in RFC 4741 distinguishes two types of
 data, namely configuration data and state data:

Shafer Expires March 27, 2011 [Page 26]

Internet-Draft NETMODARCH September 2010

 Configuration data is the set of writable data that is
 required to transform a system from its initial default state
 into its current state.

 State data is the additional data on a system that is not
 configuration data such as read-only status information and
 collected statistics.

 NETCONF does not follow the distinction formulated by the operators
 between configuration data, operational state data, and statistical
 data, since it considers state data to include both statistics and
 operational state data.

4.3.2. Definitions

 Below is a definition for configuration data, operational state data,
 and statistical data. The definition borrows from previous work.

 o Configuration data is the set of writable data that is required to
 transform a system from its initial default state into its current
 state. [RFC4741]

 o Operational state data is a set of data that has been obtained by
 the system at runtime and influences the system’s behaviour
 similar to configuration data. In contrast to configuration data,
 operational state is transient and modified by interactions with
 internal components or other systems via specialized protocols.

 o Statistical data is the set of read-only data created by a system
 itself. It describes the performance of the system and its
 components.

 The following examples help to clarify the difference between
 configuration data, operational state data and statistical data.

4.3.2.1. Example 1: IP Routing Table

 IP routing tables can contain entries that are statically configured
 (configuration data) as well as entries obtained from routing
 protocols such as OSPF (operational state data). In addition, a
 routing engine might collect statistics like how often a particular
 routing table entry has been used.

4.3.2.2. Example 2: Interfaces

 Network interfaces usually come with a large number of attributes
 that are specific to the interface type and in some cases specific to
 the cable plugged into an interface. Examples are the maximum

Shafer Expires March 27, 2011 [Page 27]

Internet-Draft NETMODARCH September 2010

 transmission unit of an interface or the speed detected by an
 Ethernet interface.

 In many deployments, systems use the interface attributes detected
 when an interface is initialized. As such, these attributes
 constitute operational state. However, there are usually provisions
 to overwrite the discovered attributes with static configuration
 data, like for example configuring the interface MTU to use a
 specific value or forcing an Ethernet interface to run at a given
 speed.

 The system will record statistics (counters) measuring the number of
 packets, bytes, and errors received and transmitted on each
 interface.

4.3.2.3. Example 3: Account Information

 Systems usually maintain static configuration information about the
 accounts on the system. In addition, systems can obtain information
 about accounts from other sources (e.g. LDAP, NIS) dynamically,
 leading to operational state data. Information about account usage
 are examples of statistic data.

 Note that configuration data supplied to a system in order to create
 a new account might be supplemented with additional configuration
 information determined by the system when the account is being
 created (such as a unique account id). Even though the system might
 create such information, it usually becomes part of the static
 configuration of the system since this data is not transient.

4.3.3. Implications

 The primary focus of YANG is configuration data. There is no single
 mechanism defined for the separation of operational state data and
 statistics since NETCONF treats them both as state data. This
 section describes several different options for addressing this
 issue.

4.3.3.1. Data Models

 The first option is to have data models that explicitly differentiate
 between configuration data and operational state data. This leads to
 duplication of data structures and might not scale well from a
 modeling perspective.

 For example, the configured duplex value and the operational duplex
 value would be distinct leafs in the data model.

Shafer Expires March 27, 2011 [Page 28]

Internet-Draft NETMODARCH September 2010

4.3.3.2. Additional Operations to Retrieve Operational State

 The NETCONF protocol can be extended with new protocol operations
 that specifically allow the retrieval of all operational state, e.g.
 by introducing a <get-ops> operation (and perhaps also a <get-stats>
 operation).

4.3.3.3. Introduction of an Operational State Datastore

 Another option could be to introduce a new "configuration" data store
 that represents the operational state. A <get-config> operation on
 the <operational> data store would then return the operational state
 determining the behaviour of the box instead of its static and
 explicit configuration state.

4.4. Direction

 At this time, the only viable solution is to distinctly model the
 configuration and operational values. The configuration leaf would
 indicate the desired value, as given by the user, and the operational
 leaf would indicate the current value, as observed on the device.

 In the duplex example, this would result in two distinct leafs being
 defined, "duplex" and "op-duplex", one with "config true" and one
 with "config false".

 In some cases, distinct leafs would be used, but in others, distinct
 lists might be used. Distinct lists allows the list to be organized
 in different ways, with different constraints. Keys, sorting, and
 constraint statements like must, unique, or when may differ between
 configuration data and operational data.

 For example, configured static routes might be a distinct list from
 the operational routing table, since the use of keys and sorting
 might differ.

Shafer Expires March 27, 2011 [Page 29]

Internet-Draft NETMODARCH September 2010

5. Security Considerations

 This document discusses an architecture for network management using
 NETCONF and YANG. It has no security impact on the Internet.

Shafer Expires March 27, 2011 [Page 30]

Internet-Draft NETMODARCH September 2010

6. IANA Considerations

 This document has no actions for IANA.

Shafer Expires March 27, 2011 [Page 31]

Internet-Draft NETMODARCH September 2010

7. Normative References

 [ISODSDL] International Organization for Standardization, "Document
 Schema Definition Languages (DSDL) - Part 1: Overview",
 ISO/IEC 19757-1, November 2004.

 [RFC3535] Schoenwaelder, J., "Overview of the 2002 IAB Network
 Management Workshop", RFC 3535, May 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC4742] Wasserman, M. and T. Goddard, "Using the NETCONF
 Configuration Protocol over Secure SHell (SSH)", RFC 4742,
 December 2006.

 [RFC4743] Goddard, T., "Using NETCONF over the Simple Object Access
 Protocol (SOAP)", RFC 4743, December 2006.

 [RFC4744] Lear, E. and K. Crozier, "Using the NETCONF Protocol over
 the Blocks Extensible Exchange Protocol (BEEP)", RFC 4744,
 December 2006.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, July 2008.

 [RFC5539] Badra, M., "NETCONF over Transport Layer Security (TLS)",
 RFC 5539, May 2009.

 [RFCWITHDEFAULTS]
 Bierman, A. and B. Lengyel, "With-defaults capability for
 NETCONF", draft-ietf-netconf-with-defaults-11.txt (work in
 progress).

 [RFCYANG] Bjorklund, M., Ed., "YANG - A data modeling language for
 the Network Configuration Protocol (NETCONF)",
 draft-ietf-netmod-yang-13 (work in progress).

 [RFCYANGDSDL]
 Lhotka, L., Mahy, R., and S. Chishom, "Mapping YANG to
 Document Schema Definition Languages and Validating
 NETCONF Content", draft-ietf-netmod-dsdl-map-07 (work in

Shafer Expires March 27, 2011 [Page 32]

Internet-Draft NETMODARCH September 2010

 progress).

 [RFCYANGTYPES]
 Schoenwaelder, J., "Common YANG Data Types",
 draft-ietf-netmod-yang-types-09.txt (work in progress).

 [RFCYANGUSAGE]
 Bierman, A., "Guidelines for Authors and Reviewers of YANG
 Data Model Documents", draft-ietf-netmod-yang-usage-10.txt
 (work in progress).

 [SWEXPECT]
 "The Expect Home Page", <http://expect.sourceforge.net/>.

 [W3CXPATH]
 DeRose, S. and J. Clark, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium
 Recommendation REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

 [W3CXQUERY]
 Boag, S., "XQuery 1.0: An XML Query Language", W3C WD WD-
 xquery-20050915, September 2005.

 [W3CXSD] Walmsley, P. and D. Fallside, "XML Schema Part 0: Primer
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-0-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-0-20041028>.

 [W3CXSLT] Clark, J., "XSL Transformations (XSLT) Version 1.0", World
 Wide Web Consortium Recommendation REC-xslt-19991116,
 November 1999,
 <http://www.w3.org/TR/1999/REC-xslt-19991116>.

Shafer Expires March 27, 2011 [Page 33]

Internet-Draft NETMODARCH September 2010

Author’s Address

 Phil Shafer
 Juniper Networks

 Email: phil@juniper.net

Shafer Expires March 27, 2011 [Page 34]

NETMOD L. Lhotka, Ed.
Internet-Draft CESNET
Intended status: Standards Track October 21, 2010
Expires: April 24, 2011

 Mapping YANG to Document Schema Definition Languages and Validating
 NETCONF Content
 draft-ietf-netmod-dsdl-map-10

Abstract

 This document specifies the mapping rules for translating YANG data
 models into Document Schema Definition Languages (DSDL), a
 coordinated set of XML schema languages standardized as ISO/IEC
 19757. The following DSDL schema languages are addressed by the
 mapping: RELAX NG, Schematron and DSRL. The mapping takes one or
 more YANG modules and produces a set of DSDL schemas for a selected
 target document type - datastore content, NETCONF message etc.
 Procedures for schema-based validation of such documents are also
 discussed.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Lhotka Expires April 24, 2011 [Page 1]

Internet-Draft Mapping YANG to DSDL October 2010

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 6
 2. Terminology and Notation 8
 2.1. Glossary of New Terms 11
 3. Objectives and Motivation 12
 4. DSDL Schema Languages . 14
 4.1. RELAX NG . 14
 4.2. Schematron . 15
 4.3. Document Semantics Renaming Language (DSRL) 16
 5. Additional Annotations 17
 5.1. Dublin Core Metadata Elements 17
 5.2. RELAX NG DTD Compatibility Annotations 17
 5.3. NETMOD-Specific Annotations 18
 6. Overview of the Mapping 20
 7. NETCONF Content Validation 22
 8. Design Considerations . 23
 8.1. Hybrid Schema . 23
 8.2. Modularity . 25
 8.3. Granularity . 27
 8.4. Handling of XML Namespaces 27
 9. Mapping YANG Data Models to the Hybrid Schema 29
 9.1. Occurrence Rules for Data Nodes 29
 9.1.1. Optional and Mandatory Nodes 30
 9.1.2. Implicit Nodes 31
 9.2. Mapping YANG Groupings and Typedefs 32
 9.2.1. YANG Refinements and Augments 33
 9.2.2. Type Derivation Chains 36
 9.3. Translation of XPath Expressions 38
 9.4. YANG Language Extensions 39
 10. Mapping YANG Statements to the Hybrid Schema 41
 10.1. The ’anyxml’ Statement 41
 10.2. The ’argument’ Statement 42
 10.3. The ’augment’ Statement 43
 10.4. The ’base’ Statement 43
 10.5. The ’belongs-to’ Statement 43
 10.6. The ’bit’ Statement 43
 10.7. The ’case’ Statement 43
 10.8. The ’choice’ Statement 43
 10.9. The ’config’ Statement 44
 10.10. The ’contact’ Statement 44

Lhotka Expires April 24, 2011 [Page 2]

Internet-Draft Mapping YANG to DSDL October 2010

 10.11. The ’container’ Statement 44
 10.12. The ’default’ Statement 44
 10.13. The ’description’ Statement 46
 10.14. The ’deviation’ Statement 46
 10.15. The ’enum’ Statement 46
 10.16. The ’error-app-tag’ Statement 46
 10.17. The ’error-message’ Statement 46
 10.18. The ’extension’ Statement 46
 10.19. The ’feature’ Statement 46
 10.20. The ’grouping’ Statement 46
 10.21. The ’identity’ Statement 47
 10.22. The ’if-feature’ Statement 48
 10.23. The ’import’ Statement 49
 10.24. The ’include’ Statement 49
 10.25. The ’input’ Statement 49
 10.26. The ’key’ Statement 49
 10.27. The ’leaf’ Statement 49
 10.28. The ’leaf-list’ Statement 50
 10.29. The ’length’ Statement 50
 10.30. The ’list’ Statement 51
 10.31. The ’mandatory’ Statement 52
 10.32. The ’max-elements’ Statement 52
 10.33. The ’min-elements’ Statement 52
 10.34. The ’module’ Statement 52
 10.35. The ’must’ Statement 53
 10.36. The ’namespace’ Statement 53
 10.37. The ’notification’ Statement 54
 10.38. The ’ordered-by’ Statement 54
 10.39. The ’organization’ Statement 54
 10.40. The ’output’ Statement 54
 10.41. The ’path’ Statement 54
 10.42. The ’pattern’ Statement 54
 10.43. The ’position’ Statement 55
 10.44. The ’prefix’ Statement 55
 10.45. The ’presence’ Statement 55
 10.46. The ’range’ Statement 55
 10.47. The ’reference’ Statement 55
 10.48. The ’require-instance’ Statement 55
 10.49. The ’revision’ Statement 55
 10.50. The ’rpc’ Statement 55
 10.51. The ’status’ Statement 56
 10.52. The ’submodule’ Statement 56
 10.53. The ’type’ Statement 56
 10.53.1. The "empty" Type 57
 10.53.2. The "boolean" Type 57
 10.53.3. The "binary" Type 58
 10.53.4. The "bits" Type 58
 10.53.5. The "enumeration" and "union" Types 58

Lhotka Expires April 24, 2011 [Page 3]

Internet-Draft Mapping YANG to DSDL October 2010

 10.53.6. The "identityref" Type 58
 10.53.7. The "instance-identifier" Type 59
 10.53.8. The "leafref" Type 59
 10.53.9. The Numeric Types 59
 10.53.10. The "string" Type 61
 10.53.11. Derived Types 62
 10.54. The ’typedef’ Statement 63
 10.55. The ’unique’ Statement 63
 10.56. The ’units’ Statement 64
 10.57. The ’uses’ Statement 64
 10.58. The ’value’ Statement 64
 10.59. The ’when’ Statement 64
 10.60. The ’yang-version’ Statement 64
 10.61. The ’yin-element’ Statement 64
 11. Mapping the Hybrid Schema to DSDL 65
 11.1. Generating RELAX NG Schemas for Various Document Types . 65
 11.2. Mapping Semantic Constraints to Schematron 66
 11.2.1. Constraints on Mandatory Choice 69
 11.3. Mapping Default Values to DSRL 70
 12. Mapping NETMOD-specific Annotations to DSDL Schema
 Languages . 75
 12.1. The @nma:config Annotation 75
 12.2. The @nma:default Annotation 75
 12.3. The <nma:error-app-tag> Annotation 75
 12.4. The <nma:error-message> Annotation 75
 12.5. The @if-feature Annotation 75
 12.6. The @nma:implicit Annotation 76
 12.7. The <nma:instance-identifier> Annotation 76
 12.8. The @nma:key Annotation 76
 12.9. The @nma:leaf-list Annotation 76
 12.10. The @nma:leafref Annotation 77
 12.11. The @nma:min-elements Annotation 77
 12.12. The @nma:max-elements Annotation 77
 12.13. The <nma:must> Annotation 77
 12.14. The <nma:ordered-by> Annotation 78
 12.15. The <nma:status> Annotation 78
 12.16. The @nma:unique Annotation 78
 12.17. The @nma:when Annotation 78
 13. IANA Considerations . 79
 14. Security Considerations 80
 15. Contributors . 81
 16. Acknowledgments . 82
 17. References . 83
 17.1. Normative References 83
 17.2. Informative References 84
 Appendix A. RELAX NG Schema for NETMOD-Specific Annotations . . 86
 Appendix B. Schema-Independent Library 91
 Appendix C. Mapping DHCP Data Model - A Complete Example 92

Lhotka Expires April 24, 2011 [Page 4]

Internet-Draft Mapping YANG to DSDL October 2010

 C.1. Input YANG Module 92
 C.2. Hybrid Schema . 94
 C.3. Final DSDL Schemas 99
 C.3.1. Main RELAX NG Schema for <nc:get> Reply 100
 C.3.2. RELAX NG Schema - Global Named Pattern
 Definitions . 102
 C.3.3. Schematron Schema for <nc:get> Reply 104
 C.3.4. DSRL Schema for <nc:get> Reply 106
 Appendix D. Change Log . 107
 D.1. Changes Between Versions -07 and -08 107
 D.2. Changes Between Versions -06 and -07 107
 D.3. Changes Between Versions -05 and -06 107
 D.4. Changes Between Versions -04 and -05 108
 D.5. Changes Between Versions -03 and -04 108
 D.6. Changes Between Versions -02 and -03 109
 D.7. Changes Between Versions -01 and -02 110
 D.8. Changes Between Versions -00 and -01 110
 Author’s Address . 112

Lhotka Expires April 24, 2011 [Page 5]

Internet-Draft Mapping YANG to DSDL October 2010

1. Introduction

 The NETCONF Working Group has completed a base protocol used for
 configuration management [RFC4741]. This base specification defines
 protocol bindings and an XML container syntax for configuration and
 management operations, but does not include a data modeling language
 or accompanying rules for how to model configuration and state
 information carried by NETCONF. The IETF Operations Area has a long
 tradition of defining data for SNMP Management Information Bases
 (MIB) modules [RFC1157] using the Structure of Management Information
 (SMI) language [RFC2578] to model its data. While this specific
 modeling approach has a number of well-understood problems, most of
 the data modeling features provided by SMI are still considered
 extremely important. Simply modeling the valid syntax without the
 additional semantic relationships has caused significant
 interoperability problems in the past.

 The NETCONF community concluded that a data modeling framework is
 needed to support ongoing development of IETF and vendor-defined
 management information modules. The NETMOD Working Group was
 chartered to design a modeling language defining the semantics of
 operational data, configuration data, event notifications and
 operations, with focus on "human-friendliness", i.e., readability and
 ease of use. The result is the YANG data modeling language
 [RFC6020], which now serves for the normative description of NETCONF
 data models.

 Since NETCONF uses XML for encoding its messages, it is natural to
 express the constraints on NETCONF content using standard XML schema
 languages. For this purpose, the NETMOD WG selected the Document
 Schema Definition Languages (DSDL) that is being standardized as ISO/
 IEC 19757 [DSDL]. The DSDL framework comprises a set of XML schema
 languages that address grammar rules, semantic constraints and other
 data modeling aspects, but also, and more importantly, do it in a
 coordinated and consistent way. While it is true that some DSDL
 parts have not been standardized yet and are still work in progress,
 the three parts that the YANG-to-DSDL mapping relies upon - Regular
 Language for XML Next Generation (RELAX NG), Schematron and Document
 Schema Renaming Language (DSRL) - already have the status of an ISO/
 IEC International Standard and are supported in a number of software
 tools.

 This document contains a specification of a mapping that translates
 YANG data models to XML schemas utilizing a subset of the DSDL schema
 languages. The mapping procedure is divided into two steps: In the
 first step, the structure of the data tree, signatures of remote
 procedure call (RPC) operations and notifications is expressed as the
 so-called "hybrid schema" - a single RELAX NG schema with annotations

Lhotka Expires April 24, 2011 [Page 6]

Internet-Draft Mapping YANG to DSDL October 2010

 representing additional data model information (metadata,
 documentation, semantic constraints, default values etc.). The
 second step then generates a coordinated set of DSDL schemas that can
 be used for validating specific XML documents such as client
 requests, server responses or notifications, perhaps also taking into
 account additional context such as active capabilities or features.

Lhotka Expires April 24, 2011 [Page 7]

Internet-Draft Mapping YANG to DSDL October 2010

2. Terminology and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [RFC4741]:

 o client

 o datastore

 o message

 o operation

 o server

 The following terms are defined in [RFC6020]:

 o augment

 o base type

 o built-in type

 o configuration data

 o container

 o data model

 o data node

 o data tree

 o derived type

 o device deviation

 o extension

 o feature

 o grouping

 o instance identifier

Lhotka Expires April 24, 2011 [Page 8]

Internet-Draft Mapping YANG to DSDL October 2010

 o leaf-list

 o list

 o mandatory node

 o module

 o RPC

 o RPC operation

 o schema node

 o schema tree

 o state data

 o submodule

 o top-level data node

 o uses

 The following terms are defined in [XML-INFOSET]:

 o attribute

 o document

 o document element

 o document type declaration (DTD)

 o element

 o information set

 o namespace

 In the text, the following typographic conventions are used:

 o YANG statement keywords are delimited by single quotes.

 o XML element names are delimited by "<" and ">" characters.

 o Names of XML attributes are prefixed by the "@" character.

Lhotka Expires April 24, 2011 [Page 9]

Internet-Draft Mapping YANG to DSDL October 2010

 o Other literal values are delimited by double quotes.

 XML elements names are always written with explicit namespace
 prefixes corresponding to the following XML vocabularies:

 "a" DTD compatibility annotations [RNG-DTD];

 "dc" Dublin Core metadata elements [RFC5013];

 "dsrl" Document Semantics Renaming Language [DSRL];

 "en" NETCONF event notifications [RFC5277];

 "nc" NETCONF protocol [RFC4741];

 "nma" NETMOD-specific schema annotations (see Section 5.3);

 "nmf" NETMOD-specific XPath extension functions (see Section 12.7);

 "rng" RELAX NG [RNG];

 "sch" ISO Schematron [Schematron];

 "xsd" W3C XML Schema [XSD].

 The following table shows the mapping of these prefixes to namespace
 URIs.

Lhotka Expires April 24, 2011 [Page 10]

Internet-Draft Mapping YANG to DSDL October 2010

 +--------+---+
 | Prefix | Namespace URI |
 +--------+---+
 | a | http://relaxng.org/ns/compatibility/annotations/1.0 |
 | | |
 | dc | http://purl.org/dc/terms |
 | | |
 | dsrl | http://purl.oclc.org/dsdl/dsrl |
 | | |
 | en | urn:ietf:params:xml:ns:netconf:notification:1.0 |
 | | |
 | nc | urn:ietf:params:xml:ns:netconf:base:1.0 |
 | | |
 | nma | urn:ietf:params:xml:ns:netmod:dsdl-annotations:1 |
 | | |
 | nmf | urn:ietf:params:xml:ns:netmod:xpath-extensions:1 |
 | | |
 | rng | http://relaxng.org/ns/structure/1.0 |
 | | |
 | sch | http://purl.oclc.org/dsdl/schematron |
 | | |
 | xsd | http://www.w3.org/2001/XMLSchema |
 +--------+---+

 Table 1: Used namespace prefixes and corresponding URIs

2.1. Glossary of New Terms

 o ancestor datatype: Any datatype a given datatype is (transitively)
 derived from.

 o ancestor built-in datatype: The built-in datatype that is at the
 start of the type derivation chain for a given datatype.

 o hybrid schema: A RELAX NG schema with annotations, which embodies
 the same information as the source YANG module(s). See
 Section 8.1 for details.

 o implicit node: A data node that, if it is not instantiated in a
 data tree, may be added to the information set of that data tree
 (configuration, RPC input or output, notification) without
 changing the semantics of the data tree.

Lhotka Expires April 24, 2011 [Page 11]

Internet-Draft Mapping YANG to DSDL October 2010

3. Objectives and Motivation

 The main objective of this work is to complement YANG as a data
 modeling language with validation capabilities of DSDL schema
 languages, namely RELAX NG, Schematron and DSRL. This document
 describes the correspondence between grammatical, semantic and data
 type constraints expressed in YANG and equivalent DSDL patterns and
 rules. The ultimate goal is to be able to capture all substantial
 information contained in YANG modules and express it in DSDL schemas.
 While the mapping from YANG to DSDL described in this document may in
 principle be invertible, the inverse mapping from DSDL to YANG is
 beyond the scope of this document.

 XML-based information models and XML-encoded data appear in several
 different forms in various phases of YANG data modeling and NETCONF
 workflow - configuration datastore contents, RPC requests and
 replies, and notifications. Moreover, RPC operations are
 characterized by an inherent diversity resulting from selective
 availability of capabilities and features. YANG modules can also
 define new RPC operations. The mapping should be able to accommodate
 this variability and generate schemas that are specifically tailored
 to a particular situation and thus considerably more effective for
 validation than generic all-encompassing schemas.

 In order to cope with this variability, we assume that the DSDL
 schemas will be generated on demand for a particular purpose from the
 available collection of YANG modules and their lifetime will be
 relatively short. In other words, we don’t envision that any
 collection of DSDL schemas will be created and maintained over an
 extended period of time in parallel to YANG modules.

 The generated schemas are primarily intended as input to existing XML
 schema validators and other off-the-shelf tools. However, the
 schemas may also be perused by developers and users as a formal
 representation of constraints on a particular XML-encoded data
 object. Consequently, our secondary goal is to keep the schemas as
 readable as possible. To this end, the complexity of the mapping is
 distributed into two steps:

 1. The first step maps one or more YANG modules to the so-called
 hybrid schema, which is a single RELAX NG schema that describes
 grammatical constraints for the main data tree as well as for RPC
 operations and notifications. Semantic constraints and other
 information appearing in the input YANG modules is recorded in
 the hybrid schema in the form of foreign namespace annotations.
 The output of the first step can thus be considered a virtually
 complete equivalent of the input YANG modules.

Lhotka Expires April 24, 2011 [Page 12]

Internet-Draft Mapping YANG to DSDL October 2010

 2. In the second step, the hybrid schema from step 1 is transformed
 further to a coordinated set of fully conformant DSDL schemas
 containing constraints for a particular data object and a
 specific situation. The DSDL schemas are intended mainly for
 machine validation using off-the-shelf tools.

Lhotka Expires April 24, 2011 [Page 13]

Internet-Draft Mapping YANG to DSDL October 2010

4. DSDL Schema Languages

 Document Schema Definition Languages (DSDL) is a framework of schema
 languages that is being developed as the International Standard ISO/
 IEC 19757 [DSDL]. Unlike other approaches to XML document
 validation, most notably W3C XML Schema Definition (XSD) [XSD], the
 DSDL framework adheres to the principle of "small languages": Each of
 the DSDL constituents is a stand-alone schema language with a
 relatively narrow purpose and focus. Together, these schema
 languages may be used in a coordinated way to accomplish various
 validation tasks.

 The mapping described in this document uses three of the DSDL schema
 languages, namely RELAX NG [RNG], Schematron [Schematron] and DSRL
 [DSRL].

4.1. RELAX NG

 RELAX NG (pronounced "relaxing") is an XML schema language for
 grammar-based validation and Part 2 of the ISO/IEC DSDL family of
 standards [RNG]. Like the W3C XML Schema language [XSD], it is able
 to describe constraints on the structure and contents of XML
 documents. However, unlike the DTD [XML] and XSD schema languages,
 RELAX NG intentionally avoids any infoset augmentation such as
 defining default values. In the DSDL architecture, the particular
 task of defining and applying default values is delegated to another
 schema language, DSRL (see Section 4.3).

 As its base datatype library, RELAX NG uses the W3C XML Schema
 Datatype Library [XSD-D], but unlike XSD, other datatype libraries
 may be used along with it or even replace it if necessary.

 RELAX NG is very liberal in accepting annotations from other
 namespaces. With a few exceptions, such annotations may be placed
 anywhere in the schema and need no encapsulating elements such as
 <xsd:annotation> in XSD.

 RELAX NG schemas can be represented in two equivalent syntaxes: XML
 and compact. The compact syntax is described in Annex C of the RELAX
 NG specification [RNG-CS], which was added to the standard in 2006
 (Amendment 1). Automatic bidirectional conversions between the two
 syntaxes can be accomplished using several tools, for example Trang
 [Trang].

 For its terseness and readability, the compact syntax is often the
 preferred form for publishing RELAX NG schemas whereas validators and
 other software tools usually work with the XML syntax. However, the
 compact syntax has two drawbacks:

Lhotka Expires April 24, 2011 [Page 14]

Internet-Draft Mapping YANG to DSDL October 2010

 o External annotations make the compact syntax schema considerably
 less readable. While in the XML syntax the annotating elements
 and attributes are represented in a simple and uniform way (XML
 elements and attributes from foreign namespaces), the compact
 syntax uses as many as four different syntactic constructs:
 documentation, grammar, initial and following annotations.
 Therefore, the impact of annotations on readability is often much
 stronger for the compact syntax than it is for the XML syntax.

 o In a computer program, it is more difficult to generate the
 compact syntax than the XML syntax. While a number of software
 libraries exist that make it easy to create an XML tree in the
 memory and then serialize it, no such aid is available for the
 compact syntax.

 For these reasons, the mapping specification in this document uses
 exclusively the XML syntax. Where appropriate, though, the schemas
 resulting from the translation MAY be presented in the equivalent
 compact syntax.

 RELAX NG elements are qualified with the namespace URI
 "http://relaxng.org/ns/structure/1.0". The namespace of the W3C
 Schema Datatype Library is
 "http://www.w3.org/2001/XMLSchema-datatypes".

4.2. Schematron

 Schematron is Part 3 of DSDL that reached the status of a full ISO/
 IEC standard in 2006 [Schematron]. In contrast to the traditional
 schema languages such as DTD, XSD or RELAX NG, which are based on the
 concept of a formal grammar, Schematron utilizes a rule-based
 approach. Its rules may specify arbitrary conditions involving data
 from different parts of an XML document. Each rule consists of three
 essential components:

 o context - an XPath expression that defines the set of locations
 where the rule is to be applied;

 o assert or report condition - another XPath expression that is
 evaluated relative to the location matched by the context
 expression;

 o human-readable message that is displayed when the assert condition
 is false or report condition is true.

 The difference between the assert and report condition is that the
 former is positive in that it states a condition that a valid
 document has to satisfy, whereas the latter specifies an error

Lhotka Expires April 24, 2011 [Page 15]

Internet-Draft Mapping YANG to DSDL October 2010

 condition.

 Schematron draws most of its expressive power from XPath [XPath] and
 Extensible Stylesheet Language Transformations (XSLT) [XSLT]. ISO
 Schematron allows for dynamic query language binding so that the
 following XML query languages can be used: STX, XSLT 1.0, XSLT 1.1,
 EXSLT, XSLT 2.0, XPath 1.0, XPath 2.0 and XQuery 1.0 (this list may
 be extended in the future).

 Human-readable error messages are another feature that sets
 Schematron apart from other common schema languages. The messages
 may even contain XPath expressions that are evaluated in the actual
 context and thus refer to information items in the XML document being
 validated.

 Another feature of Schematron that is used by the mapping are
 abstract patterns. These work essentially as macros and may also
 contain parameters which are supplied when the abstract pattern is
 used.

 Schematron elements are qualified with namespace URI
 "http://purl.oclc.org/dsdl/schematron".

4.3. Document Semantics Renaming Language (DSRL)

 DSRL (pronounced "disrule") is Part 8 of DSDL that reached the status
 of a full ISO/IEC standard in 2008 [DSRL]. Unlike RELAX NG and
 Schematron, DSRL is allowed to modify XML information set of the
 validated document. While DSRL is primarily intended for renaming
 XML elements and attributes, it can also define default values for
 XML attributes and default contents for XML elements or subtrees so
 that the default contents are inserted if they are missing in the
 validated documents. The latter feature is used by the YANG-to-DSDL
 mapping for representing YANG default contents consisting of leaf
 nodes with default values and their ancestor non-presence containers.

 DSRL elements are qualified with namespace URI
 "http://purl.oclc.org/dsdl/dsrl".

Lhotka Expires April 24, 2011 [Page 16]

Internet-Draft Mapping YANG to DSDL October 2010

5. Additional Annotations

 Besides the DSDL schema languages, the mapping also uses three sets
 of annotations that are added as foreign-namespace attributes and
 elements to RELAX NG schemas.

 Two of the annotation sets - Dublin Core elements and DTD
 compatibility annotations - are standard vocabularies for
 representing metadata and documentation, respectively. Although
 these data model items are not used for formal validation, they quite
 often carry important information for data model implementers.
 Therefore, they SHOULD be included in the hybrid schema and MAY also
 appear in the final validation schemas.

 The third set are NETMOD-specific annotations. They are specifically
 designed for the hybrid schema and convey semantic constraints and
 other information that cannot be expressed directly in RELAX NG. In
 the second mapping step, these annotations are converted to
 Schematron and DSRL rules.

5.1. Dublin Core Metadata Elements

 Dublin Core is a system of metadata elements that was originally
 created for describing metadata of World Wide Web resources in order
 to facilitate their automated lookup. Later it was accepted as a
 standard for describing metadata of arbitrary resources. This
 specification uses the definition from [RFC5013].

 Dublin Core elements are qualified with namespace URI
 "http://purl.org/dc/terms".

5.2. RELAX NG DTD Compatibility Annotations

 DTD compatibility annotations are a part of the RELAX NG DTD
 Compatibility specification [RNG-DTD]. YANG-to-DSDL mapping uses
 only the <a:documentation> annotation for representing YANG
 ’description’ and ’reference’ texts.

 Note that there is no intention to make the resulting schemas DTD-
 compatible, the main reason for using these annotations is technical:
 they are well supported and adequately formatted by several RELAX NG
 tools.

 DTD compatibility annotations are qualified with namespace URI
 "http://relaxng.org/ns/compatibility/annotations/1.0".

Lhotka Expires April 24, 2011 [Page 17]

Internet-Draft Mapping YANG to DSDL October 2010

5.3. NETMOD-Specific Annotations

 NETMOD-specific annotations are XML elements and attributes qualified
 with the namespace URI
 "urn:ietf:params:xml:ns:netmod:dsdl-annotations:1" which appear in
 various locations of the hybrid schema. YANG statements are mapped
 to these annotations in a straightforward way. In most cases, the
 annotation attributes and elements have the same name as the
 corresponding YANG statement.

 Table 2 lists alphabetically the names of NETMOD-specific annotation
 attributes (prefixed with "@") and elements (in angle brackets) along
 with a reference to the section where their use is described.
 Appendix A contains a RELAX NG schema for this annotation vocabulary.

 +---------------------------+--------------------+------+
 | annotation | section | note |
 +---------------------------+--------------------+------+
 | @nma:config | 10.9 | |
 | | | |
 | <nma:data> | 8.1 | 4 |
 | | | |
 | @nma:default | 10.12 | |
 | | | |
 | <nma:error-app-tag> | 10.16 | 1 |
 | | | |
 | <nma:error-message> | 10.17 | 1 |
 | | | |
 | @nma:if-feature | 10.22 | |
 | | | |
 | @nma:implicit | 10.11, 10.7, 10.12 | |
 | | | |
 | <nma:input> | 8.1 | 4 |
 | | | |
 | <nma:instance-identifier> | 10.53.7 | 2 |
 | | | |
 | @nma:key | 10.26 | |
 | | | |
 | @nma:leaf-list | 10.28 | |
 | | | |
 | @nma:leafref | 10.53.8 | |
 | | | |
 | @nma:mandatory | 10.8 | |
 | | | |
 | @nma:max-elements | 10.28 | |
 | | | |
 | @nma:min-elements | 10.28 | |
 | | | |

Lhotka Expires April 24, 2011 [Page 18]

Internet-Draft Mapping YANG to DSDL October 2010

 | @nma:module | 10.34 | |
 | | | |
 | <nma:must> | 10.35 | 3 |
 | | | |
 | <nma:notification> | 8.1 | 4 |
 | | | |
 | <nma:notifications> | 8.1 | 4 |
 | | | |
 | @nma:ordered-by | 10.38 | |
 | | | |
 | <nma:output> | 8.1 | 4 |
 | | | |
 | <nma:rpc> | 8.1 | 4 |
 | | | |
 | <nma:rpcs> | 8.1 | 4 |
 | | | |
 | @nma:status | 10.51 | |
 | | | |
 | @nma:unique | 10.55 | |
 | | | |
 | @nma:units | 10.56 | |
 | | | |
 | @nma:when | 10.59 | |
 +---------------------------+--------------------+------+

 Table 2: NETMOD-specific annotations

 Notes:

 1. Appears only as a subelement of <nma:must>.

 2. Has an optional attribute @require-instance.

 3. Has a mandatory attribute @assert and two optional subelements
 <nma:error-app-tag> and <nma:error-message>.

 4. Marker element in the hybrid schema.

Lhotka Expires April 24, 2011 [Page 19]

Internet-Draft Mapping YANG to DSDL October 2010

6. Overview of the Mapping

 This section gives an overview of the YANG-to-DSDL mapping, its
 inputs and outputs. Figure 1 presents an overall structure of the
 mapping:

 +----------------+
 | YANG module(s) |
 +----------------+
 |
 |T
 |
 +------------------------------------+
 | hybrid schema |
 +------------------------------------+
 / | | \
 / | | \
 Tg/ Tr| |Tn \
 / | | \
 +---------+ +-----+ +-------+ +------+
 |get reply| | rpc | | notif | | |
 +---------+ +-----+ +-------+ +------+

 Figure 1: Structure of the mapping

 The mapping procedure is divided into two steps:

 1. Transformation T in the first step maps one or more YANG modules
 to the hybrid schema (see Section 8.1). Constraints that cannot
 be expressed directly in RELAX NG (list key definitions, ’must’
 statements etc.) and various documentation texts are recorded in
 the schema as foreign-namespace annotations.

 2. In the second step, the hybrid schema may be transformed in
 multiple ways to a coordinated set of DSDL schemas that can be
 used for validating a particular data object in a specific
 context. Figure 1 shows three simple possibilities as examples.
 In the process, appropriate parts of the hybrid schema are
 extracted and specific annotations transformed to equivalent, but
 usually more complex, Schematron patterns, DSRL element maps etc.

 An implementation of the mapping algorithm MUST accept one or more
 valid YANG modules as its input. It is important to be able to
 process multiple YANG modules together since multiple modules may be
 negotiated for a NETCONF session and the contents of the
 configuration datastore is then obtained as the union of data trees
 specified by the individual modules, which may also lead to multiple
 root nodes of the datastore hierarchy. In addition, the input

Lhotka Expires April 24, 2011 [Page 20]

Internet-Draft Mapping YANG to DSDL October 2010

 modules may be further coupled by the ’augment’ statement in which
 one module augments the data tree of another module.

 It is also assumed that the algorithm has access, perhaps on demand,
 to all YANG modules that the input modules import (directly or
 transitively).

 Other information contained in input YANG modules, such as semantic
 constraints and default values, are recorded in the hybrid schema as
 annotations - XML attributes or elements qualified with namespace URI
 "urn:ietf:params:xml:ns:netmod:dsdl-annotations:1". Metadata
 describing the YANG modules are mapped to Dublin Core annotations
 elements (Section 5.1). Finally, documentation strings are mapped to
 <a:documentation> elements belonging to the DTD compatibility
 vocabulary (Section 5.2).

 The output of the second step is a coordinated set of three DSDL
 schemas corresponding to a specific data object and context:

 o RELAX NG schema describing the grammatical and datatype
 constraints;

 o Schematron schema expressing other constraints such as uniqueness
 of list keys or user-specified semantic rules;

 o DSRL schema containing the specification of default contents.

Lhotka Expires April 24, 2011 [Page 21]

Internet-Draft Mapping YANG to DSDL October 2010

7. NETCONF Content Validation

 This section describes how the schemas generated by the YANG-to-DSDL
 mapping are supposed to be applied for validating XML instance
 documents such as the contents of a datastore or various NETCONF
 messages.

 The validation proceeds in the following steps, which are also
 illustrated in Figure 2:

 1. The XML instance document is checked for grammatical and data
 type validity using the RELAX NG schema.

 2. Default values for leaf nodes have to be applied and their
 ancestor containers added where necessary. It is important to
 add the implicit nodes before the next validation step because
 YANG specification [RFC6020] requires that the data tree against
 which XPath expressions are evaluated already has all defaults
 filled-in. Note that this step modifies the information set of
 the validated XML document.

 3. The semantic constraints are checked using the Schematron schema.

 +----------+ +----------+
 | | | XML | |
 | XML | | document |
 | document |-----------o----------->| with |
 | | ^ | defaults |
 | | | | |
 +----------+ | +----------+
 ^ | filling in ^
 | grammar, | defaults | semantic
 | datatypes | | constraints
 | | |
 +----------+ +--------+ +------------+
 | RELAX NG | | DSRL | | Schematron |
 | schema | | schema | | schema |
 +----------+ +--------+ +------------+

 Figure 2: Outline of the validation procedure

Lhotka Expires April 24, 2011 [Page 22]

Internet-Draft Mapping YANG to DSDL October 2010

8. Design Considerations

 YANG data models could in principle be mapped to the DSDL schemas in
 a number of ways. The mapping procedure described in this document
 uses several specific design decisions that are discussed in the
 following subsections.

8.1. Hybrid Schema

 As was explained in Section 6, the first step of the mapping produces
 an intermediate document - the hybrid schema, which specifies all
 constraints for the entire data model in a single RELAX NG schema.

 Every input YANG module corresponds to exactly one embedded grammar
 in the hybrid schema. This separation of input YANG modules allows
 each embedded grammar to include named pattern definitions into its
 own namespace, which is important for mapping YANG groupings (see
 Section 9.2 for additional details).

 In addition to grammatical and datatype constraints, YANG modules
 provide other important information that cannot be expressed in a
 RELAX NG schema: semantic constraints, default values, metadata,
 documentation and so on. Such information items are represented in
 the hybrid schema as XML attributes and elements belonging to the
 namespace with the following URI:
 "urn:ietf:params:xml:ns:netmod:dsdl-annotations:1". A complete list
 of these annotations is given in Section 5.3, detailed rules about
 their use are then contained in the following sections.

 YANG modules define data models not only for configuration and state
 data but also for (multiple) RPC operations [RFC4741] and/or event
 notifications [RFC5277]. In order to be able to capture all three
 types of data models in one schema document, the hybrid schema uses
 special markers that enclose sub-schemas for configuration and state
 data, individual RPC operations (both input and output part) and
 individual notifications.

 The markers are the following XML elements in the namespace of
 NETMOD-specific annotations (URI
 urn:ietf:params:xml:ns:netmod:dsdl-annotations:1):

Lhotka Expires April 24, 2011 [Page 23]

Internet-Draft Mapping YANG to DSDL October 2010

 +-------------------+---------------------------------------+
 | Element name | Role |
 +-------------------+---------------------------------------+
 | nma:data | encloses configuration and state data |
 | | |
 | nma:rpcs | encloses all RPC operations |
 | | |
 | nma:rpc | encloses an individual RPC operation |
 | | |
 | nma:input | encloses an RPC request |
 | | |
 | nma:output | encloses an RPC reply |
 | | |
 | nma:notifications | encloses all notifications |
 | | |
 | nma:notification | encloses an individual notification |
 +-------------------+---------------------------------------+

 Table 3: Marker elements in the hybrid schema

 For example, consider a data model formed by two YANG modules
 "example-a" and "example-b" that define nodes in the namespaces
 "http://example.com/ns/example-a" and
 "http://example.com/ns/example-b". Module "example-a" defines
 configuration/state data, RPC methods and notifications, whereas
 "example-b" defines only configuration/state data. The hybrid schema
 can then be schematically represented as follows:

 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
 xmlns:exa="http://example.com/ns/example-a"
 xmlns:exb="http://example.com/ns/example-b"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <start>
 <grammar nma:module="example-a"
 ns="http://example.com/ns/example-a">
 <start>
 <nma:data>
 ...configuration and state data defined in "example-a"...
 </nma:data>
 <nma:rpcs>
 <nma:rpc>
 <nma:input>
 <element name="exa:myrpc">
 ...
 </element>
 </nma:input>
 <nma:output>

Lhotka Expires April 24, 2011 [Page 24]

Internet-Draft Mapping YANG to DSDL October 2010

 ...
 </nma:output>
 </nma:rpc>
 ...
 </nma:rpcs>
 <nma:notifications>
 <nma:notification>
 <element name="exa:mynotif">
 ...
 </element>
 </nma:notification>
 ...
 </nma:notifications>
 </start>
 ...local named pattern definitions of example-a...
 </grammar>
 <grammar nma:module="example-b"
 ns="http://example.com/ns/example-a">
 <start>
 <nma:data>
 ...configuration and state data defined in "example-b"...
 </nma:data>
 <nma:rpcs/>
 <nma:notifications/>
 </start>
 ...local named pattern definitions of example-b...
 </grammar>
 </start>
 ...global named pattern definitions...
 </grammar>

 A complete hybrid schema for the data model of a DHCP server is given
 in Appendix C.2.

8.2. Modularity

 Both YANG and RELAX NG offer means for modularity, i.e., for
 splitting the contents of a full schema into separate modules and
 combining or reusing them in various ways. However, the approaches
 taken by YANG and RELAX NG differ. Modularity in RELAX NG is
 suitable for ad hoc combinations of a small number of schemas whereas
 YANG assumes a large set of modules similar to SNMP MIB modules. The
 following differences are important:

 o In YANG, whenever module A imports module B, it gets access to the
 definitions (groupings and typedefs) appearing at the top level of
 module B. However, no part of data tree from module B is imported
 along with it. In contrast, the <rng:include> pattern in RELAX NG

Lhotka Expires April 24, 2011 [Page 25]

Internet-Draft Mapping YANG to DSDL October 2010

 imports both definitions of named patterns and the entire schema
 tree from the included schema.

 o The names of imported YANG groupings and typedefs are qualified
 with the namespace of the imported module. On the other hand, the
 names of data nodes contained inside the imported groupings, when
 used within the importing module, become part of the importing
 module’s namespace. In RELAX NG, the names of patterns are
 unqualified and so named patterns defined in both the importing
 and imported module share the same flat namespace. The contents
 of RELAX NG named patterns may either keep the namespace of the
 schema where they are defined or inherit the namespace of the
 importing module, analogically to YANG. However, in order to
 achieve the latter behavior, the definitions of named patterns
 must be included from an external schema which has to be prepared
 in a special way (see [Vli04], Chapter 11).

 In order to map, as much as possible, the modularity of YANG to RELAX
 NG, a validating RELAX NG schema (the result of the second mapping
 step) has to be split into two files, one of them containing all
 global definitions that are mapped from top-level YANG groupings
 appearing in all input YANG module. This RELAX NG schema MUST NOT
 define any namespace via the @ns attribute.

 The other RELAX NG schema file then defines actual data trees mapped
 from input YANG modules, each of them enclosed in an own embedded
 grammar. Those embedded grammars in which at least one of the global
 definitions is used MUST include the first schema with definitions
 and also MUST define the local namespace using the @ns attribute.
 This way, the global definitions can be used inside different
 embedded grammar, each time accepting a different local namespace.

 Named pattern definition that are mapped from non-top-level YANG
 groupings MUST be placed inside the embedded grammar corresponding to
 the YANG module where the grouping is defined.

 In the hybrid schema, we need to distinguish the global and non-
 global named pattern definitions while still keeping the hybrid
 schema in one file. This is accomplished in the following way:

 o Every global definition MUST be placed as a child of the the outer
 <rng:grammar> element (the document root of the hybrid schema).

 o Every non-global definitions MUST be placed as a child of the
 corresponding embedded <rng:grammar> element.

 YANG also allows for splitting a module into a number of submodules.
 However, as submodules have no impact on the scope of identifiers and

Lhotka Expires April 24, 2011 [Page 26]

Internet-Draft Mapping YANG to DSDL October 2010

 namespaces, the modularity based on submodules is not mapped in any
 way. The contents of submodules is therefore handled as if the
 submodule text appeared directly in the main module.

8.3. Granularity

 RELAX NG supports different styles of schema structuring: One
 extreme, often called "Russian Doll", specifies the structure of an
 XML instance document in a single hierarchy. The other extreme, the
 flat style, uses a similar approach as the Data Type Definition (DTD)
 schema language - every XML element corresponds to a named pattern
 definition. In practice, some compromise between the two extremes is
 usually chosen.

 YANG supports both styles in principle, too, but in most cases the
 modules are organized in a way closer to the "Russian Doll" style,
 which provides a better insight into the structure of the
 configuration data. Groupings are usually defined only for contents
 that are prepared for reuse in multiple places via the ’uses’
 statement. In contrast, RELAX NG schemas tend to be much flatter,
 because finer granularity is also needed in RELAX NG for
 extensibility of the schemas - it is only possible to replace or
 modify schema fragments that are factored out as named patterns. For
 YANG this is not an issue since its ’augment’ and ’refine’ statements
 can delve, by using path expressions, into arbitrary depths of
 existing structures.

 In general, it not feasible to map YANG’s powerful extension
 mechanisms to those available in RELAX NG. For this reason, the
 mapping essentially keeps the granularity of the original YANG data
 model: YANG groupings and definitions of derived types usually have
 direct counterparts in definitions of named patterns in the resulting
 RELAX NG schema.

8.4. Handling of XML Namespaces

 Most modern XML schema languages, including RELAX NG, Schematron and
 DSRL, support schemas for so-called compound XML documents which
 contain elements from multiple namespaces. This is useful for our
 purpose since the YANG-to-DSDL mapping allows for multiple input YANG
 modules, which naturally leads to compound document schemas.

 RELAX NG offers two alternatives for defining the target namespaces
 in the schema:

 1. First possibility is the traditional XML way via the @xmlns:xxx
 attribute.

Lhotka Expires April 24, 2011 [Page 27]

Internet-Draft Mapping YANG to DSDL October 2010

 2. One of the target namespace URIs may be declared using the @ns
 attribute.

 In both the hybrid schema and validation RELAX NG schemas generated
 in the second step, the namespaces MUST be declared as follows:

 1. The root <rng:grammar> MUST have @xmlns:xxx attributes declaring
 prefixes of all namespaces that are used in the data model. The
 prefixes SHOULD be identical to those defined in the ’prefix’
 statements. An implementation of the mapping MUST resolve all
 collisions in the prefixes defined by different input modules, if
 there are any.

 2. Each embedded <rng:grammar> element MUST declare the namespace of
 the corresponding module using the @ns attribute. This way, the
 names of nodes defined by global named patterns are able to adopt
 the local namespace of each embedded grammar, as explained in
 Section 8.2.

 This setup is illustrated by the example at the end of Section 8.1.

 DSRL schemas may declare any number of target namespaces via the
 standard XML attributes xmlns:xxx.

 In contrast, Schematron requires all used namespaces to be defined in
 the <sch:ns> subelements of the document element <sch:schema>.

Lhotka Expires April 24, 2011 [Page 28]

Internet-Draft Mapping YANG to DSDL October 2010

9. Mapping YANG Data Models to the Hybrid Schema

 This section explains the main principles governing the first step of
 the mapping. Its result is the hybrid schema which is described in
 Section 8.1.

 A detailed specification of the mapping of individual YANG statements
 is contained in the following Section 10.

9.1. Occurrence Rules for Data Nodes

 In DSDL schema languages, occurrence constraints for a node are
 always localized together with that node. In a RELAX NG schema, for
 example, <rng:optional> pattern appears as the parent element of the
 pattern defining a leaf or non-leaf element. Similarly, DSRL
 specifies default contents separately for every single node, be it a
 leaf or non-leaf element.

 For leaf nodes in YANG modules, the occurrence constraints are also
 easily inferred from the substatements of ’leaf’. On the other hand,
 for a YANG container it is often necessary to examine its entire
 subtree in order to determine the container’s occurrence constraints.

 Therefore, one of the goals of the first mapping step is to infer the
 occurrence constraints for all data nodes and mark accordingly the
 corresponding <rng:element> patterns in the hybrid schema so that any
 transformation procedure in the second mapping step can simply use
 this information and need not examine the subtree again.

 First, it has to be decided whether a given data node must always be
 present in a valid configuration. If so, such a node is called
 mandatory, otherwise it is called optional. This constraint is
 closely related to the notion of mandatory nodes in Section 3.1 in
 [RFC6020]. The only difference is that this document also considers
 list keys to be mandatory.

 The other occurrence constraint has to do with the semantics of the
 ’default’ statement and the possibility of removing empty non-
 presence containers. As a result, the information set of a valid
 configuration may be modified by adding or removing certain leaf or
 container elements without changing the meaning of the configuration.
 In this document, such elements are called implicit. In the hybrid
 schema, they can be identified as RELAX NG patterns having either
 @nma:default or @nma:implicit attribute.

 Note that both occurrence constraints apply to containers at the top
 level of the data tree, and then also to other containers under the
 additional condition that their parent node exists in the instance

Lhotka Expires April 24, 2011 [Page 29]

Internet-Draft Mapping YANG to DSDL October 2010

 document. For example, consider the following YANG fragment:

 container outer {
 presence ’Presence of "outer" means something.’;
 container c1 {
 leaf foo {
 type uint8;
 default 1;
 }
 }
 container c2 {
 leaf-list bar {
 type uint8;
 min-elements 0;
 }
 }
 container c3 {
 leaf baz {
 type uint8;
 mandatory true;
 }
 }
 }

 Here, container "outer" has the ’presence’ substatement, which means
 that it is optional and not implicit. If "outer" is not present in a
 configuration, its child containers are not present as well.
 However, if "outer" does exist, it makes sense to ask which of its
 child containers are optional and which are implicit. In this case,
 "c1" is optional and implicit, "c2" is optional but not implicit and
 "c3" is mandatory (and therefore not implicit).

 The following subsections give precise rules for determining whether
 a container is optional or mandatory and whether it is implicit. In
 order to simplify the recursive definition of these occurrence
 characteristics, it is useful to define them also for other types of
 YANG schema nodes, i.e., leaf, list, leaf-list and anyxml and choice.

9.1.1. Optional and Mandatory Nodes

 The decision whether a given node is mandatory or optional is
 governed by the following rules:

 o Leaf, anyxml and choice nodes are mandatory if they contain the
 substatement "mandatory true;". For a choice node this means that
 at least one node from exactly one case branch must exist.

Lhotka Expires April 24, 2011 [Page 30]

Internet-Draft Mapping YANG to DSDL October 2010

 o In addition, a leaf node is mandatory if it is declared as a list
 key.

 o A list or leaf-list node is mandatory if it contains the ’min-
 elements’ substatement with an argument value greater than zero.

 o A container node is mandatory if its definition does not contain
 the ’presence’ substatement and at least one of its child nodes is
 mandatory.

 A node which is not mandatory is said to be optional.

 In RELAX NG, definitions of nodes that are optional must be
 explicitly wrapped in the <rng:optional> element. The mapping MUST
 use the above rules to determine whether a YANG node is optional and
 if so, insert the <rng:optional> element in the hybrid schema.

 However, alternatives in <rng:choice> MUST NOT be defined as optional
 in the hybrid schema. If a choice in YANG is not mandatory, <rng:
 optional> MUST be used to wrap the entire <rng:choice> pattern.

9.1.2. Implicit Nodes

 The following rules are used to determine whether a given data node
 is implicit:

 o List, leaf-list and anyxml nodes are never implicit.

 o A leaf node is implicit if and only if it has a default value,
 defined either directly or via its datatype.

 o A container node is implicit if and only if it does not have the
 ’presence’ substatement, none of its children are mandatory and at
 least one child is implicit.

 In the hybrid schema, all implicit containers, as well as leafs that
 obtain their default value from a typedef and don’t have the @nma:
 default attribute, MUST be marked with @nma:implicit attribute having
 the value of "true".

 Note that Section 7.9.3 in [RFC6020] specifies other rules that must
 be taken into account when deciding whether a given container or leaf
 appearing inside a case of a choice is ultimately implicit or not.
 Specifically, a leaf or container under a case can be implicit only
 if the case appears in the argument of the choice’s ’default’
 statement. However, this is not sufficient by itself but also
 depends on the particular instance XML document, namely on the
 presence or absence of nodes from other (non-default) cases. The

Lhotka Expires April 24, 2011 [Page 31]

Internet-Draft Mapping YANG to DSDL October 2010

 details are explained in Section 11.3.

9.2. Mapping YANG Groupings and Typedefs

 YANG groupings and typedefs are generally mapped to RELAX NG named
 patterns. There are, however, several caveats that the mapping has
 to take into account.

 First of all, YANG typedefs and groupings may appear at all levels of
 the module hierarchy and are subject to lexical scoping, see Section
 5.5 in [RFC6020]. Second, top-level symbols from external modules
 may be imported as qualified names represented using the external
 module namespace prefix and the name of the symbol. In contrast,
 named patterns in RELAX NG (both local and imported via the <rng:
 include> pattern) share the same namespace and within a grammar they
 are always global - their definitions may only appear at the top
 level as children of the <rng:grammar> element. Consequently,
 whenever YANG groupings and typedefs are mapped to RELAX NG named
 pattern definitions, their names MUST be disambiguated in order to
 avoid naming conflicts. The mapping uses the following procedure for
 mangling the names of groupings and type definitions:

 o Names of groupings and typedefs appearing at the top level of the
 YANG module hierarchy are prefixed with the module name and two
 underscore characters ("__").

 o Names of other groupings and typedefs, i.e., those that do not
 appear at the top level of a YANG module, are prefixed with the
 module name, double underscore, and then the names of all ancestor
 data nodes separated by double underscore.

 o Finally, since the names of groupings and typedefs in YANG have
 different namespaces, an additional underscore character is added
 to the beginning of the mangled names of all groupings.

 An additional complication is caused by the YANG rules for subelement
 ordering (see, e.g., Section 7.5.7 in [RFC6020]): In RPC input and
 output parameters, subelements must follow the order specified in the
 data model, otherwise the order is arbitrary. Consequently, if a
 grouping is used both in RPC input/output parameters and elsewhere,
 it MUST be mapped to two different named pattern definitions - one
 with fixed order and the other with arbitrary order. To distinguish
 them, the "__rpc" suffix MUST be appended to the version with fixed
 order.

 EXAMPLE. Consider the following YANG module which imports the
 standard module "ietf-inet-types" [RFC6021]:

Lhotka Expires April 24, 2011 [Page 32]

Internet-Draft Mapping YANG to DSDL October 2010

 module example1 {
 namespace "http://example.com/ns/example1";
 prefix ex1;
 typedef vowels {
 type string {
 pattern "[aeiouy]*";
 }
 }
 grouping "grp1" {
 leaf "void" {
 type "empty";
 }
 }
 container "cont" {
 leaf foo {
 type vowels;
 }
 uses "grp1";
 }
 }

 The hybrid schema generated by the first mapping step will then
 contain the following two (global) named pattern definitions:

 <rng:define name="example1__vowels">
 <rng:data type="string">
 <rng:param name="pattern">[aeiouy]*</rng:param>
 </rng:data>
 </rng:define>

 <rng:define name="_example1__grp1">
 <rng:optional>
 <rng:element name="void">
 <rng:empty/>
 </rng:element>
 </rng:optional>
 </rng:define>

9.2.1. YANG Refinements and Augments

 YANG groupings represent a similar concept as named pattern
 definitions in RELAX NG and both languages also offer mechanisms for
 their subsequent modification. However, in RELAX NG the definitions
 themselves are modified whereas YANG provides two substatements of
 ’uses’ which modify expansions of groupings:

 o ’refine’ statement allows for changing parameters of a schema node
 inside the grouping referenced by the parent ’uses’ statement;

Lhotka Expires April 24, 2011 [Page 33]

Internet-Draft Mapping YANG to DSDL October 2010

 o ’augment’ statement can be used for adding new schema nodes to the
 grouping contents.

 Both ’refine’ and ’augment’ statements are quite powerful in that
 they can address, using XPath-like expressions as their arguments,
 schema nodes that are arbitrarily deep inside the grouping contents.
 In contrast, modifications of named pattern definitions in RELAX NG
 are applied exclusively at the topmost level of the named pattern
 contents. In order to achieve a modifiability of named patterns
 comparable to YANG, a RELAX NG schema would have to be extremely flat
 (cf. Section 8.3) and very difficult to read.

 Since the goal of the mapping described in this document is to
 generate ad hoc DSDL schemas, we decided to avoid these complications
 and instead expand the grouping and refine and/or augment it "in
 place". In other words, every ’uses’ statement which has ’refine’
 and/or ’augment’ substatements is replaced by the contents of the
 corresponding grouping, the changes specified in the ’refine’ and
 ’augment’ statements are applied and the resulting YANG schema
 fragment is mapped as if the ’uses’/’grouping’ indirection wasn’t
 there.

 If there are further ’uses’ statements inside the grouping contents,
 they may require expansion, too: it is necessary if the contained
 ’uses’/’grouping’ pair lies on the "modification path" specified in
 the argument of a ’refine’ or ’augment’ statement.

 EXAMPLE. Consider the following YANG module:

 module example2 {
 namespace "http://example.com/ns/example2";
 prefix ex2;
 grouping leaves {
 uses fr;
 uses es;
 }
 grouping fr {
 leaf feuille {
 type string;
 }
 }
 grouping es {
 leaf hoja {
 type string;
 }
 }
 uses leaves;
 }

Lhotka Expires April 24, 2011 [Page 34]

Internet-Draft Mapping YANG to DSDL October 2010

 The resulting hybrid schema contains three global named pattern
 definitions corresponding to the three groupings, namely

 <rng:define name="_example2__leaves">
 <rng:interleave>
 <rng:ref name="_example2__fr"/>
 <rng:ref name="_example2__es"/>
 </rng:interleave>
 </rng:define>

 <rng:define name="_example2__fr">
 <rng:optional>
 <rng:element name="feuille">
 <rng:data type="string"/>
 </rng:element>
 </rng:optional>
 </rng:define>

 <rng:define name="_example2__es">
 <rng:optional>
 <rng:element name="hoja">
 <rng:data type="string"/>
 </rng:element>
 </rng:optional>
 </rng:define>

 and the configuration data part of the hybrid schema is a single
 named pattern reference:

 <nma:data>
 <rng:ref name="_example2__leaves"/>
 </nma:data>

 Now assume that the "uses leaves" statement contains a ’refine’
 substatement, for example:

 uses leaves {
 refine "hoja" {
 default "alamo";
 }
 }

 The resulting hybrid schema now contains just one named pattern
 definition - "_example2__fr". The other two groupings "leaves" and
 "es" have to be expanded because they both lie on the "modification
 path", i.e., contain the leaf "hoja" that is being refined. The
 configuration data part of the hybrid schema now looks like this:

Lhotka Expires April 24, 2011 [Page 35]

Internet-Draft Mapping YANG to DSDL October 2010

 <nma:data>
 <rng:interleave>
 <rng:ref name="_example2__fr"/>
 <rng:optional>
 <rng:element name="ex2:hoja" nma:default="alamo">
 <rng:data type="string"/>
 </rng:element>
 </rng:optional>
 </rng:interleave>
 </nma:data>

9.2.2. Type Derivation Chains

 RELAX NG has no equivalent of the type derivation mechanism in YANG
 that allows to restrict a built-in type (perhaps in multiple steps)
 by adding new constraints. Whenever a derived YANG type is used
 without restrictions - as a substatement of either ’leaf’ or another
 ’typedef’ - then the ’type’ statement is mapped simply to a named
 pattern reference <rng:ref>, and the type definition is mapped to a
 RELAX NG named pattern definition <rng:define>. However, if any
 restrictions are specified as substatements of the ’type’ statement,
 the type definition MUST be expanded at that point so that only the
 ancestor built-in type appears in the hybrid schema, restricted with
 facets that correspond to the combination of all restrictions found
 along the type derivation chain and also in the ’type’ statement.

 EXAMPLE. Consider this YANG module:

 module example3 {
 namespace "http://example.com/ns/example3";
 prefix ex3;
 typedef dozen {
 type uint8 {
 range 1..12;
 }
 }
 leaf month {
 type dozen;
 }
 }

 The ’type’ statement in "leaf month" has no restrictions and is
 therefore mapped simply to the reference <rng:ref
 name="example3__dozen"/> and the corresponding named pattern is
 defined as follows:

Lhotka Expires April 24, 2011 [Page 36]

Internet-Draft Mapping YANG to DSDL October 2010

 <rng:define name="example3__dozen">
 <rng:data type="unsignedByte">
 <rng:param name="minInclusive">1</rng:param>
 <rng:param name="maxInclusive">12</rng:param>
 </rng:data>
 </rng:define>

 Assume now that the definition of leaf "month" is changed to

 leaf month {
 type dozen {
 range 7..max;
 }
 }

 The output RELAX NG schema then will not contain any named pattern
 definition and the leaf "month" will be mapped directly to

 <rng:element name="ex3:month">
 <rng:data type="unsignedByte">
 <rng:param name="minInclusive">7</rng:param>
 <rng:param name="maxInclusive">12</rng:param>
 </rng:data>
 </rng:element>

 The mapping of type derivation chains may be further complicated by
 the presence of the ’default’ statement in type definitions. In the
 simple case, when a type definition containing the ’default’
 statement is used without restrictions, the ’default’ statement is
 mapped to the @nma:default attribute attached to the <rng:define>
 element.

 However, if that type definition has to be expanded due to
 restrictions, the @nma:default annotation arising from the expanded
 type or ancestor types in the type derivation chain MUST be attached
 to the pattern where the expansion occurs. If there are multiple
 ’default’ statements in consecutive steps of the type derivation,
 only the ’default’ statement that is closest to the expanded type is
 used.

 EXAMPLE. Consider this variation of the last example:

Lhotka Expires April 24, 2011 [Page 37]

Internet-Draft Mapping YANG to DSDL October 2010

 module example3bis {
 namespace "http://example.com/ns/example3bis";
 prefix ex3bis;
 typedef dozen {
 type uint8 {
 range 1..12;
 }
 default 7;
 }
 leaf month {
 type dozen;
 }
 }

 The ’typedef’ statement in this module is mapped to the following
 named pattern definition:

 <rng:define name="example3bis__dozen" @nma:default="7">
 <rng:data type="unsignedByte">
 <rng:param name="minInclusive">1</rng:param>
 <rng:param name="maxInclusive">12</rng:param>
 </rng:data>
 </rng:define>

 If the "dozen" type is restricted when used in the leaf "month"
 definition as in the previous example, the "dozen" type has to be
 expanded and @nma:default becomes an attribute of the <ex3bis:month>
 element definition:

 <rng:element name="ex3bis:month" @nma:default="7">
 <rng:data type="unsignedByte">
 <rng:param name="minInclusive">7</rng:param>
 <rng:param name="maxInclusive">12</rng:param>
 </rng:data>
 </rng:element>

 However, if the definition of the leaf "month" itself contained the
 ’default’ substatement, the default specified for the "dozen" type
 would be ignored.

9.3. Translation of XPath Expressions

 YANG uses full XPath 1.0 syntax [XPath] for the arguments of ’must’,
 ’when’ and ’path’ statements. As the names of data nodes defined in
 a YANG module always belong to the namespace of that YANG module,
 YANG adopted a simplification similar to the concept of default
 namespace in XPath 2.0: node names in XPath expressions needn’t carry
 a namespace prefix inside the module where they are defined and the

Lhotka Expires April 24, 2011 [Page 38]

Internet-Draft Mapping YANG to DSDL October 2010

 local module’s namespace is assumed.

 Consequently, all XPath expressions MUST be translated into a fully
 conformant XPath 1.0 expression: Every unprefixed node name MUST be
 prepended with the local module’s namespace prefix as declared by the
 ’prefix’ statement.

 XPath expressions appearing inside top-level groupings require
 special attention because all unprefixed node names contained in them
 must adopt the namespace of each module where the grouping is used
 (cf. Section 8.2. In order to achieve this, the local prefix MUST be
 represented using the variable "$pref" in the hybrid schema. A
 Schematron schema which encounters such an XPath expression then
 supplies an appropriate value for this variable via a parameter to an
 abstract pattern to which the YANG grouping is mapped (see
 Section 11.2).

 For example, XPath expression "/dhcp/max-lease-time" appearing in a
 YANG module with the "dhcp" prefix will be translated to

 o "$pref:dhcp/$pref:max-lease-time", if the expression is inside a
 top-level grouping;

 o "dhcp:dhcp/dhcp:max-lease-time", otherwise.

 YANG also uses other XPath-like expressions, namely key identifiers
 and "descendant schema node identifiers" (see the ABNF production for
 and "descendant-schema-nodeid" in Section 12 of [RFC6020]). These
 expressions MUST be translated by adding local module prefixes as
 well.

9.4. YANG Language Extensions

 YANG allows for extending its own language in-line by adding new
 statements with keywords from special namespaces. Such extensions
 first have to be declared using the ’extension’ statement and then
 they can be used as the standard YANG statements, from which they are
 distinguished by a namespace prefix qualifying the extension keyword.
 RELAX NG has a similar extension mechanism - XML elements and
 attributes with names from foreign namespaces may be inserted at
 almost any place of a RELAX NG schema.

 YANG language extensions may or may not have a meaning in the context
 of DSDL schemas. Therefore, an implementation MAY ignore any or all
 of the extensions. However, an extension that is not ignored MUST be
 mapped to XML element(s) and/or attribute(s) that exactly match the
 YIN form of the extension, see Section 11.1 in [RFC6020].

Lhotka Expires April 24, 2011 [Page 39]

Internet-Draft Mapping YANG to DSDL October 2010

 EXAMPLE. Consider the following extension defined by the "acme"
 module:

 extension documentation-flag {
 argument number;
 }

 This extension can then be used in the same or another module, for
 instance like this:

 leaf folio {
 acme:documentation-flag 42;
 type string;
 }

 If this extension is honored by the mapping, it will be mapped to

 <rng:element name="acme:folio">
 <acme:documentation-flag number="42"/>
 <rng:data type="string"/>
 </rng:element>

 Note that the ’extension’ statement itself is not mapped in any way.

Lhotka Expires April 24, 2011 [Page 40]

Internet-Draft Mapping YANG to DSDL October 2010

10. Mapping YANG Statements to the Hybrid Schema

 Each subsection in this section is devoted to one YANG statement and
 provides the specification of how the statement is mapped to the
 hybrid schema. The subsections are sorted alphabetically by the
 statement keyword.

 Each YANG statement is mapped to an XML fragment, typically a single
 element or attribute but it may also be a larger structure. The
 mapping procedure is inherently recursive, which means that after
 finishing a statement the mapping continues with its substatements,
 if there are any, and a certain element of the resulting fragment
 becomes the parent of other fragments resulting from the mapping of
 substatements. Any changes to this default recursive procedure are
 explicitly specified.

 YANG XML encoding rules translate to the following rules for ordering
 multiple subelements:

 1. Within the <nma:rpcs> subtree (i.e., for input and output
 parameters of an RPC operation) the order of subelements is fixed
 and their definitions in the hybrid schema MUST follow the order
 specified in the source YANG module.

 2. When mapping the ’list’ statement, all keys MUST come before any
 other subelements and in the same order as they are declared in
 the ’key’ statement. The order of the remaining (non-key)
 subelements is not specified, so their definitions in the hybrid
 schema MUST be enclosed in the <rng:interleave> element.

 3. Otherwise, the order of subelements is arbitrary and,
 consequently, all definitions of subelements in the hybrid schema
 MUST be enclosed in the <rng:interleave> element.

 The following conventions are used in this section:

 o The argument of the statement being mapped is denoted by ARGUMENT.

 o The element in the RELAX NG schema that becomes the parent of the
 resulting XML fragment is denoted by PARENT.

10.1. The ’anyxml’ Statement

 This statement is mapped to <rng:element> element and ARGUMENT with
 prepended local namespace prefix becomes the value of its @name
 attribute. The contents of <rng:element> are

 <rng:ref name="__anyxml__"/>

Lhotka Expires April 24, 2011 [Page 41]

Internet-Draft Mapping YANG to DSDL October 2010

 Substatements of the ’anyxml’ statement, if any, MAY be mapped to
 additional children of the <rng:element> element.

 If at least one ’anyxml’ statement occurs in any of the input YANG
 modules, the following pattern definition MUST be added exactly once
 to the RELAX NG schema as a child of the root <rng:grammar> element
 (cf. [Vli04], p. 172):

 <rng:define name="__anyxml__">
 <rng:zeroOrMore>
 <rng:choice>
 <rng:attribute>
 <rng:anyName/>
 </rng:attribute>
 <rng:element>
 <rng:anyName/>
 <rng:ref name="__anyxml__"/>
 </rng:element>
 <rng:text/>
 </rng:choice>
 </rng:zeroOrMore>
 </rng:define>

 EXAMPLE: YANG statement in a module with namespace prefix "yam"

 anyxml data {
 description "Any XML content allowed here.";
 }

 is mapped to the following fragment:

 <rng:element name="yam:data">
 <a:documentation>Any XML content allowed here</a:documentation>
 <rng:ref name="__anyxml__"/>
 </rng:element>

 An anyxml node is optional if there is no "mandatory true;"
 substatement. The <rng:element> element then MUST be wrapped in
 <rng:optional>, except when the ’anyxml’ statement is a child of the
 ’choice’ statement and thus forms a shorthand case for that choice
 (see Section 9.1.1 for details).

10.2. The ’argument’ Statement

 This statement is not mapped to the output schema, but see the rules
 for handling extensions in Section 9.4.

Lhotka Expires April 24, 2011 [Page 42]

Internet-Draft Mapping YANG to DSDL October 2010

10.3. The ’augment’ Statement

 As a substatement of ’uses’, this statement is handled as a part of
 ’uses’ mapping, see Section 10.57.

 At the top level of a module or submodule, the ’augment’ statement is
 used for augmenting the schema tree of another YANG module. If the
 augmented module is not processed within the same mapping session,
 the top-level ’augment’ statement MUST be ignored. Otherwise, the
 contents of the statement are added to the foreign module with the
 namespace of the module where the ’augment’ statement appears.

10.4. The ’base’ Statement

 This statement is ignored as a substatement of ’identity’ and handled
 within the ’identityref’ type if it appears as a substatement of that
 type definition, see Section 10.53.6.

10.5. The ’belongs-to’ Statement

 This statement is not used since the processing of submodules is
 always initiated from the main module, see Section 10.24.

10.6. The ’bit’ Statement

 This statement is handled within the "bits" type, see
 Section 10.53.4.

10.7. The ’case’ Statement

 This statement is mapped to <rng:group> or <rng:interleave> element,
 depending on whether the statement belongs to an definition of an RPC
 operation or not. If the argument of a sibling ’default’ statement
 equals to ARGUMENT, @nma:implicit attribute with the value of "true"
 MUST be added to that <rng:group> or <rng:interleave> element. The
 @nma:implicit attribute MUST NOT be used for nodes at the top-level
 of a non-default case (see Section 7.9.3 in [RFC6020]).

10.8. The ’choice’ Statement

 This statement is mapped to <rng:choice> element.

 If ’choice’ has the ’mandatory’ substatement with the value of
 "true", the attribute @nma:mandatory MUST be added to the <rng:
 choice> element with the value of ARGUMENT. This case may require
 additional handling, see Section 11.2.1. Otherwise, if "mandatory
 true;" is not present, the <rng:choice> element MUST be wrapped in
 <rng:optional>.

Lhotka Expires April 24, 2011 [Page 43]

Internet-Draft Mapping YANG to DSDL October 2010

 The alternatives in <rng:choice> - mapped from either the ’case’
 statement or a shorthand case - MUST NOT be defined as optional.

10.9. The ’config’ Statement

 This statement is mapped to @nma:config attribute and ARGUMENT
 becomes its value.

10.10. The ’contact’ Statement

 This statement SHOULD NOT be used by the mapping since the hybrid
 schema may be mapped from multiple YANG modules created by different
 authors. The hybrid schema contains references to all input modules
 in the Dublin Core elements <dc:source>, see Section 10.34. The
 original YANG modules are the authoritative sources of the authorship
 information.

10.11. The ’container’ Statement

 Using the rules specified in Section 9.1.1, the mapping algorithm
 MUST determine whether the statement defines an optional container,
 and if so, insert the <rng:optional> element and make it the new
 PARENT.

 The container defined by this statement is then mapped to the <rng:
 element> element, which becomes a child of PARENT and uses ARGUMENT
 with prepended local namespace prefix as the value of its @name
 attribute.

 Finally, using the rules specified in Section 9.1.2, the mapping
 algorithm MUST determine whether the container is implicit, and if
 so, add the attribute @nma:implicit with the value of "true" to the
 <rng:element> element.

10.12. The ’default’ Statement

 If this statement is a substatement of ’leaf’, it is mapped to the
 @nma:default attribute of PARENT and ARGUMENT becomes its value.

 As a substatement of ’typedef’, the ’default’ statement is also
 mapped to the @nma:default attribute with the value of ARGUMENT. The
 placement of this attribute depends on whether or not the type
 definition has to be expanded when it is used:

 o If the type definition is not expanded, @nma:default becomes an
 attribute of the <rng:define> pattern resulting from the parent
 ’typedef’ mapping.

Lhotka Expires April 24, 2011 [Page 44]

Internet-Draft Mapping YANG to DSDL October 2010

 o Otherwise, @nma:default becomes an attribute of the ancestor RELAX
 NG pattern inside which the expansion takes place.

 Details and an example are given in Section 9.2.2.

 Finally, as a substatement of ’choice’, the ’default’ statement
 identifies the default case and is handled within the ’case’
 statement, see Section 10.7. If the default case uses the shorthand
 notation where the ’case’ statement is omitted, the @nma:implicit
 attribute with the value of "true" is either attached to the node
 representing the default case in the shorthand notation or,
 alternatively, an extra <rng:group> element MAY be inserted and the
 @nma:implicit attribute attached to it. In the latter case, the net
 result is the same as if the ’case’ statement wasn’t omitted for the
 default case.

 EXAMPLE. The following ’choice’ statement in a module with namespace
 prefix "yam"

 choice leaves {
 default feuille;
 leaf feuille { type empty; }
 leaf hoja { type empty; }
 }

 is either mapped directly to

 <rng:choice>
 <rng:element name="yam:feuille" nma:implicit="true">
 <rng:empty/>
 </rng:element>
 <rng:element name="yam:hoja">
 <rng:empty/>
 </rng:element/>
 </rng:choice>

 or the default case may be wrapped in an extra <rng:group>:

 <rng:choice>
 <rng:group nma:implicit="true">
 <rng:element name="yam:feuille">
 <rng:empty/>
 </rng:element>
 </rng:group>
 <rng:element name="yam:hoja">
 <rng:empty/>
 </rng:element/>
 </rng:choice>

Lhotka Expires April 24, 2011 [Page 45]

Internet-Draft Mapping YANG to DSDL October 2010

10.13. The ’description’ Statement

 This statement is mapped to the DTD compatibility element
 <a:documentation> and ARGUMENT becomes its text.

 In order to get properly formatted in the RELAX NG compact syntax,
 this element SHOULD be inserted as the first child of PARENT.

10.14. The ’deviation’ Statement

 This statement is ignored. However, it is assumed that all
 deviations are known beforehand and the corresponding changes have
 already been applied to the input YANG modules.

10.15. The ’enum’ Statement

 This statement is mapped to <rng:value> element and ARGUMENT becomes
 its text. All substatements except ’status’ are ignored because the
 <rng:value> element cannot contain annotation elements, see [RNG],
 section 6.

10.16. The ’error-app-tag’ Statement

 This statement is ignored unless it is a substatement of ’must’. In
 the latter case it is mapped to the <nma:error-app-tag> element. See
 also Section 10.35.

10.17. The ’error-message’ Statement

 This statement is ignored unless it is a substatement of ’must’. In
 the latter case it is mapped to the <nma:error-message> element. See
 also Section 10.35.

10.18. The ’extension’ Statement

 This statement is ignored. However, extensions to the YANG language
 MAY be mapped as described in Section 9.4.

10.19. The ’feature’ Statement

 This statement is ignored.

10.20. The ’grouping’ Statement

 This statement is mapped to a RELAX NG named pattern definition <rng:
 define>, but only if the grouping defined by this statement is used
 without refinements and augments in at least one of the input
 modules. In this case, the named pattern definition becomes a child

Lhotka Expires April 24, 2011 [Page 46]

Internet-Draft Mapping YANG to DSDL October 2010

 of the <rng:grammar> element and its name is ARGUMENT mangled
 according to the rules specified in Section 9.2.

 As explained in Section 8.2, a named pattern definition MUST be
 placed

 o as a child of the root <rng:grammar> element if the corresponding
 grouping is defined at the top level of an input YANG module;

 o otherwise as a child of the embedded <rng:grammar> element
 corresponding to the module in which the grouping is defined.

 Whenever a grouping is used with refinements and/or augments, it is
 expanded so that the refinements and augments may be applied in place
 to the prescribed schema nodes. See Section 9.2.1 for further
 details and an example.

 An implementation MAY offer the option of mapping all ’grouping’
 statements as named pattern definitions in the output RELAX NG schema
 even if they are not referenced. This is useful for mapping YANG
 "library" modules that typically contain only ’typedef’ and/or
 ’grouping’ statements.

10.21. The ’identity’ Statement

 This statement is mapped to the following named pattern definition
 which is placed as a child of the root <rng:grammar> element:

 <rng:define name="__PREFIX_ARGUMENT">
 <rng:choice>
 <rng:value type="QName">PREFIX:ARGUMENT</rng:value>
 <rng:ref name="IDENTITY1"/>
 ...
 </rng:choice>
 </rng:define>

 where

 PREFIX is the prefix used in the hybrid schema for the namespace
 of the module where the current identity is defined.

 IDENTITY1 is the name of of the named pattern corresponding to an
 identity which is derived from the current identity. Exactly one
 <rng:ref> element MUST be present for every such identity.

 EXAMPLE ([RFC6020], Section 7.16.3). The identities in the input
 YANG modules

Lhotka Expires April 24, 2011 [Page 47]

Internet-Draft Mapping YANG to DSDL October 2010

 module crypto-base {
 namespace "http://example.com/crypto-base";
 prefix "crypto";
 identity crypto-alg {
 description
 "Base identity from which all crypto algorithms
 are derived.";
 }
 }

 module des {
 namespace "http://example.com/des";
 prefix "des";
 import "crypto-base" {
 prefix "crypto";
 }
 identity des {
 base "crypto:crypto-alg";
 description "DES crypto algorithm";
 }
 identity des3 {
 base "crypto:crypto-alg";
 description "Triple DES crypto algorithm";
 }
 }

 will be mapped to the following named pattern definitions:

 <define name="__crypto_crypto-alg">
 <choice>
 <value type="QName">crypto:crypto-alg</value>
 <ref name="__des_des"/>
 <ref name="__des_des3"/>
 </choice>
 </define>
 <define name="__des_des">
 <value type="QName">des:des</value>
 </define>
 <define name="__des_des3">
 <value type="QName">des:des3</value>
 </define>

10.22. The ’if-feature’ Statement

 ARGUMENT together with arguments of all sibling ’if-feature’
 statements (with added prefixes, if missing) MUST be collected in a
 space-separated list which becomes the value of the @nma:if-feature
 attribute. This attribute is attached to PARENT.

Lhotka Expires April 24, 2011 [Page 48]

Internet-Draft Mapping YANG to DSDL October 2010

10.23. The ’import’ Statement

 This statement is not specifically mapped. The module whose name is
 in ARGUMENT has to be parsed so that the importing module is able to
 use its top-level groupings, typedefs and identities, and also
 augment the data tree of the imported module.

 If the ’import’ statement has the ’revision’ substatement, the
 corresponding revision of the imported module MUST be used. The
 mechanism for finding a given module revision is outside the scope of
 this document.

10.24. The ’include’ Statement

 This statement is not specifically mapped. The submodule whose name
 is in ARGUMENT has to be parsed and its contents mapped exactly as if
 the submodule text appeared directly in the main module text.

 If the ’include’ statement has the ’revision’ substatement, the
 corresponding revision of the submodule MUST be used. The mechanism
 for finding a given submodule revision is outside the scope of this
 document.

10.25. The ’input’ Statement

 This statement is handled within ’rpc’ statement, see Section 10.50.

10.26. The ’key’ Statement

 This statement is mapped to @nma:key attribute. ARGUMENT MUST be
 translated so that every key is prefixed with the namespace prefix of
 the local module. The result of this translation then becomes the
 value of the @nma:key attribute.

10.27. The ’leaf’ Statement

 This statement is mapped to the <rng:element> element and ARGUMENT
 with prepended local namespace prefix becomes the value of its @name
 attribute.

 If the leaf is optional, i.e., if there is no "mandatory true;"
 substatement and the leaf is not declared among the keys of an
 enclosing list, then the <rng:element> element MUST be enclosed in
 <rng:optional>, except when the ’leaf’ statement is a child of the
 ’choice’ statement and thus represents a shorthand case for that
 choice (see Section 9.1.1 for details).

Lhotka Expires April 24, 2011 [Page 49]

Internet-Draft Mapping YANG to DSDL October 2010

10.28. The ’leaf-list’ Statement

 This statement is mapped to a block enclosed by either <rng:
 zeroOrMore> or <rng:oneOrMore> element depending on whether the
 argument of ’min-elements’ substatement is "0" or positive,
 respectively (it is zero by default). This <rng:zeroOrMore> or <rng:
 oneOrMore> element becomes the PARENT.

 <rng:element> is then added as a child element of PARENT and ARGUMENT
 with prepended local namespace prefix becomes the value of its @name
 attribute. Another attribute, @nma:leaf-list, MUST also be added to
 this <rng:element> element with the value of "true". If the ’leaf-
 list’ statement has the ’min-elements’ substatement and its argument
 is greater than one, additional attribute @nma:min-elements is
 attached to <rng:element> and the argument of ’min-elements’ becomes
 the value of this attribute. Similarly, if there is the ’max-
 elements’ substatement and its argument value is not "unbounded",
 attribute @nma:max-elements is attached to this element and the
 argument of ’max-elements’ becomes the value of this attribute.

 EXAMPLE. A leaf-list appearing in a module with the namespace prefix
 "yam"

 leaf-list foliage {
 min-elements 3;
 max-elements 6378;
 ordered-by user;
 type string;
 }

 is mapped to the following RELAX NG fragment:

 <rng:oneOrMore>
 <rng:element name="yam:foliage" nma:leaf-list="true"
 nma:ordered-by="user"
 nma:min-elements="3" nma:max-elements="6378">
 <rng:data type="string"/>
 </rng:element>
 </rng:oneOrMore>

10.29. The ’length’ Statement

 This statement is handled within the "string" type, see
 Section 10.53.10.

Lhotka Expires April 24, 2011 [Page 50]

Internet-Draft Mapping YANG to DSDL October 2010

10.30. The ’list’ Statement

 This statement is mapped exactly as the ’leaf-list’ statement, see
 Section 10.28. The only difference is that the @nma:leaf-list
 annotation either MUST NOT be present or MUST have the value of
 "false".

 When mapping the substatements of ’list’, the order of children of
 the list element MUST be specified so that list keys, if there are
 any, always appear in the same order as they are defined in the ’key’
 substatement and before other children, see [RFC6020], Section 7.8.5.
 In particular, if a list key is defined in a grouping but the list
 node itself is not a part of the same grouping, and the position of
 the ’uses’ statement would violate the above ordering requirement,
 the grouping MUST be expanded, i.e., the ’uses’ statement replaced by
 the grouping contents.

 For example, consider the following YANG fragment of a module with
 the prefix "yam":

 grouping keygrp {
 leaf clef {
 type uint8;
 }
 }
 list foo {
 key clef;
 leaf bar {
 type string;
 }
 leaf baz {
 type string;
 }
 uses keygrp;
 }

 is mapped to the following RELAX NG fragment:

Lhotka Expires April 24, 2011 [Page 51]

Internet-Draft Mapping YANG to DSDL October 2010

 <rng:zeroOrMore>
 <rng:element name="yam:foo" nma:key="yam:clef">
 <rng:element name="yam:clef">
 <rng:data type="unsignedByte"/>
 </rng:element>
 <rng:interleave>
 <rng:element name="yam:bar">
 <rng:data type="string"/>
 </rng:element>
 <rng:element name="yam:baz">
 <rng:data type="string"/>
 </rng:element>
 </rng:interleave>
 </rng:element>
 </rng:zeroOrMore>

 Note that the "keygrp" grouping is expanded and the definition of
 "yam:clef" is moved before the <rng:interleave> pattern.

10.31. The ’mandatory’ Statement

 This statement may appear as a substatement of ’leaf’, ’choice’ or
 ’anyxml’ statement. If ARGUMENT is "true", the parent data node is
 mapped as mandatory, see Section 9.1.1.

 As a substatement of ’choice’, this statement is also mapped to the
 @nma:mandatory attribute which is added to PARENT. The value of this
 attribute is the argument of the parent ’choice’ statement.

10.32. The ’max-elements’ Statement

 This statement is handled within ’leaf-list’ or ’list’ statements,
 see Section 10.28.

10.33. The ’min-elements’ Statement

 This statement is handled within ’leaf-list’ or ’list’ statements,
 see Section 10.28.

10.34. The ’module’ Statement

 This statement is mapped to an embedded <rng:grammar> pattern having
 the @nma:module attribute with the value of ARGUMENT. In addition, a
 <dc:source> element SHOULD be created as a child of this <rng:
 grammar> element and contain ARGUMENT as a metadata reference to the
 input YANG module. See also Section 10.49.

 Substatements of the ’module’ statement MUST be mapped so that

Lhotka Expires April 24, 2011 [Page 52]

Internet-Draft Mapping YANG to DSDL October 2010

 o statements representing configuration/state data are mapped to
 descendants of the <nma:data> element;

 o statements representing the contents of RPC requests or replies
 are mapped to descendants of the <nma:rpcs> element;

 o statements representing the contents of event notifications are
 mapped to descendants of the <nma:notifications> element.

10.35. The ’must’ Statement

 This statement is mapped to the <nma:must> element. It has one
 mandatory attribute @assert (with no namespace) which contains
 ARGUMENT transformed into a valid XPath expression (see Section 9.3).
 The <nma:must> element may have other subelements resulting from
 mapping the ’error-app-tag’ and ’error-message’ substatements. Other
 substatements of ’must’, i.e., ’description’ and ’reference’, are
 ignored.

 EXAMPLE. YANG statement in the "dhcp" module

 must ’current() <= ../max-lease-time’ {
 error-message
 "The default-lease-time must be less than max-lease-time";
 }

 is mapped to

 <nma:must assert="current()<=../dhcp:max-lease-time">
 <nma:error-message>
 The default-lease-time must be less than max-lease-time
 </nma:error-message>
 </nma:must>

10.36. The ’namespace’ Statement

 This statement is mapped simultaneously in two ways:

 1. To the @xmlns:PREFIX attribute of the root <rng:grammar> element
 where PREFIX is the namespace prefix specified by the sibling
 ’prefix’ statement. ARGUMENT becomes the value of this
 attribute.

 2. To the @ns attribute of PARENT, which is an embedded <rng:
 grammar> pattern. ARGUMENT becomes the value of this attribute.

Lhotka Expires April 24, 2011 [Page 53]

Internet-Draft Mapping YANG to DSDL October 2010

10.37. The ’notification’ Statement

 This statement is mapped to the following subtree of the <nma:
 notifications> element in the hybrid schema (where PREFIX is the
 prefix of the local YANG module):

 <nma:notification>
 <rng:element name="PREFIX:ARGUMENT">
 ...
 </rng:element>
 </nma:notification>

 Substatements of ’notification’ are mapped under <rng:element
 name="PREFIX:ARGUMENT">.

10.38. The ’ordered-by’ Statement

 This statement is mapped to @nma:ordered-by attribute and ARGUMENT
 becomes the value of this attribute. See Section 10.28 for an
 example.

10.39. The ’organization’ Statement

 This statement is ignored by the mapping because the hybrid schema
 may be mapped from multiple YANG modules authored by different
 parties. The hybrid schema SHOULD contain references to all input
 modules in the Dublin Core <dc:source> elements, see Section 10.34.
 The original YANG modules are the authoritative sources of the
 authorship information.

10.40. The ’output’ Statement

 This statement is handled within the ’rpc’ statement, see
 Section 10.50.

10.41. The ’path’ Statement

 This statement is handled within the "leafref" type, see
 Section 10.53.8.

10.42. The ’pattern’ Statement

 This statement is handled within the "string" type, see
 Section 10.53.10.

Lhotka Expires April 24, 2011 [Page 54]

Internet-Draft Mapping YANG to DSDL October 2010

10.43. The ’position’ Statement

 This statement is ignored.

10.44. The ’prefix’ Statement

 This statement is handled within the sibling ’namespace’ statement,
 see Section 10.36, or within the parent ’import’ statement, see
 Section 10.23. As a substatement of ’belongs-to’ (in submodules),
 the ’prefix’ statement is ignored.

10.45. The ’presence’ Statement

 This statement influences the mapping of the parent container
 (Section 10.11): the parent container definition MUST be wrapped in
 <rng:optional>, regardless of its contents. See also Section 9.1.1.

10.46. The ’range’ Statement

 This statement is handled within numeric types, see Section 10.53.9.

10.47. The ’reference’ Statement

 This statement is mapped to <a:documentation> element and its text is
 set to ARGUMENT prefixed with "See: ".

10.48. The ’require-instance’ Statement

 This statement is handled within "instance-identifier" type
 (Section 10.53.7).

10.49. The ’revision’ Statement

 The mapping uses only the most recent instance of the ’revision’
 statement, i.e., one with the latest date in ARGUMENT, which
 specifies the current revision of the input YANG module [RFC6020].
 This date SHOULD be recorded, together with the name of the YANG
 module, in the corresponding Dublin Core <dc:source> element (see
 Section 10.34), for example in this form:

 <dc:source>YANG module ’foo’, revision 2010-03-02</dc:source>

 The ’description’ substatement of ’revision’ is ignored.

10.50. The ’rpc’ Statement

 This statement is mapped to the following subtree in the RELAX NG
 schema (where PREFIX is the prefix of the local YANG module):

Lhotka Expires April 24, 2011 [Page 55]

Internet-Draft Mapping YANG to DSDL October 2010

 <nma:rpc>
 <nma:input>
 <rng:element name="PREFIX:ARGUMENT">
 ... mapped contents of ’input’ ...
 </rng:element>
 </nma:input>
 <nma:output">
 ... mapped contents of ’output’ ...
 </nma:output>
 </nma:rpc>

 As indicated in the schema fragment, contents of the ’input’
 substatement (if any) are mapped under <rng:element name="PREFIX:
 ARGUMENT">. Similarly, contents of the ’output’ substatement are
 mapped under <nma:output>. If there is no ’output’ substatement, the
 <nma:output> element MUST NOT be present.

 The <nma:rpc> element is a child of <nma:rpcs>.

10.51. The ’status’ Statement

 This statement MAY be ignored. Otherwise, it is mapped to @nma:
 status attribute and ARGUMENT becomes its value.

10.52. The ’submodule’ Statement

 This statement is not specifically mapped. Its substatements are
 mapped as if they appeared directly in the module the submodule
 belongs to.

10.53. The ’type’ Statement

 Most YANG built-in datatypes have an equivalent in the XSD datatype
 library [XSD-D] as shown in Table 4.

Lhotka Expires April 24, 2011 [Page 56]

Internet-Draft Mapping YANG to DSDL October 2010

 +-----------+---------------+--------------------------------+
 | YANG type | XSD type | Meaning |
 +-----------+---------------+--------------------------------+
 | int8 | byte | 8-bit integer value |
 | | | |
 | int16 | short | 16-bit integer value |
 | | | |
 | int32 | int | 32-bit integer value |
 | | | |
 | int64 | long | 64-bit integer value |
 | | | |
 | uint8 | unsignedByte | 8-bit unsigned integer value |
 | | | |
 | uint16 | unsignedShort | 16-bit unsigned integer value |
 | | | |
 | uint32 | unsignedInt | 32-bit unsigned integer value |
 | | | |
 | uint64 | unsignedLong | 64-bit unsigned integer value |
 | | | |
 | string | string | character string |
 | | | |
 | binary | base64Binary | binary data in base64 encoding |
 +-----------+---------------+--------------------------------+

 Table 4: YANG built-in datatypes with equivalents in the W3C XML
 Schema Type Library

 Two important datatypes of the XSD datatype library - "dateTime" and
 "anyURI" - are not built-in types in YANG but instead are defined as
 derived types in the standard modules [RFC6021]: "date-and-time" in
 the "ietf-yang-types" module and "uri" in the "ietf-inet-types"
 module. However, the formal restrictions in the YANG type
 definitions are rather weak. Therefore, implementations of the YANG-
 to-DSDL mapping SHOULD detect these derived types in source YANG
 modules and map them to "dateType" and "anyURI", respectively.

 Details about the mapping of individual YANG built-in types are given
 in the following subsections.

10.53.1. The "empty" Type

 This type is mapped to <rng:empty/>.

10.53.2. The "boolean" Type

 This built-in type does not allow any restrictions and is mapped to
 the following XML fragment:

Lhotka Expires April 24, 2011 [Page 57]

Internet-Draft Mapping YANG to DSDL October 2010

 <rng:choice>
 <rng:value>true</rng:value>
 <rng:value>false</rng:value>
 </rng:choice>

 Note that the XSD "boolean" type cannot be used here because it
 allows, unlike YANG, an alternative numeric representation of boolean
 values: 0 for "false" and 1 for "true".

10.53.3. The "binary" Type

 This built-in type does not allow any restrictions and is mapped
 simply by inserting <rng:data> element whose @type attribute value is
 set to "base64Binary" (see also Table 4).

10.53.4. The "bits" Type

 This type is mapped to <rng:list> and for each ’bit’ substatement the
 following XML fragment is inserted as a child of <rng:list>:

 <rng:optional>
 <rng:value>bit_name</rng:value>
 </rng:optional>

 where bit_name is the name of the bit as found in the argument of a
 ’bit’ substatement.

10.53.5. The "enumeration" and "union" Types

 These types are mapped to the <rng:choice> element.

10.53.6. The "identityref" Type

 This type is mapped to the following named pattern reference:

 <rng:ref name="__PREFIX_BASE"/>

 where PREFIX:BASE is the qualified name of the identity appearing in
 the argument of the ’base’ substatement.

 For example, assume that module "des" in Section 10.21 contains the
 following leaf definition:

 leaf foo {
 type identityref {
 base crypto:crypto-alg;
 }
 }

Lhotka Expires April 24, 2011 [Page 58]

Internet-Draft Mapping YANG to DSDL October 2010

 This leaf would then be mapped to the following element pattern:

 <element name="des:foo">
 <ref name="__crypto_crypto-alg"/>
 </element>

10.53.7. The "instance-identifier" Type

 This type is mapped to <rng:data> element with @type attribute set to
 "string". In addition, an empty <nma:instance-identifier> element
 MUST be inserted as a child of PARENT.

 The argument of the ’require-instance’ substatement, if it exists,
 becomes the value of the @require-instance attribute of the <nma:
 instance-identifier> element.

10.53.8. The "leafref" Type

 This type is mapped exactly as the type of the leaf given in the
 argument of ’path’ substatement. However, if the type of the
 referred leaf defines a default value, this default value MUST be
 ignored by the mapping.

 In addition, @nma:leafref attribute MUST be added to PARENT. The
 argument of the ’path’ substatement, translated according to
 Section 9.3, is set as the value of this attribute.

10.53.9. The Numeric Types

 YANG built-in numeric types are "int8", "int16", "int32", "int64",
 "uint8", "uint16", "uint32", "uint64" and "decimal64". They are
 mapped to <rng:data> element with @type attribute set to ARGUMENT
 translated according to Table 4 above.

 An exception is the "decimal64" type, which is mapped to the
 "decimal" type of the XSD datatype library. Its precision and number
 of fractional digits are controlled with the following facets, which
 MUST always be present:

 o "totalDigits" facet set to the value of 19.

 o "fractionDigits" facet set to the argument of the ’fraction-
 digits’ substatement.

 The fixed value of "totalDigits" corresponds to the maximum of 19
 decimal digits for 64-bit integers.

 For example, the statement

Lhotka Expires April 24, 2011 [Page 59]

Internet-Draft Mapping YANG to DSDL October 2010

 type decimal64 {
 fraction-digits 2;
 }

 is mapped to the following RELAX NG datatype:

 <rng:data type="decimal">
 <rng:param name="totalDigits">19</rng:param>
 <rng:param name="fractionDigits">2</rng:param>
 </rng:data>

 All numeric types support the ’range’ restriction, which is mapped as
 follows:

 If the range expression consists of just a single range LO..HI, then
 it is mapped to a pair of datatype facets

 <rng:param name="minInclusive">LO</rng:param>

 and

 <rng:param name="maxInclusive">HI</rng:param>

 If the range consists of a single number, the values of both facets
 are set to this value. If LO is equal to the string "min", the
 "minInclusive" facet is omitted. If HI is equal to the string "max",
 the "maxInclusive" facet is omitted.

 If the range expression has multiple parts separated by "|", then the
 parent <rng:data> element must be repeated once for every range part
 and all such <rng:data> elements are wrapped in <rng:choice> element.
 Each <rng:data> element contains the "minInclusive" and
 "maxInclusive" facets for one part of the range expression as
 described in the previous paragraph.

 For the "decimal64" type, the "totalDigits" and "fractionDigits" must
 be repeated inside each of the <rng:data> elements.

 For example,

 type int32 {
 range "-6378..0|42|100..max";
 }

 is mapped to the following RELAX NG fragment:

Lhotka Expires April 24, 2011 [Page 60]

Internet-Draft Mapping YANG to DSDL October 2010

 <rng:choice>
 <rng:data type="int">
 <rng:param name="minInclusive">-6378</rng:param>
 <rng:param name="maxInclusive">0</rng:param>
 </rng:data>
 <rng:data type="int">
 <rng:param name="minInclusive">42</rng:param>
 <rng:param name="maxInclusive">42</rng:param>
 </rng:data>
 <rng:data type="int">
 <rng:param name="minInclusive">100</rng:param>
 </rng:data>
 </rng:choice>

 See Section 9.2.2 for further details on mapping the restrictions.

10.53.10. The "string" Type

 This type is mapped to <rng:data> element with the @type attribute
 set to "string".

 The ’length’ restriction is handled analogically to the ’range’
 restriction for the numeric types (Section 10.53.9):

 If the length expression has just a single range, then

 o if the length range consists of a single number LENGTH, the
 following datatype facet is inserted:

 <rng:param name="length">LENGTH</rng:param>.

 o Otherwise the length range is of the form LO..HI, i.e., it
 consists of both the lower and upper bound. The following two
 datatype facets are then inserted:

 <rng:param name="minLength">LO</rng:param>

 and

 <rng:param name="maxLength">HI</rng:param>

 If LO is equal to the string "min", the "minLength" facet is
 omitted. If HI is equal to the string "max", the "maxLength"
 facet is omitted.

 If the length expression has of multiple parts separated by "|", then
 the parent <rng:data> element must be repeated once for every range
 part and all such <rng:data> elements are wrapped in <rng:choice>

Lhotka Expires April 24, 2011 [Page 61]

Internet-Draft Mapping YANG to DSDL October 2010

 element. Each <rng:data> element contains the "length" or
 "minLength" and "maxLength" facets for one part of the length
 expression as described in the previous paragraph.

 Every ’pattern’ restriction of the "string" datatype is mapped to the
 "pattern" facet

 <rng:param name="pattern">...</rng:param>

 with text equal to the argument of the ’pattern’ statement. All such
 "pattern" facets must be repeated inside each copy of the <rng:data>
 element, i.e., once for each length range.

 For example,

 type string {
 length "1|3..8";
 pattern "[A-Z][a-z]*";
 }

 is mapped to the following RELAX NG fragment:

 <rng:choice>
 <rng:data type="string">
 <rng:param name="length">1</rng:param>
 <rng:param name="pattern">[A-Z][a-z]*</rng:param>
 </rng:data>
 <rng:data type="string">
 <rng:param name="minLength">3</rng:param>
 <rng:param name="maxLength">8</rng:param>
 <rng:param name="pattern">[A-Z][a-z]*</rng:param>
 </rng:data>
 </rng:choice>

10.53.11. Derived Types

 If the ’type’ statement refers to a derived type, it is mapped in one
 of the following ways depending on whether it contains any
 restrictions as its substatements:

 1. Without restrictions, the ’type’ statement is mapped simply to
 the <rng:ref> element, i.e., a reference to a named pattern. If
 the RELAX NG definition of this named pattern has not been added
 to the hybrid schema yet, the corresponding type definition MUST
 be found and its mapping installed as a subelement of either the
 root or an embedded <rng:grammar> element, see Section 10.54.
 Even if a given derived type is used more than once in the input
 YANG modules, the mapping of the corresponding ’typedef’ MUST be

Lhotka Expires April 24, 2011 [Page 62]

Internet-Draft Mapping YANG to DSDL October 2010

 installed only once.

 2. If any restrictions are present, the ancestor built-in type for
 the given derived type must be determined and the mapping of this
 base type MUST be used. Restrictions appearing at all stages of
 the type derivation chain MUST be taken into account and their
 conjunction added to the <rng:data> element which defines the
 basic type.

 See Section 9.2.2 for more details and an example.

10.54. The ’typedef’ Statement

 This statement is mapped to a RELAX NG named pattern definition <rng:
 define>, but only if the type defined by this statement is used
 without restrictions in at least one of the input modules. In this
 case, the named pattern definition becomes a child of either the root
 or an embedded <rng:grammar> element, depending on whether the
 ’typedef’ statement appears at the top level of a YANG module or not.
 The name of this named pattern definition is set to ARGUMENT mangled
 according to the rules specified in Section 9.2.

 Whenever a derived type is used with additional restrictions, the
 ancestor built-in type for the derived type is used instead with
 restrictions (facets) that are a combination of all restrictions
 specified along the type derivation chain. See Section 10.53.11 for
 further details and an example.

 An implementation MAY offer the option of recording all ’typedef’
 statements as named patterns in the output RELAX NG schema even if
 they are not referenced. This is useful for mapping YANG "library"
 modules containing only ’typedef’ and/or ’grouping’ statements.

10.55. The ’unique’ Statement

 This statement is mapped to @nma:unique attribute. ARGUMENT MUST be
 translated so that every node identifier in each of its components is
 prefixed with the namespace prefix of the local module, unless the
 prefix is already present. The result of this translation then
 becomes the value of the @nma:unique attribute.

 For example, assuming that the local module prefix is "ex",

 unique "foo ex:bar/baz"

 is mapped to the following attribute/value pair:

 nma:unique="ex:foo ex:bar/ex:baz"

Lhotka Expires April 24, 2011 [Page 63]

Internet-Draft Mapping YANG to DSDL October 2010

10.56. The ’units’ Statement

 This statement is mapped to @nma:units attribute and ARGUMENT becomes
 its value.

10.57. The ’uses’ Statement

 If this statement has neither ’refine’ nor ’augment’ substatements,
 it is mapped to <rng:ref> element, i.e., a reference to a named
 pattern, and the value of its @name attribute is set to ARGUMENT
 mangled according to Section 9.2. If the RELAX NG definition of the
 referenced named pattern has not been added to the hybrid schema yet,
 the corresponding grouping MUST be found and its mapping installed as
 a subelement of <rng:grammar>, see Section 10.20.

 Otherwise, if the ’uses’ statement has any ’refine’ or ’augment’
 substatements, the corresponding grouping must be looked up and its
 contents inserted under PARENT. See Section 9.2.1 for further
 details and an example.

10.58. The ’value’ Statement

 This statement is ignored.

10.59. The ’when’ Statement

 This statement is mapped to @nma:when attribute and ARGUMENT,
 translated according to Section 9.3, becomes it value.

10.60. The ’yang-version’ Statement

 This statement is not mapped to the output schema. However, an
 implementation SHOULD check that it is compatible with the YANG
 version declared by the statement (currently version 1). In the case
 of a mismatch, the implementation SHOULD report an error and
 terminate.

10.61. The ’yin-element’ Statement

 This statement is not mapped to the output schema, but see the rules
 for extension handling in Section 9.4.

Lhotka Expires April 24, 2011 [Page 64]

Internet-Draft Mapping YANG to DSDL October 2010

11. Mapping the Hybrid Schema to DSDL

 As explained in Section 6, the second step of the YANG-to-DSDL
 mapping takes the hybrid schema and transforms it to various DSDL
 schemas capable of validating instance XML documents. As an input
 parameter, this step takes, in the simplest case, just a
 specification of the NETCONF XML document type that is to be
 validated. These document types can be, for example, the contents of
 a datastore, a reply to <nc:get> or <nc:get-config>, contents of
 other RPC requests/replies and event notifications, and so on.

 The second mapping step has to accomplish the following three general
 tasks:

 1. Extract the parts of the hybrid schema that are appropriate for
 the requested document type. For example, if a <nc:get> reply is
 to be validated, the subtree under <nma:data> has to be selected.

 2. The schema must be adapted to the specific encapsulating XML
 elements mandated by the RPC layer. These are, for example, <nc:
 rpc> and <nc:data> elements in the case of a <nc:get> reply or
 <en:notification> for a notification.

 3. Finally, NETMOD-specific annotations that are relevant for the
 schema language of the generated schema must be mapped to the
 corresponding patterns or rules.

 These three tasks are together much simpler than the first mapping
 step and can be effectively implemented using XSL transformations
 [XSLT].

 The following subsections describe the details of the second mapping
 step for the individual DSDL schema languages. Section 12 then
 contains a detailed specification for the mapping of all NETMOD-
 specific annotations.

11.1. Generating RELAX NG Schemas for Various Document Types

 With one minor exception, obtaining a validating RELAX NG schema from
 the hybrid schema only means taking appropriate parts of the hybrid
 schema and assembling them in a new RELAX NG grammar, perhaps after
 removing all unwanted annotations.

 The structure of the resulting RELAX NG schema is similar to that of
 the hybrid schema: The root grammar contains embedded grammars, one
 for each input YANG module. However, as explained in Section 8.2,
 global named pattern definitions (children of the root <rng:grammar>
 element) MUST be moved to a separate schema file.

Lhotka Expires April 24, 2011 [Page 65]

Internet-Draft Mapping YANG to DSDL October 2010

 Depending on the XML document type that is the target for validation,
 such as <nc:get>/<nc:get-config> reply, RPC operations or
 notifications, patterns defining corresponding top-level information
 items MUST be added, such as <nc:rpc-reply> with the @message-id
 attribute and so on.

 In order to avoid copying common named pattern definitions for common
 NETCONF elements and attributes to every single output RELAX NG file,
 such schema-independent definitions SHOULD be collected in a library
 file which is then included by the validating RELAX NG schemas.
 Appendix B has the listing of such a library file.

 The minor exception mentioned above is the annotation @nma:config,
 which must be observed if the target document type is a reply to <nc:
 get-config>. In this case, each element definition that has this
 attribute with the value of "false" MUST be removed from the schema
 together with its descendants. See Section 12.1 for more details.

11.2. Mapping Semantic Constraints to Schematron

 Schematron schemas tend to be much flatter and more uniform compared
 to RELAX NG. They have exactly four levels of XML hierarchy: <sch:
 schema>, <sch:pattern>, <sch:rule> and <sch:assert> or <sch:report>.

 In a Schematron schema generated by the second mapping step, the
 basic unit of organization is a rule represented by the <sch:rule>
 element. The following NETMOD-specific annotations from the hybrid
 schema (henceforth called "semantic annotations") are mapped to
 corresponding Schematron rules: <nma:must>, @nma:key, @nma:unique,
 @nma:max-elements, @nma:min-elements, @nma:when, @nma:leafref, @nma:
 leaf-list, and also @nma:mandatory appearing as an attribute of <rng:
 choice> (see Section 11.2.1).

 Each input YANG module is mapped to a Schematron pattern whose @id
 attribute is set to the module name. Every <rng:element> pattern
 containing at least one of the above-mentioned semantic annotations
 is then mapped to a Schematron rule:

 <sch:rule context="XELEM">
 ...
 </sch:rule>

 The value of the mandatory @context attribute of <sch:rule> (denoted
 as XELEM) MUST be set to the absolute path of the context element in
 the data tree. The <sch:rule> element contains the mappings of all
 contained semantic annotations in the form of Schematron asserts or
 reports.

Lhotka Expires April 24, 2011 [Page 66]

Internet-Draft Mapping YANG to DSDL October 2010

 Semantic annotations appearing inside a named pattern definition
 (i.e., having <rng:define> among its ancestors) require special
 treatment because they may be potentially used in different contexts.
 This is accomplished by using Schematron abstract patterns that use
 the "$pref" variable in place of the local namespace prefix. The
 value of the @id attribute of such an abstract pattern MUST be set to
 the name of the named pattern definition which is being mapped (i.e.,
 the mangled name of the original YANG grouping).

 When the abstract pattern is instantiated, the values of the
 following two parameters MUST be provided:

 o pref: the actual namespace prefix,

 o start: XPath expression defining the context in which the grouping
 is used.

 EXAMPLE. Consider the following YANG module:

 module example4 {
 namespace "http://example.com/ns/example4";
 prefix ex4;
 uses sorted-leaf-list;
 grouping sorted-leaf-list {
 leaf-list sorted-entry {
 must "not(preceding-sibling::sorted-entry > .)" {
 error-message "Entries must appear in ascending order.";
 }
 type uint8;
 }
 }
 }

 The resulting Schematron schema for a reply to <nc:get> is then as
 follows:

Lhotka Expires April 24, 2011 [Page 67]

Internet-Draft Mapping YANG to DSDL October 2010

 <?xml version="1.0" encoding="utf-8"?>
 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
 <sch:ns uri="http://example.com/ns/example4" prefix="ex4"/>
 <sch:ns uri="urn:ietf:params:xml:ns:netconf:base:1.0"
 prefix="nc"/>
 <sch:pattern abstract="true"
 id="_example4__sorted-leaf-list">
 <sch:rule context="$start/$pref:sorted-entry">
 <sch:report
 test=". = preceding-sibling::$pref:sorted-entry">
 Duplicate leaf-list entry "<sch:value-of select="."/>".
 </sch:report>
 <sch:assert
 test="not(preceding-sibling::$pref:sorted-entry > .)">
 Entries must appear in ascending order.
 </sch:assert>
 </sch:rule>
 </sch:pattern>
 <sch:pattern id="example4"/>
 <sch:pattern id="id2573371" is-a="_example4__sorted-leaf-list">
 <sch:param name="start" value="/nc:rpc-reply/nc:data"/>
 <sch:param name="pref" value="ex4"/>
 </sch:pattern>
 </sch:schema>

 The "sorted-leaf-list" grouping from the input module is mapped to an
 abstract pattern with an @id value of "_example4__sorted-leaf-list"
 in which the ’must’ statement corresponds to the <sch:assert>
 element. The abstract pattern is the instantiated by the pattern
 with an @id value of "id2802112" which sets the "start" and "pref"
 parameters to appropriate values.

 Note that another Schematron element, <sch:report>, was automatically
 added, checking for duplicate leaf-list entries.

 The mapping from the hybrid schema to Schematron proceeds in the
 following steps:

 1. First, the active subtree(s) of the hybrid schema must be
 selected depending on the requested target document type. This
 procedure is identical to the RELAX NG case, including the
 handling of @nma:config if the target document type is <nc:get-
 config> reply.

 2. Namespaces of all input YANG modules, together with the
 namespaces of base NETCONF ("nc" prefix) or notifications ("en"
 prefix) MUST be declared using the <sch:ns> element, for example

Lhotka Expires April 24, 2011 [Page 68]

Internet-Draft Mapping YANG to DSDL October 2010

 <sch:ns uri="http://example.com/ns/example4" prefix="ex4"/>

 3. One pattern is created for every input module. In addition, an
 abstract pattern is created for every named pattern definition
 containing one or more semantic annotations.

 4. A <sch:rule> element is created for each element pattern
 containing semantic annotations.

 5. Every such annotation is then mapped to an <sch:assert> or <sch:
 report> element which is installed as a child of the <sch:rule>
 element.

11.2.1. Constraints on Mandatory Choice

 In order to fully represent the semantics of YANG’s ’choice’
 statement with the "mandatory true;" substatement, the RELAX NG
 grammar has to be combined with a special Schematron rule.

 EXAMPLE. Consider the following module:

 module example5 {
 namespace "http://example.com/ns/example5";
 prefix ex5;
 choice foobar {
 mandatory true;
 case foo {
 leaf foo1 {
 type uint8;
 }
 leaf foo2 {
 type uint8;
 }
 }
 leaf bar {
 type uint8;
 }
 }
 }

 In this module, all three leaf nodes in both case branches are
 optional but because of the "mandatory true;" statement, at least one
 of them must be present in a valid configuration. The ’choice’
 statement from this module is mapped to the following fragment of the
 RELAX NG schema:

Lhotka Expires April 24, 2011 [Page 69]

Internet-Draft Mapping YANG to DSDL October 2010

 <rng:choice>
 <rng:interleave>
 <rng:optional>
 <rng:element name="ex5:foo1">
 <rng:data type="unsignedByte"/>
 </rng:element>
 </rng:optional>
 <rng:optional>
 <rng:element name="ex5:foo2">
 <rng:data type="unsignedByte"/>
 </rng:element>
 </rng:optional>
 </rng:interleave>
 <rng:element name="ex5:bar">
 <rng:data type="unsignedByte"/>
 </rng:element>
 </rng:choice>

 In the second case branch, the "ex5:bar" element is defined as
 mandatory so that this element must be present in a valid
 configuration if this branch is selected. However, the two elements
 in the first branch "foo" cannot be both declared as mandatory since
 each of them alone suffices for a valid configuration. As a result,
 the above RELAX NG fragment would successfully validate
 configurations where none of the three leaf elements are present.

 Therefore, mandatory choices, which can be recognized in the hybrid
 schema as <rng:choice> elements with the @nma:mandatory annotation,
 have to be handled in a special way: For each mandatory choice where
 at least one of the cases contains more than one node, a Schematron
 rule MUST be added enforcing the presence of at least one element
 from any of the cases. (RELAX NG schema guarantees that elements
 from different cases cannot be mixed together, that all mandatory
 nodes are present etc.).

 For the example module above, the Schematron rule will be as follows:

 <sch:rule context="/nc:rpc-reply/nc:data">
 <sch:assert test="ex5:foo1 or ex5:foo2 or ex5:bar">
 Node(s) from at least one case of choice "foobar" must exist.
 </sch:assert>
 </sch:rule>

11.3. Mapping Default Values to DSRL

 DSRL is the only component of DSDL which is allowed to change the
 information set of the validated XML document. While DSRL also has
 other functions, YANG-to-DSDL mapping uses it only for specifying and

Lhotka Expires April 24, 2011 [Page 70]

Internet-Draft Mapping YANG to DSDL October 2010

 applying default contents. For XML instance documents based on YANG
 data models, insertion of default contents may potentially take place
 for all implicit nodes identified by the rules in Section 9.1.2.

 In DSRL, the default contents of an element are specified using the
 <dsrl:default-content> element, which is a child of <dsrl:element-
 map>. Two sibling elements of <dsrl:default-content> determine the
 context for the application of the default contents, see [DSRL]:

 o <dsrl:parent> element contains an XSLT pattern specifying the
 parent element; the default contents are applied only if the
 parent element exists in the instance document.

 o <dsrl:name> contains the XML name of the element which, if missing
 or empty, is inserted together with the contents of <dsrl:default-
 content>.

 The <dsrl:parent> element is optional in a general DSRL schema but,
 for the purpose of the YANG-to-DSDL mapping, this element MUST be
 always present, in order to guarantee a proper application of default
 contents.

 DSRL mapping only deals with <rng:element> patterns in the hybrid
 schema that define implicit nodes (see Section 9.1.2). Such element
 patterns are distinguished by having NETMOD-specific annotation
 attributes @nma:default or @nma:implicit, i.e., either

 <rng:element name="ELEM" nma:default="DEFVALUE">
 ...
 </rng:element>

 or

 <rng:element name="ELEM" nma:implicit="true">
 ...
 </rng:element>

 The former case applies to leaf nodes having the ’default’
 substatement, but also to leaf nodes that obtain their default value
 from a typedef, if this typedef is expanded according to the rules in
 Section 9.2.2 so that the @nma:default annotation is attached
 directly to the leaf’s element pattern.

 The latter case is used for all implicit containers (see Section 9.1)
 and for leafs that obtain the default value from a typedef and don’t
 have the @nma:default annotation.

 In the simplest case, both element patterns are mapped to the

Lhotka Expires April 24, 2011 [Page 71]

Internet-Draft Mapping YANG to DSDL October 2010

 following DSRL element map:

 <dsrl:element-map>
 <dsrl:parent>XPARENT</dsrl:parent>
 <dsrl:name>ELEM</dsrl:name>
 <dsrl:default-content>DEFCONT</dsrl:default-content>
 </dsrl:element-map>

 where XPARENT is the absolute XPath of ELEM’s parent element in the
 data tree and DEFCONT is constructed as follows:

 o If the implicit node ELEM is a leaf and has the @nma:default
 attribute, DEFCONT is set to the value of this attribute (denoted
 above as DEFVALUE).

 o If the implicit node ELEM is a leaf and has the @nma:implicit
 attribute with the value of "true", the default value has to be
 determined from the @nma:default attribute of the definition of
 ELEM’s type (perhaps recursively) and used in place of DEFCONT in
 the above DSRL element map. See also Section 9.2.2.

 o Otherwise, the implicit node ELEM is a container and DEFCONT is
 constructed as an XML fragment containing all descendant elements
 of ELEM that have either @nma:implicit or @nma:default attribute.

 In addition, when mapping the default case of a choice, it has to be
 guaranteed that the default contents are not applied if any node from
 any non-default case is present. This is accomplished by setting
 <dsrl:parent> in a special way:

 <dsrl:parent>XPARENT[not (ELEM1|ELEM2|...|ELEMn)]</dsrl:parent>

 where ELEM1, ELEM2, ... ELEMn are the names of all top-level nodes
 from all non-default cases. The rest of the element map is exactly
 as before.

 EXAMPLE. Consider the following YANG module:

Lhotka Expires April 24, 2011 [Page 72]

Internet-Draft Mapping YANG to DSDL October 2010

 module example6 {
 namespace "http://example.com/ns/example6";
 prefix ex6;
 container outer {
 leaf leaf1 {
 type uint8;
 default 1;
 }
 choice one-or-two {
 default "one";
 container one {
 leaf leaf2 {
 type uint8;
 default 2;
 }
 }
 leaf leaf3 {
 type uint8;
 default 3;
 }
 }
 }
 }

 The DSRL schema generated for the "get-reply" target document type
 will be:

Lhotka Expires April 24, 2011 [Page 73]

Internet-Draft Mapping YANG to DSDL October 2010

 <?xml version="1.0" encoding="utf-8"?>
 <dsrl:maps xmlns:dsrl="http://purl.oclc.org/dsdl/dsrl"
 xmlns:ex6="http://example.com/ns/example6"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <dsrl:element-map>
 <dsrl:parent>/nc:rpc-reply/nc:data</dsrl:parent>
 <dsrl:name>ex6:outer</dsrl:name>
 <dsrl:default-content>
 <ex6:leaf1>1</ex6:leaf1>
 <ex6:one>
 <ex6:leaf2>2</ex6:leaf2>
 </ex6:one>
 </dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>/nc:rpc-reply/nc:data/ex6:outer</dsrl:parent>
 <dsrl:name>ex6:leaf1</dsrl:name>
 <dsrl:default-content>1</dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>
 /nc:rpc-reply/nc:data/ex6:outer[not(ex6:leaf3)]
 </dsrl:parent>
 <dsrl:name>ex6:one</dsrl:name>
 <dsrl:default-content>
 <ex6:leaf2>2</ex6:leaf2>
 </dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>
 /nc:rpc-reply/nc:data/ex6:outer/ex6:one
 </dsrl:parent>
 <dsrl:name>ex6:leaf2</dsrl:name>
 <dsrl:default-content>2</dsrl:default-content>
 </dsrl:element-map>
 </dsrl:maps>

 Note that the default value for "leaf3" defined in the YANG module is
 ignored because "leaf3" represents a non-default alternative of a
 choice and as such never becomes an implicit element.

Lhotka Expires April 24, 2011 [Page 74]

Internet-Draft Mapping YANG to DSDL October 2010

12. Mapping NETMOD-specific Annotations to DSDL Schema Languages

 This section contains the mapping specification for the individual
 NETMOD-specific annotations. In each case, the result of the mapping
 must be inserted into an appropriate context of the target DSDL
 schema as described in Section 11. The context is determined by the
 element pattern in the hybrid schema to which the annotation is
 attached. In the rest of this section, CONTELEM will denote the name
 of this context element properly qualified with its namespace prefix.

12.1. The @nma:config Annotation

 If this annotation is present with the value of "false", the
 following rules MUST be observed for DSDL schemas of <nc:get-config>
 reply:

 o When generating RELAX NG, the contents of the CONTELEM definition
 MUST be changed to <rng:notAllowed>.

 o When generating Schematron or DSRL, the CONTELEM definition and
 all its descendants in the hybrid schema MUST be ignored.

12.2. The @nma:default Annotation

 This annotation is used for generating the DSRL schema as described
 in Section 11.3.

12.3. The <nma:error-app-tag> Annotation

 This annotation currently has no mapping defined.

12.4. The <nma:error-message> Annotation

 This annotation is handled within <nma:must>, see Section 12.13.

12.5. The @if-feature Annotation

 The information about available features MAY be supplied as an input
 parameter to an implementation. In this case, the following changes
 MUST be performed for all features that are considered unavailable:

 o When generating RELAX NG, the contents of the CONTELEM definition
 MUST be changed to <rng:notAllowed>.

 o When generating Schematron or DSRL, the CONTELEM definition and
 all its descendants in the hybrid schema MUST be ignored.

Lhotka Expires April 24, 2011 [Page 75]

Internet-Draft Mapping YANG to DSDL October 2010

12.6. The @nma:implicit Annotation

 This annotation is used for generating the DSRL schema as described
 in Section 11.3.

12.7. The <nma:instance-identifier> Annotation

 If this annotation element has the @require-instance attribute with
 the value of "false", it is ignored. Otherwise it is mapped to the
 following Schematron assert:

 <sch:assert test="nmf:evaluate(.)">
 The element pointed to by "CONTELEM" must exist.
 </sch:assert>

 The nmf:evaluate() function is an XSLT extension function (see
 Extension Functions in [XSLT]) that evaluates an XPath expression at
 run time. Such an extension function is available in Extended XSLT
 (EXSLT) or provided as a proprietary extension by some XSLT
 processors, for example Saxon.

12.8. The @nma:key Annotation

 Assume this annotation attribute contains "k_1 k_2 ... k_n", i.e.,
 specifies n children of CONTELEM as list keys. The annotation is
 then mapped to the following Schematron report:

 <sch:report test="CONDITION">
 Duplicate key of list "CONTELEM"
 </sch:report>

 where CONDITION has this form:
 preceding-sibling::CONTELEM[C_1 and C_2 and ... and C_n]

 Each sub-expression C_i, for i=1,2,...,n, specifies the condition for
 violated uniqueness of the key k_i, namely

 k_i=current()/k_i

12.9. The @nma:leaf-list Annotation

 This annotation is mapped to the following Schematron rule which
 detects duplicate entries of a leaf-list:

 <sch:report
 test=". = preceding-sibling::PREFIX:sorted-entry">
 Duplicate leaf-list entry "<sch:value-of select="."/>".
 </sch:report>

Lhotka Expires April 24, 2011 [Page 76]

Internet-Draft Mapping YANG to DSDL October 2010

 See Section 11.2 for a complete example.

12.10. The @nma:leafref Annotation

 This annotation is mapped to the following assert:

 <sch:assert test="PATH=.">
 Leaf "PATH" does not exist for leafref value "VALUE"
 </sch:assert>

 where PATH is the value of @nma:leafref and VALUE is the value of the
 context element in the instance document for which the referred leaf
 doesn’t exist.

12.11. The @nma:min-elements Annotation

 This annotation is mapped to the following Schematron assert:

 <sch:assert test="count(../CONTELEM)>=MIN">
 List "CONTELEM" - item count must be at least MIN
 </sch:assert>

 where MIN is the value of @nma:min-elements.

12.12. The @nma:max-elements Annotation

 This annotation is mapped to the following Schematron assert:

<sch:assert
 test="count(../CONTELEM)<=MAX or preceding-sibling::../CONTELEM">
 Number of list items must be at most MAX
</sch:assert>

 where MAX is the value of @nma:min-elements.

12.13. The <nma:must> Annotation

 This annotation is mapped to the following Schematron assert:

 <sch:assert test="EXPRESSION">
 MESSAGE
 </sch:assert>

 where EXPRESSION is the value of the mandatory @assert attribute of
 <nma:must>. If the <nma:error-message> subelement exists, MESSAGE is
 set to its contents, otherwise it is set to the default message
 "Condition EXPRESSION must be true".

Lhotka Expires April 24, 2011 [Page 77]

Internet-Draft Mapping YANG to DSDL October 2010

12.14. The <nma:ordered-by> Annotation

 This annotation currently has no mapping defined.

12.15. The <nma:status> Annotation

 This annotation currently has no mapping defined.

12.16. The @nma:unique Annotation

 The mapping of this annotation is almost identical as for @nma:key,
 see Section 12.8, with two small differences:

 o The value of @nma:unique is a list of descendant schema node
 identifiers rather than simple leaf names. However, the XPath
 expressions specified in Section 12.8 work without any
 modifications if the descendant schema node identifiers are
 substituted for k_1, k_2, ..., k_n.

 o The message appearing as the text of <sch:report> is different:
 "Violated uniqueness for list CONTELEM".

12.17. The @nma:when Annotation

 This annotation is mapped to the following Schematron assert:

 <sch:assert test="EXPRESSION">
 Node "CONTELEM" is only valid when "EXPRESSION" is true.
 </sch:assert>

 where EXPRESSION is the value of @nma:when.

Lhotka Expires April 24, 2011 [Page 78]

Internet-Draft Mapping YANG to DSDL October 2010

13. IANA Considerations

 This document requests the following two registrations of namespace
 URIs in the IETF XML registry [RFC3688]:

 URI: urn:ietf:params:xml:ns:netmod:dsdl-annotations:1

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:netmod:xpath-extensions:1

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

Lhotka Expires April 24, 2011 [Page 79]

Internet-Draft Mapping YANG to DSDL October 2010

14. Security Considerations

 This document defines a procedure that maps data models expressed in
 the YANG language to a coordinated set of DSDL schemas. The
 procedure itself has no security impact on the Internet.

 DSDL schemas obtained by the mapping procedure may be used for
 validating the contents of NETCONF messages or entire datastores and
 thus provide additional validity checks above those performed by
 NETCONF server and client implementations supporting YANG data
 models. The strictness of this validation is directly derived from
 the source YANG modules that the validated XML data adhere to.

Lhotka Expires April 24, 2011 [Page 80]

Internet-Draft Mapping YANG to DSDL October 2010

15. Contributors

 The following people contributed significantly to the initial version
 of this document:

 o Rohan Mahy

 o Sharon Chisholm (Ciena)

Lhotka Expires April 24, 2011 [Page 81]

Internet-Draft Mapping YANG to DSDL October 2010

16. Acknowledgments

 The editor wishes to thank the following individuals who provided
 helpful suggestions and/or comments on various versions of this
 document: Andy Bierman, Martin Bjorklund, Jirka Kosek, Juergen
 Schoenwaelder and Phil Shafer.

Lhotka Expires April 24, 2011 [Page 82]

Internet-Draft Mapping YANG to DSDL October 2010

17. References

17.1. Normative References

 [DSDL] ISO/IEC, "Document Schema Definition Languages (DSDL) -
 Part 1: Overview", ISO/IEC 19757-1, November 2004.

 [DSRL] ISO/IEC, "Information Technology - Document Schema
 Definition Languages (DSDL) - Part 8: Document Semantics
 Renaming Language - DSRL", ISO/IEC 19757-8:2008(E),
 December 2008.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 Network Configuration Protocol (NETCONF)", RFC 6020,
 September 2010.

 [RFC6021] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6021, September 2010.

 [RNG] ISO/IEC, "Information Technology - Document Schema
 Definition Languages (DSDL) - Part 2: Regular-Grammar-
 Based Validation - RELAX NG. Second Edition.", ISO/
 IEC 19757-2:2008(E), December 2008.

 [RNG-CS] ISO/IEC, "Information Technology - Document Schema
 Definition Languages (DSDL) - Part 2: Regular-Grammar-
 Based Validation - RELAX NG. AMENDMENT 1: Compact Syntax",
 ISO/IEC 19757-2:2003/Amd. 1:2006(E), January 2006.

 [RNG-DTD] Clark, J., Ed. and M. Murata, Ed., "RELAX NG DTD
 Compatibility", OASIS Committee Specification 3 December
 2001, December 2001.

 [Schematron]
 ISO/IEC, "Information Technology - Document Schema
 Definition Languages (DSDL) - Part 3: Rule-Based
 Validation - Schematron", ISO/IEC 19757-3:2006(E),
 June 2006.

Lhotka Expires April 24, 2011 [Page 83]

Internet-Draft Mapping YANG to DSDL October 2010

 [XML] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2006/REC-xml-20060816>.

 [XML-INFOSET]
 Tobin, R. and J. Cowan, "XML Information Set (Second
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-infoset-20040204, February 2004,
 <http://www.w3.org/TR/2004/REC-xml-infoset-20040204>.

 [XPath] Clark, J. and S. DeRose, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium
 Recommendation REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

 [XSD-D] Biron, P. and A. Malhotra, "XML Schema Part 2: Datatypes
 Second Edition", World Wide Web Consortium
 Recommendation REC-xmlschema-2-20041028, October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-2-20041028>.

 [XSLT] Clark, J., "XSL Transformations (XSLT) Version 1.0", World
 Wide Web Consortium Recommendation REC-xslt-19991116,
 November 1999.

17.2. Informative References

 [DHCPtut] Bjorklund, M., "DHCP Tutorial", November 2007, <http://
 www.yang-central.org/twiki/bin/view/Main/DhcpTutorial>.

 [RFC1157] Case, J., Fedor, M., Schoffstall, M., and J. Davin,
 "Simple Network Management Protocol (SNMP)", STD 15,
 RFC 1157, May 1990.

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC5013] Kunze, J., "The Dublin Core Metadata Element Set",
 RFC 5013, August 2007.

 [RFC5277] Chisholm, S. and H. Trevino, "NETCONF Event
 Notifications", RFC 5277, July 2008.

 [Trang] Clark, J., "Trang: Multiformat schema converter based on
 RELAX NG", 2008,
 <http://www.thaiopensource.com/relaxng/trang.html>.

Lhotka Expires April 24, 2011 [Page 84]

Internet-Draft Mapping YANG to DSDL October 2010

 [Vli04] van der Vlist, E., "RELAX NG", O’Reilly , 2004.

 [XSD] Thompson, H., Beech, D., Maloney, M., and N. Mendelsohn,
 "XML Schema Part 1: Structures Second Edition", World Wide
 Web Consortium Recommendation REC-xmlschema-1-20041028,
 October 2004,
 <http://www.w3.org/TR/2004/REC-xmlschema-1-20041028>.

 [pyang] Bjorklund, M. and L. Lhotka, "pyang: An extensible YANG
 validator and converter in Python", 2010,
 <http://code.google.com/p/pyang/>.

Lhotka Expires April 24, 2011 [Page 85]

Internet-Draft Mapping YANG to DSDL October 2010

Appendix A. RELAX NG Schema for NETMOD-Specific Annotations

 This appendix defines the content model for all NETMOD-specific
 annotations in the form of RELAX NG named pattern definitions.

 <CODE BEGINS> file "nmannot.rng"

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <define name="config-attribute">
 <attribute name="nma:config">
 <data type="boolean"/>
 </attribute>
 </define>

 <define name="data-element">
 <element name="nma:data">
 <ref name="__anyxml__"/>
 </element>
 </define>

 <define name="default-attribute">
 <attribute name="nma:default">
 <data type="string"/>
 </attribute>
 </define>

 <define name="error-app-tag-element">
 <element name="nma:error-app-tag">
 <text/>
 </element>
 </define>

 <define name="error-message-element">
 <element name="nma:error-message">
 <text/>
 </element>
 </define>

 <define name="if-feature-attribute">
 <attribute name="nma:if-feature">
 <list>
 <data type="QName"/>
 </list>
 </attribute>

Lhotka Expires April 24, 2011 [Page 86]

Internet-Draft Mapping YANG to DSDL October 2010

 </define>

 <define name="implicit-attribute">
 <attribute name="nma:implicit">
 <data type="boolean"/>
 </attribute>
 </define>

 <define name="instance-identifier-element">
 <element name="nma:instance-identifier">
 <optional>
 <attribute name="nma:require-instance">
 <data type="boolean"/>
 </attribute>
 </optional>
 </element>
 </define>

 <define name="key-attribute">
 <attribute name="nma:key">
 <list>
 <data type="QName"/>
 </list>
 </attribute>
 </define>

 <define name="leaf-list-attribute">
 <attribute name="nma:leaf-list">
 <data type="boolean"/>
 </attribute>
 </define>

 <define name="leafref-attribute">
 <attribute name="nma:leafref">
 <data type="string"/>
 </attribute>
 </define>

 <define name="mandatory-attribute">
 <attribute name="nma:mandatory">
 <data type="Name"/>
 </attribute>
 </define>

 <define name="max-elements-attribute">
 <attribute name="nma:max-elements">
 <data type="nonNegativeInteger"/>
 </attribute>

Lhotka Expires April 24, 2011 [Page 87]

Internet-Draft Mapping YANG to DSDL October 2010

 </define>

 <define name="min-elements-attribute">
 <attribute name="nma:min-elements">
 <data type="nonNegativeInteger"/>
 </attribute>
 </define>

 <define name="module-attribute">
 <attribute name="nma:module">
 <data type="Name"/>
 </attribute>
 </define>

 <define name="must-element">
 <element name="nma:must">
 <attribute name="assert">
 <data type="string"/>
 </attribute>
 <interleave>
 <optional>
 <ref name="error-app-tag-element"/>
 </optional>
 <optional>
 <ref name="error-message-element"/>
 </optional>
 </interleave>
 </element>
 </define>

 <define name="notifications-element">
 <element name="nma:notifications">
 <zeroOrMore>
 <element name="nma:notification">
 <ref name="__anyxml__"/>
 </element>
 </zeroOrMore>
 </element>
 </define>

 <define name="rpcs-element">
 <element name="nma:rpcs">
 <zeroOrMore>
 <element name="nma:rpc">
 <interleave>
 <element name="nma:input">
 <ref name="__anyxml__"/>
 </element>

Lhotka Expires April 24, 2011 [Page 88]

Internet-Draft Mapping YANG to DSDL October 2010

 <optional>
 <element name="nma:output">
 <ref name="__anyxml__"/>
 </element>
 </optional>
 </interleave>
 </element>
 </zeroOrMore>
 </element>
 </define>

 <define name="ordered-by-attribute">
 <attribute name="nma:ordered-by">
 <choice>
 <value>user</value>
 <value>system</value>
 </choice>
 </attribute>
 </define>

 <define name="status-attribute">
 <optional>
 <attribute name="nma:status">
 <choice>
 <value>current</value>
 <value>deprecated</value>
 <value>obsolete</value>
 </choice>
 </attribute>
 </optional>
 </define>

 <define name="unique-attribute">
 <optional>
 <attribute name="nma:unique">
 <list>
 <data type="token"/>
 </list>
 </attribute>
 </optional>
 </define>

 <define name="units-attribute">
 <optional>
 <attribute name="nma:units">
 <data type="string"/>
 </attribute>
 </optional>

Lhotka Expires April 24, 2011 [Page 89]

Internet-Draft Mapping YANG to DSDL October 2010

 </define>

 <define name="when-attribute">
 <optional>
 <attribute name="nma:when">
 <data type="string"/>
 </attribute>
 </optional>
 </define>

 <define name="__anyxml__">
 <zeroOrMore>
 <choice>
 <attribute>
 <anyName/>
 </attribute>
 <element>
 <anyName/>
 <ref name="__anyxml__"/>
 </element>
 <text/>
 </choice>
 </zeroOrMore>
 </define>

 </grammar>

 <CODE ENDS>

Lhotka Expires April 24, 2011 [Page 90]

Internet-Draft Mapping YANG to DSDL October 2010

Appendix B. Schema-Independent Library

 In order to avoid copying the common named pattern definitions to
 every RELAX NG schema generated in the second mapping step, the
 definitions are collected in a library file - schema-independent
 library - which is included by the validating schemas under the file
 name "relaxng-lib.rng" (XML syntax) and "relaxng-lib.rnc" (compact
 syntax). The included definitions cover patterns for common elements
 from base NETCONF [RFC4741] and event notifications [RFC5277].

 <CODE BEGINS> file "relaxng-lib.rng"

 <?xml version="1.0" encoding="UTF-8"?>

 <grammar xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:en="urn:ietf:params:xml:ns:netconf:notification:1.0"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">

 <define name="message-id-attribute">
 <attribute name="message-id">
 <data type="string">
 <param name="maxLength">4095</param>
 </data>
 </attribute>
 </define>

 <define name="ok-element">
 <element name="nc:ok">
 <empty/>
 </element>
 </define>

 <define name="eventTime-element">
 <element name="en:eventTime">
 <data type="dateTime"/>
 </element>
 </define>
 </grammar>

 <CODE ENDS>

Lhotka Expires April 24, 2011 [Page 91]

Internet-Draft Mapping YANG to DSDL October 2010

Appendix C. Mapping DHCP Data Model - A Complete Example

 This appendix demonstrates both steps of the YANG-to-DSDL mapping
 applied to the "canonical" DHCP tutorial [DHCPtut] data model. The
 input YANG module is shown in Appendix C.1 and the output schemas in
 the following two subsections.

 The hybrid schema was obtained by the "dsdl" plugin of the pyang tool
 [pyang] and the validating DSDL schemas were obtained by XSLT
 stylesheets that are also part of pyang distribution.

 Due to the limit of 72 characters per line, a few long strings
 required manual editing, in particular the regular expression
 patterns for IP addresses etc. These were replaced by the
 placeholder string "... regex pattern ...". Also, line breaks were
 added to several documentation strings and Schematron messages.
 Other than that, the results of the automatic translations were not
 changed.

C.1. Input YANG Module

 module dhcp {
 namespace "http://example.com/ns/dhcp";
 prefix dhcp;

 import ietf-yang-types { prefix yang; }
 import ietf-inet-types { prefix inet; }

 organization
 "yang-central.org";
 description
 "Partial data model for DHCP, based on the config of
 the ISC DHCP reference implementation.";

 container dhcp {
 description
 "configuration and operational parameters for a DHCP server.";

 leaf max-lease-time {
 type uint32;
 units seconds;
 default 7200;
 }

 leaf default-lease-time {
 type uint32;
 units seconds;
 must ’. <= ../max-lease-time’ {

Lhotka Expires April 24, 2011 [Page 92]

Internet-Draft Mapping YANG to DSDL October 2010

 error-message
 "The default-lease-time must be less than max-lease-time";
 }
 default 600;
 }

 uses subnet-list;

 container shared-networks {
 list shared-network {
 key name;

 leaf name {
 type string;
 }
 uses subnet-list;
 }
 }

 container status {
 config false;
 list leases {
 key address;

 leaf address {
 type inet:ip-address;
 }
 leaf starts {
 type yang:date-and-time;
 }
 leaf ends {
 type yang:date-and-time;
 }
 container hardware {
 leaf type {
 type enumeration {
 enum "ethernet";
 enum "token-ring";
 enum "fddi";
 }
 }
 leaf address {
 type yang:phys-address;
 }
 }
 }
 }
 }

Lhotka Expires April 24, 2011 [Page 93]

Internet-Draft Mapping YANG to DSDL October 2010

 grouping subnet-list {
 description "A reusable list of subnets";
 list subnet {
 key net;
 leaf net {
 type inet:ip-prefix;
 }
 container range {
 presence "enables dynamic address assignment";
 leaf dynamic-bootp {
 type empty;
 description
 "Allows BOOTP clients to get addresses in this range";
 }
 leaf low {
 type inet:ip-address;
 mandatory true;
 }
 leaf high {
 type inet:ip-address;
 mandatory true;
 }
 }

 container dhcp-options {
 description "Options in the DHCP protocol";
 leaf-list router {
 type inet:host;
 ordered-by user;
 reference "RFC 2132, sec. 3.8";
 }
 leaf domain-name {
 type inet:domain-name;
 reference "RFC 2132, sec. 3.17";
 }
 }

 leaf max-lease-time {
 type uint32;
 units seconds;
 default 7200;
 }
 }
 }
 }

C.2. Hybrid Schema

Lhotka Expires April 24, 2011 [Page 94]

Internet-Draft Mapping YANG to DSDL October 2010

 <?xml version="1.0" encoding="UTF-8"?>
 <grammar
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
 xmlns:dc="http://purl.org/dc/terms"
 xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
 xmlns:dhcp="http://example.com/ns/dhcp"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <dc:creator>Pyang 1.0a, DSDL plugin</dc:creator>
 <dc:date>2010-06-17</dc:date>
 <start>
 <grammar nma:module="dhcp" ns="http://example.com/ns/dhcp">
 <dc:source>YANG module ’dhcp’</dc:source>
 <start>
 <nma:data>
 <optional>
 <element nma:implicit="true" name="dhcp:dhcp">
 <interleave>
 <a:documentation>
 configuration and operational parameters for a DHCP server.
 </a:documentation>
 <optional>
 <element nma:default="7200"
 name="dhcp:max-lease-time"
 nma:units="seconds">
 <data type="unsignedInt"/>
 </element>
 </optional>
 <optional>
 <element nma:default="600"
 name="dhcp:default-lease-time"
 nma:units="seconds">
 <data type="unsignedInt"/>
 <nma:must assert=". <= ../dhcp:max-lease-time">
 <nma:error-message>
 The default-lease-time must be less than max-lease-time
 </nma:error-message>
 </nma:must>
 </element>
 </optional>
 <ref name="_dhcp__subnet-list"/>
 <optional>
 <element name="dhcp:shared-networks">
 <zeroOrMore>
 <element nma:key="dhcp:name"
 name="dhcp:shared-network">
 <element name="dhcp:name">
 <data type="string"/>

Lhotka Expires April 24, 2011 [Page 95]

Internet-Draft Mapping YANG to DSDL October 2010

 </element>
 <ref name="_dhcp__subnet-list"/>
 </element>
 </zeroOrMore>
 </element>
 </optional>
 <optional>
 <element name="dhcp:status" nma:config="false">
 <zeroOrMore>
 <element nma:key="dhcp:address"
 name="dhcp:leases">
 <element name="dhcp:address">
 <ref name="ietf-inet-types__ip-address"/>
 </element>
 <interleave>
 <optional>
 <element name="dhcp:starts">
 <ref name="ietf-yang-types__date-and-time"/>
 </element>
 </optional>
 <optional>
 <element name="dhcp:ends">
 <ref name="ietf-yang-types__date-and-time"/>
 </element>
 </optional>
 <optional>
 <element name="dhcp:hardware">
 <interleave>
 <optional>
 <element name="dhcp:type">
 <choice>
 <value>ethernet</value>
 <value>token-ring</value>
 <value>fddi</value>
 </choice>
 </element>
 </optional>
 <optional>
 <element name="dhcp:address">
 <ref name="ietf-yang-types__phys-address"/>
 </element>
 </optional>
 </interleave>
 </element>
 </optional>
 </interleave>
 </element>
 </zeroOrMore>

Lhotka Expires April 24, 2011 [Page 96]

Internet-Draft Mapping YANG to DSDL October 2010

 </element>
 </optional>
 </interleave>
 </element>
 </optional>
 </nma:data>
 <nma:rpcs/>
 <nma:notifications/>
 </start>
 </grammar>
 </start>
 <define name="ietf-yang-types__phys-address">
 <data type="string">
 <param name="pattern">([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv6-address">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ip-prefix">
 <choice>
 <ref name="ietf-inet-types__ipv4-prefix"/>
 <ref name="ietf-inet-types__ipv6-prefix"/>
 </choice>
 </define>
 <define name="ietf-inet-types__host">
 <choice>
 <ref name="ietf-inet-types__ip-address"/>
 <ref name="ietf-inet-types__domain-name"/>
 </choice>
 </define>
 <define name="ietf-yang-types__date-and-time">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="_dhcp__subnet-list">
 <a:documentation>A reusable list of subnets</a:documentation>
 <zeroOrMore>
 <element nma:key="net" name="subnet">
 <element name="net">
 <ref name="ietf-inet-types__ip-prefix"/>
 </element>
 <interleave>
 <optional>

Lhotka Expires April 24, 2011 [Page 97]

Internet-Draft Mapping YANG to DSDL October 2010

 <element name="range">
 <interleave>
 <optional>
 <element name="dynamic-bootp">
 <a:documentation>
 Allows BOOTP clients to get addresses in this range
 </a:documentation>
 <empty/>
 </element>
 </optional>
 <element name="low">
 <ref name="ietf-inet-types__ip-address"/>
 </element>
 <element name="high">
 <ref name="ietf-inet-types__ip-address"/>
 </element>
 </interleave>
 </element>
 </optional>
 <optional>
 <element name="dhcp-options">
 <interleave>
 <a:documentation>
 Options in the DHCP protocol
 </a:documentation>
 <zeroOrMore>
 <element nma:leaf-list="true" name="router"
 nma:ordered-by="user">
 <a:documentation>
 See: RFC 2132, sec. 3.8
 </a:documentation>
 <ref name="ietf-inet-types__host"/>
 </element>
 </zeroOrMore>
 <optional>
 <element name="domain-name">
 <a:documentation>
 See: RFC 2132, sec. 3.17
 </a:documentation>
 <ref name="ietf-inet-types__domain-name"/>
 </element>
 </optional>
 </interleave>
 </element>
 </optional>
 <optional>
 <element nma:default="7200" name="max-lease-time"
 nma:units="seconds">

Lhotka Expires April 24, 2011 [Page 98]

Internet-Draft Mapping YANG to DSDL October 2010

 <data type="unsignedInt"/>
 </element>
 </optional>
 </interleave>
 </element>
 </zeroOrMore>
 </define>
 <define name="ietf-inet-types__domain-name">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 <param name="minLength">1</param>
 <param name="maxLength">253</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv4-prefix">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv4-address">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv6-prefix">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ip-address">
 <choice>
 <ref name="ietf-inet-types__ipv4-address"/>
 <ref name="ietf-inet-types__ipv6-address"/>
 </choice>
 </define>
 </grammar>

C.3. Final DSDL Schemas

 This appendix contains DSDL schemas that were obtained from the
 hybrid schema in Appendix C.2 by XSL transformations. These schemas
 can be directly used for validating a reply to unfiltered <nc:get>
 with the contents corresponding to the DHCP data model.

 The RELAX NG schema (in two parts, as explained in Section 8.2) also
 includes the schema-independent library from Appendix B.

Lhotka Expires April 24, 2011 [Page 99]

Internet-Draft Mapping YANG to DSDL October 2010

C.3.1. Main RELAX NG Schema for <nc:get> Reply

 <?xml version="1.0" encoding="utf-8"?>
 <grammar
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
 xmlns:dhcp="http://example.com/ns/dhcp"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
 ns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <include href="relaxng-lib.rng"/>
 <start>
 <element name="rpc-reply">
 <ref name="message-id-attribute"/>
 <element name="data">
 <interleave>
 <grammar ns="http://example.com/ns/dhcp">
 <include href="dhcp-gdefs.rng"/>
 <start>
 <optional>
 <element name="dhcp:dhcp">
 <interleave>
 <optional>
 <element name="dhcp:max-lease-time">
 <data type="unsignedInt"/>
 </element>
 </optional>
 <optional>
 <element name="dhcp:default-lease-time">
 <data type="unsignedInt"/>
 </element>
 </optional>
 <ref name="_dhcp__subnet-list"/>
 <optional>
 <element name="dhcp:shared-networks">
 <zeroOrMore>
 <element name="dhcp:shared-network">
 <element name="dhcp:name">
 <data type="string"/>
 </element>
 <ref name="_dhcp__subnet-list"/>
 </element>
 </zeroOrMore>
 </element>
 </optional>
 <optional>
 <element name="dhcp:status">
 <zeroOrMore>
 <element name="dhcp:leases">

Lhotka Expires April 24, 2011 [Page 100]

Internet-Draft Mapping YANG to DSDL October 2010

 <element name="dhcp:address">
 <ref name="ietf-inet-types__ip-address"/>
 </element>
 <interleave>
 <optional>
 <element name="dhcp:starts">
 <ref name="ietf-yang-types__date-and-time"/>
 </element>
 </optional>
 <optional>
 <element name="dhcp:ends">
 <ref name="ietf-yang-types__date-and-time"/>
 </element>
 </optional>
 <optional>
 <element name="dhcp:hardware">
 <interleave>
 <optional>
 <element name="dhcp:type">
 <choice>
 <value>ethernet</value>
 <value>token-ring</value>
 <value>fddi</value>
 </choice>
 </element>
 </optional>
 <optional>
 <element name="dhcp:address">
 <ref name="ietf-yang-types__phys-address"/>
 </element>
 </optional>
 </interleave>
 </element>
 </optional>
 </interleave>
 </element>
 </zeroOrMore>
 </element>
 </optional>
 </interleave>
 </element>
 </optional>
 </start>
 </grammar>
 </interleave>
 </element>
 </element>
 </start>

Lhotka Expires April 24, 2011 [Page 101]

Internet-Draft Mapping YANG to DSDL October 2010

 </grammar>

C.3.2. RELAX NG Schema - Global Named Pattern Definitions

 <?xml version="1.0" encoding="utf-8"?>
 <grammar
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:nma="urn:ietf:params:xml:ns:netmod:dsdl-annotations:1"
 xmlns:dhcp="http://example.com/ns/dhcp"
 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
 <define name="ietf-yang-types__phys-address">
 <data type="string">
 <param name="pattern">
 ([0-9a-fA-F]{2}(:[0-9a-fA-F]{2})*)?
 </param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv6-address">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ip-prefix">
 <choice>
 <ref name="ietf-inet-types__ipv4-prefix"/>
 <ref name="ietf-inet-types__ipv6-prefix"/>
 </choice>
 </define>
 <define name="ietf-inet-types__host">
 <choice>
 <ref name="ietf-inet-types__ip-address"/>
 <ref name="ietf-inet-types__domain-name"/>
 </choice>
 </define>
 <define name="ietf-yang-types__date-and-time">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="_dhcp__subnet-list">
 <zeroOrMore>
 <element name="subnet">
 <element name="net">
 <ref name="ietf-inet-types__ip-prefix"/>
 </element>
 <interleave>
 <optional>
 <element name="range">

Lhotka Expires April 24, 2011 [Page 102]

Internet-Draft Mapping YANG to DSDL October 2010

 <interleave>
 <optional>
 <element name="dynamic-bootp">
 <empty/>
 </element>
 </optional>
 <element name="low">
 <ref name="ietf-inet-types__ip-address"/>
 </element>
 <element name="high">
 <ref name="ietf-inet-types__ip-address"/>
 </element>
 </interleave>
 </element>
 </optional>
 <optional>
 <element name="dhcp-options">
 <interleave>
 <zeroOrMore>
 <element name="router">
 <ref name="ietf-inet-types__host"/>
 </element>
 </zeroOrMore>
 <optional>
 <element name="domain-name">
 <ref name="ietf-inet-types__domain-name"/>
 </element>
 </optional>
 </interleave>
 </element>
 </optional>
 <optional>
 <element name="max-lease-time">
 <data type="unsignedInt"/>
 </element>
 </optional>
 </interleave>
 </element>
 </zeroOrMore>
 </define>
 <define name="ietf-inet-types__domain-name">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 <param name="minLength">1</param>
 <param name="maxLength">253</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv4-prefix">

Lhotka Expires April 24, 2011 [Page 103]

Internet-Draft Mapping YANG to DSDL October 2010

 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv4-address">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ipv6-prefix">
 <data type="string">
 <param name="pattern">... regex pattern ...</param>
 <param name="pattern">... regex pattern ...</param>
 </data>
 </define>
 <define name="ietf-inet-types__ip-address">
 <choice>
 <ref name="ietf-inet-types__ipv4-address"/>
 <ref name="ietf-inet-types__ipv6-address"/>
 </choice>
 </define>
 </grammar>

C.3.3. Schematron Schema for <nc:get> Reply

 <?xml version="1.0" encoding="utf-8"?>
 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
 <sch:ns uri="http://example.com/ns/dhcp" prefix="dhcp"/>
 <sch:ns uri="urn:ietf:params:xml:ns:netconf:base:1.0" prefix="nc"/>
 <sch:pattern abstract="true" id="_dhcp__subnet-list">
 <sch:rule context="$start/$pref:subnet">
 <sch:report test="preceding-sibling::$pref:subnet
 [$pref:net=current()/$pref:net]">
 Duplicate key "net"
 </sch:report>
 </sch:rule>
 <sch:rule
 context="$start/$pref:subnet/$pref:dhcp-options/$pref:router">
 <sch:report test=".=preceding-sibling::router">
 Duplicate leaf-list value "<sch:value-of select="."/>"
 </sch:report>
 </sch:rule>
 </sch:pattern>
 <sch:pattern id="dhcp">
 <sch:rule
 context="/nc:rpc-reply/nc:data/dhcp:dhcp/dhcp:default-lease-time">
 <sch:assert test=". <= ../dhcp:max-lease-time">
 The default-lease-time must be less than max-lease-time

Lhotka Expires April 24, 2011 [Page 104]

Internet-Draft Mapping YANG to DSDL October 2010

 </sch:assert>
 </sch:rule>
 <sch:rule context="/nc:rpc-reply/nc:data/dhcp:dhcp/
 dhcp:shared-networks/dhcp:shared-network">
 <sch:report test="preceding-sibling::dhcp:shared-network
 [dhcp:name=current()/dhcp:name]">
 Duplicate key "dhcp:name"
 </sch:report>
 </sch:rule>
 <sch:rule context="/nc:rpc-reply/nc:data/dhcp:dhcp/
 dhcp:status/dhcp:leases">
 <sch:report test="preceding-sibling::dhcp:leases
 [dhcp:address=current()/dhcp:address]">
 Duplicate key "dhcp:address"
 </sch:report>
 </sch:rule>
 </sch:pattern>
 <sch:pattern id="id2768196" is-a="_dhcp__subnet-list">
 <sch:param name="start" value="/nc:rpc-reply/nc:data/dhcp:dhcp"/>
 <sch:param name="pref" value="dhcp"/>
 </sch:pattern>
 <sch:pattern id="id2768215" is-a="_dhcp__subnet-list">
 <sch:param name="start"
 value="/nc:rpc-reply/nc:data/dhcp:dhcp/
 dhcp:shared-networks/dhcp:shared-network"/>
 <sch:param name="pref" value="dhcp"/>
 </sch:pattern>
 </sch:schema>

Lhotka Expires April 24, 2011 [Page 105]

Internet-Draft Mapping YANG to DSDL October 2010

C.3.4. DSRL Schema for <nc:get> Reply

 <?xml version="1.0" encoding="utf-8"?>
 <dsrl:maps
 xmlns:dsrl="http://purl.oclc.org/dsdl/dsrl"
 xmlns:dhcp="http://example.com/ns/dhcp"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0">
 <dsrl:element-map>
 <dsrl:parent>/nc:rpc-reply/nc:data</dsrl:parent>
 <dsrl:name>dhcp:dhcp</dsrl:name>
 <dsrl:default-content>
 <dhcp:max-lease-time>7200</dhcp:max-lease-time>
 <dhcp:default-lease-time>600</dhcp:default-lease-time>
 </dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>/nc:rpc-reply/nc:data/dhcp:dhcp</dsrl:parent>
 <dsrl:name>dhcp:max-lease-time</dsrl:name>
 <dsrl:default-content>7200</dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>/nc:rpc-reply/nc:data/dhcp:dhcp</dsrl:parent>
 <dsrl:name>dhcp:default-lease-time</dsrl:name>
 <dsrl:default-content>600</dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>
 /nc:rpc-reply/nc:data/dhcp:dhcp/dhcp:subnet
 </dsrl:parent>
 <dsrl:name>dhcp:max-lease-time</dsrl:name>
 <dsrl:default-content>7200</dsrl:default-content>
 </dsrl:element-map>
 <dsrl:element-map>
 <dsrl:parent>
 /nc:rpc-reply/nc:data/dhcp:dhcp/dhcp:shared-networks/
 dhcp:shared-network/dhcp:subnet
 </dsrl:parent>
 <dsrl:name>dhcp:max-lease-time</dsrl:name>
 <dsrl:default-content>7200</dsrl:default-content>
 </dsrl:element-map>
 </dsrl:maps>

Lhotka Expires April 24, 2011 [Page 106]

Internet-Draft Mapping YANG to DSDL October 2010

Appendix D. Change Log

 RFC Editor: remove this section upon publication as an RFC.

D.1. Changes Between Versions -07 and -08

 o Edits based on Gen-ART review.

 o Added formal templates in Section 13.

 o Created the "Contributors" section and moved the former co-authors
 there.

 o Indicated the location of both global and local named pattern
 definitions in the example hybrid schema in Section 8.1.

 o Added reference to EXSLT "evaluate" function.

D.2. Changes Between Versions -06 and -07

 o Mapping of ’description’, ’reference’ and ’units’ to the hybrid
 schema is now mandatory.

 o Improvements and fixes of the text based on the AD review

D.3. Changes Between Versions -05 and -06

 o Terminology change: "conceptual tree schema" -> "hybrid schema".

 o Changed sectioning markers in the hybrid schema into plain NETMOD-
 specific annotations. Hence the former "nmt" namespace is not
 used at all.

 o Added the following NETMOD-specific annotations: @nma:if-feature,
 @nma:leaf-list, @nma:mandatory, @nma:module, removed @nma:
 presence.

 o Changed the structure of RELAX NG schemas by using embedded
 grammars and declaration of namespaces via @ns. This was
 necessary for enabling the "chameleon" behavior of global
 definitions.

 o Schematron validation phases are not used.

 o If an XPath expression appears inside a top-level grouping, the
 local prefix must be represented using the variable $pref. (This
 is related to the previous item.)

Lhotka Expires April 24, 2011 [Page 107]

Internet-Draft Mapping YANG to DSDL October 2010

 o DHCP example: All RNG schemas are only in the XML syntax. Added
 RNG with global definitions.

 o Added [XML-INFOSET] to normative references.

 o Listed the terms that are defined in other documents.

 o The schema for NETMOD-specific annotation is now given only as RNG
 named pattern definitions, no more in NVDL.

D.4. Changes Between Versions -04 and -05

 o Leafs that take their default value from a typedef and are not
 annotated with @nma:default must have @nma:implicit="true".

 o Changed code markers CODE BEGINS/ENDS to the form agreed by the
 WG.

 o Derived types "date-and-time" and "uri" SHOULD be mapped to XSD
 "dateTime" and "anyURI" types, respectively.

 o Clarified the notion of implicit nodes under under ’case’ in
 Section 9.1.2.

 o Moved draft-ietf-netmod-yang-types-06 to normative references.

 o An extra <rng:group> is no more required for the default case of a
 choice in the shorthand notation.

D.5. Changes Between Versions -03 and -04

 o Implemented ordering rules for list children - keys must go first
 and appear in the same order as in the input YANG module.

 o The ’case’ statement is now mapped to either <rng:group> (inside
 RPC operations) or <rng:interleave> (otherwise).

 o A nma:default annotation coming from a datatype which the mapping
 expands is attached to the <rng:element> pattern where the
 expansion occurs. Added an example.

 o Documentation statements (’description’, ’reference’, ’status’)
 MAY be ignored.

 o Single-valued numeric or length range parts are mapped to <rng:
 value> pattern or "length" facet.

Lhotka Expires April 24, 2011 [Page 108]

Internet-Draft Mapping YANG to DSDL October 2010

 o Example for "string" datatype was added.

 o Appendix A now uses NVDL for defining NETMOD-specific annotations.

 o Added CODE BEGINS/ENDS markers.

 o Separated normative and informative references.

 o Added URL for XPath extensions namespace.

 o Added Section 2 (Terminology and Notation).

 o Added Section 14 (Security Considerations).

 o Added Section 16 (Acknowledgments).

 o Removed compact syntax schema from Appendix B.

 o Editorial changes: symbolic citation labels.

D.6. Changes Between Versions -02 and -03

 o Changed @nma:default-case to @nma:implicit.

 o Changed nma:leafref annotation from element to attribute.

 o Added skeleton rule to Section 11.2.

 o Reworked Section 11.3, added skeleton element maps,corrected the
 example.

 o Added section on ’feature’ and ’deviation’.

 o New Section 9.1 integrating discussion of both optional/mandatory
 (was in -02) and implicit nodes (new).

 o Reflected that key argument and schema node identifiers are no
 more XPath (should be in yang-07).

 o Element patterns for implicit containers now must have @nma:
 implicit attribute.

 o Removed "float32" and "float64" types and added mapping of
 "decimal64" with example.

 o Removed mapping of ’require-instance’ for "leafref" type.

Lhotka Expires April 24, 2011 [Page 109]

Internet-Draft Mapping YANG to DSDL October 2010

 o Updated RELAX NG schema for NETMOD-specific annotations.

 o Updated the DHCP example.

D.7. Changes Between Versions -01 and -02

 o Moved Section 7 "NETCONF Content Validation" after Section 6.

 o New text about mapping defaults to DSRL, especially in Section 7
 and Section 11.3.

 o Finished the DHCP example by adding the DSRL schema to Appendix C.

 o New @nma:presence annotation was added - it is needed for proper
 handling of default contents.

 o Section 11.2.1 "Constraints on Mandatory Choice" was added because
 these constraints require a combination of RELAX NG and
 Schematron.

 o Fixed the schema for NETMOD-specific annotations by adding
 explicit prefix to all defined elements and attributes.
 Previously, the attributes had no namespace.

 o Handling of ’feature’, ’if-feature’ and ’deviation’ added.

 o Handling of nma:instance-identifier via XSLT extension function.

D.8. Changes Between Versions -00 and -01

 o Attributes @nma:min-elements and @nma:max-elements are attached to
 <rng:element> (list entry) and not to <rng:zeroOrMore> or <rng:
 oneOrMore>.

 o Keys and all node identifiers in ’key’ and ’unique’ statements are
 prefixed.

 o Fixed the mapping of ’rpc’ and ’notification’.

 o Removed previous sec. 7.5 "RPC Signatures and Notifications" - the
 same information is now contained in Section 10.50 and
 Section 10.37.

 o Added initial "_" to mangled names of groupings.

 o Mandated the use of @xmlns:xxx as the only method for declaring
 the target namespace.

Lhotka Expires April 24, 2011 [Page 110]

Internet-Draft Mapping YANG to DSDL October 2010

 o Added section "Handling of XML Namespaces" to explain the previous
 item.

 o Completed DHCP example in Appendix C.

 o Almost all text about the second mapping step is new.

Lhotka Expires April 24, 2011 [Page 111]

Internet-Draft Mapping YANG to DSDL October 2010

Author’s Address

 Ladislav Lhotka (editor)
 CESNET

 Email: lhotka@cesnet.cz

Lhotka Expires April 24, 2011 [Page 112]

Internet Engineering Task Force A. Bierman
Internet-Draft Brocade
Intended status: Informational October 2, 2010
Expires: April 5, 2011

 Guidelines for Authors and Reviewers of YANG Data Model Documents
 draft-ietf-netmod-yang-usage-11

Abstract

 This memo provides guidelines for authors and reviewers of standards
 track specifications containing YANG data model modules. Applicable
 portions may be used as a basis for reviews of other YANG data model
 documents. Recommendations and procedures are defined, which are
 intended to increase interoperability and usability of Network
 Configuration Protocol (NETCONF) implementations which utilize YANG
 data model modules.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 5, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Bierman Expires April 5, 2011 [Page 1]

Internet-Draft Guidelines for YANG Documents October 2010

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 4
 2. Terminology . 5
 2.1. Requirements Notation 5
 2.2. NETCONF Terms . 5
 2.3. YANG Terms . 5
 2.4. Terms . 6
 3. General Documentation Guidelines 7
 3.1. Module Copyright . 7
 3.2. Narrative Sections . 8
 3.3. Definitions Section 8
 3.4. Security Considerations Section 8
 3.5. IANA Considerations Section 9
 3.5.1. Documents that Create a New Name Space 9
 3.5.2. Documents that Extend an Existing Name Space 9
 3.6. Reference Sections . 10
 4. YANG Usage Guidelines . 11
 4.1. Module Naming Conventions 11
 4.2. Identifiers . 11
 4.3. Defaults . 11
 4.4. Conditional Statements 12
 4.5. XPath Usage . 12
 4.6. Lifecycle Management 13
 4.7. Module Header, Meta, and Revision Statements 14
 4.8. Namespace Assignments 15
 4.9. Top Level Data Definitions 16
 4.10. Data Types . 16
 4.11. Reusable Type Definitions 17
 4.12. Data Definitions . 18
 4.13. Operation Definitions 19
 4.14. Notification Definitions 19
 5. IANA Considerations . 20
 6. Security Considerations 21
 6.1. Security Considerations Section Template 21
 7. Acknowledgments . 24
 8. References . 25
 8.1. Normative References 25
 8.2. Informative References 25
 Appendix A. Module Review Checklist 27
 Appendix B. YANG Module Template 29
 Appendix C. Change Log . 32
 C.1. Changes from 10 to 11 32
 C.2. Changes from 09 to 10 32

Bierman Expires April 5, 2011 [Page 2]

Internet-Draft Guidelines for YANG Documents October 2010

 C.3. Changes from 08 to 09 32
 C.4. Changes from 07 to 08 32
 C.5. Changes from 06 to 07 32
 C.6. Changes from 05 to 06 32
 C.7. Changes from 04 to 05 33
 C.8. Changes from 03 to 04 33
 C.9. Changes from 02 to 03 34
 C.10. Changes from 01 to 02 34
 C.11. Changes from 00 to 01 34
 Author’s Address . 36

Bierman Expires April 5, 2011 [Page 3]

Internet-Draft Guidelines for YANG Documents October 2010

1. Introduction

 The standardization of network configuration interfaces for use with
 the Network Configuration Protocol (NETCONF) [RFC4741] requires a
 modular set of data models, which can be reused and extended over
 time.

 This document defines a set of usage guidelines for standards track
 documents containing YANG [I-D.ietf-netmod-yang] data models. YANG
 is used to define the data structures, protocol operations, and
 notification content used within a NETCONF server. A server which
 supports a particular YANG module will support client NETCONF
 operation requests, as indicated by the specific content defined in
 the YANG module.

 This document is similar to the SMIv2 usage guidelines specification
 [RFC4181] in intent and structure. However, since that document was
 written a decade after SMIv2 modules had been in use, it was
 published as a ’best current practice’ (BCP). This document is not a
 BCP, but rather an informational reference, intended to promote
 consistency in documents containing YANG modules.

 Many YANG constructs are defined as optional to use, such as the
 description statement. However, in order to maximize
 interoperability of NETCONF implementations utilizing YANG data
 models, it is desirable to define a set of usage guidelines which may
 require a higher level of compliance than the minimum level defined
 in the YANG specification.

 In addition, YANG allows constructs such as infinite length
 identifiers and string values, or top-level mandatory nodes, that a
 compliant server is not required to support. Only constructs which
 all servers are required to support can be used in IETF YANG modules.

 This document defines usage guidelines related to the NETCONF
 operations layer, and NETCONF content layer, as defined in [RFC4741].
 These guidelines are intended to be used by authors and reviewers to
 improve the readability and interoperability of published YANG data
 models.

Bierman Expires April 5, 2011 [Page 4]

Internet-Draft Guidelines for YANG Documents October 2010

2. Terminology

2.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 RFC 2119 language is used here to express the views of the NETMOD
 working group regarding content for YANG modules. YANG modules
 complying with this document will treat the RFC 2119 terminology as
 if it were describing best current practices.

2.2. NETCONF Terms

 The following terms are defined in [RFC4741] and are not redefined
 here:

 o capabilities

 o client

 o operation

 o server

2.3. YANG Terms

 The following terms are defined in [I-D.ietf-netmod-yang] and are not
 redefined here:

 o data node

 o module

 o namespace

 o submodule

 o version

 o YANG

 o YIN

 Note that the term ’module’ may be used as a generic term for a YANG
 module or submodule. When describing properties which are specific
 to submodules, the term ’submodule’ is used instead.

Bierman Expires April 5, 2011 [Page 5]

Internet-Draft Guidelines for YANG Documents October 2010

2.4. Terms

 The following terms are used throughout this document:

 published: A stable release of a module or submodule, usually
 contained in an RFC.

 unpublished: An unstable release of a module or submodule, usually
 contained in an Internet-Draft.

Bierman Expires April 5, 2011 [Page 6]

Internet-Draft Guidelines for YANG Documents October 2010

3. General Documentation Guidelines

 YANG data model modules under review are likely to be contained in
 Internet-Drafts. All guidelines for Internet-Draft authors MUST be
 followed. These guidelines are defined in [RFC2223] and updated in
 [RFC5741]. Additional information is also available online at:

 http://www.rfc-editor.org/rfc-editor/instructions2authors.txt

 The following sections MUST be present in an Internet-Draft
 containing a module:

 o Narrative sections

 o Definitions section

 o Security Considerations section

 o IANA Considerations section

 o References section

3.1. Module Copyright

 The module description statement MUST contain a reference to the
 latest approved IETF Trust Copyright statement, which is available
 on-line at:

 http://trustee.ietf.org/license-info/

 Each YANG module or submodule contained within an Internet-Draft or
 RFC is considered to be a code component. The strings ’<CODE
 BEGINS>’ and ’<CODE ENDS>’ MUST be used to identify each code
 component.

 The ’<CODE BEGINS>’ tag SHOULD be followed by a string identifying
 the file name specified in section 5.2 of [I-D.ietf-netmod-yang].
 The following example is for the ’2010-01-18’ revision of the ’ietf-
 foo’ module:

Bierman Expires April 5, 2011 [Page 7]

Internet-Draft Guidelines for YANG Documents October 2010

 <CODE BEGINS> file "ietf-foo@2010-01-18.yang"
 module ietf-foo {
 // ...
 revision 2010-01-18 {
 description "Latest revision";
 reference "RFC XXXXX";
 }
 // ...
 }
 <CODE ENDS>

 Figure 1

3.2. Narrative Sections

 The narrative part MUST include an overview section that describes
 the scope and field of application of the module(s) defined by the
 specification and that specifies the relationship (if any) of these
 modules to other standards, particularly to standards containing
 other YANG modules. The narrative part SHOULD include one or more
 sections to briefly describe the structure of the modules defined in
 the specification.

 If the module(s) defined by the specification import definitions from
 other modules (except for those defined in the YANG
 [I-D.ietf-netmod-yang] or YANG Types [I-D.ietf-netmod-yang-types]
 documents), or are always implemented in conjunction with other
 modules, then those facts MUST be noted in the overview section, as
 MUST be noted any special interpretations of definitions in other
 modules.

3.3. Definitions Section

 This section contains the module(s) defined by the specification.
 These modules MUST be written using the YANG syntax defined in
 [I-D.ietf-netmod-yang]. A YIN syntax version of the module MAY also
 be present in the document. There MAY also be other types of modules
 present in the document, such as SMIv2, which are not affected by
 these guidelines.

 See Section 4 for guidelines on YANG usage.

3.4. Security Considerations Section

 Each specification that defines one or more modules MUST contain a
 section that discusses security considerations relevant to those

Bierman Expires April 5, 2011 [Page 8]

Internet-Draft Guidelines for YANG Documents October 2010

 modules. This section MUST be patterned after the latest approved
 template (available at
 http://www.ops.ietf.org/netconf/yang-security-considerations.txt).

 In particular:

 o Writable data nodes that could be especially disruptive if abused
 MUST be explicitly listed by name and the associated security
 risks MUST be explained.

 o Readable data nodes that contain especially sensitive information
 or that raise significant privacy concerns MUST be explicitly
 listed by name and the reasons for the sensitivity/privacy
 concerns MUST be explained.

 o Operations (i.e., YANG ’rpc’ statements) which are potentially
 harmful to system behavior or that raise significant privacy
 concerns MUST be explicitly listed by name and the reasons for the
 sensitivity/privacy concerns MUST be explained.

3.5. IANA Considerations Section

 In order to comply with IESG policy as set forth in
 http://www.ietf.org/ID-Checklist.html, every Internet-Draft that is
 submitted to the IESG for publication which has action items for IANA
 MUST contain an IANA Considerations section. The requirements for
 this section vary depending what actions are required of the IANA.
 If there are no IANA considerations applicable to the document, then
 the IANA Considerations section is not required. Refer to the
 guidelines in [RFC5226] for more details.

3.5.1. Documents that Create a New Name Space

 If an Internet-Draft defines a new name space that is to be
 administered by the IANA, then the document MUST include an IANA
 Considerations section, that specifies how the name space is to be
 administered.

 Specifically, if any YANG module namespace statement value contained
 in the document is not already registered with IANA, then a new YANG
 Namespace registry entry MUST be requested from the IANA. The YANG
 [I-D.ietf-netmod-yang] specification includes the procedure for this
 purpose in its IANA Considerations section.

3.5.2. Documents that Extend an Existing Name Space

 It is possible to extend an existing namespace using a YANG submodule
 which belongs to an existing module already administered by IANA. In

Bierman Expires April 5, 2011 [Page 9]

Internet-Draft Guidelines for YANG Documents October 2010

 this case, the document containing the main module MUST be updated to
 use the latest revision of the submodule.

3.6. Reference Sections

 For every import or include statement which appears in a module
 contained in the specification, which identifies a module in a
 separate document, a corresponding normative reference to that
 document MUST appear in the Normative References section. The
 reference MUST correspond to the specific module version actually
 used within the specification.

 For every normative reference statement which appears in a module
 contained in the specification, which identifies a separate document,
 a corresponding normative reference to that document SHOULD appear in
 the Normative References section. The reference SHOULD correspond to
 the specific document version actually used within the specification.
 If the reference statement identifies an informative reference, which
 identifies a separate document, a corresponding informative reference
 to that document MAY appear in the Informative References section.

Bierman Expires April 5, 2011 [Page 10]

Internet-Draft Guidelines for YANG Documents October 2010

4. YANG Usage Guidelines

 In general, modules in IETF standards-track specifications MUST
 comply with all syntactic and semantic requirements of YANG.
 [I-D.ietf-netmod-yang]. The guidelines in this section are intended
 to supplement the YANG specification, which is intended to define a
 minimum set of conformance requirements.

 In order to promote interoperability and establish a set of practices
 based on previous experience, the following sections establish usage
 guidelines for specific YANG constructs.

 Only guidelines which clarify or restrict the minimum conformance
 requirements are included here.

4.1. Module Naming Conventions

 Modules contained in standards track documents SHOULD be named
 according to the guidelines in the IANA considerations section of
 [I-D.ietf-netmod-yang].

 A distinctive word or acronym (e.g., protocol name or working group
 acronym) SHOULD be used in the module name. If new definitions are
 being defined to extend one or more existing modules, then the same
 word or acronym should be reused, instead of creating a new one.

 All published module names MUST be unique. For a YANG module
 published in an RFC, this uniqueness is guaranteed by IANA. For
 unpublished modules, the authors need to check that no other work in
 progress is using the same module name.

 Once a module name is published, it MUST NOT be reused, even if the
 RFC containing the module is reclassified to ’Historic’ status.

4.2. Identifiers

 Identifiers for all YANG identifiers in published modules MUST be
 between 1 and 64 characters in length. These include any construct
 specified as an ’identifier-arg-str’ token in the ABNF in section 12
 of [I-D.ietf-netmod-yang].

4.3. Defaults

 In general, it is suggested that sub-statements containing very
 common default values SHOULD NOT be present. The following sub-
 statements are commonly used with the default value, which would make
 the module difficult to read if used everywhere they are allowed.

Bierman Expires April 5, 2011 [Page 11]

Internet-Draft Guidelines for YANG Documents October 2010

 +---------------+---------------+
 | Statement | Default Value |
 +---------------+---------------+
 | config | true |
 | | |
 | mandatory | false |
 | | |
 | max-elements | unbounded |
 | | |
 | min-elements | 0 |
 | | |
 | ordered-by | system |
 | | |
 | status | current |
 | | |
 | yin-element | false |
 +---------------+---------------+

4.4. Conditional Statements

 A module may be conceptually partitioned in several ways, using the
 ’if-feature’ and/or ’when’ statements.

 Data model designers need to carefully consider all modularity
 aspects, including the use of YANG conditional statements.

 If a data definition is optional, depending on server support for a
 NETCONF protocol capability, then a YANG ’feature’ statement SHOULD
 be defined to indicate that the NETCONF capability is supported
 within the data model.

 If any notification data, or any data definition, for a non-
 configuration data node is not mandatory, then the server may or may
 not be required to return an instance of this data node. If any
 conditional requirements exist for returning the data node in a
 notification payload or retrieval request, they MUST be documented
 somewhere. For example, a ’when’ or ’if-feature’ statement could
 apply to the data node, or the conditional requirements could be
 explained in a ’description’ statement within the data node or one of
 its ancestors (if any).

4.5. XPath Usage

 This section describes guidelines for using the XML Path Language
 [W3C.REC-xpath-19991116] (XPath) within YANG modules.

 The ’attribute’ and ’namespace’ axes are not supported in YANG, and
 MAY be empty in a NETCONF server implementation.

Bierman Expires April 5, 2011 [Page 12]

Internet-Draft Guidelines for YANG Documents October 2010

 The ’position’ and ’last’ functions SHOULD NOT be used. This applies
 to implicit use of the ’position’ function as well (e.g.,
 ’//chapter[42]’). A server is only required to maintain the relative
 XML document order of all instances of a particular user-ordered list
 or leaf-list. The ’position’ and ’last’ functions MAY be used if
 they are evaluated in a context where the context node is a user-
 ordered ’list’ or ’leaf-list’.

 The ’preceding’, and ’following’ axes SHOULD NOT be used. These
 constructs rely on XML document order within a NETCONF server
 configuration database, which may not be supported consistently or
 produce reliable results across implementations. Predicate
 expressions based on static node properties (e.g., element name or
 value, ’ancestor’ or ’descendant’ axes) SHOULD be used instead. The
 ’preceding’ and ’following’ axes MAY be used if document order is not
 relevant to the outcome of the expression (e.g., check for global
 uniqueness of a parameter value.)

 The ’preceding-sibling’ and ’following-sibling’ axes SHOULD NOT used.
 A server is only required to maintain the relative XML document order
 of all instances of a particular user-ordered list or leaf-list. The
 ’preceding-sibling’ and ’following-sibling’ axes MAY be used if they
 are evaluated in a context where the context node is a user-ordered
 ’list’ or ’leaf-list’.

 Data nodes which use the ’int64’ and ’uint64’ built-in type SHOULD
 NOT be used within numeric expressions. There are boundary
 conditions in which the translation from the YANG 64-bit type to an
 XPath number can cause incorrect results. Specifically, an XPath
 ’double’ precision floating point number cannot represent very large
 positive or negative 64-bit numbers because it only provides a total
 precision of 53 bits. The ’int64’ and ’uint64’ data types MAY be
 used in numeric expressions if the value can be represented with no
 more than 53 bits of precision.

 Data modelers need to be careful not to confuse the YANG value space
 and the XPath value space. The data types are not the same in both,
 and conversion between YANG and XPath data types SHOULD be considered
 carefully.

 Explicit XPath data type conversions MAY be used (e.g., ’string’,
 ’boolean’, or ’number’ functions), instead of implicit XPath data
 type conversions.

4.6. Lifecycle Management

 The status statement MUST be present if its value is ’deprecated’ or
 ’obsolete’.

Bierman Expires April 5, 2011 [Page 13]

Internet-Draft Guidelines for YANG Documents October 2010

 The module or submodule name MUST NOT be changed, once the document
 containing the module or submodule is published.

 The module namespace URI value MUST NOT be changed, once the document
 containing the module is published.

 The revision-date sub-statement within the imports statement SHOULD
 be present if any groupings are used from the external module.

 The revision-date sub-statement within the include statement SHOULD
 be present if any groupings are used from the external sub-module.

 If submodules are used, then the document containing the main module
 MUST be updated so that the main module revision date is equal or
 more recent than the revision date of any submodule which is
 (directly or indirectly) included by the main module.

4.7. Module Header, Meta, and Revision Statements

 For published modules, the namespace MUST be a globally unique URI,
 as defined in [RFC3986]. This value is usually assigned by the IANA.

 The organization statement MUST be present. If the module is
 contained in a document intended for standards-track status, then the
 organization SHOULD be the IETF working group chartered to write the
 document.

 The contact statement MUST be present. If the module is contained in
 a document intended for standards-track status, then the working
 group WEB and mailing information MUST be present, and the main
 document author or editor contact information SHOULD be present. If
 additional authors or editors exist, their contact information MAY be
 present. In addition, the Area Director and other contact
 information MAY be present.

 The description statement MUST be present. The appropriate IETF
 Trust Copyright text MUST be present, as described in Section 3.1.

 If the module relies on information contained in other documents,
 which are not the same documents implied by the import statements
 present in the module, then these documents MUST be identified in the
 reference statement.

 A revision statement MUST be present for each published version of
 the module. The revision statement MUST have a reference
 substatement. It MUST identify the published document which contains
 the module. Modules are often extracted from their original
 documents and it is useful for developers and operators to know how

Bierman Expires April 5, 2011 [Page 14]

Internet-Draft Guidelines for YANG Documents October 2010

 to find the original source document in a consistent manner. The
 revision statement MAY have a description substatement.

 Each new revision MUST include a revision date which is higher than
 any other revision date in the module. The revision date does not
 need to be updated if the module contents do not change in the new
 document revision.

 It is acceptable to reuse the same revision statement within
 unpublished versions (i.e., Internet-Drafts), but the revision date
 MUST be updated to a higher value each time the Internet-Draft is re-
 published.

4.8. Namespace Assignments

 It is RECOMMENDED that only valid YANG modules are included in
 documents, whether they are published yet or not. This allows:

 o the module to compile correctly instead of generating disruptive
 fatal errors.

 o early implementors to use the modules without picking a random
 value for the XML namespace.

 o early interoperability testing since independent implementations
 will use the same XML namespace value.

 Until a URI is assigned by the IANA, a proposed namespace URI MUST be
 provided for the namespace statement in a YANG module. A value
 SHOULD be selected which is not likely to collide with other YANG
 namespaces. Standard module names, prefixes, and URI strings already
 listed in the YANG Module Registry MUST NOT be used.

 A standard namespace statement value SHOULD have the following form:

 <URN prefix string>:<module-name>

 The following URN prefix string SHOULD be used for published and
 unpublished YANG modules:

 urn:ietf:params:xml:ns:yang:

 The following example URNs would be valid temporary namespace
 statement values for standards-track modules:

 urn:ietf:params:xml:ns:yang:ietf-netconf-partial-lock

Bierman Expires April 5, 2011 [Page 15]

Internet-Draft Guidelines for YANG Documents October 2010

 urn:ietf:params:xml:ns:yang:ietf-netconf-state

 urn:ietf:params:xml:ns:yang:ietf-netconf

 Note that a different URN prefix string SHOULD be used for non-
 standards track modules. The string SHOULD be selected according to
 the guidelines in [I-D.ietf-netmod-yang].

 The following examples of non-standards track modules are only
 suggestions. There are no guidelines for this type of URN in this
 document:

 http://example.com/ns/example-interfaces

 http://example.com/ns/example-system

4.9. Top Level Data Definitions

 There SHOULD only be one top-level data node defined in each YANG
 module, if any data nodes are defined at all.

 The top-level data organization SHOULD be considered carefully, in
 advance. Data model designers need to consider how the functionality
 for a given protocol or protocol family will grow over time.

 The names and data organization SHOULD reflect persistent
 information, such as the name of a protocol. The name of the working
 group SHOULD NOT be used because this may change over time.

 A mandatory database data definition is defined as a node that a
 client must provide for the database to be valid. The server is not
 required to provide a value.

 Top-level database data definitions MUST NOT be mandatory. If a
 mandatory node appears at the top-level, it will immediately cause
 the database to be invalid. This can occur when the server boots or
 when a module is loaded dynamically at runtime.

4.10. Data Types

 Selection of an appropriate data type (i.e., built-in type, existing
 derived type, or new derived type) is very subjective and therefore
 few requirements can be specified on that subject.

 Data model designers SHOULD use the most appropriate built-in data
 type for the particular application.

 If extensibility of enumerated values is required, then the

Bierman Expires April 5, 2011 [Page 16]

Internet-Draft Guidelines for YANG Documents October 2010

 ’identityref’ data type SHOULD be used instead of an enumeration or
 other built-in type.

 For string data types, if a machine-readable pattern can be defined
 for the desired semantics, then one or more pattern statements SHOULD
 be present.

 For string data types, if the length of the string is required to be
 bounded in all implementations, then a length statement MUST be
 present.

 For numeric data types, if the values allowed by the intended
 semantics are different than those allowed by the unbounded intrinsic
 data type (e.g., ’int32’), then a range statement SHOULD be present.

 The signed numeric data types (i.e., ’int8’, ’int16’, ’int32’, and
 ’int64’) SHOULD NOT be used unless negative values are allowed for
 the desired semantics.

 For ’enumeration’ or ’bits’ data types, the semantics for each ’enum’
 or ’bit’ SHOULD be documented. A separate description statement
 (within each ’enum’ or ’bit’ statement) SHOULD be present.

4.11. Reusable Type Definitions

 If an appropriate derived type exists in any standard module, such as
 [I-D.ietf-netmod-yang-types], then it SHOULD be used instead of
 defining a new derived type.

 If an appropriate units identifier can be associated with the desired
 semantics, then a units statement SHOULD be present.

 If an appropriate default value can be associated with the desired
 semantics, then a default statement SHOULD be present.

 If a significant number of derived types are defined, and it is
 anticipated that these data types will be reused by multiple modules,
 then these derived types SHOULD be contained in a separate module or
 submodule, to allow easier reuse without unnecessary coupling.

 The description statement MUST be present.

 If the type definition semantics are defined in an external document
 (other than another YANG module indicated by an import statement),
 then the reference statement MUST be present.

Bierman Expires April 5, 2011 [Page 17]

Internet-Draft Guidelines for YANG Documents October 2010

4.12. Data Definitions

 The description statement MUST be present in the following YANG
 statements:

 o anyxml

 o augment

 o choice

 o container

 o extension

 o feature

 o grouping

 o identity

 o leaf

 o leaf-list

 o list

 o notification

 o rpc

 o typedef

 If the data definition semantics are defined in an external document,
 (other than another YANG module indicated by an import statement),
 then a reference statement MUST be present.

 The ’anyxml’ construct may be useful to represent an HTML banner
 containing markup elements, such as ’’ and ’’, and MAY be used
 in such cases . However, this construct SHOULD NOT be used if other
 YANG data node types can be used instead to represent the desired
 syntax and semantics.

 If there are referential integrity constraints associated with the
 desired semantics that can be represented with XPath, then one or
 more must statements SHOULD be present.

 For list and leaf-list data definitions, if the number of possible

Bierman Expires April 5, 2011 [Page 18]

Internet-Draft Guidelines for YANG Documents October 2010

 instances is required to be bounded for all implementations, then the
 max-elements statements SHOULD be present.

 If any must or when statements are used within the data definition,
 then the data definition description statement SHOULD describe the
 purpose of each one.

4.13. Operation Definitions

 If the operation semantics are defined in an external document (other
 than another YANG module indicated by an import statement), then a
 reference statement MUST be present.

 If the operation impacts system behavior in some way, it SHOULD be
 mentioned in the description statement.

 If the operation is potentially harmful to system behavior in some
 way, it MUST be mentioned in the Security Considerations section of
 the document.

4.14. Notification Definitions

 The description statement MUST be present.

 If the notification semantics are defined in an external document
 (other than another YANG module indicated by an import statement),
 then a reference statement MUST be present.

Bierman Expires April 5, 2011 [Page 19]

Internet-Draft Guidelines for YANG Documents October 2010

5. IANA Considerations

 This document registers one URI in the IETF XML registry [RFC3688].
 The following registration is requested:

 URI: urn:ietf:params:xml:ns:yang:ietf-template

 Registrant Contact: The NETMOD WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

 This document requests the following assignment in the YANG Module
 Names Registry for the YANG module template in Appendix B.

 +---------------+---+
 | Field | Value |
 +---------------+---+
 | name | ietf-template |
 | | |
 | namespace | urn:ietf:params:xml:ns:yang:ietf-template |
 | | |
 | prefix | temp |
 | | |
 | reference | RFCXXXX |
 +---------------+---+

Bierman Expires April 5, 2011 [Page 20]

Internet-Draft Guidelines for YANG Documents October 2010

6. Security Considerations

 This document defines documentation guidelines for NETCONF content
 defined with the YANG data modeling language. The guidelines for how
 to write a Security Considerations section for a YANG module are
 defined in the online document

 http://www.ops.ietf.org/netconf/yang-security-considerations.txt

 This document does not introduce any new or increased security risks
 into the management system.

 The following section contains the security considerations template
 dated 2010-06-16. Be sure to check the WEB page at the URL listed
 above in case there is a more recent version available.

 Each specification that defines one or more YANG modules MUST contain
 a section that discusses security considerations relevant to those
 modules. This section MUST be patterned after the latest approved
 template (available at [ed: URL TBD]).

 In particular, writable data nodes that could be especially
 disruptive if abused MUST be explicitly listed by name and the
 associated security risks MUST be spelled out.

 Similarly, readable data nodes that contain especially sensitive
 information or that raise significant privacy concerns MUST be
 explicitly listed by name and the reasons for the sensitivity/privacy
 concerns MUST be explained.

 Further, if new RPC operations have been defined, then the security
 considerations of each new RPC operation MUST be explained.

6.1. Security Considerations Section Template

Bierman Expires April 5, 2011 [Page 21]

Internet-Draft Guidelines for YANG Documents October 2010

 X. Security Considerations

 The YANG module defined in this memo is designed to be accessed
 via the NETCONF protocol [RFC4741]. The lowest NETCONF layer is
 the secure transport layer and the mandatory to implement secure
 transport is SSH [RFC4742].

 -- if you have any writeable data nodes (those are all the
 -- "config true" nodes, and remember, that is the default)
 -- describe their specific sensitivity or vulnerability.

 There are a number of data nodes defined in this YANG module
 which are writable/creatable/deletable (i.e. config true, which
 is the default). These data nodes may be considered sensitive
 or vulnerable in some network environments. Write operations
 (e.g. edit-config) to these data nodes without proper protection
 can have a negative effect on network operations. These are
 the subtrees and data nodes and their sensitivity/vulnerability:

 <list subtrees and data nodes and state why they are sensitive>

 -- for all YANG modules you must evaluate whether any readable data
 -- nodes (those are all the "config false" nodes, but also all other
 -- nodes, because they can also be read via operations like get or
 -- get-config) are sensitive or vulnerable (for instance, if they
 -- might reveal customer information or violate personal privacy
 -- laws such as those of the European Union if exposed to
 -- unauthorized parties)

 Some of the readable data nodes in this YANG module may be
 considered sensitive or vulnerable in some network environments.
 It is thus important to control read access (e.g. via get,
 get-config or notification) to these data nodes. These are the
 subtrees and data nodes and their sensitivity/vulnerability:

 <list subtrees and data nodes and state why they are sensitive>

 -- if your YANG module has defined any rpc operations
 -- describe their specific sensitivity or vulnerability.

 Some of the RPC operations in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control access to these operations. These are the
 operations and their sensitivity/vulnerability:

 <list RPC operations and state why they are sensitive>

Bierman Expires April 5, 2011 [Page 22]

Internet-Draft Guidelines for YANG Documents October 2010

 Figure 2

Bierman Expires April 5, 2011 [Page 23]

Internet-Draft Guidelines for YANG Documents October 2010

7. Acknowledgments

 The structure and contents of this document are adapted from
 Guidelines for MIB Documents [RFC4181], by C. M. Heard.

 The working group thanks Martin Bjorklund and Juergen Schoenwaelder
 for their extensive reviews and contributions to this document.

Bierman Expires April 5, 2011 [Page 24]

Internet-Draft Guidelines for YANG Documents October 2010

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2223] Postel, J. and J. Reynolds, "Instructions to RFC Authors",
 RFC 2223, October 1997.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC5378] Bradner, S. and J. Contreras, "Rights Contributors Provide
 to the IETF Trust", BCP 78, RFC 5378, November 2008.

 [RFC5741] Daigle, L., Kolkman, O., and IAB, "RFC Streams, Headers,
 and Boilerplates", RFC 5741, December 2009.

 [W3C.REC-xpath-19991116]
 DeRose, S. and J. Clark, "XML Path Language (XPath)
 Version 1.0", World Wide Web Consortium
 Recommendation REC-xpath-19991116, November 1999,
 <http://www.w3.org/TR/1999/REC-xpath-19991116>.

 [I-D.ietf-netmod-yang]
 Bjorklund, M., "YANG - A data modeling language for the
 Network Configuration Protocol (NETCONF)",
 draft-ietf-netmod-yang-13 (work in progress), June 2010.

 [I-D.ietf-netmod-yang-types]
 Schoenwaelder, J., "Common YANG Data Types",
 draft-ietf-netmod-yang-types-09 (work in progress),
 April 2010.

8.2. Informative References

 [RFC4181] Heard, C., "Guidelines for Authors and Reviewers of MIB
 Documents", BCP 111, RFC 4181, September 2005.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an

Bierman Expires April 5, 2011 [Page 25]

Internet-Draft Guidelines for YANG Documents October 2010

 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

Bierman Expires April 5, 2011 [Page 26]

Internet-Draft Guidelines for YANG Documents October 2010

Appendix A. Module Review Checklist

 This section is adapted from RFC 4181.

 The purpose of a YANG module review is to review the YANG module both
 for technical correctness and for adherence to IETF documentation
 requirements. The following checklist may be helpful when reviewing
 a draft document:

 1. I-D Boilerplate -- verify that the draft contains the required
 Internet-Draft boilerplate (see
 http://www.ietf.org/ietf/1id-guidelines.txt), including the
 appropriate statement to permit publication as an RFC, and that
 I-D boilerplate does not contain references or section numbers.

 2. Abstract -- verify that the abstract does not contain references,
 that it does not have a section number, and that its content
 follows the guidelines in
 http://www.ietf.org/ietf/1id-guidelines.txt.

 3. IETF Trust Copyright -- verify that the draft has the appropriate
 text regarding the rights that document contributers provide to
 the IETF Trust [RFC5378]. Some guidelines related to this
 requirement are described in Section 3.1. The IETF Trust license
 policy (TLP) can be found at:

 http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf

 4. Security Considerations Section -- verify that the draft uses the
 latest approved template from the OPS area web site (http://
 www.ops.ietf.org/netconf/yang-security-considerations.txt) and
 that the guidelines therein have been followed.

 5. IANA Considerations Section -- this section must always be
 present. For each module within the document, ensure that the
 IANA Considerations section contains entries for the following
 IANA registries:

 XML Namespace Registry: Register the YANG module namespace.

 YANG Module Registry: Register the YANG module name, prefix,
 namespace, and RFC number, according to the rules specified in
 [I-D.ietf-netmod-yang].

 6. References -- verify that the references are properly divided
 between normative and informative references, that RFC 2119 is
 included as a normative reference if the terminology defined
 therein is used in the document, that all references required by

Bierman Expires April 5, 2011 [Page 27]

Internet-Draft Guidelines for YANG Documents October 2010

 the boilerplate are present, that all YANG modules containing
 imported items are cited as normative references, and that all
 citations point to the most current RFCs unless there is a valid
 reason to do otherwise (for example, it is OK to include an
 informative reference to a previous version of a specification to
 help explain a feature included for backward compatibility). Be
 sure citations for all imported modules are present somewhere in
 the document text (outside the YANG module).

 7. Copyright Notices -- verify that the draft contains an
 abbreviated IETF Trust copyright notice in the description
 statement of each YANG module or sub-module, and that it contains
 the full IETF Trust copyright notice at the end of the document.
 Make sure that the correct year is used in all copyright dates.
 Use the approved text from the latest Trust Legal Provisions
 (TLP) document, which can be found at:

 http://trustee.ietf.org/license-info/

 8. Other Issues -- check for any issues mentioned in
 http://www.ietf.org/ID-Checklist.html that are not covered
 elsewhere.

 9. Technical Content -- review the actual technical content for
 compliance with the guidelines in this document. The use of a
 YANG module compiler is recommended when checking for syntax
 errors. A list of freely available tools and other information
 can be found at:

 http://trac.tools.ietf.org/wg/netconf/trac/wiki

 Checking for correct syntax, however, is only part of the job.
 It is just as important to actually read the YANG module document
 from the point of view of a potential implementor. It is
 particularly important to check that description statements are
 sufficiently clear and unambiguous to allow interoperable
 implementations to be created.

Bierman Expires April 5, 2011 [Page 28]

Internet-Draft Guidelines for YANG Documents October 2010

Appendix B. YANG Module Template

<CODE BEGINS> file "ietf-template@2010-05-18.yang"

module ietf-template {

 // replace this string with a unique namespace URN value
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-template";

 // replace this string, and try to pick a unique prefix
 prefix "temp";

 // import statements here: e.g.,
 // import ietf-yang-types { prefix yang; }
 // import ietf-inet-types { prefix inet; }

 // identify the IETF working group if applicable
 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 // update this contact statement with your info
 contact
 "WG Web: <http://tools.ietf.org/wg/your-wg-name/>
 WG List: <mailto:your-wg-name@ietf.org>

 WG Chair: your-WG-chair
 <mailto:your-WG-chair@example.com>

 Editor: your-name
 <mailto:your-email@example.com>";

 // replace the first sentence in this description statement.
 // replace the copyright notice with the most recent
 // version, if it has been updated since the publication
 // of this document
 description
 "This module defines a template for other YANG modules.

 Copyright (c) 2010 IETF Trust and the persons identified as
 the document authors. All rights reserved.

 Redistribution and use in source and binary forms, with or

Bierman Expires April 5, 2011 [Page 29]

Internet-Draft Guidelines for YANG Documents October 2010

 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: replace XXXX with actual RFC number and remove this note

 reference "RFC XXXX";

 // RFC Ed.: remove this note
 // Note: extracted from draft-ietf-netmod-yang-usage-04.txt

 // replace ’2010-05-18’ with the module publication date
 // The format is (year-month-day)
 revision "2010-05-18" {
 description
 "Initial version";
 }

 // extension statements

 // feature statements

 // identity statements

 // typedef statements

 // grouping statements

 // data definition statements

 // augment statements

 // rpc statements

 // notification statements

 // DO NOT put deviation statements in a published module

}

<CODE ENDS>

Bierman Expires April 5, 2011 [Page 30]

Internet-Draft Guidelines for YANG Documents October 2010

 Figure 3

Bierman Expires April 5, 2011 [Page 31]

Internet-Draft Guidelines for YANG Documents October 2010

Appendix C. Change Log

C.1. Changes from 10 to 11

 o Removed Intellectual Property section, since no longer required.

 o Reworded XPath guidelines related to XML document order, ’int64’
 and ’uint64’ data types, and ’anyxml’ data nodes.

C.2. Changes from 09 to 10

 o Added security considerations section template.

 o Added guideline for documenting conditional requirements for non-
 mandatory non-configuration data nodes.

 o Clarified that revision date update applies to the module
 contents.

C.3. Changes from 08 to 09

 o Clarifications and corrections to address Gen-ART review comments.

C.4. Changes from 07 to 08

 o Corrected YANG security considerations URL.

 o Expanded ’CODE BEGINS’ example.

 o Added RPC operations to the security considerations guidelines
 section.

 o Removed guideline about leading and trailing whitespace.

C.5. Changes from 06 to 07

 o Corrected title change bug; supposed to be page header instead.

 o Fixed typos added to last revision.

 o Added sentence to checklist to make sure text outside module
 contains citations for imports.

C.6. Changes from 05 to 06

 o Several clarifications and corrections, based on the AD review by
 Dan Romascanu.

Bierman Expires April 5, 2011 [Page 32]

Internet-Draft Guidelines for YANG Documents October 2010

C.7. Changes from 04 to 05

 o Changed ’object’ terminology to ’data definition’.

 o Put XPath guidelines in separate section.

 o Clarified XPath usage for XML document order dependencies.

 o Updated <CODE BEGINS> guidelines to current conventions.

 o Added informative reference for IANA considerations guidelines and
 XML registry.

 o Updated IANA Considerations section to reserve the ietf-template
 module in the YANG Module Name Registry so it cannot be reused
 accidently.

 o Many other clarifications and fixed typos found in WGLC reviews.

C.8. Changes from 03 to 04

 o Removed figure 1 to reduce duplication, just refer to 4741bis
 draft.

 o Fixed bugs and typos found in WGLC reviews.

 o Removed some guidelines and referring to YANG draft instead of
 duplicating YANG rules here.

 o Changed security guidelines so they refer to the IETF Trust TLP
 instead of MIB-specific references.

 o Change temporary namespace guidelines so the DRAFT-XX and RFC-nnnn
 suffix strings are not used.

 o Changed some MIB boilerplate so it refers to YANG boilerplate
 instead.

 o Introduced dangling URL reference to online YANG security
 guidelines

 http://www.ops.ietf.org/yang-security.html

 [ed.: Text from Bert Wijnen will be completed soon and posted
 online, and then this URL will be finalized.]

 o Moved reference for identifying the source document inside the
 each revision statement.

Bierman Expires April 5, 2011 [Page 33]

Internet-Draft Guidelines for YANG Documents October 2010

 o Removed guideline about valid XPath since YANG already requires
 valid XPath.

 o Added guideline that strings should not rely on preservation of
 leading and trailing whitespace characters.

 o Relaxed some XPath and anyxml guidelines from SHOULD NOT or MUST
 NOT to MAY use with caution.

 o Updated the TLP text within the example module again.

 o Reversed order of change log so most recent entries are first.

C.9. Changes from 02 to 03

 o Updated figure 1 to align with 4741bis draft.

 o Updated guidelines for import-by-revision and include-by-revision.

 o Added file name to code begins convention in ietf-template module.

C.10. Changes from 01 to 02

 o Updated figure 1 per mailing list comments.

 o Updated suggested organization to include the working group name.

 o Updated ietf-template.yang to use new organization statement
 value.

 o Updated Code Component requirements as per new TLP.

 o Updated ietf-template.yang to use new Code Component begin and end
 markers.

 o Updated references to the TLP in a couple sections.

 o Change manager/agent terminology to client/server.

C.11. Changes from 00 to 01

 o Added transport ’TLS’ to figure 1.

 o Added note about RFC 2119 terminology.

 o Corrected URL for instructions to authors.

Bierman Expires April 5, 2011 [Page 34]

Internet-Draft Guidelines for YANG Documents October 2010

 o Updated namespace procedures section.

 o Updated guidelines on module contact, reference, and organization
 statements.

 o Added note on use of preceding-sibling and following-sibling axes
 in XPath expressions.

 o Added section on temporary namespace statement values.

 o Added section on top level database objects.

 o Added ietf-template.yang appendix.

Bierman Expires April 5, 2011 [Page 35]

Internet-Draft Guidelines for YANG Documents October 2010

Author’s Address

 Andy Bierman
 Brocade

 Email: andy.bierman@brocade.com

Bierman Expires April 5, 2011 [Page 36]

NETMOD L. Lhotka
Internet-Draft CESNET
Intended status: Standards Track March 03, 2011
Expires: September 4, 2011

 A YANG Data Model for Routing Configuration
 draft-lhotka-netmod-routing-cfg-00

Abstract

 This document contains a specification of a core YANG data model for
 IP routing configuration. It is expected that this module will serve
 as a basis for further development of data models for individual
 routing protocols and other related functions. The present data
 model defines the building blocks for such configurations - routes
 and routing tables, routing protocol instances, route filters and
 route pipes.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 4, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Lhotka Expires September 4, 2011 [Page 1]

Internet-Draft YANG Routing Configuration March 2011

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology and Notation 4
 3. Objectives . 6
 4. Design of the Routing Data Model 7
 4.1. Route . 8
 4.2. Routing Tables . 9
 4.3. Routing Protocol Instances 9
 4.3.1. Defining New Routing Protocols 10
 4.4. Route Pipes . 11
 4.5. Route Filters . 12
 5. Core Routing YANG Module 13
 6. IANA Considerations . 22
 7. Security Considerations 23
 8. Acknowledgments . 24
 9. References . 25
 9.1. Normative References 25
 9.2. Informative References 25
 Appendix A. Example Module for Routing Information Protocol . . . 26
 A.1. Example YANG Module for Routing Information Protocol . . . 26
 A.2. Sample Reply to the NETCONF <get> Message 27
 Author’s Address . 31

Lhotka Expires September 4, 2011 [Page 2]

Internet-Draft YANG Routing Configuration March 2011

1. Introduction

 The NETCONF Data Modeling Language (NETMOD) Working Group has
 completed the essential specifications for the YANG data modeling
 language [RFC6020], common data types [RFC6021], and the
 corresponding data modeling environment and tools [RFC6087],
 [RFC6110]. The new NETMOD WG charter puts emphasis on the
 development of a set of core YANG data models for the following
 subsystems:

 1. core system data model,

 2. core interface data model,

 3. core routing data model.

 The initial version of the core interface data model (item 2) was
 already published [YANG-IF].

 This document contains an initial specification for item 3, namely
 the "ietf-routing" YANG module representing the core routing data
 model. While the module can be directly used for simple devices with
 static routing, its main purpose is to provide basic building blocks
 for more complicated setups involving multiple routing protocols and
 advanced functions, such as route filtering and policy routing. To
 this end, it is expected that this module will be augmented by
 numerous modules developed by other IETF working groups.

Lhotka Expires September 4, 2011 [Page 3]

Internet-Draft YANG Routing Configuration March 2011

2. Terminology and Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The following terms are defined in [RFC4741]:

 o client

 o datastore

 o message

 o operation

 o server

 The following terms are defined in [RFC6020]:

 o augment

 o configuration data

 o container

 o data model

 o data node

 o data tree

 o data type

 o feature

 o grouping

 o identity

 o instance identifier

 o leaf-list

 o list

 o mandatory node

Lhotka Expires September 4, 2011 [Page 4]

Internet-Draft YANG Routing Configuration March 2011

 o module

 o operational state data

 o RPC operation

 o submodule

 The following terms are defined in [XML-INFOSET]:

 o attribute

 o document

 o document element

 o element

 o information set

 o namespace

Lhotka Expires September 4, 2011 [Page 5]

Internet-Draft YANG Routing Configuration March 2011

3. Objectives

 The initial design of the core routing data model was driven by the
 following main objectives:

 o The data model should be suitable for the common address families,
 in particular IPv4 and IPv6.

 o Simple routing setups, such as static routing, should be
 configurable in a simple way, ideally without any need to define
 additional YANG modules.

 o On the other hand, the framework defined by the module must allow
 for complicated setups involving multiple routing tables and
 multiple routing protocols, as well as controlled redistributions
 of routing information.

 o Device vendors will want to map the data models built on this
 generic framework to their proprietary data models and
 configuration interfaces. Therefore, the framework should be
 flexible enough to facilitate such a mapping and accommodate data
 models with different logic.

Lhotka Expires September 4, 2011 [Page 6]

Internet-Draft YANG Routing Configuration March 2011

4. Design of the Routing Data Model

 The "ietf-routing" YANG module presented in Section 5 defines a data
 modeling framework with several essential components: routes, routing
 tables, routing protocol instances, route filters and route pipes.
 By combining these components in various ways, and filling them with
 appropriate content models defined in other modules, a broad range of
 routing setups can be covered.

 +------------+
 | kernel FIB |
 +------------+
 ^ |
 | v
 +---+ +---+
 | F | | F |
 +---+ +---+
 ^ |
 | v
 +--------------+ +---+ +--------------+
 +--------+ | |<---| F |<---| |
 | static | +---+ | main | +---+ | additional |
 | routes |--->| F |--->| routing | | routing |
 +--------+ +---+ | table | +---+ | table |
 | |--->| F |--->| |
 +--------------+ +---+ +--------------+
 ^ | ^ |
 | v | v
 +---+ +---+ +---+ +---+
 | F | | F | | F | | F |
 +---+ +---+ +---+ +---+
 ^ | ^ |
 | v | v
 +----------+ +----------+
 | routing | | routing |
 | protocol | | protocol |
 +----------+ +----------+

 Figure 1: Example setup of the routing subsystem

 Figure 1 shows an example of a more complicated setup:

 o Along with the main routing table, which must always be present,
 an additional routing table is defined.

 o Each routing protocol instance, including the static pseudo-
 protocol instance, is connected to exactly one routing table with
 which it can exchange routes (in both directions, except for the

Lhotka Expires September 4, 2011 [Page 7]

Internet-Draft YANG Routing Configuration March 2011

 static pseudo-protocol).

 o Routing tables may also be connected to each other through route
 pipes and exchange routes in one or both directions.

 o The main routing table exchanges routes with the forwarding
 information base (FIB) in the operating system kernel as follows:
 active routes from the main routing table are installed in the FIB
 and used for packet forwarding, and automatic routes set up by the
 kernel (for example, direct routes to connected networks) are
 passed to the main routing table.

 o Route exchanges along all connections may be controlled by means
 of route filters denoted by "F" in the figure.

 All configuration and operational state data defined by the "ietf-
 routing" module apear inside the "routing" container. The following
 subsections describe the individual components of the core routing
 framework.

4.1. Route

 Routes are basic units of information in a routing system. The
 "ietf-routing" module defines only the following essential route
 parameters:

 o route-type - permitted values are "unicast" (default), "multicast"
 and "anycast".

 o destination-prefix - IP prefix specifying the set of destination
 addresses for which the route may be used. This parameter is
 mandatory.

 o next-hop - IP address of the adjacent router or host to which
 packets with destination addresses belonging to destination-prefix
 should be sent.

 o outgoing-interface - network interface that should be used for
 sending packets with destination addresses belonging to
 destination-prefix.

 The above list of route parameters is sufficient for a simple static
 route configuration. It is expected that future modules defining
 routing protocols will add other route attributes such as metrics or
 preferences.

 Routes are used in both configuration data, for example as manually
 configured static routes, as well as in operational state data, for

Lhotka Expires September 4, 2011 [Page 8]

Internet-Draft YANG Routing Configuration March 2011

 example as entries in routing tables.

4.2. Routing Tables

 Routing tables are lists of routes complemented with administrative
 data, namely:

 o source-protocol - name of the routing protocol from which the
 route arrived.

 o last-modified - date and time of last modification, or
 installation, of the route.

 In the core routing data model, routing tables are represented as
 operational state data. Routing protocol operations result in route
 additions, removals and modifications. This also includes
 manipulations via the "static" pseudo-protocol.

 The data model also defines an RPC operation, "delete-route" which
 allows the client to immediately delete a specified route from a
 routing table.

 Every compliant implementation MUST automatically configure the main
 routing table. Additional routing tables MAY be configured by adding
 their unique names to the "configured-routing-tables" leaf-list.

4.3. Routing Protocol Instances

 The "ietf-routing" module provides an open-ended framework for
 defining multiple routing protocol instances. Each of them is
 identified by a unique name and MUST be assigned a type from a
 selection which includes all routing protocol types supported by the
 server, such as RIP, OSPF or BGP.

 Each routing protocol instance is connected to exactly one routing
 table. By default, every routing protocol instance is connected to
 the main routing table, but any routing protocol instance can be
 configured to use a different routing table, provided such an extra
 table is configured.

 Routes learned from the network by a routing protocol instance are
 passed to the connected routing table and vice versa - routes
 appearing in a routing table may be passed to any routing protocol
 connected to the table and advertised by that protocol to the
 network.

 Two independent route filters (see Section 4.5) may be defined for a
 routing protocol instance to control the exchange of routes in both

Lhotka Expires September 4, 2011 [Page 9]

Internet-Draft YANG Routing Configuration March 2011

 directions between the routing protocol instance and the connected
 routing table:

 o import filter controls which routes are passed from a routing
 protocol instance to the routing table,

 o export filter controls which routes the routing protocol instance
 may receive from the connected routing table.

 Note that, for historical reasons, the terms import and export are
 used from the viewpoint of a routing table.

 The "ietf-routing" module defines two special routing protocols -
 "direct" and "static". Both are in fact pseudo-protocols, which
 means that they are confined to the local server and do not exchange
 any routing information with neighboring routers. Routes from both
 "direct" and "static" protocol instances are passed to the connected
 routing table (subject to route filters, if any), but an exchange in
 the opposite direction is not allowed.

 The "direct" pseudo-protocol MUST exist in exactly one instance in
 any server implementation. It is the source for routes to directly
 connected networks (so-called direct routes). Such routes are
 supplied by the operating system kernel based on the detected and
 configured network interfaces, and they usually appear in the main
 routing table. However, using the framework defined in this
 document, the target routing table for direct routes can be changed
 by connecting the "direct" protocol instance to a non-default routing
 table, and the direct routes can also be filtered before they appear
 in the routing table.

 The "static" routing pseudo-protocol allows for specifying routes
 manually. It can be configured in zero or more instances, although
 typically one instance suffices.

4.3.1. Defining New Routing Protocols

 It is expected that other YANG modules will create data models for
 additional routing protocol types. In order to do so, the new module
 has to define the protocol-specific information and fit it to the
 core routing framework in the following way:

 o A new identity MUST be defined for the routing protocol and its
 base identity set to "routing-protocol", or to an identity derived
 from "routing-protocol".

 o Additional route attributes MAY be defined. Their definitions
 have to be inserted as operational state data by augmenting the

Lhotka Expires September 4, 2011 [Page 10]

Internet-Draft YANG Routing Configuration March 2011

 definition of "route" under "routing-table". Naturally, routes
 (including the extra attributes) may be used in configuration
 data, too, as demonstrated by the "static" pseudo-protocol.

 o The recommended way of defining configuration data specific to the
 new protocol is to augment the "routing-protocol-instance" list
 entry with a container that encapsulates the configuration
 hierarchy of the new protocol. The ’augment’ statement SHOULD be
 made conditional by using a ’when’ substatement requiring that the
 new nodes be used only if the "type" leaf node is equal to the new
 protocol’s identity.

 The above steps are implemented by the example YANG module for the
 RIP routing protocol in Appendix A. In particular, the module first
 defines a new identity for the RIP protocol:

 identity rip {
 base rt:routing-protocol;
 description "Identity for the RIP routing protocol.";
 }

 RIP-specific configuration data are then integrated into the
 "routing-protocol-instance" node by using the following ’augment’
 statement, which applies only for routing protocol instances whose
 type is "rip":

 augment "/rt:routing/rt:routing-protocol-instances/" +
 "rt:routing-protocol-instance" {
 container rip-configuration {
 when "../rt:type=’rip’";
 ...
 }
 }

4.4. Route Pipes

 Route pipes are unidirectional links connecting pairs of routing
 tables that allow for passing routes from one routing table to
 another. Each route pipe is identified by a unique name and has two
 mandatory parameters, "origin" and "recipient", that specify the two
 routing tables that are being connected.

 The transport of routes from the "origin" table to the "recipient"
 table may be controlled by means of a route filter (see Section 4.5).
 If no filter is defined, all routes present in the "origin" table
 MUST also appear in the "recipient" table.

Lhotka Expires September 4, 2011 [Page 11]

Internet-Draft YANG Routing Configuration March 2011

4.5. Route Filters

 The "ietf-routing" module provides a skeleton for defining route
 filters that can be used to restrict the set of routes being
 exchanged between a routing protocol instance and a routing table, or
 between two routing tables connected through a route pipe. Route
 filters may also manipulate routes, i.e., add, delete, or modify
 their properties.

 By itself, the route filtering framework defined in the "ietf-
 routing" module allows to establish only the two extreme routing
 policies in which either all routes are allowed or all routes are
 denied. It is expected that a real route filtering framework (or
 several alternative frameworks) will be developed separately.

 Each route filter is identified by a unique name. Its type may be
 specified by the "type" identity reference - this opens the space for
 multiple route filtering framework implementations. The only route
 filter type defined in the "ietf-routing" module carries the default
 "route-filter" identity, and represents the "deny all" route
 filtering policy.

Lhotka Expires September 4, 2011 [Page 12]

Internet-Draft YANG Routing Configuration March 2011

5. Core Routing YANG Module
<CODE BEGINS> file "ietf-routing@2011-03-03.yang"

module ietf-routing {
 namespace "urn:ietf:params:xml:ns:yang:ietf-routing";
 prefix rt;

 import ietf-yang-types {
 prefix yang;
 }
 import ietf-inet-types {
 prefix inet;
 }
 import ietf-interfaces {
 prefix if;
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 WG Chair: David Kessens
 <mailto:david.kessens@nsn.com>

 WG Chair: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>

 Editor: Ladislav Lhotka
 <mailto:lhotka@cesnet.cz>";

 description
 "This module contains YANG definitions for basic
 configuration of IP routing.

 It is immediately usable for a device that needs just a single
 routing table populated with static routes.

 On the other hand, the framework is designed to handle arbitrarily
 complex configurations with any number of routing tables and
 various routing protocols (in multiple instances).

 Every compliant implementation MUST support IPv4 unicast routing
 and implement at least one (main) routing table, which is
 connected to the OS kernel forwarding information base.";

Lhotka Expires September 4, 2011 [Page 13]

Internet-Draft YANG Routing Configuration March 2011

 revision 2011-03-03;

 /* Features */

 feature ipv6-routing {
 description
 "This feature MUST be advertised by devices supporting IPv6
 routing. Such a device MUST implement at least one extra routing
 table to which all IPv6 unicast routing protocols are connected
 by default.";
 }

 feature ipv4-multicast-routing {
 description
 "This feature MUST be set by devices supporting IPv4
 multicast routing. Such a device MUST implement at least one
 extra routing table to which all IPv6 multicast routing
 protocols are connected by default.";
 }

 feature ipv6-multicast-routing {
 description
 "This feature MUST be set by devices supporting IPv6
 multicast routing. Such a device MUST implement at least one
 extra routing table to which all IPv6 multicast routing
 protocols are connected by default.";
 }

 /* Identities */

 identity address-family {
 description
 "Base identity from which address family identities are
 derived.";
 }

 identity af-ipv4 {
 base address-family;
 description
 "IPv4 address family.";
 }

 identity af-ipv6 {
 base address-family;
 description
 "IPv6 address family.";
 }

Lhotka Expires September 4, 2011 [Page 14]

Internet-Draft YANG Routing Configuration March 2011

 identity routing-protocol {
 description
 "Base identity from which routing protocol identities are
 derived.";
 }

 identity direct {
 base routing-protocol;
 description
 "Identity for the pseudo-protocol providing routes to
 directly connected networks. An implementation MUST preconfigure
 an instance of this pseudo-protocol.";
 }

 identity static {
 base routing-protocol;
 description
 "Identity for static routing pseudo-protocol.";
 }

 identity route-filter {
 description
 "Base identity for route filters. It also represents the
 empty route filter that blocks everything.";
 }

 identity route-type {
 description
 "Base identity for route types.";
 }

 identity unicast {
 base route-type;
 description
 "Unicast route type.";
 }

 identity multicast {
 base route-type;
 description
 "Multicast route type.";
 }

 identity anycast {
 base route-type;
 description
 "Anycast route type.";
 }

Lhotka Expires September 4, 2011 [Page 15]

Internet-Draft YANG Routing Configuration March 2011

 /* Type definitions */

 typedef routing-table-ref {
 type leafref {
 path "/routing/configured-routing-tables/name";
 }
 description
 "This type represents a reference to a configured routing
 table.";
 }

 typedef routing-protocol-instance-ref {
 type leafref {
 path "/routing/routing-protocol-instances/" +
 "routing-protocol-instance/name";
 }
 description
 "This type represents a reference to a configured routing
 protocol instance.";
 }

 typedef route-filter-ref {
 type leafref {
 path "/routing/route-filters/route-filter/name";
 }
 description
 "This type represents a reference to a configured route
 filter.";
 }

 /* Groupings */

 grouping ip-route-content {
 description
 "Components of an IP route.";
 leaf type {
 type identityref {
 base route-type;
 }
 default "unicast";
 }
 leaf destination-prefix {
 type inet:ip-prefix;
 mandatory true;
 description
 "The set of destination addresses for which the route may
 be used.";
 }

Lhotka Expires September 4, 2011 [Page 16]

Internet-Draft YANG Routing Configuration March 2011

 leaf next-hop {
 type inet:ip-address;
 description
 "IP address of the host or router to which packets whose
 address matches ’destination-prefix’ are to be forwarded.";
 }
 leaf outgoing-interface {
 type if:interface-ref;
 description
 "Name of the outgoing interface. This parameter is mainly
 used in direct routes.";
 }
 }

 rpc delete-route {
 description
 "This operation deletes a route with given parameters from
 a specified routing table. <ok> is returned by the server
 upon successful completion.";
 input {
 container route {
 description
 "All routes that match this parameter MUST be deleted
 from the target routing table.";
 uses ip-route-content;
 }
 leaf routing-table {
 type routing-table-ref;
 description
 "This parameter specifies the target routing
 table.";
 }
 }
 }

 /* Data tree */

 container routing {
 description
 "IP routing parameters.";
 container configured-routing-tables {
 description
 "Names of configured routing tables. Their contents are
 available as operational state data under ’routing-tables’. At
 least one (main) table MUST be configured for every supported
 address family. This default routing table is usually
 connected to the main kernel forwarding table.";
 leaf-list name {

Lhotka Expires September 4, 2011 [Page 17]

Internet-Draft YANG Routing Configuration March 2011

 type string;
 min-elements 1;
 }
 }
 container routing-protocol-instances {
 description
 "Container for configured routing protocol instances.

 Every implementation MUST preconfigure the ’direct’
 pseudo-protocol instance providing the routes to directly
 connected networks.";
 list routing-protocol-instance {
 key "name";
 container static-routes {
 when "../type=’static’";
 description
 "Configuration of a ’static’ pseudo-protocol instance
 consists of a list of routes.";
 list static-route {
 key "id";
 leaf id {
 type string;
 }
 leaf description {
 type string;
 }
 uses ip-route-content;
 }
 }
 leaf name {
 type string;
 }
 leaf description {
 type string;
 }
 leaf address-family {
 type identityref {
 base address-family;
 }
 default "af-ipv4";
 description
 "Address family used by the routing protocol instance.";
 }
 leaf type {
 type identityref {
 base routing-protocol;
 }
 mandatory true;

Lhotka Expires September 4, 2011 [Page 18]

Internet-Draft YANG Routing Configuration March 2011

 description
 "Type of the routing protocol.";
 }
 leaf routing-table {
 type routing-table-ref;
 description
 "The routing table to which the protocol instance is
 connected. By default it is the main routing table for the
 given address family.";
 }
 leaf import-filter {
 type route-filter-ref;
 description
 "Reference to a route filter that is used for
 filtering routes passed from this routing protocol instance
 to the routing table specified by the ’routing-table’
 sibling node. If this leaf is not present, the behavior is
 protocol-specific, but typically it means that all routes
 are accepted.";
 }
 leaf export-filter {
 type route-filter-ref;
 description
 "Reference to a route filter that is used for
 filtering routes passed from the routing table specified
 by the ’routing-table’ sibling to this routing protocol
 instance. If this leaf is not present, the behavior is
 protocol-specific - typically it means that all routes
 are accepted, except for the ’direct’ and ’static’
 pseudo-protocols which accept no routes from
 anywhere.";
 }
 }
 }
 container route-pipes {
 description
 "Route pipes facilitate transport of routes between pairs
 of routing tables.";
 list route-pipe {
 key "name";
 description
 "A route-pipe is a unidirectional connection between
 ’origin’ and ’recipient’.";
 leaf name {
 type string;
 }
 leaf description {
 type string;

Lhotka Expires September 4, 2011 [Page 19]

Internet-Draft YANG Routing Configuration March 2011

 }
 leaf origin {
 type routing-table-ref;
 mandatory true;
 description
 "The originating routing-table.";
 }
 leaf recipient {
 type routing-table-ref;
 mandatory true;
 description
 "The receiving routing-table.";
 }
 leaf route-filter {
 type route-filter-ref;
 description
 "All routes passing through the route pipe are filtered by
 the route filter referred to by this leaf. If it is not
 present, all routes from ’origin’ are passed to
 ’destination’.";
 }
 }
 }
 container route-filters {
 description
 "Non-trivial route filters are expected to be defined in
 other modules.";
 list route-filter {
 key "name";
 description
 "A route filter is used for filtering routes between
 routing protocol instances and routing tables (import
 filter) and vice versa (export filter), and in route pipes
 that connect pairs of routing tables.";
 leaf name {
 type string;
 }
 leaf description {
 type string;
 }
 leaf type {
 type identityref {
 base route-filter;
 }
 default "route-filter";
 description
 "Type of the route-filter. The default value
 represents an all-blocking filter.";

Lhotka Expires September 4, 2011 [Page 20]

Internet-Draft YANG Routing Configuration March 2011

 }
 }
 }

 /* Operational state data */

 container routing-tables {
 config false;
 description
 "Routing tables and their contents.";
 list routing-table {
 min-elements 1;
 description
 "Exactly one routing table MUST be present for every ’name’
 entry appearing in ’/routing/configured-routing-tables’.";
 leaf name {
 type routing-table-ref;
 }
 leaf address-family {
 type identityref {
 base address-family;
 }
 default "af-ipv4";
 description
 "Address family of all routes in the routing table.";
 }
 list route {
 leaf source-protocol {
 type routing-protocol-instance-ref;
 description
 "Protocol instance from which the route comes.";
 }
 leaf last-modified {
 type yang:date-and-time;
 description
 "Time stamp of the last modification of the
 route. If the route was never modified, it is the time
 when the route was inserted to the routing table.";
 }
 uses ip-route-content;
 }
 }
 }
 }
}

<CODE ENDS>

Lhotka Expires September 4, 2011 [Page 21]

Internet-Draft YANG Routing Configuration March 2011

6. IANA Considerations

 This document requests the following registration of a namespace URI
 in the IETF XML registry [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-routing

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

Lhotka Expires September 4, 2011 [Page 22]

Internet-Draft YANG Routing Configuration March 2011

7. Security Considerations

 TBD.

Lhotka Expires September 4, 2011 [Page 23]

Internet-Draft YANG Routing Configuration March 2011

8. Acknowledgments

 The author wishes to thank the following individuals who provided
 helpful suggestions and/or comments on this document: TBD.

Lhotka Expires September 4, 2011 [Page 24]

Internet-Draft YANG Routing Configuration March 2011

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 Network Configuration Protocol (NETCONF)", RFC 6020,
 September 2010.

 [RFC6021] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6021, September 2010.

 [XML-INFOSET]
 Tobin, R. and J. Cowan, "XML Information Set (Second
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-infoset-20040204, February 2004,
 <http://www.w3.org/TR/2004/REC-xml-infoset-20040204>.

 [YANG-IF] Bjorklund, M., "A YANG Data Model for Interface
 Configuration", draft-bjorklund-netmod-interfaces-cfg-00
 (work in progress), December 2010.

9.2. Informative References

 [RFC6087] Bierman, A., "Guidelines for Authors and Reviewers of YANG
 Data Model Documents", RFC 6087, January 2011.

 [RFC6110] Lhotka, L., Ed., "Mapping YANG to Document Schema
 Definition Languages and Validating NETCONF Content",
 RFC 6110, February 2011.

Lhotka Expires September 4, 2011 [Page 25]

Internet-Draft YANG Routing Configuration March 2011

Appendix A. Example Module for Routing Information Protocol

 This appendix demonstrates how the "ietf-routing" module can be
 extended to support a new routing protocol. Appendix A.1 contains a
 YANG module that is used for this purpose. It is intended only as an
 illustration and not as a real definition of a data model for the RIP
 routing protocol. This module also imports the "ietf-interfaces"
 module defined in [YANG-IF].

 Appendix A.2 then contains a complete instance XML document - a reply
 to the NETCONF <get> message from a server that uses the RIP protocol
 as well as static routing. A route filter is also defined in order
 to prevent static routes to private networks from being redistributed
 to RIP. The instance document also uses data nodes from the two
 example YANG modules "ex-ethernet" and "ex-ip" defined in [YANG-IF].

A.1. Example YANG Module for Routing Information Protocol

 module example-rip {
 namespace "http://example.com/rip";
 prefix rip;

 import ietf-interfaces {
 prefix if;
 }
 import ietf-routing {
 prefix rt;
 }

 identity rip {
 base rt:routing-protocol;
 description
 "Identity for the RIP routing protocol.";
 }

 typedef rip-metric {
 type uint8 {
 range "0..16";
 }
 }

 augment "/rt:routing/rt:routing-protocol-instances/" +
 "rt:routing-protocol-instance" {
 when "rt:type=’rip:rip’";
 container rip-configuration {
 container rip-interfaces {
 list rip-interface {
 key "name";

Lhotka Expires September 4, 2011 [Page 26]

Internet-Draft YANG Routing Configuration March 2011

 leaf name {
 type if:interface-ref;
 }
 leaf enabled {
 type boolean;
 default "true";
 }
 leaf metric {
 type rip-metric;
 default "1";
 }
 /* Additional per-interface RIP configuration */
 }
 }
 leaf update-interval {
 type uint8 {
 range "10..60";
 }
 units "seconds";
 default "30";
 description
 "Time interval between periodic updates.";
 }
 /* Additional RIP configuration */
 }
 }
 augment "/rt:routing/rt:routing-tables/rt:routing-table/rt:route" {
 when "../../../rt:routing-protocol-instances/" +
 "rt:routing-protocol-instance[rt:name=" +
 "current()/rt:source-protocol]/rt:type=’rip:rip’";
 description
 "RIP-specific route components.";
 leaf metric {
 type rip-metric;
 }
 leaf tag {
 type uint16;
 default "0";
 description
 "This leaf may be used to carry additional info, e.g. AS
 number.";
 }
 }
 }

A.2. Sample Reply to the NETCONF <get> Message

 <?xml version="1.0" encoding="utf-8"?>

Lhotka Expires September 4, 2011 [Page 27]

Internet-Draft YANG Routing Configuration March 2011

 <nc:rpc-reply
 message-id="101"
 xmlns:nc="urn:ietf:params:xml:ns:netconf:base:1.0"
 xmlns:if="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:eth="http://example.com/ethernet"
 xmlns:ip="http://example.com/ip"
 xmlns:rip="http://example.com/rip"
 xmlns="urn:ietf:params:xml:ns:yang:ietf-routing">
 <nc:data>
 <if:interfaces>
 <if:interface>
 <if:name>eth0</if:name>
 <if:type>eth:ethernet</if:type>
 <if:location>05:00.0</if:location>
 <ip:ip>
 <ip:address>
 <ip:ip>192.0.2.1</ip:ip>
 <ip:prefix-length>24</ip:prefix-length>
 </ip:address>
 </ip:ip>
 </if:interface>
 <if:interface>
 <if:name>eth1</if:name>
 <if:type>eth:ethernet</if:type>
 <if:location>05:00.1</if:location>
 <ip:ip>
 <ip:address>
 <ip:ip>192.168.1.1</ip:ip>
 <ip:prefix-length>24</ip:prefix-length>
 </ip:address>
 </ip:ip>
 </if:interface>
 </if:interfaces>
 <routing>
 <configured-routing-tables>
 <name>rt0</name>
 </configured-routing-tables>
 <routing-protocol-instances>
 <routing-protocol-instance>
 <name>direct</name>
 <type>direct</type>
 </routing-protocol-instance>
 <routing-protocol-instance>
 <name>st0</name>
 <description>
 Static routing is used for the internal network.
 </description>
 <type>static</type>

Lhotka Expires September 4, 2011 [Page 28]

Internet-Draft YANG Routing Configuration March 2011

 <static-routes>
 <static-route>
 <id>id-6378</id>
 <destination-prefix>192.168.2.0/24</destination-prefix>
 <next-hop>192.168.1.254</next-hop>
 </static-route>
 </static-routes>
 </routing-protocol-instance>
 <routing-protocol-instance>
 <name>rip0</name>
 <type>rip:rip</type>
 <export-filter>to-rip</export-filter>
 <rip:rip-configuration>
 <rip:rip-interfaces>
 <rip:rip-interface>
 <rip:name>eth0</rip:name>
 </rip:rip-interface>
 </rip:rip-interfaces>
 </rip:rip-configuration>
 </routing-protocol-instance>
 </routing-protocol-instances>
 <route-filters>
 <route-filter>
 <name>to-rip</name>
 <description>
 Block redistribution of static routes.
 </description>
 </route-filter>
 </route-filters>
 <routing-tables>
 <routing-table>
 <name>rt0</name>
 <route>
 <destination-prefix>192.168.1.0/24</destination-prefix>
 <source-protocol>direct</source-protocol>
 <outgoing-interface>eth0</outgoing-interface>
 <last-modified>2010-02-24T17:11:23+01:00</last-modified>
 </route>
 <route>
 <destination-prefix>192.168.2.0/24</destination-prefix>
 <source-protocol>st0</source-protocol>
 <next-hop>192.168.1.254</next-hop>
 <rip:tag>64500</rip:tag>
 <last-modified>2010-02-24T17:11:27+01:00</last-modified>
 </route>
 <route>
 <destination-prefix>0.0.0.0/0</destination-prefix>
 <next-hop>192.0.2.2</next-hop>

Lhotka Expires September 4, 2011 [Page 29]

Internet-Draft YANG Routing Configuration March 2011

 <rip:metric>2</rip:metric>
 <rip:tag>64500</rip:tag>
 <source-protocol>rip0</source-protocol>
 <last-modified>2010-03-03T13:00:23+01:00</last-modified>
 </route>
 </routing-table>
 </routing-tables>
 </routing>
 </nc:data>
 </nc:rpc-reply>

Lhotka Expires September 4, 2011 [Page 30]

Internet-Draft YANG Routing Configuration March 2011

Author’s Address

 Ladislav Lhotka
 CESNET

 Email: lhotka@cesnet.cz

Lhotka Expires September 4, 2011 [Page 31]

Network Working Group B. Linowski
Internet-Draft TCS/Nokia Siemens Networks
Intended status: Experimental M. Ersue
Expires: April 22, 2011 Nokia Siemens Networks
 S. Kuryla
 360 Treasury Systems
 October 19, 2010

 Extending YANG with Language Abstractions
 draft-linowski-netmod-yang-abstract-04

Abstract

 YANG - the NETCONF Data Modeling Language - supports modeling of a
 tree of data elements that represent the configuration and runtime
 status of a particular network element managed via NETCONF. This
 memo suggests to enhance YANG with supplementary modeling features
 and language abstractions with the aim to improve the model
 extensibility and reuse.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Linowski, et al. Expires April 22, 2011 [Page 1]

Internet-Draft YANG Language Abstractions October 2010

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Linowski, et al. Expires April 22, 2011 [Page 2]

Internet-Draft YANG Language Abstractions October 2010

Table of Contents

 1. Introduction . 5
 1.1. Key Words . 5
 1.2. Motivation . 5
 1.3. Modeling Improvements with Language Abstractions 6
 1.4. Design Approach . 8
 1.5. Modeling Resource Models with YANG 8
 1.5.1. Example of a Physical Network Resource Model 8
 1.5.2. Modeling Entity MIB Entries as Physical Resources . . 12
 2. Complex Types . 16
 2.1. Definition . 16
 2.2. complex-type extension statement 16
 2.3. instance extension statement 18
 2.4. instance-list extension statement 19
 2.5. extends extension statement 20
 2.6. abstract extension statement 20
 2.7. XML Encoding Rules . 21
 2.8. Type Encoding Rules 21
 2.9. Extension and Feature Definition Module 22
 2.10. Example Model for Complex Types 25
 2.11. NETCONF Payload Example 26
 2.12. Update Rules for Modules Using Complex Types 29
 2.13. Using Complex Types 29
 2.13.1. Overriding Complex Type Data Nodes 29
 2.13.2. Augmenting Complex Types 30
 2.13.3. Controlling the Use of Complex Types 31
 3. Typed Instance Identifier 32
 3.1. Definition . 32
 3.2. instance-type extension statement 32
 3.3. Typed Instance Identifier Example 32
 4. IANA Considerations . 33
 5. Security Considerations 34
 6. Acknowledgements . 34
 7. References . 34
 7.1. Normative References 34
 7.2. Informative References 35
 Appendix A. Change Log . 35
 A.1. 03-04 . 35
 A.2. 02-03 . 36
 A.3. 01-02 . 36
 A.4. 00-01 . 37
 Appendix B. YANG Modules for Physical Network Resource Model
 and Hardware Entities Model 37
 Appendix C. Example YANG Module for the IPFIX/PSAMP Model 44
 C.1. Modeling Improvements for the IPFIX/PSAMP Model with
 Complex types and Typed instance identifiers 44
 C.2. IPFIX/PSAMP Model with Complex Types and Typed

Linowski, et al. Expires April 22, 2011 [Page 3]

Internet-Draft YANG Language Abstractions October 2010

 Instance Identifiers 45

Linowski, et al. Expires April 22, 2011 [Page 4]

Internet-Draft YANG Language Abstractions October 2010

1. Introduction

 YANG - the NETCONF Data Modeling Language ([RFC6020]) - supports
 modeling of a tree of data elements that represent the configuration
 and runtime status of a particular network element managed via
 NETCONF. This document defines extensions for the modeling language
 YANG as new language statements, which introduce language
 abstractions to improve the model extensibility and reuse. A model
 example from an actual network management system is given to
 highlight the value of proposed language extensions, especially class
 inheritance and recursiveness. The language extensions defined in
 this document have been implemented with two open source tools.
 These tools have been used to validate the model examples through the
 document.

1.1. Key Words

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119].

1.2. Motivation

 o Many systems today have a management information base that in
 effect is organized as a tree build of recursively nested
 container nodes. For example, the physical resources in the
 ENTITY-MIB conceptually form a containment tree. The index
 entPhysicalContainedIn points to the containing entity in a flat
 list. The ability to represent nested, recursive data structures
 of arbitrary depth would enable the representation of the primary
 containment hierarchy of physical entities as a node tree in the
 server MIB and in the NETCONF payload.

 o A manager scanning the network in order to update the state of an
 inventory management system might be only interested in data
 structures that represent a specific type of hardware. Such a
 manager would then look for entities that are of this specific
 type, including those that are an extension or specialization of
 this type. To support this use case, it is helpful to bear the
 corresponding type information within the data structures, which
 describe the network element hardware.

 o A system that is managing network elements is concerned e.g. with
 managed objects of type "plug-in modules" that have a name, a
 version and an activation state. In this context, it is useful to
 define the "plug-in module" as a concept that is supposed to be
 further detailed and extended by additional concrete model

Linowski, et al. Expires April 22, 2011 [Page 5]

Internet-Draft YANG Language Abstractions October 2010

 elements. In order to realize such a system, it is worth to model
 abstract entities, which enable reuse and ease concrete
 refinements of that abstract entity in a second step.

 o As particular network elements have specific type of components
 that need to be managed (OS images, plug-in modules, equipment,
 etc.), it should be possible to define concrete types, which
 describe the managed object precisely. By using type-safe
 extensions of basic concepts a system in the manager role can
 safely and explicitly determine that e.g. the "equipment" is
 actually of type "network card".

 o Currently different SDOs are working on the harmonization of their
 management information models. Often a model mapping or
 transformation between systems becomes necessary. The
 harmonization of the models is done e.g. by mapping of the two
 models on object level or integrating an object hierarchy into an
 existing information model. Extending YANG with language
 abstractions can simplify on the one hand the adoption of IETF
 resource models by other SDOs and facilitate the alignment with
 other SDO’s resource models (e.g. TM Forum SID). The proposed
 YANG extensions can on the other hand enable the utilization of
 YANG modeling language in other SDOs, which are used to model
 complex management systems in a top-down manner and use high-level
 language features frequently.

 This memo specifies additional modeling features for the YANG
 language in the area of structured model abstractions, typed
 references as well as recursive data structures and discusses how
 these new features can improve the modeling capabilities of YANG.

 Section 1.5.1 contains a physical resource model, which deals with
 some of the modeling challenges illustrated above. Section 1.5.2
 gives an example, which uses the base classes defined in the physical
 resource model and derives a model for physical entities defined in
 Entity MIB".

1.3. Modeling Improvements with Language Abstractions

 Complex Types and Typed Instance Identifiers provide various
 technical improvements on modeling level:

 o In case the model of a system that should be managed with NETCONF
 makes use of inheritance, complex types enable an almost one-to-
 one mapping between the classes in the original model and the YANG
 module.

Linowski, et al. Expires April 22, 2011 [Page 6]

Internet-Draft YANG Language Abstractions October 2010

 o Typed instance identifiers allow representing associations between
 the concepts in a type-safe way to prevent type errors caused by
 referring to data nodes of incompatible types. This avoids
 referring to a particular location in the MIB, which is not
 mandated by the domain model.

 o Complex types allow defining complete, self-contained type
 definitions. It is not necessary to explicitly add a key
 statement to lists, which use a grouping defining the data nodes.

 o Complex types simplify concept refinement by extending a base
 complex type and make it superfluous to represent concept
 refinements with workarounds such as huge choice-statements with
 complex branches.

 o Abstract complex types ensure correct usage of abstract concepts
 by enforcing the refinement of common set of properties before
 instantiation.

 o Complex types allow defining recursive structures. This enables
 to represent complex structures of arbitrary depth by nesting
 instances of basic complex types that may contain themselves.

 o Complex types avoid introducing meta-data types (e.g. type code
 enumerations) and meta-data leafs (e.g. leafs containing a type
 code) to indicate, which concrete type of object is actually
 represented by a generic container in the MIB. This also avoids
 to explicitly rule out illegal use of sub-type specific properties
 in generic containers.

 o Complex type instances include the type information in the NETCONF
 payload. This allows to determine the actual type of an instance
 during the NETCONF payload parsing and avoids the use of
 additional leafs in the model, which provide the type information
 as content.

 o Complex types may be declared explicitly as optional features,
 which is not possible when the actual type of an entity
 represented by a generic container is indicated with a type code
 enumeration.

 Appendix C ’Example YANG Module for the IPFIX/PSAMP Model’ lists
 technical improvements for modeling with Complex Types and Typed
 Instance Identifiers and exemplifies the usage of the proposed YANG
 extensions based on the IPFIX/PSAMP configuration model in
 [IPFIXCONF].

Linowski, et al. Expires April 22, 2011 [Page 7]

Internet-Draft YANG Language Abstractions October 2010

1.4. Design Approach

 The proposed additional features for YANG in this memo are designed
 to reuse existing YANG statements whenever possible. Additional
 semantics is expressed by an extension that is supposed to be used as
 a substatement of an existing statement.

 The proposed features don’t change the semantics of models that are
 valid with respect to the YANG specification [RFC6020].

1.5. Modeling Resource Models with YANG

1.5.1. Example of a Physical Network Resource Model

 The diagram below depicts a portion of an information model for
 manageable network resources used in an actual network management
 system.

 Note: The referenced model (UDM, Unified Data Model) is based on key
 resource modelling concepts from [SID V8] and is compliant with
 selected parts of SID Resource Abstract Business Entities domain
 ([UDM]).

 The class diagram in Figure 1 and the according YANG module excerpt
 focus on basic resource ("Resource" and the distinction between
 logical- and physical resources) and hardware abstractions
 ("Hardware", "Equipment", and "EquipmentHolder"). Some class
 attributes were omitted to achieve decent readability.

+--------+
|Resource|
+--------+
 /\ /\
 -- --
 | |
 | +---------------+
 | |LogicalResource|
 | +---------------+
 |
 |
 |
 | +--------+
 | |Physical| +-----------+
 ’-|Resource|<|-+-|PhysicalLink|
 +---- ---+ | +------------+
 | |0..* physicalLink
 | |
 | | equipment

Linowski, et al. Expires April 22, 2011 [Page 8]

Internet-Draft YANG Language Abstractions October 2010

 | | Holder
 | | 0..*
 | | +-------+
 | |0..* hardware | |
 | +--------+ +---------------+ +---------+ |
 ’-|Hardware|<|-+-|ManagedHardware|<|-+-|Equipment|<>--+
 +--------+ | +---------------+ | | Holder |0..1
 <> | | +---------+
 0..1| | | <>
 | | | |0..* equipment
 | | | | Holder
 | | | |
 | | | |0..* equipment
 | | | |
 | | | | equipment
 | | | | 0..*
 | | | | +-------+
 | | | | | |
 | | | +---------+ |
 | | ’-|Equipment|<>--+
 | | +---------+0..1
 | | compositeEquipment
 | |
 | | +-----------------+
 | ’-|PhysicalConnector|----+0..* source
 ’----------+-----------------+ | Physical
 physicalConnector 0..* | | Connector
 | |
 +-----------+
 0..* targetPhysicalConnector

 Figure 1: Physical Network Resource Model

 Since this model is an abstraction of network element specific MIB
 topologies, modeling it with YANG creates some challenges. Some of
 these challenges and how they can be addressed with complex types are
 explained below:

 o Modeling of abstract concepts: Classes like "Resource" represent
 concepts that primarily serve as a base class for derived classes.
 With complex types, such an abstract concept could be represented
 by an abstract complex type (see "complex-type extension
 statement" and "abstract extension statement").

 o Class Inheritance: Information models for complex management
 domains often use class inheritance to create specialized classes

Linowski, et al. Expires April 22, 2011 [Page 9]

Internet-Draft YANG Language Abstractions October 2010

 like "PhysicalConnector" from a more generic base class (here
 "Hardware"), which itself might inherit from another base class
 ("PhysicalResource") etc. Complex types allow creating enhanced
 versions of an existing (abstract or concrete) base type via an
 extension (see "extends extension statement").

 o Recursive containment: In order to specify containment hierarchies
 models frequently contain different aggregation associations, in
 which the target (contained element) is either the containing
 class itself or a base class of the containing class. In the
 model above, the recursive containment of "EquipmentHolder" is an
 example of such a relationship. Complex types support such a
 containment by using a complex type (or one of its ancestor types)
 as type of an instance or instance list that is part of its
 definition (see "instance(-list) extension statement").

 o Reference relationships: A key requirement on large models for
 network domains with many related managed objects is the
 association between classes that represent an essential
 relationship between instances of such a class. For example, the
 relationship between "PhysicalLink" and "Hardware" tells which
 physical link is connecting which hardware resources. It is
 important to notice that this kind of relationships do not mandate
 any particular location of the two connected hardware instances in
 any MIB. Such containment agnostic relationships can be
 represented by a typed instance identifier that embodies one
 direction of such an association (see "Typed instance
 identifiers").

 The YANG module excerpt below shows how the challenges listed above
 can be addressed by the Complex Types extension (module import prefix
 "ct:"). The complete YANG module for the physical resource model in
 Figure 1 can be found in Appendix B: ’YANG Modules for Physical
 Network Resource Model and Hardware Entities Model’.

 Note: The YANG extensions proposed in this document have been
 implemented as the open source tools "Pyang Extension for Complex
 Types" ([Pyang-ct], ([Pyang]) and "Libsmi Extension for Complex
 Types" ([Libsmi]). All model examples in the document have been
 validated with the tools Pyang-ct and Libsmi.

 <CODE BEGINS>

 module udmcore {

 namespace "http://example.com/udmcore";

Linowski, et al. Expires April 22, 2011 [Page 10]

Internet-Draft YANG Language Abstractions October 2010

 prefix "udm";

 import ietf-complex-types {prefix "ct"; }

 // Basic complex types...

 ct:complex-type PhysicalResource {
 ct:extends Resource;
 ct:abstract true;
 // ...
 leaf serialNumber {type string;}
 }

 ct:complex-type Hardware {
 ct:extends PhysicalResource;
 ct:abstract true;
 // ...
 leaf-list physicalLink {
 type instance-identifier {ct:instance-type PhysicalLink;}
 }
 ct:instance-list containedHardware {
 ct:instance-type Hardware;
 }
 ct:instance-list physicalConnector {
 ct:instance-type PhysicalConnector;
 }
 }

 ct:complex-type PhysicalLink {
 ct:extends PhysicalResource;
 // ...
 leaf-list hardware {
 type instance-identifier {ct:instance-type Hardware;}
 }
 }

 ct:complex-type ManagedHardware {
 ct:extends Hardware;
 ct:abstract true;
 // ...
 }

 ct:complex-type PhysicalConnector {
 ct:extends Hardware;

Linowski, et al. Expires April 22, 2011 [Page 11]

Internet-Draft YANG Language Abstractions October 2010

 leaf location {type string;}
 // ...
 leaf-list sourcePhysicalConnector {
 type instance-identifier {ct:instance-type PhysicalConnector;}
 }
 leaf-list targetPhysicalConnector {
 type instance-identifier {ct:instance-type PhysicalConnector;}
 }
 }

 ct:complex-type Equipment {
 ct:extends ManagedHardware;
 // ...
 ct:instance-list equipment {
 ct:instance-type Equipment;
 }
 }

 ct:complex-type EquipmentHolder {
 ct:extends ManagedHardware;
 leaf vendorName {type string;}
 // ...
 ct:instance-list equipment {
 ct:instance-type Equipment;
 }
 ct:instance-list equipmentHolder {
 ct:instance-type EquipmentHolder;
 }
 }
 // ...
 }

 <CODE ENDS>

1.5.2. Modeling Entity MIB Entries as Physical Resources

 The physical resource module described above can now be used to model
 physical entities as defined in the Entity MIB [RFC4133]. For each
 physical entity class listed in the "PhysicalClass" enumeration, a
 complex type is defined. Each of these complex types extends the
 most specific complex type already available in the physical resource
 module. For example, the type "HWModule" extends the complex type
 "Equipment" as a hardware module. Physical entity properties that
 should be included in a physical entity complex type are combined in
 a grouping, which is then used in each complex type definition of an
 entity.

Linowski, et al. Expires April 22, 2011 [Page 12]

Internet-Draft YANG Language Abstractions October 2010

 This approach has following benefits:

 o The definition of the complex types for hardware entities becomes
 compact as many of the features can be reused from the basic
 complex type definition.

 o Physical entities are modeled in a consistent manner as predefined
 concepts are extended.

 o Entity MIB specific attributes as well as vendor specific
 attributes can be added without having to define separate
 extension data nodes.

 Module umdcore : Module hardware-entities
 :
 equipment :
 Holder :
 0..* :
 +-------+ :
 | | :
 +---------------+ +---------+ | :
 |ManagedHardware|<|-+-|Equipment|<>--+ :
 +---------------+ | | Holder |0..1 : +-------+
 | | |<|---------+--|Chassis|
 | +---------+ : | +-------+
 | <> : |
 | |0..* equipment : | +---------+
 | | Holder : ’--|Container|
 | | : +---------+
 | |0..* equipment :
 | | :
 | | equipment :
 | | 0..* :
 | | +-------+ :
 | | | | :
 | +---------+ | :
 ’-|Equipment|<>--+ : +--------+
 | |<|---------+--|HWModule|
 +---------+ : | +--------+
 compositeEquipment : |
 : | +---------+
 : |--|Backplane|
 : +---------+

Linowski, et al. Expires April 22, 2011 [Page 13]

Internet-Draft YANG Language Abstractions October 2010

 Figure 2: Hardware Entities Model

 Below is an excerpt of the according YANG module using complex types
 to model hardware entities. The complete YANG module for the
 Hardware Entities model in Figure 2 can be found in Appendix B: ’YANG
 Modules for Physical Network Resource Model and Hardware Entities
 Model’.

Linowski, et al. Expires April 22, 2011 [Page 14]

Internet-Draft YANG Language Abstractions October 2010

<CODE BEGINS>

module hardware-entities {

 namespace "http://example.com/hardware-entities";
 prefix "hwe";

 import ietf-yang-types {prefix "yt";}
 import ietf-complex-types {prefix "ct";}
 import udmcore {prefix "uc";}

 grouping PhysicalEntityProperties {
 // ...
 leaf mfgDate {type yang:date-and-time; }
 leaf-list uris {type string; }
 }

 // Physical entities representing equipment

 ct:complex-type HWModule {
 ct:extends uc:Equipment;
 description "Complex type representing module entries
 (entPhysicalClass = module(9)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 // ...

 // Physical entities representing equipment holders

 ct:complex-type Chassis {
 ct:extends uc:EquipmentHolder;
 description "Complex type representing chassis entries
 (entPhysicalClass = chassis(3)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 // ...
}

<CODE ENDS>

Linowski, et al. Expires April 22, 2011 [Page 15]

Internet-Draft YANG Language Abstractions October 2010

2. Complex Types

2.1. Definition

 YANG type concept is currently restricted to simple types, e.g.
 restrictions of primitive types, enumerations or union of simple
 types.

 Complex types are types with a rich internal structure, which may be
 composed of substatements defined in Table 1 (e.g. lists, leafs,
 containers, choices). A new complex type may extend an existing
 complex type. This allows providing type-safe extensions to existing
 YANG models as instances of the new type.

 Complex types have the following characteristics:

 o Introduction of new types, as a named, formal description of a
 concrete manageable resource as well as abstract concepts.

 o Types can be extended, i.e. new types can be defined by
 specializing existing types adding new features. Instances of
 such an extended type can be used wherever instances of the base
 type may appear.

 o The type information is made part of the NETCONF payload in case a
 derived type substitutes a base type. This enables easy and
 efficient consumption of payload elements representing complex
 type instances.

2.2. complex-type extension statement

 The extension statement "complex-type" is introduced that accepts an
 arbitrary number of node tree defining statements among other common
 YANG statements ("YANG Statements", [RFC6020] Section 7).

Linowski, et al. Expires April 22, 2011 [Page 16]

Internet-Draft YANG Language Abstractions October 2010

 +------------------+-------------+
 | substatement | cardinality |
 +------------------+-------------+
 | abstract | 0..1 |
 | anyxml | 0..n |
 | choice | 0..n |
 | container | 0..n |
 | description | 0..1 |
 | ct:instance | 0..n |
 | ct:instance-list | 0..n |
 | ct:extends | 0..1 |
 | grouping | 0..n |
 | if-feature | 0..n |
 | key | 0..1 |
 | leaf | 0..n |
 | leaf-list | 0..n |
 | list | 0..n |
 | must | 0..n |
 | ordered-by | 0..n |
 | reference | 0..1 |
 | refine | 0..n |
 | status | 0..1 |
 | typedef | 0..n |
 | uses | 0..n |
 +------------------+-------------+

 Table 1: complex-type’s substatements

 Complex type definitions may appear at every place, where a grouping
 may be defined. That includes the module, submodule, rpc, input,
 output, notification, container, and list statements.

 Complex type names populate a distinct namespace. As with YANG
 groupings, it is possible to define a complex type and a data node
 (e.g. leaf, list, instance statements) with the same name in the same
 scope. All complex type names defined within a parent node or at the
 top-level of the module or its submodules share the same type
 identifier namespace. This namespace is scoped to the parent node or
 module.

 A complex type MAY have an instance key. An instance key is either
 defined with the "key" statement as part of the complex type or is
 inherited from the base complex type. It is not allowed to define an
 additional key if the base complex type or one of its ancestors
 already defines a key.

 Complex-type definitions do not create nodes in the schema tree.

Linowski, et al. Expires April 22, 2011 [Page 17]

Internet-Draft YANG Language Abstractions October 2010

2.3. instance extension statement

 The "instance" extension statement is used to instantiate a complex
 type by creating a subtree in the management information node tree.
 The instance statement takes one argument that is the identifier of
 the complex type instance. It is followed by a block of
 substatements.

 The type of the instance is specified with the mandatory "ct:
 instance-type" substatement. The type of an instance MUST be a
 complex type. Common YANG statements may be used as substatements of
 the "instance" statement. An instance is by default optional. To
 make an instance mandatory, "mandatory true" has to be applied as
 substatement.

 +------------------+-------------+
 | substatement | cardinality |
 +------------------+-------------+
 | description | 0..1 |
 | config | 0..1 |
 | ct:instance-type | 1 |
 | if-feature | 0..n |
 | mandatory | 0..1 |
 | must | 0..n |
 | reference | 0..1 |
 | status | 0..1 |
 | when | 0..1 |
 | anyxml | 0..n |
 | choice | 0..n |
 | container | 0..n |
 | ct:instance | 0..n |
 | ct:instance-list | 0..n |
 | leaf | 0..n |
 | leaf-list | 0..n |
 | list | 0..n |
 +------------------+-------------+

 Table 2: instance’s substatements

 The "instance" and "instance-list" extension statements (see Section
 2.4 "instance-list extension statement") are similar to the existing
 "leaf" and "leaf-list" statements, with the exception that the
 content is composed of subordinate elements according to the
 instantiated complex type.

 It is also possible to add additional data nodes by using the
 according leaf, leaf-list, list, and choice statements etc. as sub-
 statements of the instance declaration. This is an in-place

Linowski, et al. Expires April 22, 2011 [Page 18]

Internet-Draft YANG Language Abstractions October 2010

 augmentation of the used complex type confined to a complex type
 instantiation (see also Section 2.13 "Using complex types" for
 details on augmenting complex types).

2.4. instance-list extension statement

 The "instance-list" extension statement is used to instantiate a
 complex type by defining a sequence of subtrees in the management
 information node tree. In addition, the "instance-list" statement
 takes one argument that is the identifier of the complex type
 instances. It is followed by a block of substatements.

 The type of the instance is specified with the mandatory "ct:
 instance-type" substatement. In addition it can be defined how often
 an instance may appear in the schema tree by using the min-elements
 and max-elements substatements. Common YANG statements may be used
 as substatements of the "instance-list" statement.

 In analogy to "instance" statement, sub-statement like "list",
 "choice", leaf" etc. MAY be used to augment the instance list
 elements at the root level with additional data nodes.

 +------------------+-------------+
 | substatementc | cardinality |
 +------------------+-------------+
 | description | 0..1 |
 | config | 0..1 |
 | ct:instance-type | 1 |
 | if-feature | 0..n |
 | max-elements | 0..1 |
 | min-elements | 0..1 |
 | must | 0..n |
 | ordered-by | 0..1 |
 | reference | 0..1 |
 | status | 0..1 |
 | when | 0..1 |
 | anyxml | 0..n |
 | choice | 0..n |
 | container | 0..n |
 | ct:instance | 0..n |
 | ct:instance-list | 0..n |
 | leaf | 0..n |
 | leaf-list | 0..n |
 | list | 0..n |
 +------------------+-------------+

 Table 3: instance-list’s substatements

Linowski, et al. Expires April 22, 2011 [Page 19]

Internet-Draft YANG Language Abstractions October 2010

 In case the instance list represents configuration data, the used
 complex type of an instance MUST have an instance key.

 Instances as well as instance lists may appear as arguments of the
 "deviate" statement.

2.5. extends extension statement

 A complex type MAY extend exactly one existing base complex type by
 using the "extends" extension statement. The keyword "extends" MAY
 occur as substatement of the "complex-type" extension statement. The
 argument of the "complex-type" extension statement refers to the base
 complex type via its name. In case a complex type represents
 configuration data (the default), it MUST have a key, otherwise it
 MAY have a key. A key is either defined with the key statement as
 part of the complex type or is inherited from the base complex type.

 +--------------+-------------+
 | substatement | cardinality |
 +--------------+-------------+
 | description | 0..1 |
 | reference | 0..1 |
 | status | 0..1 |
 +--------------+-------------+

 Table 4: extends’ substatements

2.6. abstract extension statement

 Complex types may be declared to be abstract by using the "abstract"
 extension statement. An abstract complex type cannot be
 instantiated, meaning it cannot appear as most specific type of an
 instance in NETCONF payload. In case an abstract type extends a base
 type, the base complex type MUST be also abstract. By default,
 complex types are not abstract.

 The abstract complex type serves only as a base type for derived
 concrete complex types and cannot be used as a type for an instance
 in NETCONF payload.

 The "abstract" extension statement takes a single string argument,
 which is either "true" or "false". In case a "complex-type"
 statement does not contain an "abstract" statement as substatement,
 the default is "false". The "abstract" statement does not support
 any substatements.

Linowski, et al. Expires April 22, 2011 [Page 20]

Internet-Draft YANG Language Abstractions October 2010

2.7. XML Encoding Rules

 An "instance" node is encoded as an XML element, where an "instance-
 list" node is encoded as a series of XML elements. The XML element
 name is the "instance" respectively "instance-list" identifier, and
 its XML namespace is the module’s XML namespace.

 Instance child nodes are encoded as subelements of the instance XML
 element. Subelements representing child nodes defined in the same
 complex type may appear in any order. However child nodes of an
 extending complex type follow the child nodes of the extended complex
 type. As such, the XML encoding of lists is similar to the encoding
 of containers and lists in YANG.

 Instance key nodes are encoded as subelements of the instance XML
 element. Instance key nodes must appear in the same order as they
 are defined within the "key" statement of the according complex type
 definition and precede all other nodes defined in the same complex
 type. I.e. if key nodes are defined in an extending complex type,
 XML elements representing key data precede all other XML elements
 representing child nodes. On the other hand XML elements
 representing key data follow the XML elements representing data nodes
 of the base type.

 The type of actual complex type instance is encoded in a type
 element, which is put in front of all instance child elements,
 including key nodes, as described in Section 2.8 ("Type Encoding
 Rules").

 The proposed XML encoding rules conform to the YANG XML encoding
 rules in [RFC6020]. Compared to YANG, enabling key definitions in
 derived hierarchies is a new feature introduced with the complex
 types extension. As a new language feature complex types introduce
 also a new payload entry for the instance type identifier.

 Based on our implementation experience, the proposed XML encoding
 rules support consistent mapping of YANG models with complex types to
 XML Schema using XML complex types.

2.8. Type Encoding Rules

 In order to encode the type of an instance in NETCONF payload, XML
 elements named "type" belonging to the XML namespace
 "urn:ietf:params:xml:ns:yang:ietf-complex-type-instance" are added to
 the serialized form of instance and instance-list nodes in the
 payload. The suggested namespace prefix is "cti". The "cti:type"
 XML elements are inserted before the serialized form of all members
 that have been declared in the according complex type definition.

Linowski, et al. Expires April 22, 2011 [Page 21]

Internet-Draft YANG Language Abstractions October 2010

 The "cti:type" element is inserted for each type in the extension
 chain to the actual type of the instance (most specific last). Each
 type name includes its corresponding namespace.

 The type of a complex type instance MUST be encoded in the reply to
 NETCONF <get> and <get-config> operations, and in the payload of
 NETCONF <edit-config> operation if the operation is "create" or
 "replace". The type of the instance MUST also be specified in case
 <copy-config> is used to export a configuration to a resource
 addressed with an URI. The type of the instance has to be specified
 in user defined RPC’s.

 The type of the instance MAY be specified in case the operation is
 "merge" (either because this is explicitly specified or no operation
 attribute is provided).

 In case the node already exists in the target configuration and the
 type attribute (type of a complex type instance) is specified but
 differs from the data in the target, an <rpc-error> element is
 returned with an <error-app-tag> value of "wrong-complex-type". In
 case no such element is present in the target configuration but the
 type attribute is missing in the configuration data, an <rpc-error>
 element is returned with an <error-tag> value of "missing-attribute".

 The type MUST NOT be specified in case the operation is "delete".

2.9. Extension and Feature Definition Module

 The module below contains all YANG extension definitions for complex
 types and typed instance identifiers. In addition a "complex-type"
 feature is defined, which may be used to provide conditional or
 alternative modeling for depending on the support status of complex
 types in a NETCONF server. A NETCONF server that supports the
 complex types modeling features and the XML encoding for complex
 types as defined in this document MUST advertise this as a feature.
 This is done by including the feature name "complex-types" into the
 feature parameter list as part of the NETCONF <hello> message as
 described in Section 5.6.4 in [RFC6020].

<CODE BEGINS> file "ietf-complex-types@2010-10-05.yang"

module ietf-complex-types {

 namespace "urn:ietf:params:xml:ns:yang:ietf-complex-types";
 prefix "ct";

Linowski, et al. Expires April 22, 2011 [Page 22]

Internet-Draft YANG Language Abstractions October 2010

 organization
 "NETMOD WG";

 contact
 "Editor: Bernd Linowski
 <bernd.linowski@ext.nsn.com>
 Editor: Mehmet Ersue
 <mehmet.ersue@nsn.com>
 Editor: Siarhei Kuryla
 <s.kuryla@jacobs-university.de>";

 description
 "YANG extensions for complex types and typed instance
 identifiers.

 Copyright (c) 2010 IETF Trust and the persons identified as
 the document authors. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: Please replace XXXX with actual RFC number and
 // remove this note

 revision 2010-10-19 {
 description "Initial revision.";
 }

 // RFC Ed.: Please replace the date of the revision statement
 // with RFC publication date and remove this note

 extension complex-type {
 description "Defines a complex-type.";
 reference "section 2.2., complex-type extension statement";
 argument type-identifier {
 yin-element true;
 }
 }

Linowski, et al. Expires April 22, 2011 [Page 23]

Internet-Draft YANG Language Abstractions October 2010

 extension extends {
 description "Defines the base type of a complex-type.";
 reference "section 2.5., extends extension statement";
 argument base-type-identifier {
 yin-element true;
 }
 }

 extension abstract {
 description "Makes the complex-type abstract.";
 reference "section 2.6., abstract extension statement";
 argument status;
 }

 extension instance {
 description "Declares an instance of the given
 complex type.";
 reference "section 2.3., instance extension statement";
 argument ct-instance-identifier {
 yin-element true;
 }
 }

 extension instance-list {
 description "Declares a list of instances of the given
 complex type";
 reference "section 2.4., instance-list extension statement";
 argument ct-instance-identifier {
 yin-element true;
 }
 }

 extension instance-type {
 description "Tells to which type instance the instance
 identifier refers to.";
 reference "section 3.2., instance-type extension statement";
 argument target-type-identifier {
 yin-element true;
 }
 }

 feature complex-types {
 description "This feature indicates that the server supports
 complex types and instance identifiers.";
 }

Linowski, et al. Expires April 22, 2011 [Page 24]

Internet-Draft YANG Language Abstractions October 2010

 }

<CODE ENDS>

2.10. Example Model for Complex Types

 The example model below shows how complex types can be used to
 represent physical equipment in a vendor independent, abstract way.
 It reuses the complex types defined in the physical resource model in
 Section 1.5.1

Linowski, et al. Expires April 22, 2011 [Page 25]

Internet-Draft YANG Language Abstractions October 2010

 <CODE BEGINS>

 module hw {

 namespace "http://example.com/hw";
 prefix "hw";

 import ietf-complex-types {prefix "ct"; }
 import udmcore {prefix "uc"; }

 // Holder types

 ct:complex-type Slot {
 ct:extends uc:EquipmentHolder;
 leaf slotNumber { type uint16; config false; }
 // ...
 }

 ct:complex-type Chassis {
 ct:extends uc:EquipmentHolder;
 leaf numberOfChassisSlots { type uint32; config false; }
 // ..
 }

 // Equipment types

 ct:complex-type Card {
 ct:extends uc:Equipment;
 leaf position { type uint32; mandatory true; }
 leaf slotsRequired {type unit32; }
 }

 // Root Element
 ct:instance hardware { type uc:ManagedHardware; }

 } // hw module

 <CODE ENDS>

2.11. NETCONF Payload Example

 Following example shows the payload of a reply to a NETCONF <get>
 command. The actual type of managed hardware instances is indicated
 with the "cti:type" elements as required by the type encoding rules.
 The containment hierarchy in the NETCONF XML payload reflects the
 containment hierarchy of hardware instances. This makes filtering

Linowski, et al. Expires April 22, 2011 [Page 26]

Internet-Draft YANG Language Abstractions October 2010

 based on the containment hierarchy possible without having to deal
 with values of key-ref leafs that represent the tree structure in a
 flattened hierarchy.

Linowski, et al. Expires April 22, 2011 [Page 27]

Internet-Draft YANG Language Abstractions October 2010

 <hardware>
 <cti:type>uc:BasicObject</cti:type>
 <distinguishedName>/R-T31/CH-2</distinguishedName>
 <globalId>6278279001</globalId>
 <cti:type>uc:Resource</cti:type>
 <cti:type>uc:PhysicalResource</cti:type>
 <otherIdentifier>Rack R322-1</otherIdentifier>
 <serialNumber>R-US-3276279a</serialNumber>
 <cti:type>uc:Hardware</cti:type>
 <cti:type>uc:ManagedHardware</cti:type>
 <cti:type>hw:EquipmentHolder</cti:type>
 <equipmentHolder>
 <cti:type>uc:BasicObject</cti:type>
 <distinguishedName>/R-T31/CH-2/SL-1</distinguishedName>
 <globalId>548872003</globalId>
 <cti:type>uc:Resource</cti:type>
 <cti:type>uc:PhysicalResource</cti:type>
 <otherIdentifier>CU-Slot</otherIdentifier>
 <serialNumber>T-K4733890x45</serialNumber>
 <cti:type>uc:Hardware</cti:type>
 <cti:type>uc:ManagedHardware</cti:type>
 <cti:type>uc:EquipmentHolder</cti:type>
 <equipment>
 <cti:type>uc:BasicObject</cti:type>
 <distinguishedName>/R-T31/CH-2/SL-1/C-3</distinguishedName>
 <globalId>89772001</globalId>
 <cti:type>uc:Resource</cti:type>
 <cti:type>uc:PhysicalResource</cti:type>
 <otherIdentifier>ATM-45252</otherIdentifier>
 <serialNumber>A-778911-b</serialNumber>
 <cti:type>uc:Hardware</cti:type>
 <cti:type>uc:ManagedHardware</cti:type>
 <cti:type>uc:Equipment</cti:type>
 <installed>true</installed>
 <version>A2</version>
 <redundancy>1</redundancy>
 <cti:type>hw:Card</cti:type>
 <usedSlots>1</usedSlots>
 </equipment>
 <cti:type>hw:Slot</cti:type>
 <slotNumber>1</slotNumber>
 </equitmentHolder>
 <cti:type>hw:Chassis</cti:type>
 <numberOfChassisSlots>6</numberOfChassisSlots>
 // ...
 </hardware>

Linowski, et al. Expires April 22, 2011 [Page 28]

Internet-Draft YANG Language Abstractions October 2010

2.12. Update Rules for Modules Using Complex Types

 In addition to the module update rules specified in Section 10 in
 [RFC6020], modules that define complex-types, instances of complex
 types and typed instance identifiers must obey following rules:

 o New complex types MAY be added.

 o A new complex type MAY extend an existing complex type.

 o New data definition statements MAY be added to a complex type only
 if:

 * they are not mandatory or

 * they are not conditionally dependent on a new feature (i.e.,
 have an "if-feature" statement, which refers to a new feature).

 o The type referred to by the instance-type statement may be changed
 to a type that derives from the original type only if the original
 type does not represent configuration data.

2.13. Using Complex Types

 All data nodes defined inside a complex type reside in the complex
 type namespace, which is their parent node namespace.

2.13.1. Overriding Complex Type Data Nodes

 It is not allowed to override a data node inherited from a base type.
 I.e. it is an error if a type "base" with a leaf named "foo" is
 extended by another complex type ("derived") with a leaf named "foo"
 in the same module. In case they are derived in different modules,
 there are two distinct "foo" nodes which are mapped to the XML
 namespaces of the module, where the complex types are specified.

 A complex type that extends a basic complex type may use the "refine"
 statement in order to improve an inherited data node. The target
 node identifier must be qualified by the module prefix to indicate
 clearly, which inherited node is refined.

 The following refinements can be done:

 o A leaf or choice node may have a default value, or a new default
 value if it already had one

 o Any node may have a different "description" or "reference" string.

Linowski, et al. Expires April 22, 2011 [Page 29]

Internet-Draft YANG Language Abstractions October 2010

 o A leaf, anyxml, or choice node may have a "mandatory true"
 statement. However, it is not allowed to change from "mandatory
 true" to "mandatory false".

 o A leaf, leaf-list, list, container, or anyxml node may have
 additional "must" expressions.

 o A list, leaf-list, instance or instance-list node may have a "min-
 elements" statement, if the base type does not have one or one
 with a value that is greater than the minimum value of the base
 type.

 o A list, leaf-list, instance or instance-list node may have a "max-
 elements" statement, if the base type does not have one or one
 with a value that is smaller than the maximum value of the base
 type.

 It is not allowed to refine complex-type nodes inside instance or
 instance-list statements.

2.13.2. Augmenting Complex Types

 Augmenting complex types is only allowed if a complex type is
 instantiated in an "instance" or "instance-list" statement. This
 confines the effect of the augmentation to the location in the schema
 tree, where the augmentation is done. The argument of the "augment"
 statement MUST be in the descendant form (as defined by the rule
 "descendant-schema-nodeid" in Section 12 in [RFC6020]).

 ct:complex-type Chassis {
 ct:extends EquipmentHolder;
 container chassisInfo {
 config false;
 leaf numberOfSlots { type uint16; }
 leaf occupiedSlots { type uint16; }
 leaf height {type unit16;}
 leaf width {type unit16;}
 }
 }

 ct:instance-list chassis {
 type Chassis;
 augment "chassisInfo" {
 leaf modelId { type string; }
 }
 }

Linowski, et al. Expires April 22, 2011 [Page 30]

Internet-Draft YANG Language Abstractions October 2010

 When augmenting a complex type, only the "container", "leaf", "list",
 "leaf-list", "choice", "instance", "instance-list" and "if-feature"
 statements may be used within the "augment" statement. The nodes
 added by the augmentation MUST NOT be mandatory nodes. One or many
 augment statements may not cause the creation of multiple nodes with
 the same name from the same namespace in the target node.

 To achieve less complex modeling this document proposes the
 augmentation of complex type instances without recursion.

2.13.3. Controlling the Use of Complex Types

 A server might not want to support all complex types defined in a
 supported module. This issue can be addressed with YANG features as
 follows:

 o Features are defined that are used inside complex type definitions
 (by using "if-feature" as substatement) to make them optional. In
 this case such complex types may only be instantiated if the
 feature is supported (advertized as capability in the NETCONF
 <hello> message).

 o The "deviation" statement may be applied to node trees, which are
 created by "instance" and "instance-list" statements. In this
 case, only the substatement "deviate not-supported" is allowed.

 o It is not allowed to apply the deviation statement to node tree
 elements that may occur because of the recursive use of a complex
 type. Other forms of deviations ("deviate add", "deviate
 replace", "deviate delete") are NOT supported inside node trees
 spanned by "instance" or "instance-list".

 As complex type definitions do not contribute by itself to the data
 node tree, data node declarations inside complex types cannot be
 target of deviations.

 In the example below, client applications are informed that the leaf
 "occupiedSlots" is not supported in the top-level chassis. However,
 if a chassis contains another chassis, the contained chassis may
 support the leaf informing about the number of occupied slots.

 deviation "/chassis/chassisSpec/occupiedSlots" {
 deviate not-supported;
 }

Linowski, et al. Expires April 22, 2011 [Page 31]

Internet-Draft YANG Language Abstractions October 2010

3. Typed Instance Identifier

3.1. Definition

 Typed instance identifier relationships are an addition to the
 relationship types already defined in YANG, where the leafref
 relationship is location dependent, and the instance-identifier does
 not specify to which type of instances the identifier points to.

 A typed instance identifier represents a reference to an instance of
 a complex type without being restricted to a particular location in
 the containment tree. This is done by using the extension statement
 "instance-type" as a substatement of the existing "type instance
 identifier" statement.

 Typed instance identifiers allow referring to instances of complex
 types that may be located anywhere in the schema tree. The "type"
 statement plays the role of a restriction that must be fulfilled by
 the target node, which is referred to with the instance identifier.
 The target node MUST be of a particular complex type, either the type
 itself or any type that extends this complex type.

3.2. instance-type extension statement

 The "instance-type" extension statement specifies the complex type of
 the instance referred by the instance-identifier. The referred
 instance may also instantiate any complex type that extends the
 specified complex type.

 The instance complex type is identified by the single name argument.
 The referred complex type MUST have a key. This extension statement
 MUST be used as a substatement of the "type instance-identifier"
 statement. The "instance-type" extension statement does not support
 any substatements.

3.3. Typed Instance Identifier Example

 In the example below, a physical link connects an arbitrary number of
 physical ports. Here typed instance identifiers are used to denote,
 which "PhysicalPort" instances (anywhere in the data tree) are
 connected by a "PhysicalLink".

Linowski, et al. Expires April 22, 2011 [Page 32]

Internet-Draft YANG Language Abstractions October 2010

 // Extended version of type Card
 ct:complex-type Card {
 ct:extends Equipment;
 leaf usedSlot { type uint16; mandatory true; }
 ct:instance-list port {
 type PhysicalPort;
 }
 }

 ct:complex-type PhysicalPort {
 ct:extends ManagedHardware;
 leaf portNumber { type int32; mandatory true; }
 }

 ct:complex-type PhysicalLink {
 ct:extends ManagedHardware;
 leaf media { type string; }
 leaf-list connectedPort {
 type instance-identifier {
 ct:instance-type PhysicalPort;
 }
 min-elements 2;
 }
 }

 Below is the XML encoding of an element named "link" of type
 "PhysicalLink":

 <link>
 <objectId>FTCL-771</objectId>
 <media>Fiber</media>
 <connectedPort>/hw:hardware[objectId=’R-11’]
 /hw:equipment[objectId=’AT22’]/hw:port[objectId=’P12’]
 </connectedPort>
 <connectedPort>/hw:hardware[objectId=’R-42]
 /hw:equipment[objectId=’AT30’]/hw:port[objectId=’P3’]
 </connectedPort>
 <serialNumeber>F-7786828</serialNumber>
 <commonName>FibCon 7</commonName>
 </link>

4. IANA Considerations

 This document registers two URIs in the IETF XML registry. Following
 the format in [RFC3688], the following registrations are requested:

Linowski, et al. Expires April 22, 2011 [Page 33]

Internet-Draft YANG Language Abstractions October 2010

 URI: urn:ietf:params:xml:ns:yang:ietf-complex-types
 URI: urn:ietf:params:xml:ns:yang:ietf-complex-type-instance

 Registrant Contact: The NETMOD WG of the IETF.

 XML: N/A, the requested URIs are XML namespaces.

 This document registers one module name in the ’YANG Module Names’
 registry, defined in [RFC6020].

 name: ietf-complex-types

 namespace: urn:ietf:params:xml:ns:yang:ietf-complex-types

 prefix: ct

 RFC: XXXX

 RFC Ed.: Please replace XXXX with actual RFC number and remove this
 note.

5. Security Considerations

 The YANG module "complex-types" in this memo defines YANG extensions
 for Complex-types and Typed Instance Identifiers as new language
 statements.

 Complex-types and Typed Instance Identifiers themselves do not have
 any security impact on the Internet.

 The security considerations described throughout [RFC6020] apply here
 as well.

6. Acknowledgements

 The authors would like to thank to Martin Bjorklund, Balazs Lengyel,
 Gerhard Muenz, Dan Romascanu, Juergen Schoenwaelder and Martin Storch
 for their valuable review and comments on different versions of the
 document.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", March 1997.

Linowski, et al. Expires April 22, 2011 [Page 34]

Internet-Draft YANG Language Abstractions October 2010

 [RFC3688] Mealling, M., "The IETF XML Registry", January 2004.

 [RFC5226] Narten, T., "Guidelines for Writing an IANA
 Considerations Section in RFCs", May 2008.

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", October 2010.

7.2. Informative References

 [IPFIXCONF] Muenz, G., "Configuration Data Model for IPFIX and
 PSAMP", draft-ietf-ipfix-configuration-model-07 (work in
 progress), July 2010.

 [Libsmi] Kuryla, S., "Libsmi Extension for Complex Types",
 April 2010, <http://www.ibr.cs.tu-bs.de/svn/libsmi>.

 [Pyang] Bjorklund, M., "An extensible YANG validator and
 converter", October 2010,
 <http://code.google.com/p/pyang/>.

 [Pyang-ct] Kuryla, S., "Pyang Extension for Complex Types",
 April 2010, <http://code.google.com/p/pyang-ct/>.

 [RFC4133] Bierman, A. and K. McCloghrie, "Entity MIB (Version 3)",
 August 2005.

 [SID V8] Tele Management Forum, "GB922-Information Framework
 (SID) Solution Suite, Release 8.0", July 2008, < http:/
 /www.tmforum.org/DocumentsInformation/
 GB922InformationFramework/35499/article.html>.

 [UDM] NSN, "Unified Data Model SID Compliance Statement",
 May 2010, <http://www.tmforum.org/InformationFramework/
 NokiaSiemensNetworks/8815/home.html>.

Appendix A. Change Log

A.1. 03-04

 o Changed the complex type XML encoding rules so that XML elements
 reprensenting data nodes defined in the same complex type may
 appear in any order.

 o Used the "ct:" prefix in substatement tables when referring to
 complex type extension statements.

Linowski, et al. Expires April 22, 2011 [Page 35]

Internet-Draft YANG Language Abstractions October 2010

 o Modeled the IPFIX/PSMAP example based on v-07 of the IPFIX
 configuration draft. Changed motivation text accordingly.

 o Minor updates and clarifications in the text.

A.2. 02-03

 o Added an example based on the physical resource modeling concepts
 of SID. A simplified class diagram and an excerpt of an according
 YANG module were added in the introduction section.

 o Changed the example YANG module in the NETCONF payload section to
 be based on the physical resource types defined in the added
 physical resource model.

 o A second example shows how Entity MIB entries can be modeled as
 physical resources. The example includes a class diagram and an
 according YANG module excerpt.

 o The complete YANG modules for both examples were added into the
 appendix.

 o Changed the complex type encoding rules.

 o Updated the NETCONF payload example the changed type encoding
 rules and the changed example module.

 o Changed the augmentation rules for complex types. Instead of
 using "." as argument in the augment statement, instance and
 instance-list statement may now contain additional data node
 statements. The substatement tables for the instance and
 instance-list statements were updated accordingly.

 o Minor updates in the text and examples.

A.3. 01-02

 o It is no longer allowed to use the "config" statement inside a
 complex type definition.

 o Complex type can now be defined where a grouping can be defined.
 Complex types have their own namespace.

 o Explicitly specified which kind of refinements can be applied to
 elements of the base type in the definition of an extending
 complex type.

Linowski, et al. Expires April 22, 2011 [Page 36]

Internet-Draft YANG Language Abstractions October 2010

 o Confined the use of deviations for complex types to complex type
 instantiations.

 o Defined augmentation of complex types allowing augmentation only
 during instantiation via an "instance" or "instance-list"
 statement.

 o Removed leftovers from substatement tables.

 o Updates and bug-fixes in the examples.

A.4. 00-01

 o Transformed proposed new YANG statements to YANG extension
 statements (complex-type, element, extends, abstract).

 o Renamed statement "element" to the extension statement "instance"
 in order to avoid confusion with XML payload elements.

 o Introduced extension statement "instance-type" as allowing the use
 of the existing "type" statement as substatement in the existing
 "instance-identifier" statement cannot be done with extensions.

 o Added the complex type extension statement module.

 o Updated examples to reflect the changes mentioned above.

 o Added update rules for complex types.

 o Updated IANA Considerations section.

 o Added this change log.

Appendix B. YANG Modules for Physical Network Resource Model and
 Hardware Entities Model

 YANG module for the ’Physical Network Resource Model’:

 <CODE BEGINS>

 module udmcore {

 namespace "http://example.com/udmcore";
 prefix "udm";

 import ietf-yang-types {prefix "yang";}
 import ietf-complex-types {prefix "ct";}

Linowski, et al. Expires April 22, 2011 [Page 37]

Internet-Draft YANG Language Abstractions October 2010

 ct:complex-type BasicObject {
 ct:abstract true;
 key "distinguishedName";
 leaf globalId {type int64;}
 leaf distinguishedName {type string; mandatory true;}
 }

 ct:complex-type ManagedObject {
 ct:extends BasicObject;
 ct:abstract true;
 leaf instance {type string;}
 leaf objectState {type int32;}
 leaf release {type string;}
 }

 ct:complex-type Resource {
 ct:extends ManagedObject;
 ct:abstract true;
 leaf usageState {type int16;}
 leaf managementMethodSupported {type string;}
 leaf managementMethodCurrent {type string;}
 leaf managementInfo {type string;}
 leaf managementDomain {type string;}
 leaf version {type string;}
 leaf entityIdentification {type string;}
 leaf desription {type string;}
 leaf rootEntityType {type string;}
 }

 ct:complex-type LogicalResource {
 ct:extends Resource;
 ct:abstract true;
 leaf lrStatus {type int32;}
 leaf serviceState {type int32;}
 leaf isOperational {type boolean;}
 }

 ct:complex-type PhysicalResource {
 ct:extends Resource;
 ct:abstract true;
 leaf manufactureDate {type string;}
 leaf otherIdentifier {type string;}
 leaf powerState {type int32;}
 leaf serialNumber {type string;}
 leaf versionNumber {type string;}

Linowski, et al. Expires April 22, 2011 [Page 38]

Internet-Draft YANG Language Abstractions October 2010

 }

 ct:complex-type Hardware {
 ct:extends PhysicalResource;
 ct:abstract true;
 leaf width {type string;}
 leaf height {type string;}
 leaf depth {type string;}
 leaf measurementUnits {type int32;}
 leaf weight {type string;}
 leaf weightUnits {type int32;}
 leaf-list physicalLink {
 type instance-identifier {
 ct:instance-type PhysicalLink;
 }
 }
 ct:instance-list containedHardware {
 ct:instance-type Hardware;
 }
 ct:instance-list physicalConnector {
 ct:instance-type PhysicalConnector;
 }
 }

 ct:complex-type PhysicalLink {
 ct:extends PhysicalResource;
 leaf isWiereless {type boolean;}
 leaf currentLength {type string;}
 leaf maximumLength {type string;}
 leaf mediaType {type int32;}
 leaf-list hardware {
 type instance-identifier {
 ct:instance-type Hardware;
 }
 }
 }

 ct:complex-type ManagedHardware {
 ct:extends Hardware;
 leaf additionalinfo {type string;}
 leaf physicalAlarmReportingEnabled {type boolean;}
 leaf pyhsicalAlarmStatus {type int32;}
 leaf coolingRequirements {type string;}
 leaf hardwarePurpose {type string;}
 leaf isPhysicalContainer {type boolean;}

Linowski, et al. Expires April 22, 2011 [Page 39]

Internet-Draft YANG Language Abstractions October 2010

 }

 ct:complex-type AuxiliaryComponent {
 ct:extends ManagedHardware;
 ct:abstract true;
 }

 ct:complex-type PhysicalPort {
 ct:extends ManagedHardware;
 leaf portNumber {type int32;}
 leaf duplexMode {type int32;}
 leaf ifType {type int32;}
 leaf vendorPortName {type string;}
 }

 ct:complex-type PhysicalConnector {
 ct:extends Hardware;
 leaf location {type string;}
 leaf cableType {type int32;}
 leaf gender {type int32;}
 leaf inUse {type boolean;}
 leaf pinDescription {type string;}
 leaf typeOfConnector {type int32;}
 leaf-list sourcePhysicalConnector {
 type instance-identifier {
 ct:instance-type PhysicalConnector;
 }
 }
 leaf-list targetPhysicalConnector {
 type instance-identifier {
 ct:instance-type PhysicalConnector;
 }
 }
 }

 ct:complex-type Equipment {
 ct:extends ManagedHardware;
 leaf installStatus {type int32;}
 leaf expectedEquipmentType {type string;}
 leaf installedEquipmentType {type string;}
 leaf installedVersion {type string;}
 leaf redundancy {type int32;}
 leaf vendorName {type string;}
 leaf dateOfLastService {type yang:date-and-time;}

Linowski, et al. Expires April 22, 2011 [Page 40]

Internet-Draft YANG Language Abstractions October 2010

 leaf interchangeability {type string;}
 leaf identificationCode {type string;}
 ct:instance-list equipment {
 ct:instance-type Equipment;
 }
 }

 ct:complex-type EquipmentHolder {
 ct:extends ManagedHardware;
 leaf vendorName {type string;}
 leaf locationName {type string;}
 leaf dateOfLastService {type yang:date-and-time;}
 leaf partNumber {type string;}
 leaf availabilityStatus {type int16;}
 leaf nameFromPlanningSystem {type string;}
 leaf modelNumber {type string;}
 leaf acceptableEquipmentList {type string;}
 leaf isSolitaryHolder {type boolean;}
 leaf holderStatus {type int16;}
 leaf interchangeability {type string;}
 leaf equipmentHolderSpecificType {type string; }
 leaf position {type string;}
 leaf atomicCompositeType {type int16;}
 leaf uniquePhysical {type boolean;}
 leaf physicalDescription {type string;}
 leaf serviceApproach {type string;}
 leaf mountingOptions {type int32;}
 leaf cableManagementStrategy {type string;}
 leaf isSecureHolder {type boolean;}
 ct:instance-list equipment {
 ct:instance-type Equipment;
 }
 ct:instance-list equipmentHolder {
 ct:instance-type EquipmentHolder;
 }
 }

 // ... other resource complex types ...
 }
 <CODE ENDS>

 YANG module for the ’Hardware Entities Model’:

 <CODE BEGINS>

Linowski, et al. Expires April 22, 2011 [Page 41]

Internet-Draft YANG Language Abstractions October 2010

 module hardware-entities {

 namespace "http://example.com/:hardware-entities";
 prefix "hwe";

 import ietf-yang-types {prefix "yang";}
 import ietf-complex-types {prefix "ct";}
 import udmcore {prefix "uc";}

 grouping PhysicalEntityProperties {
 leaf hardwareRev {type string; }
 leaf firmwareRev {type string; }
 leaf softwareRev {type string; }
 leaf serialNum {type string; }

 leaf mfgName {type string; }
 leaf modelName {type string; }
 leaf alias {type string; }
 leaf ssetID{type string; }
 leaf isFRU {type boolean; }
 leaf mfgDate {type yang:date-and-time; }
 leaf-list uris {type string; }
 }

 // Physical entities representing equipment

 ct:complex-type Module {
 ct:extends uc:Equipment;
 description "Complex type representing module entries
 (entPhysicalClass = module(9)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 ct:complex-type Backplane {
 ct:extends uc:Equipment;
 description "Complex type representing backplane entries
 (entPhysicalClass = backplane(4)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 // Physical entities representing auxiliray hardware components

 ct:complex-type PowerSupply {
 ct:extends uc:AuxiliaryComponent;
 description "Complex type representing power supply entries

Linowski, et al. Expires April 22, 2011 [Page 42]

Internet-Draft YANG Language Abstractions October 2010

 (entPhysicalClass = powerSupply(6)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 ct:complex-type Fan {
 ct:extends uc:AuxiliaryComponent;
 description "Complex type representing fan entries
 (entPhysicalClass = fan(7)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 ct:complex-type Sensor {
 ct:extends uc:AuxiliaryComponent;
 description "Complex type representing sensor entries
 (entPhysicalClass = sensor(8)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 // Physical entities representing equipment holders

 ct:complex-type Chassis {
 ct:extends uc:EquipmentHolder;
 description "Complex type representing chassis entries
 (entPhysicalClass = chassis(3)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 ct:complex-type Container {
 ct:extends uc:EquipmentHolder;
 description "Complex type representing container entries
 (entPhysicalClass = container(5)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 ct:complex-type Stack {
 ct:extends uc:EquipmentHolder;
 description "Complex type representing stack entries
 (entPhysicalClass = stack(11)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 // Other kinds of physical entities

 ct:complex-type Port {
 ct:extends uc:PhysicalPort;
 description "Complex type representing port entries

Linowski, et al. Expires April 22, 2011 [Page 43]

Internet-Draft YANG Language Abstractions October 2010

 (entPhysicalClass = port(10)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 ct:complex-type CPU {
 ct:extends uc:Hardware;
 description "Complex type representing cpu entries
 (entPhysicalClass = cpu(12)) in entPhysicalTable";
 uses PhysicalEntityProperties;
 }

 }
 <CODE ENDS>

Appendix C. Example YANG Module for the IPFIX/PSAMP Model

C.1. Modeling Improvements for the IPFIX/PSAMP Model with Complex types
 and Typed instance identifiers

 The module below is a variation of the IPFIX/PSAMP configuration
 model, which uses complex types and typed instance identifiers to
 model the concept outlined in [IPFIXCONF].

 When looking at the YANG module with complex types and typed instance
 identifiers, various technical improvements on modeling level become
 apparent.

 o There is almost a one-to-one mapping between the domain concepts
 introduced in IPFIX and the complex types in the YANG module

 o All associations between the concepts (which are not containment)
 are represented with typed identifiers. That avoids having to
 refer to a particular location in the tree, which is not mandated
 by the original model.

 o It is superfluous to represent concept refinement (class
 inheritance in the original model) with containment in form of
 quite big choice-statements with complex branches. Instead,
 concept refinement is realized by complex types extending a base
 complex type.

 o It is unnecessary to introduce metadata identities and leafs (e.g.
 "identity cacheMode" and "leaf cacheMode" in "grouping
 cacheParameters") that just serve the purpose of indicating which
 concrete sub-type of a generic type (modeled as grouping, which
 contains the union of all features of all subtypes) is actually
 represented in the MIB.

Linowski, et al. Expires April 22, 2011 [Page 44]

Internet-Draft YANG Language Abstractions October 2010

 o Ruling out illegal use of sub-type specific properties (e.g. "leaf
 maxFlows") by using "when" statements that refer to a sub-type
 discriminator is not necessary (e.g. when "../cacheMode !=
 ’immediate’").

 o It is not needed to define properties like the configuration
 status wherever a so called "parameter grouping" is used. Instead
 those definitions can be put inside the complex-type definition
 itself.

 o It can be avoided to separating the declaration of the key from
 the related data nodes definitions in a grouping (see use of
 "grouping selectorParameters").

 o Complex types may be declared as optional features. If the type
 is indicated with an identity (e.g. "identity immediate"), this is
 not possible, since "if-feature" is not allowed as a substatement
 of "identity".

C.2. IPFIX/PSAMP Model with Complex Types and Typed Instance
 Identifiers

<CODE BEGINS>
module ct-ipfix-psamp-example {
 namespace "http://example.com/ns/ct-ipfix-psamp-example";
 prefix ipfix;

 import ietf-yang-types { prefix yang; }
 import ietf-inet-types { prefix inet; }
 import ietf-complex-types {prefix "ct"; }

 description "Example IPFIX/PSAMP Configuration Data Model
 with complex types and typed instance identifiers";

 revision 2010-10-19 {
 description "Version of draft-ietf-ipfix-configuration-model-07
 modeled with complex types and typed instance identifiers.";
 }

 /***
 * Features
 ***/

 feature exporter {
 description "If supported, the Monitoring Device can be used as
 an Exporter. Exporting Processes can be configured.";
 }

Linowski, et al. Expires April 22, 2011 [Page 45]

Internet-Draft YANG Language Abstractions October 2010

 feature collector {
 description "If supported, the Monitoring Device can be used as
 a Collector. Collecting Processes can be configured.";
 }

 feature meter {
 description "If supported, Observation Points, Selection
 Processes, and Caches can be configured.";
 }

 feature psampSampCountBased {
 description "If supported, the Monitoring Device supports
 count-based Sampling...";
 }

 feature psampSampTimeBased {
 description "If supported, the Monitoring Device supports
 time-based Sampling...";
 }

 feature psampSampRandOutOfN {
 description "If supported, the Monitoring Device supports
 random n-out-of-N Sampling...";
 }

 feature psampSampUniProb {
 description "If supported, the Monitoring Device supports
 uniform probabilistic Sampling...";
 }

 feature psampFilterMatch {
 description "If supported, the Monitoring Device supports
 property match Filtering...";
 }

 feature psampFilterHash {
 description "If supported, the Monitoring Device supports
 hash-based Filtering...";
 }

 feature cacheModeImmediate {
 description "If supported, the Monitoring Device supports
 Cache Mode ’immediate’.";
 }

 feature cacheModeTimeout {
 description "If supported, the Monitoring Device supports
 Cache Mode ’timeout’.";

Linowski, et al. Expires April 22, 2011 [Page 46]

Internet-Draft YANG Language Abstractions October 2010

 }

 feature cacheModeNatural {
 description "If supported, the Monitoring Device supports
 Cache Mode ’natural’.";
 }

 feature cacheModePermanent {
 description "If supported, the Monitoring Device supports
 Cache Mode ’permanent’.";
 }

 feature udpTransport {
 description "If supported, the Monitoring Device supports UDP
 as transport protocol.";
 }

 feature tcpTransport {
 description "If supported, the Monitoring Device supports TCP
 as transport protocol.";
 }

 feature fileReader {
 description "If supported, the Monitoring Device supports the
 configuration of Collecting Processes as File Readers.";
 }

 feature fileWriter {
 description "If supported, the Monitoring Device supports the
 configuration of Exporting Processes as File Writers.";
 }

 /***
 * Identities
 ***/

 /*** Hash function identities ***/
 identity hashFunction {
 description "Base identity for all hash functions...";
 }
 identity BOB {
 base "hashFunction";
 description "BOB hash function";
 reference "RFC5475, Section 6.2.4.1.";
 }
 identity IPSX {
 base "hashFunction";
 description "IPSX hash function";

Linowski, et al. Expires April 22, 2011 [Page 47]

Internet-Draft YANG Language Abstractions October 2010

 reference "RFC5475, Section 6.2.4.1.";
 }
 identity CRC {
 base "hashFunction";
 description "CRC hash function";
 reference "RFC5475, Section 6.2.4.1.";
 }

 /*** Export mode identities ***/
 identity exportMode {
 description "Base identity for different usages of export
 destinations configured for an Exporting Process...";
 }
 identity parallel {
 base "exportMode";
 description "Parallel export of Data Records to all
 destinations configured for the Exporting Process.";
 }
 identity loadBalancing {
 base "exportMode";
 description "Load-balancing between the different
 destinations...";
 }
 identity fallback {
 base "exportMode";
 description "Export to the primary destination...";
 }

 /*** Options type identities ***/
 identity optionsType {
 description "Base identity for report types exported
 with options...";
 }
 identity meteringStatistics {
 base "optionsType";
 description "Metering Process Statistics.";
 reference "RFC 5101, Section 4.1.";
 }
 identity meteringReliability {
 base "optionsType";
 description "Metering Process Reliability Statistics.";
 reference "RFC 5101, Section 4.2.";
 }
 identity exportingReliability {
 base "optionsType";
 description "Exporting Process Reliability
 Statistics.";
 reference "RFC 5101, Section 4.3.";

Linowski, et al. Expires April 22, 2011 [Page 48]

Internet-Draft YANG Language Abstractions October 2010

 }
 identity flowKeys {
 base "optionsType";
 description "Flow Keys.";
 reference "RFC 5101, Section 4.4.";
 }
 identity selectionSequence {
 base "optionsType";
 description "Selection Sequence and Selector Reports.";
 reference "RFC5476, Sections 6.5.1 and 6.5.2.";
 }
 identity selectionStatistics {
 base "optionsType";
 description "Selection Sequence Statistics Report.";
 reference "RFC5476, Sections 6.5.3.";
 }
 identity accuracy {
 base "optionsType";
 description "Accuracy Report.";
 reference "RFC5476, Section 6.5.4.";
 }
 identity reducingRedundancy {
 base "optionsType";
 description "Enables the utilization of Options Templates to
 reduce redundancy in the exported Data Records.";
 reference "RFC5473.";
 }
 identity extendedTypeInformation {
 base "optionsType";
 description "Export of extended type information for
 enterprise-specific Information Elements used in the
 exported Templates.";
 reference "RFC5610.";
 }

 /***
 * Type definitions
 ***/

 typedef nameType {
 type string {
 length "1..max";
 pattern "\S(.*\S)?";
 }
 description "Type for ’name’ leafs...";
 }

 typedef direction {

Linowski, et al. Expires April 22, 2011 [Page 49]

Internet-Draft YANG Language Abstractions October 2010

 type enumeration {
 enum ingress {
 description "This value is used for monitoring incoming
 packets.";
 }
 enum egress {
 description "This value is used for monitoring outgoing
 packets.";
 }
 enum both {
 description "This value is used for monitoring incoming and
 outgoing packets.";
 }
 }
 description "Direction of packets going through an interface or
 linecard.";
 }

 typedef transportSessionStatus {
 type enumeration {
 enum inactive {
 description "This value MUST be used for...";
 }
 enum active {
 description "This value MUST be used for...";
 }
 enum unknown {
 description "This value MUST be used if the status...";
 }
 }
 description "Status of a Transport Session.";
 reference "RFC5815, Section 8 (ipfixTransportSessionStatus).";
 }

 /***
 * Complex types
 ***/

 ct:complex-type ObservationPoint {
 description "Observation Point";
 key name;
 leaf name {
 type nameType;
 description "Key of an observation point.";
 }
 leaf observationPointId {
 type uint32;
 config false;

Linowski, et al. Expires April 22, 2011 [Page 50]

Internet-Draft YANG Language Abstractions October 2010

 description "Observation Point ID...";
 reference "RFC5102, Section 5.1.10.";
 }
 leaf observationDomainId {
 type uint32;
 mandatory true;
 description "The Observation Domain ID associates...";
 reference "RFC5101.";
 }
 choice OPLocation {
 mandatory true;
 description "Location of the Observation Point.";
 leaf ifIndex {
 type uint32;
 description "Index of an interface...";
 reference "RFC 1229.";
 }
 leaf ifName {
 type string;
 description "Name of an interface...";
 reference "RFC 1229.";
 }
 leaf entPhysicalIndex {
 type uint32;
 description "Index of a linecard...";
 reference "RFC 4133.";
 }
 leaf entPhysicalName {
 type string;
 description "Name of a linecard...";
 reference "RFC 4133.";
 }
 }
 leaf direction {
 type direction;
 default both;
 description "Direction of packets....";
 }
 leaf-list selectionProcess {
 type instance-identifier { ct:instance-type SelectionProcess; }
 description "Selection Processes in this list process packets
 in parallel.";
 }
 }

 ct:complex-type Selector {
 ct:abstract true;
 description "Abstract selector";

Linowski, et al. Expires April 22, 2011 [Page 51]

Internet-Draft YANG Language Abstractions October 2010

 key name;
 leaf name {
 type nameType;
 description "Key of a selector";
 }
 leaf packetsObserved {
 type yang:counter64;
 config false;
 description "The number of packets observed ...";
 reference "RFC5815, Section 8
 (ipfixSelectorStatsPacketsObserved).";
 }
 leaf packetsDropped {
 type yang:counter64;
 config false;
 description "The total number of packets discarded ...";
 reference "RFC5815, Section 8
 (ipfixSelectorStatsPacketsDropped).";
 }
 leaf selectorDiscontinuityTime {
 type yang:date-and-time;
 config false;
 description "Timestamp of the most recent occasion at which
 one or more of the Selector counters suffered a
 discontinuity...";
 reference "RFC5815, Section 8
 (ipfixSelectionProcessStatsDiscontinuityTime).";
 }
 }

 ct:complex-type SelectAllSelector {
 ct:extends Selector;
 description "Method which selects all packets.";
 }

 ct:complex-type SampCountBasedSelector {
 if-feature psampSampCountBased;
 ct:extends Selector;
 description "Selector applying systematic count-based
 packet sampling to the packet stream.";
 reference "RFC5475, Section 5.1;
 RFC5476, Section 6.5.2.1.";
 leaf packetInterval {
 type uint32;
 units packets;
 mandatory true;
 description "The number of packets that are consecutively
 sampled between gaps of length packetSpace.

Linowski, et al. Expires April 22, 2011 [Page 52]

Internet-Draft YANG Language Abstractions October 2010

 This parameter corresponds to the Information Element
 samplingPacketInterval.";
 reference "RFC5477, Section 8.2.2.";
 }
 leaf packetSpace {
 type uint32;
 units packets;
 mandatory true;
 description "The number of unsampled packets between two
 sampling intervals.
 This parameter corresponds to the Information Element
 samplingPacketSpace.";
 reference "RFC5477, Section 8.2.3.";
 }
 }

 ct:complex-type SampTimeBasedSelector {
 if-feature psampSampTimeBased;
 ct:extends Selector;
 description "Selector applying systematic time-based
 packet sampling to the packet stream.";
 reference "RFC5475, Section 5.1;
 RFC5476, Section 6.5.2.2.";
 leaf timeInterval {
 type uint32;
 units microseconds;
 mandatory true;
 description "The time interval in microseconds during
 which all arriving packets are sampled between gaps
 of length timeSpace.
 This parameter corresponds to the Information Element
 samplingTimeInterval.";
 reference "RFC5477, Section 8.2.4.";
 }
 leaf timeSpace {
 type uint32;
 units microseconds;
 mandatory true;
 description "The time interval in microseconds during
 which no packets are sampled between two sampling
 intervals specified by timeInterval.
 This parameter corresponds to the Information Element
 samplingTimeInterval.";
 reference "RFC5477, Section 8.2.5.";
 }
 }

 ct:complex-type SampRandOutOfNSelector {

Linowski, et al. Expires April 22, 2011 [Page 53]

Internet-Draft YANG Language Abstractions October 2010

 if-feature psampSampRandOutOfN;
 ct:extends Selector;
 description "This container contains the configuration
 parameters of a Selector applying n-out-of-N packet
 sampling to the packet stream.";
 reference "RFC5475, Section 5.2.1;
 RFC5476, Section 6.5.2.3.";
 leaf size {
 type uint32;
 units packets;
 mandatory true;
 description "The number of elements taken from the parent
 population.
 This parameter corresponds to the Information Element
 samplingSize.";
 reference "RFC5477, Section 8.2.6.";
 }
 leaf population {
 type uint32;
 units packets;
 mandatory true;
 description "The number of elements in the parent
 population.
 This parameter corresponds to the Information Element
 samplingPopulation.";
 reference "RFC5477, Section 8.2.7.";
 }
 }

 ct:complex-type SampUniProbSelector {
 if-feature psampSampUniProb;
 ct:extends Selector;
 description "Selector applying uniform probabilistic
 packet sampling (with equal probability per packet) to the
 packet stream.";
 reference "RFC5475, Section 5.2.2.1;
 RFC5476, Section 6.5.2.4.";
 leaf probability {
 type decimal64 {
 fraction-digits 18;
 range "0..1";
 }
 mandatory true;
 description "Probability that a packet is sampled,
 expressed as a value between 0 and 1. The probability
 is equal for every packet.
 This parameter corresponds to the Information Element
 samplingProbability.";

Linowski, et al. Expires April 22, 2011 [Page 54]

Internet-Draft YANG Language Abstractions October 2010

 reference "RFC5477, Section 8.2.8.";
 }
 }

 ct:complex-type FilterMatchSelector {
 if-feature psampFilterMatch;
 ct:extends Selector;
 description "This container contains the configuration
 parameters of a Selector applying property match filtering
 to the packet stream.";
 reference "RFC5475, Section 6.1;
 RFC5476, Section 6.5.2.5.";
 choice nameOrId {
 mandatory true;
 description "The field to be matched is specified by
 either the name or the ID of the Information
 Element.";
 leaf ieName {
 type string;
 description "Name of the Information Element.";
 }
 leaf ieId {
 type uint16 {
 range "1..32767" {
 description "Valid range of Information Element
 identifiers.";
 reference "RFC5102, Section 4.";
 }
 }
 description "ID of the Information Element.";
 }
 }
 leaf ieEnterpriseNumber {
 type uint32;
 description "If present, ... ";
 }
 leaf value {
 type string;
 mandatory true;
 description "Matching value of the Information Element.";
 }
 }

 ct:complex-type FilterHashSelector {
 if-feature psampFilterHash;
 ct:extends Selector;
 description "This container contains the configuration
 parameters of a Selector applying hash-based filtering

Linowski, et al. Expires April 22, 2011 [Page 55]

Internet-Draft YANG Language Abstractions October 2010

 to the packet stream.";
 reference "RFC5475, Section 6.2;
 RFC5476, Section 6.5.2.6.";
 leaf hashFunction {
 type identityref {
 base "hashFunction";
 }
 default BOB;
 description "Hash function to be applied. According to
 RFC5475, Section 6.2.4.1, ’BOB’ must be used in order to
 be compliant with PSAMP.";
 }
 leaf ipPayloadOffset {
 type uint64;
 units octets;
 default 0;
 description "IP payload offset ... ";
 reference "RFC5477, Section 8.3.2.";
 }
 leaf ipPayloadSize {
 type uint64;
 units octets;
 default 8;
 description "Number of IP payload bytes ... ";
 reference "RFC5477, Section 8.3.3.";
 }
 leaf digestOutput {
 type boolean;
 default false;
 description "If true, the output ... ";
 reference "RFC5477, Section 8.3.8.";
 }
 leaf initializerValue {
 type uint64;
 description "Initializer value to the hash function.
 If not configured by the user, the Monitoring Device
 arbitrarily chooses an initializer value.";
 reference "RFC5477, Section 8.3.9.";
 }
 list selectedRange {
 key name;
 min-elements 1;
 description "List of hash function return ranges for
 which packets are selected.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }

Linowski, et al. Expires April 22, 2011 [Page 56]

Internet-Draft YANG Language Abstractions October 2010

 leaf min {
 type uint64;
 description "Beginning of the hash function’s selected
 range.
 This parameter corresponds to the Information Element
 hashSelectedRangeMin.";
 reference "RFC5477, Section 8.3.6.";
 }
 leaf max {
 type uint64;
 description "End of the hash function’s selected range.
 This parameter corresponds to the Information Element
 hashSelectedRangeMax.";
 reference "RFC5477, Section 8.3.7.";
 }
 }
 }

 ct:complex-type Cache {
 ct:abstract true;
 description "Cache of a Monitoring Device.";
 key name;
 leaf name {
 type nameType;
 description "Key of a cache";
 }
 leaf-list exportingProcess {
 type leafref { path "/ipfix/exportingProcess/name"; }
 description "Records are exported by all Exporting Processes
 in the list.";
 }
 description "Configuration and state parameters of a Cache.";
 container cacheLayout {
 description "Cache Layout.";
 list cacheField {
 key name;
 min-elements 1;
 description "List of fields in the Cache Layout.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 choice nameOrId {
 mandatory true;
 description "Name or ID of the Information Element.";
 reference "RFC5102.";
 leaf ieName {
 type string;

Linowski, et al. Expires April 22, 2011 [Page 57]

Internet-Draft YANG Language Abstractions October 2010

 description "Name of the Information Element.";
 }
 leaf ieId {
 type uint16 {
 range "1..32767" {
 description "Valid range of Information Element
 identifiers.";
 reference "RFC5102, Section 4.";
 }
 }
 description "ID of the Information Element.";
 }
 }
 leaf ieLength {
 type uint16;
 units octets;
 description "Length of the field ... ";
 reference "RFC5101, Section 6.2; RFC5102.";
 }
 leaf ieEnterpriseNumber {
 type uint32;
 description "If present, the Information Element is
 enterprise-specific. ... ";
 reference "RFC5101; RFC5102.";
 }
 leaf isFlowKey {
 when "(../../../cacheMode != ’immediate’)
 and
 ((count(../ieEnterpriseNumber) = 0)
 or
 (../ieEnterpriseNumber != 29305))" {
 description "This parameter is not available
 for Reverse Information Elements (which have
 enterprise number 29305) or if the Cache Mode
 is ’immediate’.";
 }
 type empty;
 description "If present, this is a flow key.";
 }
 }
 }
 leaf dataRecords {
 type yang:counter64;
 units "Data Records";
 config false;
 description "The number of Data Records generated ... ";
 reference "ietf-draft-ipfix-mib-10, Section 8
 (ipfixMeteringProcessDataRecords).";

Linowski, et al. Expires April 22, 2011 [Page 58]

Internet-Draft YANG Language Abstractions October 2010

 }
 leaf cacheDiscontinuityTime {
 type yang:date-and-time;
 config false;
 description "Timestamp of the ... ";
 reference "ietf-draft-ipfix-mib-10, Section 8
 (ipfixMeteringProcessDiscontinuityTime).";
 }
 }

 ct:complex-type ImmediateCache {
 if-feature cacheModeImmediate;
 ct:extends Cache;
 }

 ct:complex-type NonImmediateCache {
 ct:abstract true;
 ct:extends Cache;
 leaf maxFlows {
 type uint32;
 units flows;
 description "This parameter configures the maximum number of
 Flows in the Cache ... ";
 }
 leaf activeFlows {
 type yang:gauge32;
 units flows;
 config false;
 description "The number of Flows currently active in this
 Cache.";
 reference "ietf-draft-ipfix-mib-10, Section 8
 (ipfixMeteringProcessCacheActiveFlows).";
 }
 leaf unusedCacheEntries {
 type yang:gauge32;
 units flows;
 config false;
 description "The number of unused Cache entries in this
 Cache.";
 reference "ietf-draft-ipfix-mib-10, Section 8
 (ipfixMeteringProcessCacheUnusedCacheEntries).";
 }
 }

 ct:complex-type NonPermanentCache {
 ct:abstract true;
 ct:extends NonImmediateCache;

Linowski, et al. Expires April 22, 2011 [Page 59]

Internet-Draft YANG Language Abstractions October 2010

 leaf activeTimeout {
 type uint32;
 units milliseconds;
 description "This parameter configures the time in
 milliseconds after which ... ";
 }
 leaf inactiveTimeout {
 type uint32;
 units milliseconds;
 description "This parameter configures the time in
 milliseconds after which ... ";
 }
 }

 ct:complex-type NaturalCache {
 if-feature cacheModeNatural;
 ct:extends NonPermanentCache;
 }

 ct:complex-type TimeoutCache {
 if-feature cacheModeTimeout;
 ct:extends NonPermanentCache;
 }

 ct:complex-type PermanentCache {
 if-feature cacheModePermanent;
 ct:extends NonImmediateCache;
 leaf exportInterval {
 type uint32;
 units milliseconds;
 description "This parameter configures the interval for
 periodical export of Flow Records in milliseconds.
 If not configured by the user, the Monitoring Device sets
 this parameter.";
 }
 }

 ct:complex-type ExportDestination {
 ct:abstract true;
 description "Abstract export destination.";
 key name;
 leaf name {
 type nameType;
 description "Key of an export destination.";
 }
 }

 ct:complex-type IpDestination {

Linowski, et al. Expires April 22, 2011 [Page 60]

Internet-Draft YANG Language Abstractions October 2010

 ct:abstract true;
 ct:extends ExportDestination;
 description "IP export destination.";
 leaf ipfixVersion {
 type uint16;
 default 10;
 description "IPFIX version number.";
 }
 leaf destinationPort {
 type inet:port-number;
 description "If not configured by the user, the Monitoring
 Device uses the default port number for IPFIX, which is
 4739 without transport layer security and 4740 if transport
 layer security is activated.";
 }
 choice indexOrName {
 description "Index or name of the interface ... ";
 reference "RFC 1229.";
 leaf ifIndex {
 type uint32;
 description "Index of an interface as stored in the ifTable
 of IF-MIB.";
 reference "RFC 1229.";
 }
 leaf ifName {
 type string;
 description "Name of an interface as stored in the ifTable
 of IF-MIB.";
 reference "RFC 1229.";
 }
 }
 leaf sendBufferSize {
 type uint32;
 units bytes;
 description "Size of the socket send buffer.
 If not configured by the user, this parameter is set by
 the Monitoring Device.";
 }
 leaf rateLimit {
 type uint32;
 units "bytes per second";
 description "Maximum number of bytes per second ... ";
 reference "RFC5476, Section 6.3";
 }
 container transportLayerSecurity {
 presence "If transportLayerSecurity is present, DTLS is
 enabled if the transport protocol is SCTP or UDP, and TLS
 is enabled if the transport protocol is TCP.";

Linowski, et al. Expires April 22, 2011 [Page 61]

Internet-Draft YANG Language Abstractions October 2010

 description "Transport layer security configuration.";
 uses transportLayerSecurityParameters;
 }
 container transportSession {
 config false;
 description "State parameters of the Transport Session
 directed to the given destination.";
 uses transportSessionParameters;
 }
 }

 ct:complex-type SctpExporter {
 ct:extends IpDestination;
 description "SCTP exporter.";
 leaf-list sourceIPAddress {
 type inet:ip-address;
 description "List of source IP addresses used ... ";
 reference "RFC 4960 (multi-homed SCTP endpoint).";
 }
 leaf-list destinationIPAddress {
 type inet:ip-address;
 min-elements 1;
 description "One or multiple IP addresses ... ";
 reference "RFC 4960 (multi-homed SCTP endpoint).";
 }
 leaf timedReliability {
 type uint32;
 units milliseconds;
 default 0;
 description "Lifetime in milliseconds ... ";
 reference "RFC 3758; RFC 4960.";
 }
 }

 ct:complex-type UdpExporter {
 ct:extends IpDestination;
 if-feature udpTransport;
 description "UDP parameters.";
 leaf sourceIPAddress {
 type inet:ip-address;
 description "Source IP address used by the Exporting
 Process ...";
 }
 leaf destinationIPAddress {
 type inet:ip-address;
 mandatory true;
 description "IP address of the Collection Process to which
 IPFIX Messages are sent.";

Linowski, et al. Expires April 22, 2011 [Page 62]

Internet-Draft YANG Language Abstractions October 2010

 }
 leaf maxPacketSize {
 type uint16;
 units octets;
 description "This parameter specifies the maximum size of
 IP packets ... ";
 }
 leaf templateRefreshTimeout {
 type uint32;
 units seconds;
 default 600;
 description "Sets time after which Templates are resent in the
 UDP Transport Session. ... ";
 reference "RFC5101, Section 10.3.6; RFC5815, Section 8
 (ipfixTransportSessionTemplateRefreshTimeout).";
 }
 leaf optionsTemplateRefreshTimeout {
 type uint32;
 units seconds;
 default 600;
 description "Sets time after which Options Templates are
 resent in the UDP Transport Session. ... ";
 reference "RFC5101, Section 10.3.6; RFC5815, Section 8
 (ipfixTransportSessionOptionsTemplateRefreshTimeout).";
 }
 leaf templateRefreshPacket {
 type uint32;
 units "IPFIX Messages";
 description "Sets number of IPFIX Messages after which
 Templates are resent in the UDP Transport Session. ... ";
 reference "RFC5101, Section 10.3.6; RFC5815, Section 8
 (ipfixTransportSessionTemplateRefreshPacket).";
 }
 leaf optionsTemplateRefreshPacket {
 type uint32;
 units "IPFIX Messages";
 description "Sets number of IPFIX Messages after which
 Options Templates are resent in the UDP Transport Session
 protocol. ... ";
 reference "RFC5101, Section 10.3.6; RFC5815, Section 8
 (ipfixTransportSessionOptionsTemplateRefreshPacket).";
 }
 }

 ct:complex-type TcpExporter {
 ct:extends IpDestination;
 if-feature tcpTransport;
 description "TCP exporter";

Linowski, et al. Expires April 22, 2011 [Page 63]

Internet-Draft YANG Language Abstractions October 2010

 leaf sourceIPAddress {
 type inet:ip-address;
 description "Source IP address used by the Exporting
 Process...";
 }
 leaf destinationIPAddress {
 type inet:ip-address;
 mandatory true;
 description "IP address of the Collection Process to which
 IPFIX Messages are sent.";
 }
 }

 ct:complex-type FileWriter {
 ct:extends ExportDestination;
 if-feature fileWriter;
 description "File Writer.";
 leaf ipfixVersion {
 type uint16;
 default 10;
 description "IPFIX version number.";
 }
 leaf file {
 type inet:uri;
 mandatory true;
 description "URI specifying the location of the file.";
 }
 leaf bytes {
 type yang:counter64;
 units octets;
 config false;
 description "The number of bytes written by the File
 Writer...";
 }
 leaf messages {
 type yang:counter64;
 units "IPFIX Messages";
 config false;
 description "The number of IPFIX Messages written by the File
 Writer. ... ";
 }
 leaf discardedMessages {
 type yang:counter64;
 units "IPFIX Messages";
 config false;
 description "The number of IPFIX Messages that could not be
 written by the File Writer ... ";
 }

Linowski, et al. Expires April 22, 2011 [Page 64]

Internet-Draft YANG Language Abstractions October 2010

 leaf records {
 type yang:counter64;
 units "Data Records";
 config false;
 description "The number of Data Records written by the File
 Writer. ... ";
 }
 leaf templates {
 type yang:counter32;
 units "Templates";
 config false;
 description "The number of Template Records (excluding
 Options Template Records) written by the File Writer.
 ... ";
 }
 leaf optionsTemplates {
 type yang:counter32;
 units "Options Templates";
 config false;
 description "The number of Options Template Records written
 by the File Writer. ... ";
 }
 leaf fileWriterDiscontinuityTime {
 type yang:date-and-time;
 config false;
 description "Timestamp of the most recent occasion at which
 one or more File Writer counters suffered a discontinuity.
 ... ";
 }
 list template {
 config false;
 description "This list contains the Templates and Options
 Templates that have been written by the File Reader. ... ";
 uses templateParameters;
 }
 }

 ct:complex-type ExportingProcess {
 if-feature exporter;
 description "Exporting Process of the Monitoring Device.";
 key name;
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 leaf exportMode {
 type identityref {
 base "exportMode";

Linowski, et al. Expires April 22, 2011 [Page 65]

Internet-Draft YANG Language Abstractions October 2010

 }
 default parallel;
 description "This parameter determines to which configured
 destination(s) the incoming Data Records are exported.";
 }
 ct:instance-list destination {
 ct:instance-type ExportDestination;
 min-elements 1;
 description "Export destinations.";
 }
 list options {
 key name;
 description "List of options reported by the Exporting
 Process.";
 leaf name {
 type nameType;
 description "Key of this list.";
 }
 leaf optionsType {
 type identityref {
 base "optionsType";
 }
 mandatory true;
 description "Type of the exported options data.";
 }
 leaf optionsTimeout {
 type uint32;
 units milliseconds;
 description "Time interval for periodic export of the options
 data. ... ";
 }
 }
 }

 ct:complex-type CollectingProcess {
 description "A Collecting Process.";
 key name;
 leaf name {
 type nameType;
 description "Key of a collecing process.";
 }
 ct:instance-list sctpCollector {
 ct:instance-type SctpCollector;
 description "List of SCTP receivers (sockets) on which the
 Collecting Process receives IPFIX Messages.";
 }
 ct:instance-list udpCollector {
 if-feature udpTransport;

Linowski, et al. Expires April 22, 2011 [Page 66]

Internet-Draft YANG Language Abstractions October 2010

 ct:instance-type UdpCollector;
 description "List of UDP receivers (sockets) on which the
 Collecting Process receives IPFIX Messages.";
 }
 ct:instance-list tcpCollector {
 if-feature tcpTransport;
 ct:instance-type TcpCollector;
 description "List of TCP receivers (sockets) on which the
 Collecting Process receives IPFIX Messages.";
 }
 ct:instance-list fileReader {
 if-feature fileReader;
 ct:instance-type FileReader;
 description "List of File Readers from which the Collecting
 Process reads IPFIX Messages.";
 }
 leaf-list exportingProcess {
 type instance-identifier { ct:instance-type ExportingProcess; }
 description "Export of received records without any
 modifications. Records are processed by all Exporting
 Processes in the list.";
 }
 }

 ct:complex-type Collector {
 ct:abstract true;
 description "Abstract collector.";
 key name;
 leaf name {
 type nameType;
 description "Key of collectors";
 }
 }

 ct:complex-type IpCollector {
 ct:abstract true;
 ct:extends Collector;
 description "Collector for IP transport protocols.";
 leaf localPort {
 type inet:port-number;
 description "If not configured, the Monitoring Device uses the
 default port number for IPFIX, which is 4739 without
 transport layer security and 4740 if transport layer
 security is activated.";
 }
 container transportLayerSecurity {
 presence "If transportLayerSecurity is present, DTLS is enabled
 if the transport protocol is SCTP or UDP, and TLS is enabled

Linowski, et al. Expires April 22, 2011 [Page 67]

Internet-Draft YANG Language Abstractions October 2010

 if the transport protocol is TCP.";
 description "Transport layer security configuration.";
 uses transportLayerSecurityParameters;
 }
 list transportSession {
 config false;
 description "This list contains the currently established
 Transport Sessions terminating at the given socket.";
 uses transportSessionParameters;
 }
 }

 ct:complex-type SctpCollector {
 ct:extends IpCollector;
 description "Collector listening on aSCTP socket";
 leaf-list localIPAddress {
 type inet:ip-address;
 description "List of local IP addresses ... ";
 reference "RFC 4960 (multi-homed SCTP endpoint).";
 }
 }

 ct:complex-type UdpCollector {
 ct:extends IpCollector;
 description "Parameters of a listening UDP socket at a
 Collecting Process.";
 leaf-list localIPAddress {
 type inet:ip-address;
 description "List of local IP addresses on which the Collecting
 Process listens for IPFIX Messages.";
 }
 leaf templateLifeTime {
 type uint32;
 units seconds;
 default 1800;
 description "Sets the lifetime of Templates for all UDP
 Transport Sessions ... ";
 reference "RFC5101, Section 10.3.7; RFC5815, Section 8
 (ipfixTransportSessionTemplateRefreshTimeout).";
 }
 leaf optionsTemplateLifeTime {
 type uint32;
 units seconds;
 default 1800;
 description "Sets the lifetime of Options Templates for all
 UDP Transport Sessions terminating at this UDP socket.
 ... ";
 reference "RFC5101, Section 10.3.7; RFC5815, Section 8

Linowski, et al. Expires April 22, 2011 [Page 68]

Internet-Draft YANG Language Abstractions October 2010

 (ipfixTransportSessionOptionsTemplateRefreshTimeout).";
 }
 leaf templateLifePacket {
 type uint32;
 units "IPFIX Messages";
 description "If this parameter is configured, Templates
 defined in a UDP Transport Session become invalid if ...";
 reference "RFC5101, Section 10.3.7; RFC5815, Section 8
 (ipfixTransportSessionTemplateRefreshPacket).";
 }
 leaf optionsTemplateLifePacket {
 type uint32;
 units "IPFIX Messages";
 description "If this parameter is configured, Options
 Templates defined in a UDP Transport Session become
 invalid if ...";
 reference "RFC5101, Section 10.3.7; RFC5815, Section 8
 (ipfixTransportSessionOptionsTemplateRefreshPacket).";
 }
 }

 ct:complex-type TcpCollector {
 ct:extends IpCollector;
 description "Collector listening on a TCP socket.";
 leaf-list localIPAddress {
 type inet:ip-address;
 description "List of local IP addresses on which the Collecting
 Process listens for IPFIX Messages.";
 }
 }

 ct:complex-type FileReader {
 ct:extends Collector;
 description "File Reading collector.";
 leaf file {
 type inet:uri;
 mandatory true;
 description "URI specifying the location of the file.";
 }
 leaf bytes {
 type yang:counter64;
 units octets;
 config false;
 description "The number of bytes read by the File Reader.
 ... ";
 }
 leaf messages {
 type yang:counter64;

Linowski, et al. Expires April 22, 2011 [Page 69]

Internet-Draft YANG Language Abstractions October 2010

 units "IPFIX Messages";
 config false;
 description "The number of IPFIX Messages read by the File
 Reader. ... ";
 }
 leaf records {
 type yang:counter64;
 units "Data Records";
 config false;
 description "The number of Data Records read by the File
 Reader. ... ";
 }
 leaf templates {
 type yang:counter32;
 units "Templates";
 config false;
 description "The number of Template Records (excluding
 Options Template Records) read by the File Reader. ...";
 }
 leaf optionsTemplates {
 type yang:counter32;
 units "Options Templates";
 config false;
 description "The number of Options Template Records read by
 the File Reader. ... ";
 }
 leaf fileReaderDiscontinuityTime {
 type yang:date-and-time;
 config false;
 description "Timestamp of the most recent occasion ... ";
 }
 list template {
 config false;
 description "This list contains the Templates and Options
 Templates that have been read by the File Reader.
 Withdrawn or invalidated (Options) Template MUST be removed
 from this list.";
 uses templateParameters;
 }
 }

 ct:complex-type SelectionProcess {
 description "Selection Process";
 key name;
 leaf name {
 type nameType;
 description "Key of a selection process.";
 }

Linowski, et al. Expires April 22, 2011 [Page 70]

Internet-Draft YANG Language Abstractions October 2010

 ct:instance-list selector {
 ct:instance-type Selector;
 min-elements 1;
 ordered-by user;
 description "List of Selectors that define the action of the
 Selection Process on a single packet. The Selectors are
 serially invoked in the same order as they appear in this
 list.";
 }
 list selectionSequence {
 config false;
 description "This list contains the Selection Sequence IDs
 which are assigned by the Monitoring Device ... ";
 reference "RFC5476.";
 leaf observationDomainId {
 type uint32;
 description "Observation Domain ID for which the
 Selection Sequence ID is assigned.";
 }
 leaf selectionSequenceId {
 type uint64;
 description "Selection Sequence ID used in the Selection
 Sequence (Statistics) Report Interpretation.";
 }
 }
 leaf cache {
 type instance-identifier { ct:instance-type Cache; }
 description "Cache which receives the output of the
 Selection Process.";
 }
 }

 /***
 * Groupings
 ***/

 grouping transportLayerSecurityParameters {
 description "Transport layer security parameters.";
 leaf-list localCertificationAuthorityDN {
 type string;
 description "Distinguished names of certification authorities
 whose certificates may be used to identify the local
 endpoint.";
 }
 leaf-list localSubjectDN {
 type string;
 description "Distinguished names which may be used in the
 certificates to identify the local endpoint.";

Linowski, et al. Expires April 22, 2011 [Page 71]

Internet-Draft YANG Language Abstractions October 2010

 }
 leaf-list localSubjectFQDN {
 type inet:domain-name;
 description "Fully qualified domain names which may be used to
 in the certificates to identify the local endpoint.";
 }
 leaf-list remoteCertificationAuthorityDN {
 type string;
 description "Distinguished names of certification authorities
 whose certificates are accepted to authorize remote
 endpoints.";
 }
 leaf-list remoteSubjectDN {
 type string;
 description "Distinguished names which are accepted in
 certificates to authorize remote endpoints.";
 }
 leaf-list remoteSubjectFQDN {
 type inet:domain-name;
 description "Fully qualified domain name which are accepted in
 certificates to authorize remote endpoints.";
 }
 }

 grouping templateParameters {
 description "State parameters of a Template used by an Exporting
 Process or received by a Collecting Process ... ";
 reference "RFC5101; RFC5815, Section 8 (ipfixTemplateEntry,
 ipfixTemplateDefinitionEntry, ipfixTemplateStatsEntry)";
 leaf observationDomainId {
 type uint32;
 description "The ID of the Observation Domain for which this
 Template is defined.";
 reference "RFC5815, Section 8
 (ipfixTemplateObservationDomainId).";
 }
 leaf templateId {
 type uint16 {
 range "256..65535" {
 description "Valid range of Template IDs.";
 reference "RFC5101";
 }
 }
 description "This number indicates the Template Id in the IPFIX
 message.";
 reference "RFC5815, Section 8 (ipfixTemplateId).";
 }
 leaf setId {

Linowski, et al. Expires April 22, 2011 [Page 72]

Internet-Draft YANG Language Abstractions October 2010

 type uint16;
 description "This number indicates the Set ID of the Template.
 ... ";
 reference "RFC5815, Section 8 (ipfixTemplateSetId).";
 }
 leaf accessTime {
 type yang:date-and-time;
 description "Used for Exporting Processes, ... ";
 reference "RFC5815, Section 8 (ipfixTemplateAccessTime).";
 }
 leaf templateDataRecords {
 type yang:counter64;
 description "The number of transmitted or received Data
 Records ... ";
 reference "RFC5815, Section 8 (ipfixTemplateDataRecords).";
 }
 leaf templateDiscontinuityTime {
 type yang:date-and-time;
 description "Timestamp of the most recent occasion at which
 the counter templateDataRecords suffered a discontinuity.
 ... ";
 reference "RFC5815, Section 8
 (ipfixTemplateDiscontinuityTime).";
 }
 list field {
 description "This list contains the (Options) Template
 fields of which the (Options) Template is defined.
 ... ";
 leaf ieId {
 type uint16 {
 range "1..32767" {
 description "Valid range of Information Element
 identifiers.";
 reference "RFC5102, Section 4.";
 }
 }
 description "This parameter indicates the Information
 Element Id of the field.";
 reference "RFC5815, Section 8 (ipfixTemplateDefinitionIeId);
 RFC5102.";
 }
 leaf ieLength {
 type uint16;
 units octets;
 description "This parameter indicates the length of the
 Information Element of the field.";
 reference "RFC5815, Section 8
 (ipfixTemplateDefinitionIeLength); RFC5102.";

Linowski, et al. Expires April 22, 2011 [Page 73]

Internet-Draft YANG Language Abstractions October 2010

 }
 leaf ieEnterpriseNumber {
 type uint32;
 description "This parameter indicates the IANA enterprise
 number of the authority ... ";
 reference "RFC5815, Section 8
 (ipfixTemplateDefinitionIeEnterpriseNumber).";
 }
 leaf isFlowKey {
 when "../../setId = 2" {
 description "This parameter is available for non-Options
 Templates (Set ID is 2).";
 }
 type empty;
 description "If present, this is a Flow Key field.";
 reference "RFC5815, Section 8
 (ipfixTemplateDefinitionFlags).";
 }
 leaf isScope {
 when "../../setId = 3" {
 description "This parameter is available for Options
 Templates (Set ID is 3).";
 }
 type empty;
 description "If present, this is a scope field.";
 reference "RFC5815, Section 8
 (ipfixTemplateDefinitionFlags).";
 }
 }
 }

 grouping transportSessionParameters {
 description "State parameters of a Transport Session ... ";
 reference "RFC5101, RFC5815, Section 8
 (ipfixTransportSessionEntry,
 ipfixTransportSessionStatsEntry)";
 leaf ipfixVersion {
 type uint16;
 description "Used for Exporting Processes, this parameter
 contains the version number of the IPFIX protocol ... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionIpfixVersion).";
 }
 leaf sourceAddress {
 type inet:ip-address;
 description "The source address of the Exporter of the
 IPFIX Transport Session... ";
 reference "RFC5815, Section 8

Linowski, et al. Expires April 22, 2011 [Page 74]

Internet-Draft YANG Language Abstractions October 2010

 (ipfixTransportSessionSourceAddressType,
 ipfixTransportSessionSourceAddress).";
 }
 leaf destinationAddress {
 type inet:ip-address;
 description "The destination address of the Collector of
 the IPFIX Transport Session... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionDestinationAddressType,
 ipfixTransportSessionDestinationAddress).";
 }
 leaf sourcePort {
 type inet:port-number;
 description "The transport protocol port number of the
 Exporter of the IPFIX Transport Session.";
 reference "RFC5815, Section 8
 (ipfixTransportSessionSourcePort).";
 }
 leaf destinationPort {
 type inet:port-number;
 description "The transport protocol port number of the
 Collector of the IPFIX Transport Session... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionDestinationPort).";
 }
 leaf sctpAssocId {
 type uint32;
 description "The association id used for the SCTP session
 between the Exporter and the Collector ... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionSctpAssocId),
 RFC3871";
 }
 leaf status {
 type transportSessionStatus;
 description "Status of the Transport Session.";
 reference "RFC5815, Section 8 (ipfixTransportSessionStatus).";
 }
 leaf rate {
 type yang:gauge32;
 units "bytes per second";
 description "The number of bytes per second transmitted by the
 Exporting Process or received by the Collecting Process.
 This parameter is updated every second.";
 reference "RFC5815, Section 8 (ipfixTransportSessionRate).";
 }
 leaf bytes {
 type yang:counter64;

Linowski, et al. Expires April 22, 2011 [Page 75]

Internet-Draft YANG Language Abstractions October 2010

 units bytes;
 description "The number of bytes transmitted by the
 Exporting Process or received by the Collecting
 Process ... ";
 reference "RFC5815, Section 8 (ipfixTransportSessionBytes).";
 }
 leaf messages {
 type yang:counter64;
 units "IPFIX Messages";
 description "The number of messages transmitted by the
 Exporting Process or received by the Collecting Process... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionMessages).";
 }
 leaf discardedMessages {
 type yang:counter64;
 units "IPFIX Messages";
 description "Used for Exporting Processes, this parameter
 indicates the number of messages that could not be
 sent ...";
 reference "RFC5815, Section 8
 (ipfixTransportSessionDiscardedMessages).";
 }
 leaf records {
 type yang:counter64;
 units "Data Records";
 description "The number of Data Records transmitted ... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionRecords).";
 }
 leaf templates {
 type yang:counter32;
 units "Templates";
 description "The number of Templates transmitted by the
 Exporting Process or received by the Collecting Process.
 ... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionTemplates).";
 }
 leaf optionsTemplates {
 type yang:counter32;
 units "Options Templates";
 description "The number of Option Templates transmitted by the
 Exporting Process or received by the Collecting Process...";
 reference "RFC5815, Section 8
 (ipfixTransportSessionOptionsTemplates).";
 }
 leaf transportSessionStartTime {

Linowski, et al. Expires April 22, 2011 [Page 76]

Internet-Draft YANG Language Abstractions October 2010

 type yang:date-and-time;
 description "Timestamp of the start of the given Transport
 Session... ";
 }
 leaf transportSessionDiscontinuityTime {
 type yang:date-and-time;
 description "Timestamp of the most recent occasion at which
 one or more of the Transport Session counters suffered a
 discontinuity... ";
 reference "RFC5815, Section 8
 (ipfixTransportSessionDiscontinuityTime).";
 }
 list template {
 description "This list contains the Templates and Options
 Templates that are transmitted by the Exporting Process
 or received by the Collecting Process.
 Withdrawn or invalidated (Options) Template MUST be removed
 from this list.";
 uses templateParameters;
 }
 }

 /***
 * Main container
 ***/

 container ipfix {
 description "Top-level node of the IPFIX/PSAMP configuration
 data model.";

 ct:instance-list collectingProcess {
 if-feature collector;
 ct:instance-type CollectingProcess;
 }

 ct:instance-list observationPoint {
 if-feature meter;
 ct:instance-type ObservationPoint;
 }

 ct:instance-list selectionProcess {
 if-feature meter;
 ct:instance-type SelectionProcess;
 }

 ct:instance-list cache {
 if-feature meter;
 description "Cache of the Monitoring Device.";

Linowski, et al. Expires April 22, 2011 [Page 77]

Internet-Draft YANG Language Abstractions October 2010

 ct:instance-type Cache;
 }

 ct:instance-list exportingProcess {
 if-feature exporter;
 description "Exporting Process of the Monitoring Device.";
 ct:instance-type ExportingProcess;
 }

 }
}
<CODE ENDS>

Authors’ Addresses

 Bernd Linowski
 TCS/Nokia Siemens Networks
 Heltorfer Strasse 1
 Duesseldorf 40472
 Germany

 EMail: bernd.linowski@ext.nsn.com

 Mehmet Ersue
 Nokia Siemens Networks
 St.-Martin-Strasse 53
 Munich 81541
 Germany

 EMail: mehmet.ersue@nsn.com

 Siarhei Kuryla
 360 Treasury Systems
 Grueneburgweg 16-18
 Frankfurt am Main 60322
 Germany

 EMail: s.kuryla@gmail.com

Linowski, et al. Expires April 22, 2011 [Page 78]

Network Working Group J. Schoenwaelder
Internet-Draft Jacobs University
Intended status: Standards Track March 14, 2011
Expires: September 15, 2011

 Translation of SMIv2 MIB Modules to YANG Modules
 draft-schoenw-netmod-smi-yang-02

Abstract

 YANG is a data modeling language used to model configuration and
 state data manipulated by the NETCONF protocol, NETCONF remote
 procedure calls, and NETCONF notifications. The Structure of
 Management Information (SMIv2) defines fundamental data types, an
 object model, and the rules for writing and revising MIB modules for
 use with the SNMP protocol. This document defines a translation of
 SMIv2 MIB modules into YANG modules, enabling read-only access to
 data objects defined in SMIv2 MIB modules via NETCONF.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 15, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Schoenwaelder Expires September 15, 2011 [Page 1]

Internet-Draft Translation of SMIv2 to YANG March 2011

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Schoenwaelder Expires September 15, 2011 [Page 2]

Internet-Draft Translation of SMIv2 to YANG March 2011

Table of Contents

 1. Introduction . 4
 2. Mapping of Special Types 5
 3. Module Prefix Generation 6
 4. Translation of SMIv2 Modules and SMIv2 IMPORT Clauses 7
 4.1. Example: IMPORTS of IF-MIB 8
 5. Translation of the MODULE-IDENTITY Macro 9
 5.1. MODULE-IDENTITY Translation Rules 9
 5.2. Example: MODULE-IDENTITY of IF-MIB 9
 6. Translation of the TEXTUAL-CONVENTION Macro 11
 6.1. TEXTUAL-CONVENTION Translation Rules 11
 6.2. Example: OwnerString and InterfaceIndex of IF-MIB 11
 6.3. Example: IfDirection of the DIFFSERV-MIB 12
 7. Translation of OBJECT IDENTIFIER Assignments 13
 7.1. Object Identifier Assignment Translation Rules 13
 7.2. Example: OBJECT IDENTIFIER Assignments of the IF-MIB . . . 13
 8. Translation of the OBJECT-TYPE Macro 14
 8.1. Scalar and Columnar Object Translation Rules 14
 8.2. Example: ifNumber and ifIndex of the IF-MIB 14
 8.3. Non-Augmenting Conceptual Table Translation Rules 15
 8.4. Example: ifTable of the IF-MIB 16
 8.5. Example: ifRcvAddressTable of the IF-MIB 16
 8.6. Augmenting Conceptual Tables Translation Rules 18
 8.7. Example: ifXTable of the IF-MIB 18
 9. Translation of the OBJECT-IDENTITY Macro 20
 9.1. OBJECT-IDENTITY Translation Rules 20
 9.2. Example: diffServTBParamSimpleTokenBucket of the
 DIFFSERV-MIB . 20
 10. Translation of the NOTIFICATION-TYPE Macro 21
 10.1. NOTIFICATION-TYPE Translation Rules 21
 10.2. Example: linkDown NOTIFICATION-TYPE of IF-MIB 21
 11. YANG Language Extension Definition 24
 12. IANA Considerations . 26
 13. Security Considerations 27
 14. References . 28
 14.1. Normative References 28
 14.2. Informative References 28
 Appendix A. Changes from 01 to 02 29
 Appendix B. Changes from 00 to 01 30
 Author’s Address . 31

Schoenwaelder Expires September 15, 2011 [Page 3]

Internet-Draft Translation of SMIv2 to YANG March 2011

1. Introduction

 This document describes an translation of SMIv2 [RFC2578], [RFC2579],
 [RFC2580] MIB modules into YANG [RFC6020] modules, enabling read-only
 access to data objects defined in SMIv2 MIB modules via NETCONF. The
 mapping is illustrated by examples showing the translation of part of
 the IF-MIB [RFC2863] SMIv2 module and the DIFFSERV-MIB [RFC3289]
 SMIv2 module.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14, [RFC2119].

Schoenwaelder Expires September 15, 2011 [Page 4]

Internet-Draft Translation of SMIv2 to YANG March 2011

2. Mapping of Special Types

 The SMIv2 base types and some well known derived textual-conventions
 are mapped to YANG types according to Table 1. The mapping of the
 OCTET STRING depends on the context. If an OCTET STRING type has an
 associated DISPLAY-HINT, then the corresponding YANG base type is the
 string type. Otherwise, the binary type is used. Similarly, the
 mapping of the INTEGER type depends on its usage as an enumeration or
 a 32-bit integral type.

 Mapping of SMIv2 types to YANG types

 +------------+----------------+-----------------+-------------------+
 | SMIv2 | SMIv2 Type | YANG Module | YANG Type |
 | Module | | | |
 +------------+----------------+-----------------+-------------------+
SNMPv2-SMI	INTEGER		enumeration
SNMPv2-SMI	INTEGER		int32
SNMPv2-SMI	Integer32		int32
SNMPv2-SMI	OCTET STRING		binary
SNMPv2-SMI	OCTET STRING		string
SNMPv2-SMI	OBJECT	ietf-yang-types	object-identifier
	IDENTIFIER		
SNMPv2-SMI	BITS		bits
SNMPv2-SMI	IpAddress	ietf-inet-types	ipv4-address
SNMPv2-SMI	Counter32	ietf-yang-types	counter32
SNMPv2-SMI	Gauge32	ietf-yang-types	gauge32
SNMPv2-SMI	TimeTicks	ietf-yang-types	timeticks
SNMPv2-SMI	Opaque		binary
SNMPv2-SMI	Counter64	ietf-yang-types	counter64
SNMPv2-SMI	Unsigned32		uint32
SNMPv2-TC	PhysAddress	ietf-yang-types	phys-address
SNMPv2-TC	MacAddress	ietf-yang-types	mac-address
SNMPv2-TC	TimeStamp	ietf-yang-types	timestamp
 +------------+----------------+-----------------+-------------------+

 Table 1

 The mappings shown in Table 1 may impact the imports of the generated
 YANG module since some SMIv2 types and textual-conventions map to
 YANG types defined in the ietf-yang-types and ietf-inet-types YANG
 modules [RFC6021]. Implementations must add any additional imports
 required by the type mapping.

Schoenwaelder Expires September 15, 2011 [Page 5]

Internet-Draft Translation of SMIv2 to YANG March 2011

3. Module Prefix Generation

 The input of the prefix generation algorithm is a set of prefixes
 (usually derived from imported module names) and a specific module
 name to be converted into a prefix. The algorithm described below
 produces a prefix for the given module name that is unique within the
 set of prefixes.

 Special prefixes for well known SMIv2 and YANG modules

 +---------------------+--------+
 | YANG / SMIv2 Module | Prefix |
 +---------------------+--------+
 | ietf-yang-types | yang |
 | ietf-inet-types | inet |
 | ietf-yang-smiv2 | smiv2 |
 +---------------------+--------+

 Table 2

 o First, some fixed translations mapping well known SMIv2 and YANG
 modules to short prefixes are tried (see Table 2). If a fixed
 translation rule exists and leads to a conflict free prefix, then
 the fixed translation is used.

 o Otherwise, prefixes are generated by tokenizing an SMIv2 module
 name where hyphens are considered as token separators. The tokens
 derived with a module name are converted to lowercase characters.
 The prefix then becomes the shortest sequence of token
 concatenated using hyphens as separators, which includes at least
 two token and which is unique among all prefixes used in the YANG
 module.

 In the worst case, the prefix derived from an SMIv2 module name
 becomes the SMIv2 module name translated to lower-case. But on
 average, much shorter prefixes are generated.

Schoenwaelder Expires September 15, 2011 [Page 6]

Internet-Draft Translation of SMIv2 to YANG March 2011

4. Translation of SMIv2 Modules and SMIv2 IMPORT Clauses

 SMIv2 modules are mapped to corresponding YANG modules. The YANG
 module name is the same as the SMIv2 module name.

 The YANG namespace is constructed out of a constant prefix followed
 by the SMIv2 module name. Since SMIv2 module names are unique, the
 resulting YANG namespace is unique. The registered prefix is
 urn:ietf:params:xml:ns:yang:smiv2:, see the IANA considerations
 section.

 The YANG prefix is derived from the SMIv2 module name using the
 module prefix generation algorithm described in Section 3. The YANG
 prefix is supposed to be short and it must be unique within the set
 of all prefixes used by a YANG module. The algorithm described in
 Section 3 generates such prefixes.

 SMIv2 IMPORT clauses are translated to YANG import statements. One
 major difference between the SMIv2 import mechanism and the YANG
 import mechanism is that SMIv2 IMPORT clauses import specific symbols
 from an SMIv2 module while the YANG import statement imports all
 symbols of the referenced YANG module.

 SMIv2 imports that are ignored in YANG

 +--------------+--------------------+
 | SMIv2 Module | SMIv2 Symbol |
 +--------------+--------------------+
 | SNMPv2-SMI | MODULE-IDENTITY |
 | SNMPv2-SMI | OBJECT-IDENTITY |
 | SNMPv2-SMI | OBJECT-TYPE |
 | SNMPv2-SMI | NOTIFICATION-TYPE |
 | SNMPv2-SMI | mib-2 |
 | SNMPv2-TC | TEXTUAL-CONVENTION |
 | SNMPv2-CONF | OBJECT-GROUP |
 | SNMPv2-CONF | NOTIFICATION-GROUP |
 | SNMPv2-CONF | MODULE-COMPLIANCE |
 | SNMPv2-CONF | AGENT-CAPABILITIES |
 | SNMPv2-MIB | snmpTraps |
 | SNMPv2-SMI | all symbols |
 | SNMPv2-CONF | all symbols |
 +--------------+--------------------+

 Table 3

 In order to produce correct and complete YANG import statements, it
 is necessary to apply the following rules:

Schoenwaelder Expires September 15, 2011 [Page 7]

Internet-Draft Translation of SMIv2 to YANG March 2011

 o Ignore all imports listed in Table 3. Note that the modules
 SNMPv2-SMI and SNMPv2-CONF are completely ignored since all
 definitions in these modules are translated by translation rules.

 o Add any imports required by the type translations according to the
 type mapping table. This requires to consider all the types used
 in the translation unit.

 The argument of the generated import statements are the untranslated
 SMIv2 module name. The import statement must contain a prefix
 statement. The prefixes are generated by applying the module prefix
 generation algorithm described in Section 3.

4.1. Example: IMPORTS of IF-MIB

 The translation of the IF-MIB [RFC2863] leads to the YANG module
 frame and the import statements shown below. The prefix is the
 translation of the SMIv2 module name IF-MIB to lowercase (consisting
 of two token and thus no further abbreviation).

 module IF-MIB {

 namespace "urn:ietf:params:xml:ns:yang:smiv2:IF-MIB";
 prefix "if-mib";

 import IANAifType-MIB { prefix "ianaiftype-mib"; }
 import SNMPv2-TC { prefix "smiv2-tc"; }
 import ietf-yang-types { prefix "yang"; }
 import ietf-yang-smiv2 { prefix "smiv2"; }
 }

Schoenwaelder Expires September 15, 2011 [Page 8]

Internet-Draft Translation of SMIv2 to YANG March 2011

5. Translation of the MODULE-IDENTITY Macro

 The clauses of the SMIv2 MODULE-IDENTITY macro are mapped to
 equivalent YANG statements.

5.1. MODULE-IDENTITY Translation Rules

 o The SMIv2 ORGANIZATION clause is mapped to the YANG organization
 statement.

 o The SMIv2 CONTACT-INFO clause is mapped to the YANG contact
 statement.

 o The SMIv2 DESCRIPTION clause is mapped to the YANG description
 statement.

 o Each SMIv2 REVISION clause is mapped to a YANG revision statement.
 The revision is identified by the date of contained in the SMIv2
 REVISION. DESCRIPTION sub-clauses of REVISION clauses are mapped
 to corresponding description statement nested in revision clauses.

 o The SMIv2 LAST-UPDATED is ignored if the associated date matches a
 REVISION clause. Otherwise, an additional revision statement is
 generated.

 o The value of the invocation of an SMIv2 MODULE-IDENTITY macro is
 ignored.

 While all proper SMIv2 modules must have a MODULE-IDENTITY macro
 invocation, there are a few notable exceptions. The modules defining
 the SMIv2 language (i.e., the SNMPv2-SMI, SNMPv2-TC, and SNMPv2-CONF
 modules) do not invoke the MODULE-IDENTITY macro. Furthermore, SMIv2
 modules generated out of SMIv1 modules may miss an invocation of the
 MODULE-IDENTITY macro as well. In such cases, it is preferable to
 not generate organization, contact, description, and revision
 statements.

5.2. Example: MODULE-IDENTITY of IF-MIB

 The translation of the MODULE-IDENTITY of the IF-MIB [RFC2863] leads
 to the following YANG statements:

Schoenwaelder Expires September 15, 2011 [Page 9]

Internet-Draft Translation of SMIv2 to YANG March 2011

 organization
 "IETF Interfaces MIB Working Group";

 contact
 "Keith McCloghrie
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, CA 95134-1706
 US

 408-526-5260
 kzm@cisco.com";

 description
 "The MIB module to describe generic objects for network
 interface sub-layers. This MIB is an updated version of
 MIB-II’s ifTable, and incorporates the extensions defined in
 RFC 1229.";

 revision "2000-06-14" {
 description
 "Clarifications agreed upon by the Interfaces MIB WG, and
 published as RFC 2863.";
 }
 revision "1996-02-28" {
 description
 "Revisions made by the Interfaces MIB WG, and published in
 RFC 2233.";
 }
 revision "1993-11-08" {
 description
 "Initial revision, published as part of RFC 1573.";
 }

Schoenwaelder Expires September 15, 2011 [Page 10]

Internet-Draft Translation of SMIv2 to YANG March 2011

6. Translation of the TEXTUAL-CONVENTION Macro

 The SMIv2 uses invocations of the TEXTUAL-CONVENTION macro to define
 new types derived from the SMIv2 base types. Invocations of the
 TEXTUAL-CONVENTION macro are translated into YANG typedef statements.

6.1. TEXTUAL-CONVENTION Translation Rules

 The name of the TEXTUAL-CONVENTION macro invocation is used as the
 name of the generated typedef statement. The clauses of the SMIv2
 TEXTUAL-CONVENTION macro are mapped to YANG statements embedded in
 the typedef statement as follows:

 o The SMIv2 DISPLAY-HINT clause is used to determine the type
 mapping of types derived form the OCTET STRING type as explained
 in Section 2. Furthermore, the DISPLAY-HINT value MAY be used to
 generate a regular expression for the YANG pattern statement
 within the type statement. [[TODO: Define a translation algorithm
 that is simple and produces correct and usable results for the
 majority of simple DISPLAY-HINTS?]]

 o The SMIv2 STATUS clause is mapped to the YANG status statement.
 The generation of the YANG status statement is skipped if the
 value of the STATUS clause is current.

 o The SMIv2 DESCRIPTION clause is mapped to the YANG description
 statement.

 o The SMIv2 REFERENCE clause is mapped to the YANG reference
 statement.

 o The SMIv2 SYNTAX clause is mapped to the YANG type statement.
 SMIv2 range restrictions are mapped to YANG range statements while
 SMIv2 length restrictions are mapped to YANG length statements.
 SMIv2 INTEGER enumerations and SMIv2 BITS are mapped to YANG enum
 / value and bit / position statements.

6.2. Example: OwnerString and InterfaceIndex of IF-MIB

 The translation of the OwnerString and InterfaceIndex textual-
 conventions of the IF-MIB [RFC2863] are shown below.

Schoenwaelder Expires September 15, 2011 [Page 11]

Internet-Draft Translation of SMIv2 to YANG March 2011

 typedef OwnerString {
 type string {
 length "0..255";
 pattern "\p{IsBasicLatin}{0,255}";
 }
 status deprecated;
 description
 "This data type is used to model an administratively
 assigned name of the owner of a resource. This information
 is taken from the NVT ASCII character set. It is suggested
 that this name contain one or more of the following: ASCII
 form of the manager station’s transport address, management
 station name (e.g., domain name), network management
 personnel’s name, location, or phone number. In some cases
 the agent itself will be the owner of an entry. In these
 cases, this string shall be set to a string starting with
 ’agent’.";
 }

 typedef InterfaceIndex {
 type int32 {
 range "1..2147483647";
 }
 description
 "A unique value, greater than zero, for each interface or
 interface sub-layer in the managed system. It is
 recommended that values are assigned contiguously starting
 from 1. The value for each interface sub-layer must remain
 constant at least from one re-initialization of the entity’s
 network management system to the next re-initialization.";
 }

6.3. Example: IfDirection of the DIFFSERV-MIB

 The translation of the IfDirection textual-convention of the
 DIFFSERV-MIB [RFC3289] is shown below.

 typedef IfDirection {
 type enumeration {
 enum inbound { value 1; }
 enum outbound { value 2; }
 }
 description
 "IfDirection specifies a direction of data travel on an
 interface. ’inbound’ traffic is operated on during reception from
 the interface, while ’outbound’ traffic is operated on prior to
 transmission on the interface.";
 }

Schoenwaelder Expires September 15, 2011 [Page 12]

Internet-Draft Translation of SMIv2 to YANG March 2011

7. Translation of OBJECT IDENTIFIER Assignments

 The mapping suppresses many structural OBJECT IDENTIFIER assignments
 that are typically used to organize the OBJECT IDENTIFIER tree.

7.1. Object Identifier Assignment Translation Rules

 o Object identifier assignments through ASN.1 value assignments or
 through the invocation of a MODULE-IDENTITY clause are translated
 to YANG container statements.

 o Top-level container must be marked as config false.

 o Implementations MAY suppress the generation of YANG containers for
 object identifiers that only contain SMIv2 conformance
 definitions.

 [[TODO: What do we do if multiple assignments exist for the same OID
 value?]]

7.2. Example: OBJECT IDENTIFIER Assignments of the IF-MIB

 The translation of the OBJECT IDENTIFIER assignments and the value of
 the MODULE-IDENTITY clause of the IF-MIB [RFC2863] is shown below.

 container interfaces {
 config false;
 // ...
 }

 container ifMIB {
 config false;
 container ifMIBObjects {
 // ...
 }

 container ifConformance {
 container ifGroups {
 // ...
 }
 container ifCompliances {
 // ...
 }
 }
 }

Schoenwaelder Expires September 15, 2011 [Page 13]

Internet-Draft Translation of SMIv2 to YANG March 2011

8. Translation of the OBJECT-TYPE Macro

 The SMIv2 uses the OBJECT-TYPE macro to define objects and the
 structure of conceptual tables. Objects exist either as scalars
 (exactly one instance within an SNMP context) or columnar objects
 (zero or multiple instances within an SNMP context) within conceptual
 tables. A number of auxiliary objects define the index (key) of the
 table. Furthermore, conceptual tables can be augmented by other
 conceptual tables. All these differences must be taken into account
 when mapping SMIv2 OBJECT-TYPE macro invocations to YANG.

8.1. Scalar and Columnar Object Translation Rules

 The SMIv2 OBJECT-TYPE macro invocations defining scalars or columnar
 objects are translated to YANG leaf statements. The name of the leaf
 is the name associated with the SMIv2 OBJECT-TYPE macro invocation.

 o The SMIv2 SYNTAX clause is mapped to the YANG type clause.
 Embedded clauses are generates as described in Section 2.

 o The SMIv2 UNITS clause is mapped to the YANG units statement.

 o The SMIv2 MAX-ACCESS clause is ignored.

 o The SMIv2 STATUS clause is mapped to the YANG status statement.
 The generation of the YANG status statement is skipped if the
 value of the STATUS clause is current.

 o The SMIv2 DESCRIPTION clause is mapped to the YANG description
 statement.

 o The SMIv2 REFERENCE clause is mapped to the YANG reference
 statement.

 o The value of the SMIv2 OBJECT-TYPE macro invocation is ignored.

8.2. Example: ifNumber and ifIndex of the IF-MIB

 The translations of the ifNumber scalar object and the ifIndex
 columnar object of the IF-MIB [RFC2863] are shown below.

Schoenwaelder Expires September 15, 2011 [Page 14]

Internet-Draft Translation of SMIv2 to YANG March 2011

 leaf ifNumber {
 type int32;
 description
 "The number of network interfaces (regardless of their
 current state) present on this system.";
 }

 leaf ifIndex {
 type if-mib:InterfaceIndex;
 description
 "A unique value, greater than zero, for each interface. It
 is recommended that values are assigned contiguously
 starting from 1. The value for each interface sub-layer
 must remain constant at least from one re-initialization of
 the entity’s network management system to the next re-
 initialization.";
 }

8.3. Non-Augmenting Conceptual Table Translation Rules

 An OBJECT-TYPE clause defining a non-augmenting conceptual table is
 translated to a YANG container statement using the name of the table
 OBJECT-TYPE clause. The OBJECT-TYPE clause representing a table row
 is translated to a YANG list statement using the name of the row
 OBJECT-TYPE clause. The rest of the clauses are translated as
 follows:

 o The SMIv2 SYNTAX clause is ignored.

 o The SMIv2 UNITS clause is ignored.

 o The SMIv2 MAX-ACCESS clause is ignored.

 o The SMIv2 STATUS clause is mapped to the YANG status statement.
 The generation of the YANG status statement is skipped if the
 value of the STATUS clause is current.

 o The SMIv2 DESCRIPTION clause is mapped to the YANG description
 statement.

 o The SMIv2 REFERENCE clause is mapped to the YANG reference
 statement.

 o The SMIv2 INDEX clause is mapped to the YANG key clause listing
 the columnar objects forming the key of the YANG list.

 o The value of the SMIv2 OBJECT-TYPE macro invocation is ignored.

Schoenwaelder Expires September 15, 2011 [Page 15]

Internet-Draft Translation of SMIv2 to YANG March 2011

 Within the list statement, YANG leaf statements are created for
 columnar objects as described above. For objects listed in the SMIv2
 INDEX clause that are not part of the conceptual table itself, YANG
 leaf statements of type leafref pointing to the referenced definition
 are created.

8.4. Example: ifTable of the IF-MIB

 The translation of the definition of the ifTable of the IF-MIB
 [RFC2863] is shown below.

 container ifTable {
 description
 "A list of interface entries. The number of entries is
 given by the value of ifNumber.";

 list ifEntry {
 key "ifIndex";
 description
 "An entry containing management information applicable to a
 particular interface.";

 // ...
 }
 }

8.5. Example: ifRcvAddressTable of the IF-MIB

 The translation of the definition of the ifRcvAddressTable of the IF-
 MIB [RFC2863] is shown below.

Schoenwaelder Expires September 15, 2011 [Page 16]

Internet-Draft Translation of SMIv2 to YANG March 2011

 container ifRcvAddressTable {
 description
 "This table contains an entry for each address (broadcast,
 multicast, or uni-cast) for which the system will receive
 packets/frames on a particular interface, except as follows:

 - for an interface operating in promiscuous mode, entries
 are only required for those addresses for which the system
 would receive frames were it not operating in promiscuous
 mode.

 - for 802.5 functional addresses, only one entry is
 required, for the address which has the functional address
 bit ANDed with the bit mask of all functional addresses for
 which the interface will accept frames.

 A system is normally able to use any unicast address which
 corresponds to an entry in this table as a source address.";

 list ifRcvAddressEntry {
 key "ifIndex ifRcvAddressAddress";
 description
 "A list of objects identifying an address for which the
 system will accept packets/frames on the particular
 interface identified by the index value ifIndex.";

 leaf ifIndex {
 type leafref {
 path "/if-mib:interfaces/if-mib:ifTable" +
 "/if-mib:ifEntry/if-mib:ifIndex";
 }
 description
 "[Automatically generated leaf for a foreign index.]";
 }

 leaf ifRcvAddressAddress {
 type yang:phys-address;
 description
 "An address for which the system will accept packets/frames
 on this entry’s interface.";
 }

 // ...
 }
 }

Schoenwaelder Expires September 15, 2011 [Page 17]

Internet-Draft Translation of SMIv2 to YANG March 2011

8.6. Augmenting Conceptual Tables Translation Rules

 An OBJECT-TYPE clause defining an augmenting conceptual table is
 translated to a YANG container statement using the name of the table
 OBJECT-TYPE clause. The OBJECT-TYPE clause representing a table row
 is translated to a YANG augment statement using the path to the
 augmented table. The rest of the clauses are translated as follows:

 o The SMIv2 SYNTAX clause is ignored.

 o The SMIv2 UNITS clause is ignored.

 o The SMIv2 MAX-ACCESS clause is ignored.

 o The SMIv2 STATUS clause is mapped to the YANG status statement.
 The generation of the YANG status statement is skipped if the
 value of the STATUS clause is current.

 o The SMIv2 DESCRIPTION clause is mapped to the YANG description
 statement.

 o The SMIv2 REFERENCE clause is mapped to the YANG reference
 statement.

 o The value of the SMIv2 OBJECT-TYPE macro invocation is ignored.

 Within the augment statement, YANG leaf nodes are created as
 described above.

8.7. Example: ifXTable of the IF-MIB

 The translation of the definition of the ifXTable of the IF-MIB
 [RFC2863] is shown below.

 container ifXTable {
 description
 "A list of interface entries. The number of entries is
 given by the value of ifNumber. This table contains
 additional objects for the interface table."

 augment "/if-mib:interfaces/if-mib:ifTable" +
 "/if-mib:ifEntry" {
 description
 "An entry containing additional management information
 applicable to a particular interface.";

 // ...
 }

Schoenwaelder Expires September 15, 2011 [Page 18]

Internet-Draft Translation of SMIv2 to YANG March 2011

 }

Schoenwaelder Expires September 15, 2011 [Page 19]

Internet-Draft Translation of SMIv2 to YANG March 2011

9. Translation of the OBJECT-IDENTITY Macro

 Invocations of the OBJECT-IDENTITY macro are translated into YANG
 container statements.

9.1. OBJECT-IDENTITY Translation Rules

 The name of the OBJECT-IDENTITY macro invocation is used as the name
 of the generated container statement. Any generated top-level
 container must be marked as config false. The clauses of the SMIv2
 OBJECT-IDENTITY macro are mapped to YANG statements as follows:

 o The SMIv2 STATUS clause is mapped to the YANG status statement.
 The generation of the YANG status statement is skipped if the
 value of the STATUS clause is current.

 o The SMIv2 DESCRIPTION clause is mapped to the YANG description
 statement.

 o The SMIv2 REFERENCE clause is mapped to the YANG reference
 statement.

9.2. Example: diffServTBParamSimpleTokenBucket of the DIFFSERV-MIB

 The translation of the diffServTBParamSimpleTokenBucket of the
 DIFFSERV-MIB [RFC3289] is shown below.

 container diffServTBParamSimpleTokenBucket {
 description
 "Two Parameter Token Bucket Meter as described in the Informal
 Differentiated Services Model section 5.2.3.";
 }

 [[TODO: Should we in addition generate toplevel YANG identities so
 that definitions can be referenced from new YANG modules? See the
 example below (which assumes we provide an smiv2:object-identity
 base).]]

 identity diffServTBParamSimpleTokenBucket {
 base "smiv2:object-identity";
 description
 "Two Parameter Token Bucket Meter as described in the Informal
 Differentiated Services Model section 5.2.3.";
 }

Schoenwaelder Expires September 15, 2011 [Page 20]

Internet-Draft Translation of SMIv2 to YANG March 2011

10. Translation of the NOTIFICATION-TYPE Macro

 The SMIv2 provides the NOTIFICATION-TYPE macro to define
 notifications. YANG provides the notification statement for the same
 purpose.

10.1. NOTIFICATION-TYPE Translation Rules

 The name of the NOTIFICATION-TYPE macro invocation is used as the
 name of the generated notification statement. The clauses of the
 NOTIFICATION-TYPE macro are mapped to YANG statements embedded in the
 notification statement as follows.

 o The SMIv2 OBJECTS clause is mapped to a sequence of YANG
 containers. For each object listed in the OBJECTS clause value, a
 YANG container statement is generated. The name of this container
 is the name of the notification and the name of the current
 concatenated by a hyphen. If the current object belongs a
 conceptual table, then a sequence of leaf statements is generated
 for each INDEX of the SMIv2 conceptual table. Next, a leaf
 statement is generated for the current object. All container
 leafs are marked as config false.

 o The SMIv2 STATUS clause is mapped to the YANG status statement.
 The generation of the YANG status statement is skipped if the
 value of the STATUS clause is current.

 o The SMIv2 DESCRIPTION clause is mapped to the YANG description
 statement.

 o The SMIv2 REFERENCE clause is mapped to the YANG reference
 statement.

 o The value of the SMIv2 NOTIFICATION-TYPE macro invocation is
 ignored.

10.2. Example: linkDown NOTIFICATION-TYPE of IF-MIB

 The translation of the linkDown notification of the IF-MIB [RFC2863]
 is shown below.

 notification linkDown {
 description
 "A linkDown trap signifies that the SNMP entity, acting in
 an agent role, has detected that the ifOperStatus object for
 one of its communication links is about to enter the down
 state from some other state (but not from the notPresent
 state). This other state is indicated by the included value

Schoenwaelder Expires September 15, 2011 [Page 21]

Internet-Draft Translation of SMIv2 to YANG March 2011

 of ifOperStatus.";

 container linkDown-ifIndex {
 config false;
 leaf ifIndex {
 type leafref {
 path "/if-mib:interfaces/if-mib:ifTable" +
 "/if-mib:ifEntry/if-mib:ifIndex";
 }
 description
 "[Automatically generated leaf for a notification.]";
 }
 }

 container linkDown-ifAdminStatus {
 config false;
 leaf ifIndex {
 type leafref {
 path "/if-mib:interfaces/if-mib:ifTable" +
 "/if-mib:ifEntry/if-mib:ifIndex";
 }
 description
 "[Automatically generated leaf for a notification.]";
 }
 leaf ifAdminStatus {
 type enumeration {
 enum up { value 1; }
 enum down { value 2; }
 enum testing { value 3; }
 }
 description
 "The desired state of the interface. The testing(3) state
 indicates that no operational packets can be passed. When a
 managed system initializes, all interfaces start with
 ifAdminStatus in the down(2) state. As a result of either
 explicit management action or per configuration information
 retained by the managed system, ifAdminStatus is then
 changed to either the up(1) or testing(3) states (or remains
 in the down(2) state).";
 }
 }

 container linkDown-ifOperStatus {
 config false;
 leaf ifIndex {
 type leafref {
 path "/if-mib:interfaces/if-mib:ifTable" +
 "/if-mib:ifEntry/if-mib:ifIndex";

Schoenwaelder Expires September 15, 2011 [Page 22]

Internet-Draft Translation of SMIv2 to YANG March 2011

 }
 description
 "[Automatically generated leaf for a notification.]";
 }
 leaf ifOperStatus {
 type enumeration {
 enum up { value 1; }
 enum down { value 2; }
 enum testing { value 3; }
 enum unknown { value 4; }
 enum dormant { value 5; }
 enum notPresent { value 6; }
 enum lowerLayerDown { value 7; }
 }
 description
 "The current operational state of the interface. The
 testing(3) state indicates that no operational packets can
 be passed. If ifAdminStatus is down(2) then ifOperStatus
 should be down(2). If ifAdminStatus is changed to up(1)
 then ifOperStatus should change to up(1) if the interface is
 ready to transmit and receive network traffic; it should
 change to dormant(5) if the interface is waiting for
 external actions (such as a serial line waiting for an
 incoming connection); it should remain in the down(2) state
 if and only if there is a fault that prevents it from going
 to the up(1) state; it should remain in the notPresent(6)
 state if the interface has missing (typically, hardware)
 components.";
 }
 }
 }

Schoenwaelder Expires September 15, 2011 [Page 23]

Internet-Draft Translation of SMIv2 to YANG March 2011

11. YANG Language Extension Definition

 This section defines some YANG extension statements that can be used
 to carry additional information from the original SMIv2 module into
 the YANG module. The YANG module references [RFC2578] and [RFC2579].

 <CODE BEGINS> file "ietf-yang-smiv2@2011-03-14.yang"

module ietf-yang-smiv2 {

 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-smiv2";
 prefix "smiv2";

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 WG Chair: David Kessens
 <mailto:david.kessens@nsn.com>

 WG Chair: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>

 Editor: Juergen Schoenwaelder
 <mailto:j.schoenwaelder@jacobs-university.de>";

 description
 "This module defines YANG extensions that are used to translate
 SMIv2 concepts into YANG.

 Copyright (c) 2011 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";
 // RFC Ed.: replace XXXX with actual RFC number and remove this note

 // RFC Ed.: please update the date to the date of publication

Schoenwaelder Expires September 15, 2011 [Page 24]

Internet-Draft Translation of SMIv2 to YANG March 2011

 revision 2011-03-14 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: Translation of SMIv2 MIB Modules to YANG Modules";
 // RFC Ed.: replace XXXX with actual RFC number and remove this note
 }

 extension oid {
 argument "value";
 description
 "The oid statement takes as an argument the object identifier
 assigned to an SMIv2 definition. The object identifier value
 is written in decimal dotted notation.";
 reference
 "RFC2578: Structure of Management Information Version 2 (SMIv2)";
 }

 extension display-hint {
 argument "format";
 description
 "The display-hint statement takes as an argument the DISPLAY-HINT
 assigned to an SMIv2 textual convention.";
 reference
 "RFC2579: Textual Conventions for SMIv2";
 }

 extension max-access {
 argument "access";
 description
 "The max-access statement takes as an argument the MAX-ACCESS
 assigned to an SMIv2 object definition";
 reference
 "RFC2578: Structure of Management Information Version 2 (SMIv2)";
 }

 extension defval {
 argument "value";
 description
 "The defval statement takes as an argument a default value defined
 by an SMIv2 DEFVAL clause.";
 reference
 "RFC2578: Structure of Management Information Version 2 (SMIv2)";
 }

}

 <CODE ENDS>

Schoenwaelder Expires September 15, 2011 [Page 25]

Internet-Draft Translation of SMIv2 to YANG March 2011

12. IANA Considerations

 This document registers two URIs in the IETF XML registry [RFC3688].
 Following the format in RFC 3688, the following registrations have
 been made.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-smiv2

 Registrant Contact: The NETMOD WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:smiv2

 Registrant Contact: The NETMOD WG of the IETF.

 XML: N/A, the requested URI is an XML namespace.

 This document registers a YANG module in the YANG Module Names
 registry [RFC6020].

 name: ietf-yang-smiv2
 namespace: urn:ietf:params:xml:ns:yang:ietf-yang-smiv2
 prefix: smiv2
 reference: RFC XXXX

Schoenwaelder Expires September 15, 2011 [Page 26]

Internet-Draft Translation of SMIv2 to YANG March 2011

13. Security Considerations

 This document defines a translation of the SMIv2 data modeling
 language to the YANG data modeling language. The translation itself
 has no security impact on the Internet.

 Users of translated SMIv2 data models that have been published as
 RFCs should consult the security considerations of the respective
 RFCs. In addition, the security considerations for the NETCONF
 protocol [RFC4741] should be consulted to understand how NETCONF
 protects potentially sensitive information.

Schoenwaelder Expires September 15, 2011 [Page 27]

Internet-Draft Translation of SMIv2 to YANG March 2011

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2",
 STD 58, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 58, RFC 2580,
 April 1999.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6021] Schoenwaelder, J., "Common YANG Data Types", RFC 6021,
 October 2010.

14.2. Informative References

 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group
 MIB", RFC 2863, June 2000.

 [RFC3289] Baker, F., Chan, K., and A. Smith, "Management Information
 Base for the Differentiated Services Architecture",
 RFC 3289, May 2002.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 January 2004.

 [RFC4741] Enns, R., "NETCONF Configuration Protocol", RFC 4741,
 December 2006.

Schoenwaelder Expires September 15, 2011 [Page 28]

Internet-Draft Translation of SMIv2 to YANG March 2011

Appendix A. Changes from 01 to 02

 o Preserving the SMIv2 nesting instead of a flat translation.

 o Inlined the examples to avoid page flipping exercises.

 o Clarifications and several editorial improvements.

Schoenwaelder Expires September 15, 2011 [Page 29]

Internet-Draft Translation of SMIv2 to YANG March 2011

Appendix B. Changes from 00 to 01

 o Translation is config false; top-level container are marked as
 config false.

 o Revised the overall document structure, added a YANG module for
 the definition of YANG extensions (smiv2:oid, smiv2:display-hint,
 smiv2:max-access, smiv2:defval), moved the IF-MIB example into an
 appendix.

 o Alignment with RFC 6020 and RFC 6021.

 o Started to use [[TODO]] markers inside the text instead of
 maintaining a TODO list as an appendix.

Schoenwaelder Expires September 15, 2011 [Page 30]

Internet-Draft Translation of SMIv2 to YANG March 2011

Author’s Address

 Juergen Schoenwaelder
 Jacobs University

 Email: j.schoenwaelder@jacobs-university.de

Schoenwaelder Expires September 15, 2011 [Page 31]

	draft-bjorklund-netmod-interfaces-cfg-00
	draft-bjorklund-netmod-snmp-cfg-00
	draft-chen-netmod-yang-ext-00
	draft-ietf-ipfix-configuration-model-09
	draft-ietf-netconf-access-control-03
	draft-ietf-netconf-system-notifications-03
	draft-ietf-netconf-with-defaults-14
	draft-ietf-netmod-arch-10
	draft-ietf-netmod-dsdl-map-10
	draft-ietf-netmod-yang-usage-11
	draft-lhotka-netmod-routing-cfg-00
	draft-linowski-netmod-yang-abstract-04
	draft-schoenw-netmod-smi-yang-02

