Net wor k Wor ki ng Group M Petit-Huguenin
I nternet-Draft Stonyfish, Inc
I ntended status: Standards Track March 13, 2011
Expi res: Septenber 14, 2011

Configuration of Access Control Policy in REsource LCcation And
Di scovery (RELQOAD) Base Prot ocol
draft - petithuguenin-p2psi p-access-control -01

Abst r act

Thi s docunent describes an extension to the REsource LCcation And

Di scovery (RELOAD) base protocol to distribute the code of new Access
Control Policies without having to upgrade the RELQOAD i npl enent ati ons
in an overl ay.

Status of this Meno

This Internet-Draft is submitted in full conformance with the

provi sions of BCP 78 and BCP 79. This docunent may not be nodified,
and derivative works of it may not be created, except to format it
for publication as an RFC or to translate it into | anguages other
than Engli sh.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nmay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on Septenber 14, 2011
Copyright Notice

Copyright (c) 2011 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust

Petit-Huguenin Expi res Septenber 14, 2011 [ Page 1]



Internet-Draft Access Control Configuration March 2011

include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

I nt roduction .
Ter m nol ogy .
Processi ng an ext ended K| nd
Security Considerations
| ANA Consi der ati ons
Acknow edgenents .
Ref er ences . .
7 1. Nornmative Ref erences .
7.2. Informative References .
Appendi x A, Exanpl es Coe e
A. 1. Standard Access Control PoI icies .
USER- MATCH .
NODE- MATCH . . .
USER- NODE- MATCH
NODE- MULTI PLE
2 Service Discovery Usage
ndix B. Release notes . . .
1. Modifications between -01 and 00
0]

NogkrwNE

PNk
ONNNOOOO OO U B W

B
oo

TODO Li st
r's Address .

B
oo

Petit-Huguenin Expi res Septenber 14, 2011 [ Page 2]



Internet-Draft Access Control Configuration March 2011

1. Introduction

The RELQAD base protocol specifies an Access Control Policy as
"defin[ing] whether a request froma given node to operate on a given
val ue should succeed or fail." The paragraph continues saying that
"[i]t is anticipated that only a small nunmber of generic access
control policies are required", but there is indications that this
assunption will not hold. ©On all the RELOAD Usages defined in other
docunents than the RELOAD base protocol, roughly 50% defines a new
Access Control Policy.

The problemwith a new Access Control Policy is that, because they
are executed when a Store request is processed, they need to be

i npl emented by all the peers and so require an upgrade of the
software. This is sonmething that is probably not possible in |arge
overlays or on overlays using different inplenentations. For this
reason, this docunent proposes an extension to the RELOAD
configuration docunent that permits to transport the code of a new
Access Control Policy to each peer

This extension defines a new el enent <access-control -code> that can
be optionally added to a <kind> elenent in the configuration
docunent. The <access-control -code> el enent contai ns ECMAScri pt

[ ECMA- 262] code that will be called for each StoredData object in a
St oreReq processed by a peer. The code receives four paraneters,
corresponding to the Resource-1D, Signature, Kind and StoredDataVal ue
of the value to store. The code returns true or false to signal to
the inplementation if the request shoul d succeed or fail

For exanpl e the USER- MATCH Access Control Policy defined in the base
protocol could be redefined by inserting the followi ng code in an
<access-control -code> el enent:

return resource. equal sHash(si gnat ure. user_nane. bytes());

The <ki nd> paraneters are also passed to the code, so the NODE-
MULTI PLE Access Control Policy could be inplemented |ike this:

for (var i = 0; i < kind.parans[’ max-node-nultiple’]; i++)
i f (resource. equal sHash(signature.node_id, i.width(4))) {
return true;
}

return fal se;

Petit-Huguenin Expi res Septenber 14, 2011 [ Page 3]



Internet-Draft Access Control Configuration March 2011

2

Ter ni nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "COPTIONAL" in this
docunent are to be interpreted as described in [ RFC2119].

Processi ng an extended Kind

A peer receiving a <kind> definition, either by retrieving it from
the configuration server or in a ConfigUpdateReq nessage, MJST verify
the signature in the kind-signature el enent before executing the
code.

If the <access-control-code> elenment is present in the nanespace

all ocated to this specification, and the Access Control Policy is not
natively inplenmented, then the code inside the el enment MJST be called
for each DataValue found in a received StoreReq for this Kind. For
each call to the code, the following ECMAScri pt objects, properties
and functions MJST be avail abl e:

resource: An opaque object representing the Resource-ID, as an array
of bytes.

resour ce. equal sHash(Object...): Returns true if hashing the
concat enation of the argunments according to the mapping function
of the overlay algorithmis equal to the Resource-I1D. Each
argunent is an array of bytes.

signature.user_nane: The rfc822Nane stored in the certificate that
was used to sign the request, as a String object.

signature.node_id: The Node-ID stored in the certificate that was
used to sign the request, as an array of bytes.

kind.id: The id of the Kind associated with the entry, as a Number
obj ect .

ki nd. nane: The name of the Kind associated with the entry, as a
String object.

ki nd. data_nodel : The name of the Data Mddel associated with the
entry, as a String object.
ki nd. access_control: The nane of the Access Control Policy

associated with the entry, as a String object.
ki nd. parans: An associative array containing the paraneters of the
Access Control Policy as specified in the configuration file.
max-count: The value of the max-count elenment in the
configuration file, as a String object.
max-si ze: The val ue of the nax-size elenent in the configuration
file as a String object.

Petit-Huguenin Expi res Septenber 14, 2011 [ Page 4]



Internet-Draft Access Control Configuration March 2011

max-node-nultiple: |If the Access Control is MILTI PLE- NODE
contains the value of the max-node-nultiple elenment in the
configuration file, as a String object. |If not, this property
i s undefined.
entry.index: |If the Data Mddel is ARRAY, contains the index of the

entry, as a Nunber object. |If not, this property is undefined.
entry.key: |If the Data Mddel is DI CTI ONARY, contains the key of the
entry, as an array of bytes. |If not, this property is undefined.
entry.storage_time: The date and time used to store the entry, as a
Dat e obj ect.
entry.lifetinme: The validity for the entry in seconds, as a Nunber
obj ect.
entry.exist: Indicates if the entry value exists, as Bool ean object.

entry.value: This property contains an opaque object that represents
the whol e data, as an array of bytes.

The properties SHOULD NOT be nodifiable or deletable and if they are,
nodi fying or deleting them MIUST NOT nodify or delete the equival ent
internal values (in other words, the code cannot be used to nodify
the elenments that will be stored).

If addition to the "max-count", "max-size" and eventual "max-node-
mul tiple" properties in the kind. parans associative array, any
extension el ement in any namespace found in the <kind> el enent MJST
be added to this array, using the elenment nane as key and the content
as val ue.
The val ue returned by the code is evaluated to true or false,
according to the ECMAScript rules. |If the return value of one of the
call to the code is evaluated to false, then the StoreReq fails, the
state MUST be rolled back and an Error_Forbi dden MJST be returned.

4. Security Considerations

TBD

5. | ANA Consi der ations

No | ANA consi derati ons.
6. Acknow edgenents

Thi s docunent was witten with the xml 2rfc tool described in
[ RFC2629] .

Petit-Huguenin Expi res Septenber 14, 2011 [ Page 5]



Internet-Draft Access Control Configuration March 2011

7. Ref er ences
7. 1. Nor mati ve Ref erences

[ RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

[I-D.ietf-p2psip-base]
Jenni ngs, C., Lowekanp, B., Rescorla, E., Baset, S., and
H. Schul zrinne, "REsource LCcation And Discovery (RELQAD)
Base Protocol", draft-ietf-p2psip-base-12 (work in
progress), Novenber 2010.

[ ECVA- 262]
Ecma, "ECMAScri pt Language Specification 3rd Edition",
Decenber 2009.

7.2. Informative References

[ RFC2629] Rose, M, "Witing |-Ds and RFCs using XM.", RFC 2629,
June 1999.

[I-D.ietf-p2psip-service-di scovery]
Maenpaa, J. and G Camarillo, "Service Discovery Usage for
REsource LCcation And Di scovery (RELOAD)",
draft-ietf-p2psip-service-di scovery-02 (work in progress),
January 2011.

[1-D. knauf - p2psi p-di sco]
Knauf, A, Hege, G, Schnidt, T., and M Wehlisch, "A
RELOAD Usage for Distributed Conference Control (DisCo)",
dr aft - knauf - p2psi p-di sco-01 (work in progress),
Decenber 2010.
Appendi x A, Exanpl es
A.1. Standard Access Control Policies

This section shows the ECMAScri pt code that could be used to
i mpl ement the standard Access Control Policies defined in
[I1-D.ietf-p2psip-base].

A 1.1. USER- MATCH

Petit-Huguenin Expi res Septenber 14, 2011 [ Page 6]



Internet-Draft Access Control Configuration

String.prototype[’bytes’] = function() {
var bytes =[];
for (var i =0; i <this.length; i++) {
bytes[i] = this.charCodeAt(i);

return bytes;

H

return resource. equal sHash(si gnat ure. user_nane. bytes());

A 1.2, NODE- MATCH

return resource. equal sHash(si gnat ure. node_id);
A 1.3. USER- NODE- MVATCH
String.prototype[’ bytes’] = function() {
var bytes =[];
for (var i 0; i <this.length; i++) {

bytes[i] = this.charCodeAt(i);

return bytes;

i
var equals = function(a, b) {
if (a.length !'== b.length) return fal se;
for (var i =0; i < a.length; i++) {
if (a[i] '== Db[i]) return fal se
return true;
b

return resource. equal sHash(si gnat ure. user_nane. bytes())
&& equal s(entry. key, signature.node_id);

A . 1.4. NODE- MULLTI PLE

Petit-Huguenin Expi res Septenber 14, 2011

March 2011

[ Page 7]



Internet-Draft Access Control Configuration March 2011

Nunber . prototype[’width’] = function(w) {
var bytes =[];

for (var i =0; i <w i++) {
bytes[i] = (this >>> ((w- i - 1) * 8)) & 255;
return bytes;
i
for (var i = 0; i < kind.parans[’ max-node-nultiple’]; i++)

i f (resource. equal sHash(signature.node_id, i.width(4))) {
return true;
}

return fal se;
A.2. Service Discovery Usage

[I-D.ietf-p2psip-service-discovery] defines a specific Access Contro
Pol i cy (NODE-ID MATCH) that need to access the content of the entry
to be witten. If inplenented as specified by this document, the
<ki nd> el enent woul d | ook sonething like this:

<ki nd name=" REDI R
xm ns:acp="http://inplementers. org/access-control -policy’
xm ns:ext="http://inplenmenters. org/ ny-ext’>
<dat a- nodel >DI CTlI ONARY</ dat a- nodel >
<access-cont r ol >NODE- | D- MATCH</ access-contr ol >
<max- count >100</ max- count >
<max- si ze>60</ max- si ze>
<ext : branchi ng- f act or >2</ ext : br anchi ng- f act or >

<acp: access-control - code>
/* Insert here the code from
http://jsfromhell.conm cl asses/ bi gnunber
*/

var toBi gNunber = function(node_id) {
var bi gnum = new Bi gNunber (0) ;
for (var i 0; i < node_id.length; i++)
bi gnum = bi gnum nul ti pl y(256). add(node_id[i]);
}

return bi gnum

var checklntervals = function(node_id, |level, node, factor) {
var size = new Bi gNunber (2). pow 128);
var node t oBi gNunber (node_i d);
for (var f = 0; f < factor; f++) {

Petit-Huguenin Expi res Septenber 14, 2011 [ Page 8]



Internet-Draft Access Control Configuration March 2011

var tenp = size.multiply(new Bi gNunber (f)
. pow new Bi gNurber (1 evel ). negate()));

var mn = tenp. multiply(node. add( new Bi gNunber (f)
.divide(factor)));

var max = tenp. mul tiply(node. add(new Bi gNunber (f + 1)
.divide(factor)));

i f (node.conpare(mn) === -1 || node.conpare(nmax) ==
| | node.conpare(max) == 0) return false;
}
return true;
b
var equals = function(a, b) {
if (a.length !'== b.length) return fal se;
for (var i =0; i < a.length; i++) {
if (a[i] !'== Db[i]) return fal se
return true;
b
var | evel = function(value) {
var length = value[16] * 256 + val ue[17];
return value[ 18 + length] * 256 + value[18 + length + 1];
b

var node = function(val ue) {
var length = value[16] * 256 + val ue[17];
return value[ 18 + length + 2] * 256
+ value[18 + length + 3];

var nanespace = function(val ue) {
var length = value[16] * 256 + val ue[17];
return String.frontChar Code(val ue.slice(18, length));

return equal s(entry. key, signature.node_id)

&% ('entry.exists || checklnterval s(entry. key,
| evel (entry.val ue), node(entry.val ue),
ki nd. parans[’ branching-factor’]))

&% (!entry.exists
| | resource. equal sHash(nanespace(entry. val ue),

| evel (entry.value), node(entry.value)));
</ acp: access-control - code>
</ ki nd>

Note that the code for the Bi gNunber object was renoved fromthis
exanple, as the licensing terns are unclear. The code is available

Petit-Huguenin Expi res Septenber 14, 2011 [ Page 9]



Internet-Draft Access Control Configuration March 2011

at <http://jsfromhell.com cl asses/ bi gnunber >.

The <branchi ng-factor> paraneter is used to match the

<redi r Branchi ngFactor> paraneter that is not accessible to the code.
The signer of the kind nust be sure that the two match. |In fact the
branching factor could have been set directly in the code, but that

woul d make it nmore difficult to change.

Appendi x B. Rel ease notes

This section nust be renoved before publication as an RFC.

B. 1.

OO0OO0OO0OO0OO0

B. 2.

Modi fi cati ons between -01 and -00

Changed reference from JavaScript to ECMAScri pt.

Changed signature from equal s() to equal sHash().

Fi xed the exanpl es follow ng inpl enentation.

Repl aced aut onatic decodi ng of val ue by ECMAScri pt code.

Added the type of each property.

Specified that the code cannot be used to nodify the val ue stored.

TODO Li st

Need to present the conplete list of certificates for the DisCo
[1-D. knauf - p2psi p-di sco] Usage USER- CHAI N- MATCH.

Aut hor’ s Addr ess

Marc Petit-Huguenin
Stonyfish, Inc.

Enai | : petithug@cmorg

Petit-Huguenin Expi res Septenber 14, 2011 [ Page 10]






