
P2PSIP Working Group A. Knauf
Internet-Draft G. Hege
Intended status: Standards Track T C. Schmidt
Expires: September 8, 2011 HAW Hamburg
 M. Waehlisch
 link-lab & FU Berlin
 March 07, 2011

 A Usage for Shared Resources in RELOAD (ShaRe)
 draft-knauf-p2psip-share-00

Abstract

 This document defines a RELOAD Usage for shared write access to
 RELOAD Resources. Shared Resources in RELOAD (ShaRe) form a basic
 primitive for enabling various coordination and notification schemes
 among distributed peers. Access in ShaRe is controlled by a
 hierarchical trust delegation scheme maintained within an access
 list. A new USER-CHAIN-ACL access policy allows authorized peers to
 write a Shared Resource without owning its corresponding certificate.
 This specification also adds mechanisms to store Resources with a
 variable name which is useful whenever peer-independent rendezvous
 processes are required.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 8, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

Knauf, et al. Expires September 8, 2011 [Page 1]

Internet-Draft ShaRe March 2011

 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Shared Resources in RELOAD 5
 4. Access List Definition . 6
 4.1. Access List . 6
 4.2. Data Structure . 7
 5. Access Control to Shared Resources 9
 5.1. Granting Write Access 9
 5.2. Revoking Write Access 9
 5.3. Storage and Validation 10
 5.3.1. Operations of the Storing Peer 10
 5.3.2. Operations of the Accessing Peer 10
 5.4. USER-CHAIN-ACL Access Policy 11
 6. Extension for Variable Resource Names 13
 6.1. USER-PATTERN-MATCH Access Policy 13
 6.2. Overlay Configuration Document Extension 14
 7. Security Considerations 15
 7.1. Resource Exhaustion 15
 7.2. Malicious or Misbehaving Storing Peer 15
 7.3. Privacy Issues . 15
 8. IANA Considerations . 16
 9. Acknowledgments . 17
 10. References . 18
 10.1. Normative References 18
 10.2. Informative References 18
 Authors’ Addresses . 19

Knauf, et al. Expires September 8, 2011 [Page 2]

Internet-Draft ShaRe March 2011

1. Introduction

 This document defines a RELOAD Usage for shared write access to
 RELOAD Resources and a mechanism to store Resources with a variable
 name. The Usage for Shared Resources in RELOAD (ShaRe) enables
 overlay users to share their exclusive write access of specific
 Resource/Kind pairs with others. Shared Resources form a basic
 primitive for enabling various coordination and notification schemes
 among distributed peers. Write permission is controlled by an Access
 List Kind that maintains a chain of Authorized Peers for a particular
 Shared Resource. Additionally, this document defines the USER-CHAIN-
 ACL access control policy that enables a shared write access in
 RELOAD.

 The Usage for Shared Resources in RELOAD is designed for jointly
 coordinated group applications among distributed peers (c.f.
 [I-D.knauf-p2psip-disco]). Of particular interest are rendezvous
 processes, where a single identifier is linked to multiple, dynamic
 instances of a distributed cooperative service. Shared write access
 is based on a trust delegation mechanism. It transfers the
 authorization to write a specific Kind data by storing logical Access
 Lists. An Access list contains the Kind-ID of the Kind to be shared
 and contains trust delegations from one authorized to another
 (previously unauthorized) user.

 Shared write access extends the RELOAD security model, which is based
 on the restriction that peers are only allowed to write resources at
 a small set of well defined locations (Resource IDs) in the overlay.
 Using the standard access control rules in RELOAD, these locations
 are bound to the user name or Node Id in the peer’s certificate.
 This document extends these policies and allows a controlled write
 access for multiple users at a common Resource Id.

 Additionally, this specification defines a new access control policy
 that enables RELOAD users to store Resources with a variable Resource
 Name. The USER-PATTERN-MATCH policy allows the storage of Resources
 whose name complies to a specific pattern. Definition of the pattern
 is arbitrary, but must contain the user name of the Resource creator.

Knauf, et al. Expires September 8, 2011 [Page 3]

Internet-Draft ShaRe March 2011

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 This document uses the terminology and definitions from the RELOAD
 base [I-D.ietf-p2psip-base]and the peer-to-peer SIP concepts draft
 [I-D.ietf-p2psip-concepts]. Additionally, the following terms are
 used:

 Shared Resource: The term Shared Resource in this document defines a
 RELOAD Resource with its associated Kinds, that can be written or
 overwritten by multiple RELOAD users following the specifications
 in this document.

 Access List: The term Access List in this document defines a logical
 list of RELOAD users allowed to write a specific RELOAD Resource/
 Kind pair by following the specifications in this document. The
 list items are stored as Access List Kinds that map trust
 delegations from user A to user B, where A is allowed to write a
 Shared Resource and Access List, while B is a user that obtains
 write access to specified Kinds from A.

 Resource Owner: The term Resource Owner in this document defines a
 RELOAD peer that initially stored a Resource to be shared. The
 Resource Owner possesses the RELOAD certificate that grants write
 access to a specific Resource/Kind pair using the RELOAD
 certificate based access control policies.

 Authorized Peer: The term Authorized Peer in this document defines a
 RELOAD peer that was granted write access to a Shared Resource by
 permission of the Resource Owner or another Authorized Peer.

Knauf, et al. Expires September 8, 2011 [Page 4]

Internet-Draft ShaRe March 2011

3. Shared Resources in RELOAD

 A RELOAD user that owns a certificate for writing at a specific
 overlay location can provide one or more RELOAD Kinds that are
 designated for a shared write access with other RELOAD users. The
 mechanism to share those Resource/Kind pairs with a group of users
 consists of two basic steps. Storage of the Resource/Kind pair to be
 shared and storage of an Access List to those Kinds. Access Lists
 are initiated by the Resource Owner and contain Access List items,
 each delegating the permission to write the shared Kind to a specific
 user called Authorized Peer. This trust delegation to the Authorized
 Peer can include the right to further delegate the write permission
 to the Shared Resource. For each shared Kind data, the Resource
 owner stores a root item that initiates an Access List. The result
 is a tree of trust delegations with the Resource Owner as trust
 anchor.

 The Resource/Kind pair to be shared can be any RELOAD Kind that
 complies to the following specifications:

 Separated Data Storage: The specifications in this document ensure
 that concurrent writing does not effect race conditions. Each
 data stored within a Shared Resource MUST be exclusively
 maintained by the RELOAD user that created it. Hence, Usages that
 allow the storage of Shared Resources MUST use a RELOAD data model
 consisting of multiple objects (e.g. Array or Dictionary), each
 assigned to a single user.

 Access Control Policy: To ensure write access to Shared Resource by
 Authorized Peers, each Usage MUST permit the USER-CHAIN-ACL access
 policy (see Section 5.4) in addition to its regular access
 policies (USER-MATCH, USER-NODE-MATCH, etc.).

 user_name field: To identify the originator of a stored value, the
 Kind data structure of a Resource allowing shared write access
 MUST define a <0..2^16-1> long opaque user_name value. It
 contains the user name value of the RELOAD certificate which was
 used to store and sign Kind data. The user_name field allows any
 consumer of the data to request the public key certificate of the
 originator of the stored data and to verify its provenance and
 integrity.

Knauf, et al. Expires September 8, 2011 [Page 5]

Internet-Draft ShaRe March 2011

4. Access List Definition

4.1. Access List

 An Access List in this document specifies a logical list of
 AccessList data structures defined in Section 4.2. Each entry
 delegates write access to specific Kind data and is stored at the
 same overlay location as the Shared Resource. It allows the RELOAD
 user who is authorized to write at a specific Resources-ID to
 delegate his exclusive write access for the specified Kinds to
 further users of a RELOAD instance. Each Access List data structure
 therefore carries the information about who delegates write access to
 whom, the Kind-ID of the Resource to be shared, and whether
 delegation includes write access to the Access List itself. The
 latter condition grants the right to delegate write access further
 for an Authorized Peer. Access Lists are stored within a RELOAD
 array data model and are initially created by the Resource Owner.

 Figure 1 shows an example of an Access List. The array entry at
 index #0 displays the initial storage of an Access list to a Shared
 Resource with Kind-ID 1234 at the same Resource-ID. It represents
 the root item of the trust delegation tree to the shared RELOAD Kind
 and initiates an Access List to the specified Kind data. The root
 entry MUST contain the mapping from Resource owner to Resource owner
 and MUST only be written by the owner of the public key certificate
 to this Resource-ID.

 The array entry at index #1 represents the first trust delegation to
 an Authorized peer that is permitted write access to the Shared
 Resource with Kind-ID 1234. Additionally, the Authorized peer Alice
 is also granted write access to the Access List as indicated by the
 allow_delegation flag (AD) set to 1. It authorizes Alice to store
 further trust delegations to the Shared Resource, respectively, store
 items into the Access List. For instance, Alice permits Bob to
 access the Shared Resource, but Bob in turn is not allowed to write
 the Access List (AD = 0). The Authorized Peer Alice signs the Access
 List item with her own private key.

 In order to share multiple Kinds at a single location, the Resource
 Owner can initiate new Access Lists that are referencing to another
 Kind-IDs as shown in array entry index #42. Note that overwriting
 existing items in an Access List that reference a different Kind-ID,
 revokes all succeeding trust delegations in the tree. Hence,
 Authorized Peers are not enabled to overwrite any existing Access
 List item (see Section 5.2). The Resource Owner is allowed to
 overwrite existing Access List items, but should be aware of its
 consequences.

Knauf, et al. Expires September 8, 2011 [Page 6]

Internet-Draft ShaRe March 2011

 +---+
 | Access List |
 +--------------------------------------+----+-----------------+
 | # | Array Entries | AD | Signature |
 +---+----------------------------------+----+-----------------+
 | 0 | Kind:1234 from:Owner -> to:Owner | 1 | signed by Owner |
 +---+----------------------------------+----+-----------------+
 | 1 | Kind:1234 from:Owner -> to:Alice | 1 | signed by Owner |
 +---+----------------------------------+----+-----------------+
 | 2 | Kind:1234 from:Alice -> to:Bob | 0 | signed by Alice |
 +---+----------------------------------+----+-----------------+
 |...| ... | | ... |
 +---+----------------------------------+----+-----------------+
 | 42| Kind:4321 from:Owner -> to:Owner | 1 | signed by Owner |
 +---+----------------------------------+----+-----------------+
 | 43| Kind:4321 from:Owner -> to:Carol | 0 | signed by Owner |
 +---+----------------------------------+----+-----------------+

 Figure 1: Access list example

 Implementations of ShaRe should be aware that the trust delegation in
 an Access List is not loop free per se. Self-contained circular
 trust delegation from A to B and B to A are possible, even though not
 very meaningful.

4.2. Data Structure

 The Kind data structure for the access list is defined as follows:

 struct {
 opaque resource_name<0..2^16-1>;
 KindId kind;
 opaque from_user<0..2^16-1>;
 opaque to_user<0..2^16-1>;
 Boolean allow_delegation;
 } AccessListData;

 struct {
 uint16 length;
 AccessListData data;
 } AccessListItem;

 The AccessListItem structure is composed of:

 length:
 Length of the Access List data structure
 data:

Knauf, et al. Expires September 8, 2011 [Page 7]

Internet-Draft ShaRe March 2011

 Data of the Access List

 The content of the AccessListData structure is defined as follows:

 resource_name: This opaque string contains the Resource Name of the
 Shared Resource in an opaque string. Thus, the AccessListData
 meet the requirements for the USER-PATTERN-MATCH access policy
 (see Section 6.1).

 kind: This field contains the Kind-ID of the Kind that will be
 shared.

 from_user: This field contains the user name of that RELOAD peer the
 grants write permission to the Shared Resource. The user name is
 stored as an opaque string and contains the user name value of the
 certificate that is associated with the private key that signed
 this Access List item.

 to_user: This field contains the user name of the RELOAD peer that
 obtains writing permission to the Shared Resource.

 allow_delegation: This Boolean flag indicates if true, that the
 Authorized peer in the ’to_user’ field is allowed write access to
 the Access List in order to delegate the write permission to the
 Shared Resource to further users.

 The ACCESS-LIST kind is defined as follows:

 Name ACCESS-LIST

 Data model The Data model for the ACCESS-LIST data is array.

 Access Control Initial storages of ACCESS-LIST data by the Resource
 Owner use the same Access Control Policy as the Shared Resource.
 For instance, if the access policy for the Shared Resource is
 USER-NODE-MATCH, then the access policy for the ACCESS-LIST data
 is USER-NODE-MATCH. Storages by Authorized Peers use the USER-
 CHAIN-ACL access policy (see Section 5.4).

Knauf, et al. Expires September 8, 2011 [Page 8]

Internet-Draft ShaRe March 2011

5. Access Control to Shared Resources

5.1. Granting Write Access

 Write access to a Kind that is intended to be shared with other
 RELOAD users can solely be issued by the Resource Owner. If the
 Resource owner shares an existing Resource/Kind pair, it should
 ensure that it does not unintentionally overwrite an existing Access
 List item. Hence, before sharing the Resource, its owner performs a
 fetch request for the Access List Kind that requests the entire
 array. If the retrieved array does not contain an Access List root
 item to the desired Kind, the Resource Owner stores a new root item
 for the desired Kind-ID and sets the AccessListData vales ’from_user’
 and ’to_user’ to the user name of the Resource Owner. If an Access
 List root item exists, the Resource Owner delegates write access by
 storing an Access List item setting the ’from_user’ to its user name
 and setting the ’to_user’ equal to the name of the RELOAD user that
 obtains write access.

 If an Authorized Peer intents to delegate write access to a Shared
 Resource, it likewise fetches the entire array of the Access List
 Kind to prevent an unauthorized write attempt to an existing Access
 List item. Afterwards it delegates write access to the specified
 Kind by storing an Access List item setting the ’from_user’ value to
 its own user name and setting the ’to_user’ value to RELOAD user that
 obtains write access. Note, that an Authorized Peer is only allowed
 to add items into an Access List it is registered in with the
 ’allow_delegation’ flag set to true.

5.2. Revoking Write Access

 Write permissions MAY be revoked by storing a non-existent value
 [I-D.ietf-p2psip-base] to the corresponding item in the Access
 Control List. A revoked permission automatically invalidates all
 delegations performed by that user and also all subsequent
 delegations. This allows to invalidate entire subtrees of the
 delegations tree with only a single operation. Overwriting the root
 item with a non-existent value of an Access List invalidates the
 entire delegations tree.

 An Access List item MUST only be written by the user who initially
 stored the corresponding entry. The only exception is by the
 Resource Owner that is allowed to overwrite Access list items at all
 times with a non-existent value for revoking write access.

Knauf, et al. Expires September 8, 2011 [Page 9]

Internet-Draft ShaRe March 2011

5.3. Storage and Validation

5.3.1. Operations of the Storing Peer

 The storing peer (the peer at which Shared Resource and Access List
 are physically stored) is responsible for enforcing the correct
 access policy when it is requested to store values of a Shared
 Resource. The storing peer first checks, whether the request is
 signed with the private key that corresponds to a certificate valid
 for this Resource-ID as enforced by the standard access policies
 (USER-MATCH, USER-NODE-MATCH, etc.) defined in the RELOAD base
 protocol [I-D.ietf-p2psip-base], or the policy USER-PATTERN-MATCH
 defined in this document (see Section 6.1).

 If not, the storing peer continues by checking whether any of the
 received RELOAD Kinds of the store request allows the USER-CHAIN-ACL
 access control policy. If so, the storing peer fetches the Access
 Lists for those Kinds and enforce the USER-CHAIN-ACL access policy
 (see Section 5.4). Since the Access list MUST be stored at the same
 overlay location as the Shared Resource, this operation is a local
 lookup.

 Analogously, a storing peer that is requested to store an Access List
 Kind first verifies whether the requester is allowed to store values
 at this Resource-ID by its certificate. Otherwise the storing peer
 MUST locally fetch the Access List of the requested Resource Id and
 enforce the USER-CHAIN-ACL policy.

5.3.2. Operations of the Accessing Peer

 An accessing peer (a RELOAD peer that fetches a Shared Resource)
 SHOULD validate the provenance and integrity of a retrieved data
 value and the authorization of the data originator. The latter is
 verified using the Access List Kind. The accessing peer requests all
 Access Lists that are stored under the same Resource-ID as the Shared
 Resource by requesting the entire array range. This request could be
 sent in the same fetch request as the request for the Shared
 Resource. The accessing peer then checks, whether any of these
 Access Lists refers to the Kind of Shared Resource by its Kind-ID.
 If true, the accessing peer compares the ’to_user’ value of each
 Access List item with the mandatory user_name value of the Shared
 Resource for equality. If the comparison fails, the accessing peer
 MUST ignore the data of the retrieved Shared Resource. Else, the
 accessing peer repeats this comparison with the value of the
 ’from_user’ field of this item with each ’to_user’ field of the
 Access List. This procedure continues until both ’from_user’ and
 ’to_user’ values are equal. The accessing peer then hashes the
 ’from_user’ using the hash function of the overlay algorithm. If the

Knauf, et al. Expires September 8, 2011 [Page 10]

Internet-Draft ShaRe March 2011

 hash is equal to the Resource-ID of the Shared Resource, the
 authority of the originator of the stored data is validated. The
 accessing peer then proceeds with the provenance and integrity tests.

 The accessing peer verifies provenance and integrity of the retrieved
 kind data using the certificate corresponding to the mandatory
 user_name field of the Shared Resource entry. The certificate can be
 retrieved by applying the Certificate Usage [I-D.ietf-p2psip-base] or
 other means (e.g., caching from a previous request).

 The accessing peer MAY cache previously fetched Access List to a
 maximum of the individual items’ lifetimes. Since stored values
 could have been changed or invalidated prior to their expiration an
 accessing peer uses a stat request to check for updates before using
 the cached data. If a change has been detected it fetches the latest
 Access List.

5.4. USER-CHAIN-ACL Access Policy

 This document specifies an additional access control policy to the
 RELOAD base draft [I-D.ietf-p2psip-base]. The USER-CHAIN-ACL policy
 allows Authorized Peers to write a Shared Resource, even though they
 do not own the corresponding certificate. Access is controlled by
 the values stored within the Access List Kind that explicitly permits
 Authorized Peers writing access to Shared Resources or the Access
 List (or both) by their user name. Hence, if a request in not signed
 with a private key that allows write access to a Resource by any
 access control policy defined in the RELOAD base specification, a
 storing peer MUST enforce the USER-CHAIN-ACL policy:

 When accessing the Shared Resource, a given value MUST be written or
 overwritten if and only if the request is signed with a key that is
 associated with a certificate whose user name is stored in any
 ’to_user’ value of an Access List associated to the Shared Resource.
 If true, this comparison has to be repeated for the ’from_user’ value
 of that Access List item with each other ’to_user’ value in this
 Access List. This procedure continuous until ’from_user’ and to
 ’to_user’ are equal. Then, if the hash over the ’from_user’ equals
 the Resource-ID, the requester is authorized to write the Shared
 Resource.

 When accessing the Access List, a given value MUST be written or
 overwritten if and only if the request is signed with a key that is
 associated with a certificate whose user name is stored in any
 ’to_user’ value in the same Access List as the requested Access List.
 Additionally, the ’allow_delegate’ value of this Access List item
 MUST be set true. If this query is successes, the comparison has to
 be repeated for the ’from_user’ value of that Access List item with

Knauf, et al. Expires September 8, 2011 [Page 11]

Internet-Draft ShaRe March 2011

 each other ’to_user’ value in the Access List. This procedure
 continuous until ’from_user’ and to ’to_user’ are equal. Then, if
 the hash over the ’from_user’ equals the Resource-ID, the requester
 is authorized to write the Access List.

Knauf, et al. Expires September 8, 2011 [Page 12]

Internet-Draft ShaRe March 2011

6. Extension for Variable Resource Names

 In certain use cases such as conferencing (c.f.
 [I-D.knauf-p2psip-disco]) it is desirable to extend the set of
 Resource Names and thus Resource-IDs a peer is allowed to write
 beyond those defined through the user name or NodeId fields in its
 certificate. This is accomplished by the USER-PATTERN-MATCH access
 policy described here.

 Each RELOAD node uses a certificate to identify itself using its user
 name (or Node-ID) while storing data under a specific Resource-ID.
 The USER-PATTERN-MATCH scheme follows this paradigm by allowing to
 store values whose Resource Name is derived from the user name in the
 certificate of a RELOAD peer, but extends the set of allowed Resource
 Names. This is done by using a Resource Name which contains a
 variable substring but matches the user name in the certificate using
 a pattern defined in the configuration document. Thus despite being
 variable an allowed Resource Name is closely related to the Owner’s
 certificate. A sample pattern might be formed as the following:

 Example Pattern:
 .*-conf-$USER@$DOMAIN

 When defining the pattern care must be taken that no conflict arises
 for two user names of witch one is a substring of the other. In this
 case the peer with the name which is the substring could choose the
 variable part of the Resource Name so that the resulting string
 contains the whole other user name and thus he could write the other
 user’s resources. This can easily be prevented by delimiting the
 variable part of the pattern from the user name part by some fixed
 string, that is usually not part of a user name (e.g. the "-conf-" in
 the above Example).

6.1. USER-PATTERN-MATCH Access Policy

 Thus, using the USER-PATTERN-MATCH policy, a given value MUST be
 written or overwritten if and only if the request is signed with a
 key that is associated with a certificate whose user name matches the
 Resource Name using the pattern specified in the configuration
 document. The Resource Name MUST be taken from an opaque
 resource_name field in the corresponding Kind data structure. Hence,
 each RELOAD Usage that utilizes the USER-PATTERN-MATCH policy, MUST
 define an opaque resource_name field within the Kind data structure,
 that contains the Resource Name whose hash equals the Resource-ID.

Knauf, et al. Expires September 8, 2011 [Page 13]

Internet-Draft ShaRe March 2011

6.2. Overlay Configuration Document Extension

 This document extends the overlay configuration document by defining
 new elements for patterns relating resource names to user names.

 The <variable-resource-names> element serves as a container for one
 or multiple <pattern> sub-elements.

 Each <pattern> element defines the pattern to be used for a single
 Kind. It is of type xsd:string, which is interpreted as a regular
 expression. In the regular expression $USER and $DOMAIN are used as
 variables for the corresponding parts of the string in the
 certificate user name field ($USER before and $DOMAIN after the ’@’).
 Both variables MUST be present in any given pattern. The <pattern>
 element has the attribute "kind" which contains the Kind name for
 which this pattern is used.

 A <pattern> element MUST be present for every Kind for which the
 variable resource names extension is allowed in an overlay.

 The Relax NG Grammar for the Variable Resource Names Extension is:

 <!--
 VARIABLE RESOURCE NAMES ELEMENT
 -->
 parameter &= element variable-resource-names {
 <!--
 RESOURCE NAME PATTERN ELEMENT
 -->
 element pattern {
 attribute kind { xsd:string },
 xsd:string
 }*
 }?

Knauf, et al. Expires September 8, 2011 [Page 14]

Internet-Draft ShaRe March 2011

7. Security Considerations

 In this section we discuss security issues that are relevant to the
 usage of shared resources in RELOAD.

7.1. Resource Exhaustion

 Joining a RELOAD overlay inherently poses a certain resource load on
 a peer, because it has to store and forward data for other peers. In
 common RELOAD semantics, each ResourceId and thus position in the
 overlay may only be written by a limited set of peers - often even
 only a single peer, which limits this burden. In the case of Shared
 Resources, a single resource may be written by multiple peers, who
 may even write an arbitrary number of entries (e.g., delegations in
 the ACL). This leads to an enhanced use of resources at individual
 overlay nodes. The problem of resource exhaustion can easily be
 mitigated for Usages based on the ShaRe-Usage by imposing
 restrictions on the maximum number of entries a single peer is
 allowed to write at a single location.

7.2. Malicious or Misbehaving Storing Peer

 The RELOAD overlay is designed to operate despite the presence of a
 small set of misbehaving peers. This is not different for Shared
 Resources since a small set of malicious peers does not disrupt the
 functionality of the overlay in general, but may have implications
 for the peers needing to store or access information at the specific
 locations in the ID space controlled by a malicious peer. A storing
 peer could withhold stored data which results in a denial of service
 to the group using the specific resource. But it could not return
 forged data, since the validity of any stored data can be
 independently verified using the attached signatures.

7.3. Privacy Issues

 All data stored in the Shared Resource is publicly readable, thus
 applications requiring privacy need to encrypt the data. The ACL
 needs to be stored unencrypted, thus the list members of a group
 using a Shared Resource will always be publicly visible.

Knauf, et al. Expires September 8, 2011 [Page 15]

Internet-Draft ShaRe March 2011

8. IANA Considerations

 TODO: register Kind-ID code point at the IANA

Knauf, et al. Expires September 8, 2011 [Page 16]

Internet-Draft ShaRe March 2011

9. Acknowledgments

 This work was stimulated by fruitful discussions in the P2PSIP
 working group and SAM research group. We would like to thank all
 active members for constructive thoughts and feedback. This work was
 party funded by the German Federal Ministry of Education and
 Research, projects HAMcast and Mindstone.

Knauf, et al. Expires September 8, 2011 [Page 17]

Internet-Draft ShaRe March 2011

10. References

10.1. Normative References

 [I-D.ietf-p2psip-base]
 Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., and
 H. Schulzrinne, "REsource LOcation And Discovery (RELOAD)
 Base Protocol", draft-ietf-p2psip-base-12 (work in
 progress), November 2010.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

10.2. Informative References

 [I-D.ietf-p2psip-concepts]
 Bryan, D., Matthews, P., Shim, E., Willis, D., and S.
 Dawkins, "Concepts and Terminology for Peer to Peer SIP",
 draft-ietf-p2psip-concepts-03 (work in progress),
 October 2010.

 [I-D.knauf-p2psip-disco]
 Knauf, A., Hege, G., Schmidt, T., and M. Waehlisch, "A
 RELOAD Usage for Distributed Conference Control (DisCo)",
 draft-knauf-p2psip-disco-01 (work in progress),
 December 2010.

Knauf, et al. Expires September 8, 2011 [Page 18]

Internet-Draft ShaRe March 2011

Authors’ Addresses

 Alexander Knauf
 HAW Hamburg
 Berliner Tor 7
 Hamburg D-20099
 Germany

 Phone: +4940428758067
 Email: alexander.knauf@haw-hamburg.de
 URI: http://inet.cpt.haw-hamburg.de/members/knauf

 Gabriel Hege
 HAW Hamburg
 Berliner Tor 7
 Hamburg D-20099
 Germany

 Phone: +4940428758067
 Email: hege@fhtw-berlin.de
 URI: http://inet.cpt.haw-hamburg.de/members/hege

 Thomas C. Schmidt
 HAW Hamburg
 Berliner Tor 7
 Hamburg D-20099
 Germany

 Email: schmidt@informatik.haw-hamburg.de
 URI: http://inet.cpt.haw-hamburg.de/members/schmidt

 Matthias Waehlisch
 link-lab & FU Berlin
 Hoenower Str. 35
 Berlin D-10318
 Germany

 Email: mw@link-lab.net
 URI: http://www.inf.fu-berlin.de/˜waehl

Knauf, et al. Expires September 8, 2011 [Page 19]

