P2PSI P C. Jennings

Internet-Draft G sco
I ntended status: Standards Track B. Lowekanp, Ed.
Expires: Septenber 15, 2011 Skype
E. Rescorla

RTFM | nc.

S. Baset

H. Schul zrinne
Col unbi a University
March 14, 2011

REsource LCcation And Di scovery (RELOAD) Base Protoco
draft-ietf-p2psip-base-13

Abstract

This specification defines REsource LCcati on And Di scovery (RELOAD),
a peer-to-peer (P2P) signaling protocol for use on the Internet. A
P2P signaling protocol provides its clients with an abstract storage
and nessagi ng service between a set of cooperating peers that form
the overlay network. RELQOAD is designed to support a P2P Session
Initiation Protocol (P2PSIP) network, but can be utilized by other
applications with sinmlar requirenents by defining new usages that
specify the kinds of data that nmust be stored for a particul ar
application. RELOAD defines a security nodel based on a certificate
enrol I nent service that provides unique identities. NAT traversal is
a fundanmental service of the protocol. RELOAD also allows access
from"client" nodes that do not need to route traffic or store data
for others.

Legal

THI' S DOCUMENT AND THE | NFORMATI ON CONTAI NED THEREI N ARE PROVI DED ON
AN "AS | S" BASI S AND THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE
REPRESENTS OR | S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY, THE

| ETF TRUST, AND THE | NTERNET ENG NEERI NG TASK FORCE, DI SCLAI M ALL
WARRANTI ES, EXPRESS COR | MPLI ED, | NCLUDI NG BUT NOT LI M TED TO ANY
WARRANTY THAT THE USE OF THE | NFORMATI ON THEREI N W LL NOT | NFRI NGE
ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS
FOR A PARTI CULAR PURPGCSE

Status of this Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 1]

Internet-Draft RELOAD Base March 2011

Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsol eted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on Septenber 15, 2011
Copyright Notice

Copyright (c) 2011 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunent is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these docunments
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

This docunment may contain material from | ETF Docunents or |ETF
Contri butions published or nmade publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in sone of this
materi al may not have granted the I ETF Trust the right to all ow

nodi fications of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate license fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
outside the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornat
it for publication as an RFC or to translate it into |anguages other
t han Engli sh.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 2]

Internet-Draft RELOAD Base

Tabl e of Contents

1.

it ;
GROANATNAEORONEAPPORWOIVWARWOWONWEQ

o
[GEGENEGEN

I nt roducti on

Forwar di ng and Li nk l\/anagenent Layer
Security . . e
Structure of Th| s Docurrent
erm nol ogy . .
erl ay Minagemant Q/er Vi ew .
Security and ldentification
1.1. Shar ed- Key Securi ty
Clients . . .
2. 1. Cient Rout| ng .

1. Basic Setting

2. Architecture .

1.2. 1. Usage Layer

1.2 2. Message Transport
1.2.3. Storage . .
1.2.4. Topol ogy Plugln
1.2.5.

3.

4,

T

Rout i ng
Connectivity Management
Overlay Al gorithm Support

5. 1. Support for Pluggable Overl ay AI gorl t hms .
5. 2. Joi ni ng, Leaving, and Mii ntenance Overview .
First-Time Setup .
1. Initial Oonflguratlon
2. Enr ol | ment

Iication Support Overvi ew
Data Storage .
1. St or age Per m SSI ons
. 2. Repli cation
Usages .
Service Di scovery . .
Appl i cation Connecti vi ty .
erl ay Managenent Prot ocol .
Message Recei pt and Forwar d| ng .
1.1 Responsible ID .
1.2. OQher ID. .
1.3. Private 1D .
Symmetri c Recursive Rout| ng
1. Request Origination
2. Response Origination .
Message Structure
1. Presentation Language
.3.1.1. Common Definitions
. 2. Forward| ng Header .
.3.2. Processi ng Configurati on Sequence Nunbers .
.3.2. Destination and Via Lists .

el 'o_m_cn

NN

Jenni ngs, et al. Expi res Septenber 15, 2011

2. 2. M ni num Functi onal i '.[y Reqw renent S for CI i ent S

March 2011

10

14
14
15
15
16
17
17
20
20
21

22
22
23
25
26
26

28
28
28

29
30

31
32
32

33
33

35
36
36

37
38
38
41
43
44

[Page 3]

Internet-Draft

o
w o1 o

Jenni ngs,

o
aokrOo

agooaohh
NN NI NN O

gooooaaaaaaaooooolololool ool gl

oo ouaouo
grOWNOOOOR

.2.3.

3
3
.3.3. 1.
4.

RELCAD Base

Forwar di ng Opti ons

Message Contents For mat .
Response Codes and Response Errors
Security Block .

Overl ay Topol ogy .

U'I-I>OOI\JH

. 2.
. 2.
. 2.
. 2.
. 2.
(0]

Topol ogy Pl ugin Requr rerrents .
Met hods and types for use by topol ogy pI ugl ns

Join

Leave .
Updat e
Rout eQuery
Pr obe .

F r\/\ardr ng and Li nk I\/anagerrent Layer

1. Attach . .

5.1.1. Request Defr n| t| on

5.1.2. Response Definition . .
5.1.3. Using ICE Wth RELOAD .
5.1.4. Collecting STUN Servers .
5.1.5. Gathering Candi dates

5.1.6. Prioritizing Candi dates . .
5.1.7. Encoding the Attach Message .
5.1.8. Verifying | CE Support

5.1.9. Role Deternination

5.1.10. Full ICE

5.1.11. No-ICE . . .
5.1.12. Subsequent O‘fers and Ansvvers .
5.1.13. Sending Media . .

5.1.14. Receiving Media .

2. AppAt tach

5.2.1. Request Defr ni t| on

5.2.2. Response Definition .

3. Ping . .

5.3.1. Request Defr n| t| on

5.3.2. Response Definition .

4, Confi gUpdat e .

5.4.1. Request Definiti on

5.4.2. Response Definition .

Overlay Link Layer

. 3. 1

et al.

Future Overlay Li nk Pr ot ocoI s

HP . .

| CE-TCP . .
Message- ori ent ed Transports .
Tunnel ed Transports .

Fram ng Header . . .
Si npl e Relrabrlrty .
Retransm ssi on and FI ow Cont roI
DTLS/UDP with SR . . .

TLS/ TCP with FH, NoICE

Expi res Septenber 15, 2011

March 2011

46
47
48
50
53
53
54
54
55
55
56
57
59
59
60
63
63
64
65
65
66
66
66
67
67
67
67
68
68
68
69
69
70
70
70
71
71
72
73
74
74
74
74
75
76
77
78
78

[Page 4]

Internet-Draft

(o]

PROPOPNIPONE N

CORrIOPOIOIRODOD A
gRrAABRROABRINDDIAE

6. 4.
Certificate Store Usage .
TURN Server Usage .
Chord Al gorithm.

© o~

R S o i

vCoovoNoTrwWNE

COOONNANN

©®

Jenni ngs,

NI

. 6.
Fr ag

Dat a
Dat a

1
2.
3

Acce

PwNE

Dat a

2.
2
3.
3

4.
4

Over
Hash
Rout
Redu
Join
Rout

1.1
1.2
1.3.

1.
. 2.

1.
. 2.

1.
. 2.

RELCAD Base

DTLS/ UDP with SR, No-1CE .
ment ati on and Reassenbly .

ta Storage Protocol

Si gnat ur e Conput at| on .
Model s Co
Si ngl e Val ue .
Array .
Dictionary . .o
ss Control Policies
USER- MATCH .
NODE- MATCH . . .
USER- NODE- MATCH
NODE- MULTI PLE
St orage Met hods .
Store
Request Def| n| t| on
Response Definition .
Renovi ng Val ues .
Fet ch
Request Defl ni t| on .
Response Definition .
St at
Request Defl n| t| on .
Response Definition .
Find .
Request Defl ni t| on .
Response Definition .
Def i ni ng New Ki nds .

Vi ew .
Functi on

i ng

ndancy .

ing . .
i ng Attaches .

Updat es

NNNNPONE

Rout
Leavi

et al.

Handl | nQ Nm ghbor Fal I ures

Handl i ng Fi nger Table Entry Fai I ure

Recei vi ng Updat es

Stabilization . . .
Updati ng nei ghbor tabl e .
Refreshing finger table .

Adj usting finger table size .

Det ecti ng part|t| oni ng
e query . .
i ng

Expi res Septenber 15, 2011

March 2011

79
79
80
81
82
83
83
84
84
85
85
85
85
86
86
86
90
92
92
93
95
95
96
96
98
98
99
100
100
101
103
104
104
104
105
105
106
106
108
109
109
110
110
110
111
112
112
113

[Page 5]

Internet-Draft RELOAD Base March 2011

10. Enrollnment and Bootstrap 114
10.1. Overlay Configuration 114
10.1.1. Relax NG G anmar . . P 210

10. 2. Discovery Through Confrguratron Server e e e e 122
10.3. Credentials . . 24
10.3.1. Self- GEnerated C)edentrals e e e e e o124
10.4. Searching for a Bootstrap Node 124
10.5. Contacting a Bootstrap Node 125
11. Message Fl ow Example . 125
12. Security Considerations 131
12.1. Overview . . P Ry
12.2. Attacks on P2P CNerIays P)22
12.3. Certificate-based Security 132
12. 4. Shared-Secret Security 133
12.5. Storage Security . 134
12.5.1. Authorization 134
12.5.2. Distributed Quota 135
12.5.3. Correctness .13
12.5.4. Residual Attacks 135
12.6. Routing Security . 136
12.6.1. Background . . Y 14
12.6.2. Admi ssions Cbntrol o.o137
12.6.3. Peer ldentification and Authentlcatron o.o137
12.6.4. Protecting the S|gnaI|ng R <
12.6.5. Residual Attacks . . . e RC 1

13. I ANA Considerations . 139
13.1 Wl | - Known URI Registration 139
13.2 Port Registrations 139
13.3 Overlay AlgorithmTypes 140
13.4. Access Control Policies 140
13.5. Application-ID. 140
13.6 Data Kind-ID. 141
13.7 Data Model01
13.8 Message Codes 014
13.9. FError Codes 142
13.10. Overlay Link Types 143
13.11. Overlay Link Protocols 143
13.12. Forwarding Options 144
13.13. Probe Information Types 144
13. 14. Message Extensions 144
13.15. reload URI Scheme 145
13.15.1. URI Registration 145

14. Acknow edgnents . 146
15. References . . 1)
15.1. Normative References 1)
15.2. Informative References 148
Appendi x A Change Log 151
A 1l Changes since draft-retf p2psrp reload 2 151

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 6]

Internet-Draft RELOAD Base March 2011

Appendi x B. Routing Alternatives 152
B. 1. Iterative vs Recursive . . . N RS ¥4
B. 2. Synmetric vs Forward response N R 54
B. 3. Direct Response . 153
B. 4. Rel ay Peers . . e R Y
B. 5. Symmetric Route Stab|l|ty . e 154

Appendix C. Wy dients? . 155
C 1 Way Not Only Peers? . . . e 155
C 2. Clients as Application- Level Agents 156

Authors’ Addresses . 156

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 7]

Internet-Draft RELOAD Base March 2011

1. Introduction

Thi s docunment defines REsource LCcation And Di scovery (RELOAD), a
peer-to-peer (P2P) signaling protocol for use on the Internet. It
provi des a generic, self-organizing overlay network service, allow ng
nodes to efficiently route nessages to other nodes and to efficiently
store and retrieve data in the overlay. RELOAD provi des severa
features that are critical for a successful P2P protocol for the

I nternet:

Security Framework: A P2P network will often be established anong a
set of peers that do not trust each other. RELQAD |everages a
central enrollnent server to provide credentials for each peer
whi ch can then be used to authenticate each operation. This
greatly reduces the possible attack surface.

Usage Model: RELOAD is designed to support a variety of
applications, including P2P multinmedia communications with the
Session Initiation Protocol [I-D.ietf-p2psip-sip]. RELQAD allows
the definition of new application usages, each of which can define
its own data types, along with the rules for their use. This
all ows RELOAD to be used with new applications through a sinple
docunent ati on process that supplies the details for each
application.

NAT Traversal: RELOAD is designed to function in environnents where
many if not nost of the nodes are behind NATs or firewalls.
Operations for NAT traversal are part of the base design
including using ICE to establish new RELOAD or application
prot ocol connecti ons.

H gh Performance Routing: The very nature of overlay algorithns
i ntroduces a requirenent that peers participating in the P2P
network route requests on behal f of other peers in the network.
This introduces a |l oad on those other peers, in the form of
bandwi dt h and processing power. RELOAD has been defined with a
simple, lightweight forwarding header, thus mnim zing the anmount
of effort required by internediate peers.

Pl uggabl e Overlay Al gorithns: RELOAD has been designed with an
abstract interface to the overlay layer to sinplify inplenmenting a
variety of structured (e.g., distributed hash tables) and
unstructured overlay algorithms. This specification also defines
how RELOAD is used with the Chord DHT algorithm which is
mandatory to inplenment. Specifying a default "nust inplenent”
overlay algorithm pronotes interoperability, while extensibility
al l ows selection of overlay algorithnms optinized for a particul ar

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 8]

Internet-Draft RELOAD Base March 2011

application.

These properties were designed specifically to neet the requirenents
for a P2P protocol to support SIP. This docunent defines the base
protocol for the distributed storage and | ocation service, as well as
critical usages for NAT traversal and security. The SIP Usage itself
is described separately in [I-D.ietf-p2psip-sip]. RELOAD is not
limted to usage by SIP and could serve as a tool for supporting
other P2P applications with sinmlar needs. RELOAD is al so based on
the concepts introduced in [I-D.ietf-p2psip-concepts].

1.1. Basic Setting

In this section, we provide a brief overview of the operationa
setting for RELOAD. See the concepts
docunent[I-D.ietf-p2psip-concepts] for nore details. A RELOAD
Overlay Instance consists of a set of nodes arranged in a connected
graph. Each node in the overlay is assigned a nunmeric Node-|D which
together with the specific overlay algorithmin use, deternines its
position in the graph and the set of nodes it connects to. The
figure bel ow shows a trivial exanple which isn’t drawn from any
particul ar overlay algorithm but was chosen for conveni ence of
representation.

S + S + S +
| Node 10| -------------- | Node 20| -------------- | Node 30|
R + R + R +
I I I
I I I
Foeeme oo + Foeeme oo + Foeeme oo +
| Node 40| -------------- | Node 50| -------------- | Node 60]
R — + R — + R — +
I I I
I I I
Fommme oo + Fommme oo + Fommme oo +
| Node 70| -------------- | Node 80| -------------- | Node 90|
e + e + e +
I
I
S +
| Node 85
| (Cient)]
T +

Because the graph is not fully connected, when a node wants to send a
message to another node, it nay need to route it through the network.
For instance, Node 10 can talk directly to nodes 20 and 40, but not
to Node 70. In order to send a nessage to Node 70, it would first

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 9]

Internet-Draft RELOAD Base March 2011

send it to Node 40 with instructions to pass it along to Node 70.
Different overlay algorithns will have different connectivity graphs,
but the general idea behind all of themis to allow any node in the
graph to efficiently reach every other node within a small nunber of
hops.

The RELQOAD network is not only a messaging network. It is also a
storage network. Records are stored under numeric addresses which
occupy the sanme space as node identifiers. Peers are responsible for
storing the data associated with sone set of addresses as determ ned
by their Node-ID. For instance, we night say that every peer is
responsi ble for storing any data val ue which has an address |ess than
or equal to its own Node-ID, but greater than the next | owest

Node-I D. Thus, Node-20 woul d be responsible for storing val ues

11- 20.

RELOAD al so supports clients. These are nodes which have Node-|Ds
but do not participate in routing or storage. For instance, in the

figure above Node 85 is a client. It can route to the rest of the
RELOAD network via Node 80, but no other node will route through it
and Node 90 is still responsible for all addresses between 81-90. W

refer to non-client nodes as peers.

O her applications (for instance, SIP) can be defined on top of
RELOAD and use these two basic RELOAD services to provide their own
servi ces.

1.2. Architecture

RELOAD i s fundanmentally an overlay network. The follow ng figure
shows the | ayered RELQAD architecture.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 10]

Internet-Draft RELOAD Base March 2011

Appli cation
Fom e - + o A------- +
| SIP | | XMPP |
| Usage | | Usage |
Fom e e + e------ +
------------------------------------ Messagi ng Servi ce Boundary
s + Fomm e oo - +
| Message | <--->| Storage |
[Transport [SRR +
o e e o - + N
N N |
| % %
| B +
| | Topol ogy |
[[Pl ugi n
| e +
| A
v
s +

| Forwarding & |
| Link Managenent |

N +

———————————————————————————————————— Overlay Link Service Boundary
oo - + - +
| TLS | |DTLS |
Fom e - + A------ +

The maj or conponents of RELOAD are:

Usage Layer: Each application defines a RELOAD usage; a set of data
ki nds and behavi ors whi ch describe how to use the services
provi ded by RELOAD. These usages all talk to RELOAD through a
common Message Transport Servi ce.

Message Transport: Handles end-to-end reliability, nanages request
state for the usages, and forwards Store and Fetch operations to
the Storage conponent. Delivers nessage responses to the
conponent initiating the request.

Storage: The Storage conponent is responsible for processing
nmessages relating to the storage and retrieval of data. It talks
directly to the Topol ogy Plugin to nanage data replication and

mgration, and it talks to the Message Transport conponent to send
and recei ve nessages.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 11]

Internet-Draft RELOAD Base March 2011

Topol ogy Plugin: The Topology Plugin is responsible for inplenmenting
the specific overlay algorithmbeing used. It uses the Message
Transport conponent to send and recei ve overlay nanagenent
nmessages, to the Storage conponent to nanage data replication, and
directly to the Forwardi ng Layer to control hop-by-hop nessage
forwarding. This conponent closely parallels conventional routing
algorithms, but is nore tightly coupled to the Forwardi ng Layer
because there is no single "routing table" equival ent used by al
overlay al gorithns.

Forwar di ng and Link Managenent Layer: Stores and inplenents the
routing table by providing packet forwardi ng services between
nodes. It also handl es establishing new |inks between nodes,
i ncluding setting up connections across NATs using | CE

Overlay Link Layer: Responsible for actually transporting traffic
directly between nodes. Each such protocol includes the
appropriate provisions for per-hop fram ng or hop-by-hop ACKs
required by unreliable transports. TLS [RFC5246] and DTLS
[RFCA347] are the currently defined "link |layer"” protocols used by
RELOAD f or hop-by-hop conmuni cati on. New protocols MAY be
defined, as described in Section 5.6.1 and Section 10.1. As this
docunent defines only TLS and DTLS, we use those terns throughout
the remai nder of the document with the understanding that sone
future specification my add new overlay link |ayers.

To further clarify the roles of the various layers, this figure

parallels the architecture with each layer’'s role froman overl ay
perspective and i nplenmentation layer in the internet:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 12]

Internet-Draft RELOAD Base March 2011

| I'nternet Mdel |
Real | Equi val ent | Rel oad
| |

I nt er net in Overlay Architecture
_____________ e
| | S RS + 4-e--a-- +
| Application | | SIP | | XMPP |
I I | Usage | | Usage |
| | o m oo - + - ----- +
I I+ —————————————————— + +- - - - - +
| Transport | Message | <--->| Storage |
| | Transport | R +
| IR + A
I I A I
| | | v
Application | [[R +
| (Routi ng) | | | Topol ogy |
| | | | Pl ugin
I I I R +
I I I A
| | v
[Net wor k [o +
| | | Forwarding & |
| | | Link Managenent |
| | Fomm e e e eaaaas +
| |
Transport [Li nk [+o--- - + - +
[[| TLS | |DTLS |
| | S RS + A------ +
_____________ o e mm e m— e —— ==
Net wor k |
I
Li nk |

1.2.1. Usage Layer

The top layer, called the Usage Layer, has application usages, such
as the SIP Registration Usage [I-D.ietf-p2psip-sip], that use the
abstract Message Transport Service provided by RELOAD. The goal of
this layer is to inplenment application-specific usages of the generic
overlay services provided by RELOAD. The usage defines how a
specific application maps its data into sonmething that can be stored
in the overlay, where to store the data, how to secure the data, and
finally how applications can retrieve and use the data.

The architecture di agram shows both a SIP usage and an XMPP usage. A

single application may require nultiple usages; for exanple a
sof t phone application nmay al so require a voicenail usage. An usage

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 13]

Internet-Draft RELOAD Base March 2011

may define multiple kinds of data that are stored in the overlay and
may also rely on kinds originally defined by other usages.

Because the security and storage policies for each kind are dictated
by the usage defining the kind, the usages may be coupled with the
St orage conponent to provide security policy enforcenment and to

i npl ement appropriate storage strategies according to the needs of
the usage. The exact inplenentation of such an interface is outside
the scope of this specification

1.2.2. Message Transport

The Message Transport conponent provides a generic message routing
service for the overlay. The Message Transport |ayer is responsible
for end-to-end nessage transactions, including retransm ssions. Each
peer is identified by its location in the overlay as determ ned by
its Node-ID. A conponent that is a client of the Message Transport
can performtwo basic functions:

0 Send a message to a given peer specified by Node-1D or to the peer
responsible for a particul ar Resource-ID

0 Receive nessages that other peers sent to a Node-1D or Resource-1D
for which the receiving peer is responsible.

Al'l usages rely on the Message Transport conponent to send and
recei ve messages frompeers. For instance, when a usage wants to
store data, it does so by sending Store requests. Note that the

St orage conponent and the Topol ogy Plugin are thensel ves clients of
the Message Transport, because they need to send and recei ve nessages
from ot her peers.

The Message Transport Service is simlar to those described as
provi ding "Key based routing"” (KBR), although as RELOAD supports
different overlay algorithns (including non-DHT overlay al gorithns)
that calculate keys in different ways, the actual interface nust
accept Resource Nanes rather than actual keys.

1.2.3. Storage

One of the major functions of RELOAD is to allow nodes to store data
in the overlay and to retrieve data stored by other nodes or by
thensel ves. The Storage conponent is responsible for processing data
storage and retrieval nessages. For instance, the Storage conponent
m ght receive a Store request for a given resource fromthe Message
Transport. It would then query the appropriate usage before storing
the data value(s) inits local data store and sending a response to
the Message Transport for delivery to the requesting node.

Typically, these nmessages will conme from ot her nodes, but depending

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 14]

Internet-Draft RELOAD Base March 2011

on the overlay topol ogy, a node night be responsible for storing data
for itself as well, especially if the overlay is small.

A peer’s Node-I1D determ nes the set of resources that it will be
responsi ble for storing. However, the exact napping between these is
determined by the overlay algorithmin use. The Storage conponent
will only receive a Store request fromthe Message Transport if this
peer is responsible for that Resource-ID. The Storage conponent is
notified by the Topol ogy Plugin when the Resource-1Ds for which it is
responsi bl e change, and the Storage conponent is then responsible for
m grating resources to other peers, as required.

1.2.4. Topol ogy Plugin

RELOAD is explicitly designed to work with a variety of overlay
algorithms. |In order to facilitate this, the overlay al gorithm

i mpl ementation is provided by a Topology Plugin so that each overlay
can select an appropriate overlay algorithmthat relies on the comon
RELOAD core protocols and code.

The Topol ogy Plugin is responsible for maintaining the overlay

al gorithm Routing Table, which is consulted by the Forwardi ng and
Li nk Managenent Layer before routing a nessage. When connections are
made or broken, the Forwarding and Li nk Managenent Layer notifies the
Topol ogy Plugin, which adjusts the routing table as appropriate. The
Topol ogy Plugin will also instruct the Forwardi ng and Li nk Managenent
Layer to form new connections as dictated by the requirenents of the
overlay al gorithm Topol ogy. The Topol ogy Pl ugin issues periodic
updat e requests through Message Transport to nmintain and update its
Routi ng Tabl e.

As peers enter and | eave, resources may be stored on different peers,
so the Topol ogy Plugin al so keeps track of which peers are
responsi bl e for which resources. As peers join and | eave, the

Topol ogy Plugin instructs the Storage conponent to i ssue resource

m gration requests as appropriate, in order to ensure that other
peers have whatever resources they are now responsible for. The
Topol ogy Plugin is also responsible for providing for redundant data
storage to protect against loss of information in the event of a peer
failure and to protect against conprom sed or subversive peers.

1.2.5. Forwardi ng and Li nk Managenent Layer

The Forwardi ng and Li nk Managenment Layer is responsible for getting a
message to the next peer, as determ ned by the Topol ogy Plugin. This
Layer establishes and nmintains the network connections as required
by the Topology Plugin. This layer is also responsible for setting
up connections to other peers through NATs and firewalls using | CE

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 15]

Internet-Draft RELOAD Base March 2011

and it can elect to forward traffic using relays for NAT and firewall
traversal

This layer provides a generic interface that allows the topol ogy
plugin to control the overlay and resource operations and nessages.
Since each overlay algorithmis defined and functions differently, we
generically refer to the table of other peers that the overlay

al gorithm mai ntains and uses to route requests (neighbors) as a
Routing Table. The Topology Plugin actually owns the Routing Tabl e,
and forwardi ng decisions are nmade by querying the Topol ogy Plugin for
the next hop for a particular Node-1D or Resource-ID. If this node
is the destination of the nmessage, the nessage is delivered to the
Message Transport.

This layer also utilizes a fram ng header to encapsul ate nessages as
they are forwarding al ong each hop. This header aids reliability
congestion control, flow control, etc. It has neaning only in the
context of that individual |ink

The Forwardi ng and Li nk Managenent Layer sits on top of the Overlay
Li nk Layer protocols that carry the actual traffic. This
specification defines how to use DILS and TLS protocols to carry
RELOAD nessages.

1.3. Security

RELOAD s security nodel is based on each node having one or nore
public key certificates. 1In general, these certificates will be
assigned by a central server which al so assigns Node-|Ds, although
sel f-signed certificates can be used in closed networks. These
credentials can be | everaged to provi de comunications security for
RELOAD nmessages. RELOAD provi des conmuni cations security at three

| evel s:

Connection Level: Connections between peers are secured with TLS
DTLS, or potentially sone to be defined future protocol

Message Level: Each RELOAD nessage nust be signed.

bj ect Level : Stored objects nmust be signed by the creating peer.

These three levels of security work together to allow peers to verify
the origin and correctness of data they receive from other peers,
even in the face of malicious activity by other peers in the overlay.
RELOAD al so provides access control built on top of these
communi cati ons security features. Because the peer responsible for
storing a piece of data can validate the signature on the data being
stored, the responsible peer can deternine whether a given operation
is permtted or not.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 16]

Internet-Draft RELOAD Base March 2011

RELOAD al so provides an optional shared secret based admi ssion
control feature using shared secrets and TLS-PSK. In order to forma
TLS connection to any node in the overlay, a new node needs to know
the shared overlay key, thus restricting access to authorized users
only. This feature is used together with certificate-based access
control, not as a replacenent for it. It is typically used when
self-signed certificates are being used but would generally not be
used when the certificates were all signed by an enroll ment server.

1.4. Structure of This Docunent
The renmai nder of this docunent is structured as foll ows.

0 Section 2 provides definitions of terns used in this docunent.

0 Section 3 provides an overview of the mechani snms used to establish
and nmaintain the overl ay.

0 Section 4 provides an overview of the mechani sm RELOAD provi des to
support ot her applications.

0 Section 5 defines the protocol messages that RELOAD uses to
establish and naintain the overl ay.

0 Section 6 defines the protocol nessages that are used to store and
retrieve data usi ng RELOAD.

0 Section 7 defines the Certificate Store Usage that is fundanental
to RELOAD security.

0 Section 8 defines the TURN Server Usage needed to | ocate TURN
servers for NAT traversal

0 Section 9 defines a specific Topol ogy Plugin using Chord.

0 Section 10 defines the nechani sns that new RELOAD nodes use to
join the overlay for the first tine.

0 Section 11 provides an extended exanpl e.

2. Term nol ogy

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in RFC 2119 [RFC2119].

We use the terninology and definitions fromthe Concepts and
Term nol ogy for Peer to Peer SIP [I-D.ietf-p2psip-concepts] draft
extensively in this document. Qher terns used in this docunent are
defined inline when used and are al so defined bel ow for reference.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 17]

Internet-Draft RELOAD Base March 2011

DHT: A distributed hash table. A DHT is an abstract hash table
service realized by storing the contents of the hash table across
a set of peers.

Overlay Algorithm An overlay algorithmdefines the rules for
determi ning which peers in an overlay store a particul ar piece of
data and for determining a topol ogy of interconnections anongst
peers in order to find a piece of data.

Overlay Instance: A specific overlay algorithmand the collection of
peers that are collaborating to provide read and wite access to
it. There can be any nunber of overlay instances running in an |IP
network at a tine, and each operates in isolation of the others.

Peer: A host that is participating in the overlay. Peers are
responsi ble for holding sone portion of the data that has been
stored in the overlay and al so route nessages on behal f of other
hosts as required by the Overlay Al gorithm

Client: A host that is able to store data in and retrieve data from
the overlay but which is not participating in routing or data
storage for the overlay.

Kind: A kind defines a particular type of data that can be stored in
the overlay. Applications define new Kinds to story the data they
use. Each Kind is identified with a unique integer called a
Ki nd-1D

Node: We use the term"Node" to refer to a host that may be either a
Peer or a dient. Because RELQOAD uses the same protocol for both
clients and peers, nuch of the text applies equally to both.
Therefore we use "Node" when the text applies to both dients and
Peers and the nore specific term(i.e. client or peer) when the
text applies only to Cients or only to Peers.

Node-1D: A fixed-length value that uniquely identifies a node.
Node-1Ds of all Os and all 1s are reserved and are invalid Node-
IDs. A value of zero is not used in the wire protocol but can be
used to indicate an invalid node in inplenentations and APIs. The
Node-I D of all 1s is used on the wire protocol as a wildcard.

Resource: An object or group of objects associated with a string
identifier. See "Resource Name" bel ow.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 18]

Internet-Draft RELOAD Base March 2011

Resource Name: The potentially human readabl e nane by which a
resource is identified. In unstructured P2P networks, the
resource nanme is sonmetines used directly as a Resource-1D. In
structured P2P networks the resource nane is typically nmapped into
a Resource-I1D by using the string as the input to hash function
A SIP resource, for exanple, is often identified by its AOR which
is an exanple of a Resource Nane.

Resource-1D: A value that identifies some resources and which is
used as a key for storing and retrieving the resource. Oten this
is not human friendly/readable. One way to generate a Resource-ID
is by applying a mapping function to sone other uni que nane (e.qg.
user nane or service nane) for the resource. The Resource-ID s
used by the distributed database algorithmto determ ne the peer
or peers that are responsible for storing the data for the
overlay. In structured P2P networks, Resource-IDs are generally
fixed I ength and are forned by hashing the resource nane. In
unstructured networks, resource names may be used directly as
Resource-1Ds and may be variabl e | engths.

Connection Table: The set of nodes to which a node is directly
connected. This includes nodes with which Attach handshakes have
been done but which have not sent any Updat es.

Routing Table: The set of peers which a node can use to route
overl ay nmessages. In general, these peers will all be on the
connection table but not vice versa, because sonme peers will have
Attached but not sent updates. Peers may send nessages directly
to peers that are in the connection table but may only route
messages to other peers through peers that are in the routing
tabl e.

Destination List: A list of IDs through which a nessage is to be
routed. A single Node-IDis a trivial formof destination |ist.

Usage: A usage is an application that wi shes to use the overlay for
some purpose. Each application wishing to use the overlay defines
a set of data kinds that it wi shes to use. The SIP usage defines
the | ocation data ki nd.

The term "maxi numrequest lifetine" is the maxinumtine a request
will wait for a response; it defaults to 15 seconds. The term
"successor replacenent hold-down tine" is the amount of tine to wait
before starting replication when a new successor is found; it
defaults to 30 seconds.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 19]

Internet-Draft RELOAD Base March 2011

3.

3.

Overl ay Managenent Overview

The nmost basic function of RELOAD is as a generic overlay network.
Nodes need to be able to join the overlay, formconnections to other
nodes, and route nessages through the overlay to nodes to which they
are not directly connected. This section provides an overview of the
mechani sms that performthese functions.

1. Security and ldentification

Every node in the RELOAD overlay is identified by a Node-ID. The
Node-1D is used for three major purposes:

0 To address the node itself.

0 To determine its position in the overlay topol ogy when the overl ay
is structured.

0o To deternmine the set of resources for which the node is
responsi bl e.

Each node has a certificate [RFC5280] containing a Node-1D, which is
uni que wi thin an overlay instance.

The certificate serves nmultiple purposes:

0o It entitles the user to store data at specific locations in the
Overlay Instance. Each data kind defines the specific rules for
determ ning which certificates can access each Resource-ID/ Kind-ID
pair. For instance, sone kinds mght allow anyone to wite at a
gi ven | ocation, whereas others might restrict wites to the owner
of a single certificate.

o It entitles the user to operate a node that has a Node-ID found in
the certificate. When the node forns a connection to another
peer, it uses this certificate so that a node connecting to it
knows it is connected to the correct node (technically: a (D)TLS
association with client authentication is forned.) |In addition
t he node can sign nessages, thus providing integrity and
aut hentication for nessages which are sent fromthe node.

o It entitles the user to use the user name found in the
certificate.

If a user has nore than one device, typically they would get one
certificate for each device. This allows each device to act as a
separ at e peer.

RELOAD supports nultiple certificate issuance nodels. The first is
based on a central enrollnent process which allocates a uni que nane
and Node-ID and puts themin a certificate for the user. Al peers
in a particular Overlay Instance have the enrol |l nent server as a

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 20]

Internet-Draft RELOAD Base March 2011

trust anchor and so can verify any other peer’s certificate.

In sone settings, a group of users want to set up an overlay network
but are not concerned about attack by other users in the network.

For instance, users on a LAN might want to set up a short termad hoc
network wi thout going to the trouble of setting up an enroll nment
server. RELOAD supports the use of self-generated, self-signed
certificates. Wen self-signed certificates are used, the node al so
generates its own Node-1D and username. The Node-ID is conputed as a
di gest of the public key, to prevent Node-ID theft; however this
nmodel is still subject to a number of known attacks (nost notably
Sybi|l attacks [Sybil]) and can only be safely used in cl osed networks
where users are nmutually trusting.

The general principle here is that the security nmechani sns (TLS and
message signatures) are always used, even if the certificates are
self-signed. This allows for a single set of code paths in the
systens with the only difference being whether certificate
verification is required to chain to a single root of trust.

3.1.1. Shared-Key Security

RELOAD al so provi des an adni ssion control system based on shared
keys. In this nodel, the peers all share a single key which is used
to authenticate the peer-to-peer connections via TLS PSK/ TLS- SRP

3.2. dients

RELOAD defines a single protocol that is used both as the peer
protocol and as the client protocol for the overlay. This sinplifies
i mpl enmentation, particularly for devices that nmay act in either role,
and allows clients to inject nmessages directly into the overl ay.

We use the term"peer" to identify a node in the overlay that routes
messages for nodes other than those to which it is directly
connected. Peers typically also have storage responsibilities. W
use the term"”client"” to refer to nodes that do not have routing or
storage responsibilities. Wen text applies to both peers and
clients, we will sinply refer such devices as "nodes."

RELOAD s client support allows nodes that are not participating in
the overlay as peers to utilize the same inplementation and to
benefit fromthe sanme security mechani snms as the peers. Cients
possess and use certificates that authorize the user to store data at
certain locations in the overlay. The Node-ID in the certificate is
used to identify the particular client as a nenber of the overlay and
to authenticate its nessages.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 21]

Internet-Draft RELOAD Base March 2011

3.

3.

2

2

In RELOAD, unlike some other designs, clients are not a first-class
concept. Fromthe perspective of a peer, a client is sinply a node
whi ch has not yet sent any Updates or Joins. It mght never do so
(if it's aclient) or it mght eventually do so (if it’s just a node
that's taking a long tine to join). The routing and storage rul es
for RELOAD provide for correct behavior by peers regardl ess of

whet her ot her nodes attached to themare clients or peers. O
course, a client inplenentation nust know that it intends to be a
client, but this localizes conplexity only to that node.

For nore discussion of the notivation for RELOAD s client support,
see Appendi x C.

1. dient Routing
Clients may insert thenselves in the overlay in tw ways:

o0 Establish a connection to the peer responsible for the client’'s
Node-ID in the overlay. Then requests nay be sent fromto the
client using its Node-ID in the same manner as if it were a peer,
because the responsible peer in the overlay will handle the fina
step of routing to the client. This may require a TURN relay in
cases where NATs or firewalls prevent a client fromformng a
direct connections with its responsible peer. Note that clients
that choose this option MIUST process Update nessages fromthe
peer. Those updates can indicate that the peer no |longer is
responsible for the Cient’s Node-1D. The client then MUST form a
connection to the appropriate peer. Failure to do so will result
in the client no | onger receiving nessages.

o Establish a connection with an arbitrary peer in the overlay
(perhaps based on network proxinmity or an inability to establish a
direct connection with the responsible peer). |In this case, the
client will rely on RELOAD s Destination List feature to ensure
reachability. The client can initiate requests, and any node in
the overlay that knows the Destination List to its current
| ocation can reach it, but the client is not directly reachable
using only its Node-ID. If the client is to receive inconing
requests fromother nenmbers of the overlay, the Destination List
required to reach it must be | earnable via other nechanisns, such
as being stored in the overlay by a usage.

2. Mnimm Functionality Requirenents for Cients

A node may act as a client sinply because it does not have the
resources or even an inplenmentation of the topol ogy plugin required
to act as a peer in the overlay. |In order to exchange RELOAD
messages with a peer, a client nust neet a mninmum|level of
functionality. Such a client mnust:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 22]

Internet-Draft RELOAD Base March 2011

o |Inplement RELOAD s connection-managenent operations that are used
to establish the connection with the peer.

0 Inplement RELOAD s data retrieval methods (with client
functionality).

0 Be able to calculate Resource-1Ds used by the overl ay.

0 Possess security credentials required by the overlay it is
i mpl enent i ng.

A client speaks the same protocol as the peers, knows how to

cal cul ate Resource-I1Ds, and signs its requests in the sane nmanner as
peers. Wile a client does not necessarily require a ful

i mpl ementation of the overlay algorithm calculating the Resource-1D
requires an inplenmentation of the appropriate algorithmfor the

overl ay.

3.3. Routing

This section will discuss the requirenents RELOAD s routing
capabilities nmust neet, then describe the routing features in the
protocol, and then provide a brief overview of how they are used.
Appendi x B di scusses sone alternative designs and the tradeoffs that
woul d be necessary to support them

RELOAD s routing capabilities nust neet the follow ng requiremnments:

NAT Traversal: RELOAD rmust support establishing and using
connecti ons between nodes separated by one or nore NATs, including
| ocati ng peers behind NATs for those overlays allow ng/requiring
it.

Clients: RELOAD nust support requests fromand to clients that do
not participate in overlay routing.

Client pronotion: RELOAD nust support clients that beconme peers at a
| ater point as determ ned by the overlay al gorithm and depl oynent.

Low st at e: RELOAD s routing algorithns nmust not require
significant state to be stored on internedi ate peers.

Return routability in unstable topol ogies: At sonme points in
times, different nodes nmay have inconsistent information about the
connectivity of the routing graph. 1In all cases, the response to
a request needs to delivered to the node that sent the request and
not to some other node.

RELOAD s routing provides three nmechani sns designed to assist in
nmeeting these needs:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 23]

Internet-Draft RELOAD Base March 2011

Destination Lists: While in principle it is possible to just
inject a message into the overlay with a bare Node-I1D as the
destination, RELOAD provides a source routing capability in the

formof "Destination Lists". A "Destination List provides a |ist
of the nodes through which a nessage nust fl ow.
Via Lists: In order to all ow responses to follow the sane path as

requests, each nessage also contains a "Via List", which is added
to by each node a nessage traverses. This via list can then be
inverted and used as a destination list for the response.

Rout eQuery: The RouteQuery nethod allows a node to query a peer
for the next hop it will use to route a nessage. This nethod is
useful for diagnostics and for iterative routing.

The basic routing mechani smused by RELOAD is Synmetric Recursive.
We will first describe symmetric recursive routing and then discuss
its advantages in terns of the requirenents di scussed above.

Synmetric recursive routing requires that a nessage follow a path
through the overlay to the destination without returning to the
originating node: each peer forwards the nmessage closer to its
destination. The return path of the response is then the sanme path
followed in reverse. For exanple, a nessage following a route fromA
to Z through B and X

A B X Z
---------- >
Dest =Z
---------- >
Vi a=A
Dest =Z
---------- >
Via=A, B
Dest =Z
Cmm e m -
Dest =X, B, A
Cmm e e - -
Dest =B, A
D,
Dest =A

Note that the preceding Figure does not indicate whether Ais a
client or peer: A forwards its request to B and the response is
returned to A in the sane manner regardless of A's role in the
overl ay.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 24]

Internet-Draft RELOAD Base March 2011

This figure shows use of full via-lists by internediate peers B and
X. However, if B and/or X are willing to store state, then they may
elect to truncate the lists, save that information internally (keyed
by the transaction id), and return the response nessage al ong the
path fromwhich it was received when the response is received. This
option requires greater state to be stored on internedi ate peers but
saves a small amount of bandw dth and reduces the need for nodifying
the message en route. Selection of this node of operation is a

choi ce for the individual peer; the techniques are interoperable even
on a single message. The figure below shows B using full via lists
but X truncating themto X1 and saving the state internally.

A B X Z
---------- >
Dest =Z
---------- >
Vi a=A
Dest =Z
---------- >
Dest=Z, X1
D,
Dest =X, X1
Cmm e m -
Dest =B, A
Cmm e e - -
Dest =A

RELCAD al so supports a basic Iterative routing node (where the
intermedi ate peers nerely return a response indicating the next hop
but do not actually forward the nmessage to that next hop thensel ves).
Iterative routing is inplenented using the RouteQuery nethod, which
requests this behavior. Note that iterative routing is selected only
by the initiating node.

3.4. Connectivity Managenent

In order to provide efficient routing, a peer needs to naintain a set
of direct connections to other peers in the Overlay Instance. Due to
the presence of NATs, these connections often cannot be forned
directly. Instead, we use the Attach request to establish a
connection. Attach uses |ICE [RFC5245] to establish the connection

It is assuned that the reader is famliar with |ICE

Say that peer A wishes to forma direct connection to peer B. It
gathers | CE candi dates and packages themup in an Attach request

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 25]

Internet-Draft RELOAD Base March 2011

which it sends to B through usual overlay routing procedures. B does
its own candi date gathering and sends back a response with its
candidates. A and B then do I CE connectivity checks on the candidate
pairs. The result is a connection between A and B. At this point, A
and B can add each other to their routing tables and send nessages
directly between thensel ves w thout going through other overlay
peers.

There is one special case in which Attach cannot be used: when a
peer is joining the overlay and is not connected to any peers. In
order to support this case, sone snall nunber of "bootstrap nodes"
typically need to be publicly accessible so that new peers can
directly connect to them Section 10 contains nore detail on this.

In general, a peer needs to maintain connections to all of the peers
near it in the Overlay Instance and to enough other peers to have
efficient routing (the details depend on the specific overlay). |If a
peer cannot forma connection to sone other peer, this isn't
necessarily a disaster; overlays can route correctly even wi thout
fully connected |links. However, a peer should try to nmaintain the
specified link set and if it detects that it has fewer direct
connections, should formnore as required. This also inplies that
peers need to periodically verify that the connected peers are stil
alive and if not try to reformthe connection or forman alternate
one.

3.5. Overlay Al gorithm Support

The Topology Plugin allows RELOAD to support a variety of overlay
algorithnms. This specification defines a DHT based on Chord [Chord],
which is mandatory to inplenent, but the base RELOAD protocol is
designed to support a variety of overlay algorithns.

3.5.1. Support for Pluggable Overlay Algorithns

RELOAD defines three nethods for overlay mai ntenance: Join, Update,
and Leave. However, the contents of those nessages, when they are
sent, and their precise semantics are specified by the actual overlay
al gorithm RELQAD nerely provides a framework of conmonl y-needed

met hods that provides uniformity of notation (and ease of debuggi ng)
for a variety of overlay algorithns.

3.5.2. Joining, Leaving, and Mintenance Overview
When a new peer wishes to join the Overlay Instance, it mnmust have a
Node-ID that it is allowed to use and a set of credentials which

mat ch that Node-I1D. When an enroll nment server is used that Node-ID
will be in the certificate the node received fromthe enroll nent

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 26]

Internet-Draft RELOAD Base March 2011

server. The details of the joining procedure are defined by the
overlay algorithm but the general steps for joining an Overlay
I nstance are:

o Form ng connections to sonme ot her peers.

0 Acquiring the data values this peer is responsible for storing.

o Informing the other peers which were previously responsible for
that data that this peer has taken over responsibility.

The first thing the peer needs to do is to forma connection to sone
"boot strap node". Because this is the first connection the peer
makes, these nodes nust have public I P addresses so that they can be
connected to directly. Once a peer has connected to one or nore
bootstrap nodes, it can form connections in the usual way by routing
Attach nmessages through the overlay to other nodes. Once a peer has
connected to the overlay for the first time, it can cache the set of
nodes it has connected to with public I P addresses for use as future
boot st rap nodes.

Once a peer has connected to a bootstrap node, it then needs to take
up its appropriate place in the overlay. This requires tw mgjor
operations:

0 Form ng connections to other peers in the overlay to populate its
Routing Tabl e.

0 Cetting a copy of the data it is now responsible for storing and
assumi ng responsibility for that data.

The second operation is performed by contacting the Admitting Peer
(AP), the node which is currently responsible for that section of the
overl ay.

The details of this operation depend nostly on the overlay al gorithm
i nvol ved, but a typical case would be:

1. JP (Joining Peer) sends a Join request to AP (Adnmitting Peer)
announcing its intention to join.

2. AP sends a Join response.

3. AP does a sequence of Stores to JP to give it the data it wll
need.

4, AP does Updates to JP and to other peers to tell it about its own
routing table. At this point, both JP and AP consider JP
responsi bl e for some section of the Overlay Instance.

5. JP makes its own connections to the appropriate peers in the
Overl ay I nstance.

After this process is conpleted, JP is a full nmenber of the Overlay
I nstance and can process Store/ Fetch requests.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 27]

Internet-Draft RELOAD Base March 2011

Note that the first node is a special case. Wen ordinary nodes
cannot form connections to the bootstrap nodes, then they are not
part of the overlay. However, the first node in the overlay can

obvi ously not connect to other nodes. |In order to support this case,
potential first nodes (which nust al so serve as bootstrap nodes
initially) nmust sonmehow be instructed (perhaps by configuration
settings) that they are the entire overlay, rather than not part of
it.

Note that clients do not performeither of these operations.
3.6. First-Tine Setup

Previ ous sections addressed how RELOAD wor ks once a node has
connected. This section provides an overvi ew of how users get
connected to the overlay for the first time. RELOAD is designed so
that users can start with the nane of the overlay they wish to join
and perhaps a usernanme and password, and | everage that into having a
wor ki ng peer with minimal user intervention. This helps avoid the
probl ens that have been experienced with conventional SIP clients
where users are required to manually configure a | arge nunmber of
settings.

3.6.1. Initial Configuration

In the first phase of the process, the user starts out with the name
of the overlay and uses this to download an initial set of overlay
configuration paraneters. The node does a DNS SRV | ookup on the
overlay name to get the address of a configuration server. It can
then connect to this server with HTTPS to downl oad a configuration
docunent which contains the basic overlay configuration paraneters as
well as a set of bootstrap nodes which can be used to join the

overl ay.

If a node already has the valid configuration docunent that it
received by some out of band nethod, this step can be ski pped.

3.6.2. Enr ol | nent

If the overlay is using centralized enrollnent, then a user needs to
acquire a certificate before joining the overlay. The certificate
attests both to the user’s nane within the overlay and to the Node-

I Ds which they are pernmitted to operate. |In that case, the
configuration document will contain the address of an enroll nment
server which can be used to obtain such a certificate. The
enrol I ment server may (and probably will) require sone sort of

user nane and password before issuing the certificate. The enroll nent
server’'s ability to restrict attackers’ access to certificates in the

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 28]

Internet-Draft RELOAD Base March 2011

4.

4.

overlay is one of the cornerstones of RELOAD s security.

Application Support Overview

RELOAD i s not intended to be used al one, but rather as a substrate
for other applications. These applications can use RELOAD for a
vari ety of purposes:

0 To store data in the overlay and retrieve data stored by other
nodes.

0 As a discovery nmechani smfor services such as TURN

o To formdirect connections which can be used to transmt
application-level messages wi thout using the overlay.

This section provides an overvi ew of these services.
1. Data Storage

RELOAD provi des operations to Store and Fetch data. Each location in
the Overlay Instance is referenced by a Resource-1D. However, each

| ocation may contain data el enents corresponding to nultiple kinds
(e.g., certificate, SIP registration). Sinmilarly, there nmay be
multiple elenents of a given kind, as shown bel ow

I I
I I
| - - + feememmeaaaas + |
| | Kind 1 | | Kind 2 | |
| | || | |
| | +-------- il B +
		Value				Value		
	+--------	A +						
	+-------- i B +							
		value				Value		
	+-------- i R EE R +							
	[+							
	+-------- +	I						
		Value		I				
	+-------- +	I						
- +								
T +

Each kind is identified by a Kind-1D, which is a code point either
assigned by I ANA or allocated out of a private range. As part of the
kind definition, protocol designers nay define constraints, such as

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 29]

Internet-Draft RELOAD Base March 2011

limts on size, on the values which nmay be stored. For nmany ki nds,
the set may be restricted to a single value; sone sets nay be all owed
to contain nultiple identical items while others may only have uni que
itens. Note that a kind may be enployed by nultiple usages and new
usages are encouraged to use previously defined kinds where possible.
We define the followi ng data nodels in this docunent, though other
usages can define their own structures:

single value: There can be at nost one itemin the set and any val ue
overwrites the previous item

array: Many val ues can be stored and addressed by a nuneric index.

dictionary: The values stored are indexed by a key. Oten this key
is one of the values fromthe certificate of the peer sending the
Store request.

In order to protect stored data fromtanpering, by other nodes, each
stored value is digitally signed by the node which created it. Wen
a value is retrieved, the digital signature can be verified to detect
t anperi ng.

4.1.1. Storage Pernissions

A maj or issue in peer-to-peer storage networks is minimzing the
burden of becoming a peer, and in particular mnimzing the anount of
data which any peer is required to store for other nodes. RELOAD
addresses this issue by only allow ng any given node to store data at
a smal|l nunber of locations in the overlay, with those |ocations
being deternmined by the node’s certificate. Wen a peer uses a Store
request to place data at a location authorized by its certificate, it
signs that data with the private key that corresponds to its
certificate. Then the peer responsible for storing the data is able
to verify that the peer issuing the request is authorized to nake
that request. Each data kind defines the exact rules for deternining
what certificate is appropriate.

The nmost natural rule is that a certificate authorizes a user to
store data keyed with their user nane X. This rule is used for al

the kinds defined in this specification. Thus, only a user with a
certificate for "alice@xanple.org" could wite to that location in
the overlay. However, other usages can define any rules they choose,
i ncluding publicly witable val ues.

The digital signature over the data serves two purposes. First, it

all ows the peer responsible for storing the data to verify that this
Store is authorized. Second, it provides integrity for the data.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 30]

Internet-Draft RELOAD Base March 2011

The signature is saved along with the data value (or values) so that
any reader can verify the integrity of the data. O course, the
responsi bl e peer can "lose" the value but it cannot undetectably
nodify it.

The size requirenents of the data being stored in the overlay are
variable. For instance, a SIP AOR and voicenail differ widely in the
storage size. RELQAD leaves it to the Usage and overl ay
configuration to limt size inbalance of various kinds.

4.1.2. Replication

Replication in P2P overlays can be used to provide:

per si st ence: if the responsible peer crashes and/or if the storing
peer | eaves the overl ay

security: to guard agai nst DoS attacks by the responsible peer or
routing attacks to that responsibl e peer

| oad bal anci ng: to bal ance the | oad of queries for popular
resources

A variety of schemes are used in P2P overlays to achi eve sone of
these goals. Common techni ques include replicating on neighbors of
the responsible peer, randonmly locating replicas around the overl ay,
or replicating along the path to the responsible peer

The core RELQAD specification does not specify a particul ar
replication strategy. Instead, the first |level of replication
strategies are deternined by the overlay algorithm which can base
the replication strategy on its particular topology. For exanple,
Chord pl aces replicas on successor peers, which will take over
responsibility should the responsible peer fail [Chord].

If additional replication is needed, for exanple if data persistence
is particularly inportant for a particular usage, then that usage nay
specify additional replication, such as inplenmenting random
replications by inserting a different well known constant into the
Resource Nanme used to store each replicated copy of the resource

Such replication strategies can be added i ndependent of the
underlying algorithm and their usage can be deternined based on the
needs of the particul ar usage.

4.2. Usages
By itself, the distributed storage |ayer just provides infrastructure

on which applications are built. |In order to do anything useful, a
usage nust be defined. Each Usage needs to specify several things:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 31]

Internet-Draft RELOAD Base March 2011

0 Registers Kind-1D code points for any kinds that the Usage
defi nes.

0 Defines the data structure for each of the kinds.

o Defines access control rules for each of the kinds.

o Defines how the Resource Nane is fornmed that is hashed to formthe
Resource-1D where each kind is stored.

0 Describes how values will be nerged after a network partition
Unl ess ot herwi se specified, the default merging rule is to act as
if all the values that need to be nmerged were stored and as if the
order they were stored in corresponds to the stored tinme val ues
associated with (and carried in) their values. Because the stored
time values are those associated with the peer which did the
witing, clock skewis generally not an issue. |If two nodes are
on different partitions, wite to the sane |ocation, and have
cl ock skew, this can create nerge conflicts. However because
RELOAD del i berately segregates storage so that data fromdifferent
users and peers is stored in different |ocations, and a single
peer will typically only be in a single network partition, this
case will generally not arise.

The ki nds defined by a usage may al so be applied to ot her usages.
However, a need for different paraneters, such as different size
limts, would inply the need to create a new ki nd.

4.3. Service Discovery

RELOAD does not currently define a generic service discovery

al gorithmas part of the base protocol, although a sinplistic TURN
specific discovery nechanismis provided. A variety of service

di scovery algorithns can be inplenmented as extensions to the base
protocol, such as the service discovery algorithmReD R

[opendht - si gcormm®D5] or [I|-D. naenpaa- p2psi p- servi ce-di scovery].

4.4, Application Connectivity

There is no requirement that a RELOAD usage nust use RELCAD s
primtives for establishing its own comunication if it already
possesses its own neans of establishing connections. For exanple,
one coul d design a RELOAD- based resource di scovery protocol which
used HTTP to retrieve the actual data.

For nore comon situations, however, it is the overlay itself -
rather than an external authority such as DNS - which is used to
establish a connection. RELOAD provides connectivity to applications
usi ng the AppAttach nethod. For exanple, if a P2PSI P node wi shes to
establish a SIP dialog with another P2PSIP node, it will use
AppAttach to establish a direct connection with the other node. This
new connection is separate fromthe peer protocol connection. It is

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 32]

Internet-Draft RELOAD Base March 2011

a dedicated UDP or TCP flow used only for the SIP dial og.

5. Overlay Managenent Prot ocol

This section defines the basic protocols used to create, nmintain,
and use the RELOAD overlay network. W start by defining the basic
concept of how message destinations are interpreted when routing
messages. We then describe the symmetric recursive routing nodel
which is RELOAD s default routing algorithm W then define the
message structure and then finally define the nessages used to join
and maintain the overl ay.

5.1. Message Receipt and Forwarding

When a peer receives a nessage, it first exam nes the overlay,
version, and other header fields to determnine whether the nessage is
one it can process. |f any of these are incorrect (e.g., the nessage
is for an overlay in which the peer does not participate) it is an
error. The peer SHOULD generate an appropriate error but |oca

policy can override this and cause the nmessages to be silently

dr opped.

Once the peer has determ ned that the nessage is correctly formatted,
it examines the first entry on the destination list. There are three
possi bl e cases here:

o0 The first entry on the destination list is an ID for which the
peer is responsible.

o The first entry on the destination list is an ID for which another
peer is responsible.

o The first entry on the destination list is a private IDthat is
bei ng used for destination |list conmpression. This is described
|ater (note that private I Ds can be distinguished from Node-IDs
and Resource-1Ds on the wire; see Section 5.3.2.2).

These cases are handl ed as di scussed bel ow.
5.1.1. Responsible ID

If the first entry on the destination list is an ID for which the
node is responsible, there are several sub-cases to consider

o If the entry is a Resource-1D, then it MJST be the only entry on
the destination list. |If there are other entries, the nessage
MUST be silently dropped. Oherw se, the nessage is destined for
this node and it passes it up to the upper |ayers.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 33]

Internet-Draft RELOAD Base March 2011

o If the entry is a Node-I1D which equals this node’s Node-1D, then
the message is destined for this node. |If this is the only entry
on the destination list, the nmessage is destined for this node and
is passed up to the upper layers. QOherwi se the entry is renoved
fromthe destination list and the nessage is passed to the Message
Transport. |If the nessage is a response and there is state for
the transaction ID, the state is reinserted into the destination
list before the nessage is further processed.

o If the entry is a Node-1D which is not equal to this node, then
the node MJST drop the nessage silently unless the Node-I1D
corresponds to a node which is directly connected to this node
(i.e., aclient). |In that case, it MJST forward the nessage to
the destination node as described in the next section

Note that this inplies that in order to address a nessage to "the
peer that controls region X', a sender sends to Resource-I1D X, not
Node-1D X

5.1.2. Oher ID

If neither of the other three cases applies, then the peer MJST
forward the nessage towards the first entry on the destination |ist.
This nmeans that it MJST select one of the peers to which it is
connected and which is likely to be responsible for the first entry
on the destination list. |If the first entry on the destination I|ist
is in the peer’s connection table, then it SHOULD forward the nessage
to that peer directly. Oherw se, the peer consults the routing
table to forward the nessage.

Any internedi ate peer which forwards a RELOAD request MJST arrange
that if it receives a response to that nessage the response can be
rout ed back through the set of nodes through which the request
passed. This may be arranged in one of two ways:

0 The peer MAY add an entry to the via list in the forwarding header
that will enable it to deternine the correct node.

0 The peer MAY keep per-transaction state which will allowit to
determ ne the correct node.

As an exanple of the first strategy, if node D receives a nessage
fromnode Cwith vialist (A B), then Dwuld forward to the next
node (E) with via list (A B, Q. Now, if Ewants to respond to the
message, it reverses the via list to produce the destination list,
resulting in (D, C, B, A. Wen Dforwards the response to C, the
destination list will contain (C, B, A).

As an exanple of the second strategy, if node D receives a nmessage
fromnode Cwth transaction ID X and via list (A B), it could store

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 34]

Internet-Draft RELOAD Base March 2011

(X, © inits state database and forward the nessage with the via
list unchanged. When D receives the response, it consults its state
dat abase for transaction id X, determ nes that the request cane from
C, and forwards the response to C

I nternedi ate peers which nodify the via list are not required to
simply add entries. The only requirenent is that the peer be able to
reconstruct the correct destination list on the return route. RELQAD
provi des explicit support for this functionality in the form of
private I Ds, which can replace any nunber of via list entries. For

i nstance, in the above exanple, Node D nmight send E a via |ist
containing only the private ID (1). E would then use the destination
list (D, 1) to send its return nessage. Wen D processes this
destination list, it would detect that | is a private I D, recover the
via list (A, B, O, and reverse that to produce the correct
destination list (C, B, A before sending it to C This feature is
called List Conpression. It MAY either be a conpressed version of
the original via list or an index into a state database containing
the original via list.

No matter what nechanismfor storing via list state is used, if an
i ntermedi ate peer exits the overlay, then on the return trip the
message cannot be forwarded and will be dropped. The ordinary
timeout and retransmni ssion mechani snms provide stability over this
type of failure

Note that if an internediate peer retains per-transaction state
instead of nodifying the via list, it needs sone nechanismfor tinng
out that state, otherwise its state database will grow wi thout bound.
What ever algorithmis used, unless a FORWARD CRI Tl CAL forwardi ng
option or overlay configuration option explicitly indicates this
state is not needed, the state MJST be numintained for at |east the
val ue of the overlay reliability timer (3 seconds) and MAY be kept

| onger. Future extension, such as [I-D.jiang-p2psip-relay], my
define mechani sns for determ ning when this state does not need to be
retai ned.

None of the above nechani sns are required for responses, since there
is no need to ensure that subsequent requests follow the sane path.

5.1.3. Private ID
If the first entry in the destination list is a private id (e.g., a
compressed via list), the peer MIST replace that entry with the

original via list that it replaced and then re-exam ne the
destination list to determ ne which of the above cases now appli es.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 35]

Internet-Draft RELOAD Base March 2011

5.2. Symmetric Recursive Routing

This Section defines RELOAD s synmetric recursive routing al gorithm
which is the default algorithmused by nodes to route nessages
through the overlay. Al inplenentations MJUST inplenent this routing
algorithm An overlay nmay be configured to use alternative routing
algorithms, and alternative routing algorithnms rmay be selected on a
per - nessage basi s.

5.2.1. Request Origination

In order to originate a nessage to a given Node-1D or Resource-ID, a
node constructs an appropriate destination list. The sinplest such
destination list is a single entry containing the Node-1D or
Resource-1D. The resulting nmessage will use the normal overl ay
routing nmechanisns to forward the nessage to that destination. The
node can al so construct a nore conplicated destination list for
source routing.

Once the nessage is constructed, the node sends the message to some
adj acent peer. If the first entry on the destination list is
directly connected, then the nessage MJST be routed down that
connection. Oherw se, the topology plugin MJST be consulted to
determine the appropriate next hop

Paral |l el searches for the resource are a common solution to inprove
reliability in the face of churn or of subversive peers. Parallel
searches for usage-specified replicas are nmanaged by the usage | ayer
However, a single request can also be routed through nultiple

adj acent peers, even when known to be sub-optinal, to inprove
reliability [vulnerabilities-acsac04]. Such parallel searches MAY be
specified by the topol ogy pl ugin.

Because nessages nmay be lost in transit through the overlay, RELOAD

i ncorporates an end-to-end reliability nmechanism \When an
originating node transnmits a request it MJST set a 3 second tiner.

If a response has not been received when the timer fires, the request
is retransnmitted with the sane transaction identifier. The request
MAY be retransmitted up to 4 tines (for a total of 5 messages).

After the tinmer for the fifth transmssion fires, the nessage SHALL
be considered to have failed. Note that this retransni ssion
procedure is not followed by internmedi ate nodes. They follow the
hop-by-hop reliability procedure described in Section 5.6.3.

The above algorithmcan result in nmultiple requests being delivered
to a node. Receiving nodes MJST generate semantically equival ent
responses to retransm ssions of the sane request (this can be
determined by transaction id) if the request is received within the

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 36]

Internet-Draft RELOAD Base March 2011

maxi mum request lifetime (15 seconds). For some requests (e.g.
Fetch) this can be acconplished nmerely by processing the request
again. For other requests, (e.g., Store) it may be necessary to
mai ntain state for the duration of the request lifetine.

5.2.2. Response Origination

When a peer sends a response to a request using this routing
algorithm it MUST construct the destination list by reversing the
order of the entries on the via list. This has the result that the
response traverses the sane peers as the request traversed, except in
reverse order (symetric routing).

5.3. Message Structure

RELOAD i s a nessage-oriented request/response protocol. The nessages
are encoded using binary fields. Al integers are represented in
network byte order. The general philosophy behind the design was to
use Type, Length, Value fields to allow for extensibility. However,
for the parts of a structure that were required in all nessages, we
just define these in a fixed position, as adding a type and |l ength
for themis unnecessary and would sinply increase bandw dth and

i ntroduces new potential for interoperability issues.

Each nessage has three parts, concatenated as shown bel ow

o e e e e e e e e oo +
[Forwar di ng Header [
S +
[Message Contents |
e +
| Security Bl ock |
o e e e e e e e e oo +

The contents of these parts are as follows:

Forwar di ng Header: Each nessage has a generic header which is used
to forward the nessage between peers and to its final destination
This header is the only information that an internedi ate peer
(i.e., one that is not the target of a nessage) needs to exani ne.

Message Contents: The nessage being delivered between the peers.

From the perspective of the forwarding | ayer, the contents are
opaque, however, they are interpreted by the higher |ayers.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 37]

Internet-Draft RELOAD Base March 2011

Security Block: A security block containing certificates and a
digital signature over the "Message Contents” section. Note that
this signature can be conputed wi thout parsing the nessage
contents. Al nmessages MJUST be signed by their originator

The foll owi ng sections describe the format of each part of the
nmessage

5.3.1. Presentation Language

The structures defined in this docunent are defined using a C1ike
syntax based on the presentation | anguage used to define TLS
[RFC5246] Advantages of this style include:

o It famliar enough |ooking that nbst readers can grasp it quickly.
o0 The ability to define nested structures allows a separation
bet ween hi gh-1evel and | ow | evel nmessage structures.
o It has a straightforward wire encoding that allows quick
i mpl ement ati on, but the structures can be conprehended wi t hout
knowi ng the encodi ng.
o The ability to nechanically conpile encoders and decoders.

Several idiosyncrasies of this |anguage are worth noting.

o Al lengths are denoted in bytes, not objects.
0 Variable length values are denoted |ike arrays with angle
brackets.

0 "select"” is used to indicate variant structures.

For instance, "uintl1l6 array<0..2"8-2>;" represents up to 254 bytes
but only up to 127 values of two bytes (16 bits) each

5.3.1.1. Common Definitions

The followi ng definitions are used throughout RELOAD and so are
defined here. They also provide a convenient introduction to howto
read the presentation | anguage.

An enum represents an enunerated type. The values associated with
each possibility are represented in parentheses and the naxi mum val ue
is represented as a nanel ess val ue, for purposes of describing the
width of the containing integral type. For instance, Bool ean
represents a true or false:

enum{ false (0), true(1l), (255)} Bool ean

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 38]

Internet-Draft RELOAD Base March 2011

A boolean value is either a 1 or a 0. The max val ue of 255 indicates
this is represented as a single byte on the wire.

The Nodel d, shown bel ow, represents a single Node-ID

typedef opaque Nodel d[Nodel dLengt h] ;

A Nodeld is a fixed-length structure represented as a series of
bytes, with the nost significant byte first. The length is set on a
per-overlay basis within the range of 16-20 bytes (128 to 160 bits).
(See Section 10.1 for how NodeldLength is set.) Note: the use of
"typedef" here is an extension to the TLS | anguage, but its meaning
shoul d be relatively obvious. Note the [size] syntax defines a
fixed I ength el enent that does not include the | ength of the el enent
in the on the wire encodi ng.

A Resourceld, shown bel ow, represents a single Resource-I|D

t ypedef opaque Resour cel d<0. . 2"8- 1>

Li ke a Nodeld, a Resourceld is an opaque string of bytes, but unlike
Nodel ds, Resourcelds are variable length, up to 254 bytes (2040 bits)
inlength. On the wire, each Resourceld is preceded by a single

I ength byte (allowing lengths up to 255). Thus, the 3-byte val ue
"FOO' woul d be encoded as: 03 46 4f 4f. Note the < range > syntax
defines a variable I ength el ement that does include the length of the
element in the on the wire encoding. The nunber of bytes to encode
the length on the wire is derived by range; i.e., it is the m ninmm
nunber of bytes which can encode the |argest range val ue.

A nore conplicated exanple is | pAddressPort, which represents a

net wor k address and can be used to carry either an | Pv6 or |Pv4
addr ess:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 39]

Internet-Draft RELOAD Base March 2011

enum {reservedAddr (0), ipv4_address (1), ipv6_address (2),
(255)} AddressType;

struct {
ui nt 32 addr ;
uintl6 port;
} | Pv4Addr Port;
struct {
ui nt 128 addr ;
uintl16 port;

} | Pv6Addr Port;

struct {
Addr essType type;
uint8 | engt h;

sel ect (type) {
case i pv4_address:
| Pv4Addr Por t v4addr _port;

case i pv6_address:
| Pv6Addr Por t vb6addr port;

/* This structure can be extended */

1
} | pAddressPort;

The first two fields in the structure are the sane no matter what
ki nd of address is being represented:

type: the type of address (v4 or v6).
length: the Iength of the rest of the structure.

By having the type and the | ength appear at the begi nning of the
structure regardl ess of the kind of address being represented, an

i mpl ement ati on whi ch does not understand new address type X can stil
parse the | pAddressPort field and then discard it if it is not
needed.

The rest of the IpAddressPort structure is either an | Pv4AddrPort or
an | Pv6AddrPort. Both of these sinply consist of an address
represented as an integer and a 16-bit port. As an example, here is
the wire representation of the IPv4 address "192.0.2.1" with port
"6100".

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 40]

Internet-Draft

01
06

c0 00 02 01
17 d4

RELOAD Base March 2011
type = | Pv4
length =6
address = 192.0.2.1
port = 6100

Unl ess a given structure that uses a select explicitly allows for
unknown types in the select, any unknown type SHOULD be treated as an
parsing error and the whol e nessage di scarded with no response.

5.3.2. Forwardi ng Header

The forwardi ng header is defined as a Forwardi ngHeader structure, as

shown bel

ow.

struct {

ui
ui
ui
ui
ui
ui
ui
ui
ui
ui
ui
ui

Desti nati on
Desti nati on

For war di ngOpt i ons

nt 32
nt 32
nt 16
nt8
nt8
nt 32
nt 32
nt 64
nt 32
nt 16
nt 16
nt 16

} Forwar di ngHeader ;

rel o_token;

overl ay;

configuration_sequence;

versi on;

ttl;

fragnment;

| engt h;

transaction_id;

max_r esponse_| engt h;

via_list_|ength;

destination_Ilist_I|ength;

options_|l ength;

via list[via_list_length];

destination_|ist
[destination_list_|length];

options[options_| ength];

The contents of the structure are:

rel o_token:
nmessage.
"RELO with the high bit of the first byte set.).

overl ay:

security critica

The first four bytes identify this nessage as a RELOAD
This field MIUST contain the val ue 0xd2454c4f (the string

The 32 bit checksum hash of the overlay being used. The
variable length string representing the overlay name is hashed
with SHA-1 [RFC3174] and the | ow order 32 bits are used. The
purpose of this field is to allow nodes to participate in multiple
overlays and to detect accidental msconfiguration. This is not a

Jenni ngs, et al

function.

Expi res Septenber 15, 2011 [Page 41]

Internet-Draft RELOAD Base March 2011

configuration_sequence: The sequence nunber of the configuration
file.

version: The version of the RELOAD protocol being used. This is a
fixed point integer between 0.1 and 25.4. This docunment describes
version 0.1, with a value of 0x01l. [[Note to RFC Editor: Pl ease
update this to version 1.0 with value of OxOa and renove this
note.]]

ttl: An 8 bit field indicating the nunber of iterations, or hops, a
message can experience before it is discarded. The TTL val ue MJST
be decremented by one at every hop along the route the nessage
traverses. |If the TTL is 0, the nessage MUST NOT be propagated
further and MJUST be di scarded, and a "Error_TTL_Exceeded" error
shoul d be generated. The initial value of the TTL SHOULD be 100
unl ess defined otherwi se by the overlay configuration

fragment: This field is used to handle fragnmentation. The high

order two bits are used to indicate the fragmentation status: |f
the high bit (0x80000000) is set, it indicates that the nessage is
a fragnent. |If the next bit (0x40000000) is set, it indicates

that this is the last fragnent. The next six bits (0x20000000 to
0x01000000) are reserved and SHOULD be set to zero. The renainder
of the field is used to indicate the fragment offset; see

Section 5.7

| ength: The count in bytes of the size of the nmessage, including the
header .

transaction_id: A unique 64 bit nunber that identifies this
transaction and also allows receivers to di sanbi guate transactions
whi ch are otherwi se identical. 1In order to provide a high
probability that transaction |IDs are uni que, they MJST be randomnly
generated. Responses use the sane Transaction |ID as the request
they correspond to. Transaction IDs are also used for fragnent
reassenbly.

max_response_| ength: The maxi num size in bytes of a response. Used
by requesting nodes to avoid receiving (unexpected) very |large
responses. |If this value is non-zero, responding peers MJST check
that any response would not exceed it and if so generate an
Error _Response_Too_Large value. This value SHOULD be set to zero
for responses.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 42]

Internet-Draft RELOAD Base March 2011

via_list_length: The length of the via list in bytes. Note that in
this field and the following two length fields we depart fromthe
usual variabl e-length convention of having the Iength i nmedi ately
precede the value in order to nake it easier for hardware decodi ng
engines to quickly determine the I ength of the header

destination_list _length: The length of the destination list in
byt es.

options_length: The length of the header options in bytes.

via_list: The via_list contains the sequence of destinations through
whi ch the nmessage has passed. The via_ list starts out enpty and
grows as the nessage traverses each peer

destination list: The destination_|ist contains a sequence of
destinations which the nmessage should pass through. The
destination list is constructed by the nmessage originator. The
first element in the destination list is where the message goes
next. The list shrinks as the nessage traverses each |isted peer

options: Contains a series of Forwardi ngQptions entries. See
Section 5.3.2.3.

5.3.2.1. Processing Configuration Sequence Nunbers

In order to be part of the overlay, a node MJUST have a copy of the
overlay configuration docunent. 1In order to allow for configuration
docunent changes, each version of the configuration docunent has a
sequence nunber which is nonotonically increasing nod 65536. Because
the sequence nunber may in principle wap, greater than or | ess than
are interpreted by nodulo arithmetic as in TCP

When a destination node receives a request, it MJST check that the
configuration_sequence field is equal to its own configuration
sequence nunber. |f they do not match, it MJST generate an error
either Error_Config_Too _Od or Error_Config_Too New. In addition, if
the configuration file in the request is too old, it MJST generate a
Confi gUpdat e message to update the requesting node. This allows new
configuration docunents to propagate qui ckly throughout the system
The one exception to this rule is that if the configuration_sequence
field is equal to Oxffff, and the nmessage type is ConfigUpdate, then
the message MJST be accepted regardl ess of the receiving node’s
configuration sequence nunber. Since 65535 is a special value, peers
sendi ng a new configuration when the configuration sequence is
currently 65534 MJUST set the configuration sequence nunber to 0 when
they send out a new configuration

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 43]

Internet-Draft RELOAD Base March 2011

5.3.2.2. Destination and Via Lists

The destination list and via lists are sequences of Destination
val ues:

enum {reserved(0), node(l), resource(2), conpressed(3),
[* 128-255 not allowed */ (255) }
Desti nati onType;

sel ect (destination_type) {
case node:
Nodel d node_i d;

case resource:
Resourcel d resource_id;

case conpressed:
opaque conpressed_i d<0..2"8-1>;

/[* This structure may be extended with new types */
} DestinationDat a;

struct {
Desti nati onType type;
ui nt8 | engt h;
Desti nati onDat a destination_dat a;

} Destination;

struct {
uintl6 conmpressed id; /* top bit MJST be 1 */
} Destination;

If a destination structure has its first bit set to 1, thenit is a
16 bit integer. |If the first bit is not set, then it is a structure
starting with DestinationType. |If it is a 16 bit integer, it is
treated as if it were a full structure with a DestinationType of
conmpressed and a conpressed_id that was 2 bytes long with the val ue
of the 16 bit integer. When the destination structure is not a 16
bit integer, it is the TLV structure with the follow ng contents:

type
The type of the DestinationData Payload Data Unit (PDU). This may
be one of "node", "resource", or "conpressed".

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 44]

Internet-Draft RELOAD Base March 2011

I ength
The I ength of the destination_data.

destination_data
The destination value itself, which is an encoded Desti nati onDat a
structure, depending on the value of "type"

Note: This structure encodes a type, length, value. The length
field specifies the length of the DestinationData val ues, which
all ows the addition of new DestinationTypes. This allows an
i mpl ement ati on whi ch does not understand a given DestinationType
to skip over it.

A DestinationData can be one of three types:

node
A Node- | D.

conpr essed
A compressed |ist of Node-IDs and/or resources. Because this
val ue was conpressed by one of the peers, it is only neaningful to
that peer and cannot be decoded by other peers. Thus, it is
represented as an opaque string.

resource
The Resource-I1D of the resource which is desired. This type MJST
only appear in the final location of a destination |ist and MJST
NOT appear in a via list. It is nmeaningless to try to route
t hrough a resource

One possible encoding of the 16 bit integer version as an opaque
identifier is to encode an index into a connection table. To avoid
m srouting responses in the event a response is delayed and the
connection table entry has changed, the identifier SHOULD be split

bet ween an index and a generation counter for that index. At

startup, the generation counters should be initialized to random
values. An inplementation could use 12 bits for the connection table
index and 3 bits for the generation counter. (Note that this does
not suggest a 4096 entry connection table for every node, only the
ability to encode for a larger connection table.) Wen a connection
table slot is used for a new connection, the generation counter is
incremented (wWith wapping). Connection table slots are used on a
rotating basis to maximze the tine interval between uses of the sane
slot for different connections. Wen routing a nessage to an entry
in the destination list encoding a connection table entry, the node
confirns that the generation counter matches the current generation
counter of that index before forwarding the nessage. |If it does not

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 45]

Internet-Draft RELOAD Base March 2011

mat ch, the nessage is silently dropped.
5.3.2.3. Forwarding Options

The Forwardi ng header can be extended with forwardi ng header options,
which are a series of Forwardi ngOptions structures:

enum { reservedForwarding(0), (255) }
For war di ngOpt i onsType;

struct {
For war di ngOpt i onsType type;
uint8 fl ags;
uint16 | engt h;

select (type) {
/[* This type may be extended */
} option;
} Forwardi ngOpti on;

Each Forwardi ngOpti on consists of the foll ow ng val ues:

type
The type of the option. This structure allows for unknown options

types.

| ength
The length of the rest of the structure.

flags
Three flags are defined FORWARD CRI Tl CAL(0x01),
DESTI NATI ON_CRI TI CAL(0x02), and RESPONSE_COPY(0x04). These fl ags
MUST NOT be set in a response. |If the FORWARD CRITICAL flag is
set, any node that would forward the nessage but does not
understand this options MJST reject the request with an
Error _Unsupported_Forwardi ng_Option error response. |If the
DESTI NATION_CRITICAL flag is set, any node that generates a
response to the message but does not understand the forwarding
option MJST reject the request with an
Error_Unsupported Forwardi ng_Option error response. |f the
RESPONSE_COPY flag is set, any node generating a response MJST
copy the option fromthe request to the response except that the
RESPONSE_COPY, FORWARD CRI TI CAL and DESTI NATI ON_CRI TI CAL fl ags
must be cl eared

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 46]

Internet-Draft RELOAD Base March 2011

option
The option val ue.

5.3.3. Message Contents Fornmat

The second nmjor part of a RELOAD nessage is the contents part, which
is defined by MessageContents

enum { reservedMessagesExtension(0), (2716-1) } MessageExt ensi onType;

struct {
MessageExt ensi onType type;
Bool ean critical
opaque ext ensi on_cont ent s<0. . 2"32- 1>

} MessageExt ensi on;

struct {
uint16 nmessage_code;
opaque message_body<0. . 2732- 1>
MessageExt ensi ons ext ensi ons<0. . 2"32-1>

} MessageContents;

The contents of this structure are as foll ows:

message_code
This indicates the nessage that is being sent. The code space is
broken up as foll ows.

0 Reserved

1 .. Ox7fff Requests and responses. These code points are always
paired, with requests being odd and the correspondi ng response
bei ng the request code plus 1. Thus, "probe_request" (the
Probe request) has value 1 and "probe_answer" (the Probe
response) has val ue 2

Ooxffff FError
The message codes are defined in Section 13.8

message_body
The message body itself, represented as a variable-length string
of bytes. The bytes thensel ves are dependent on the code val ue.
See the sections describing the various RELOAD net hods (Join,
Update, Attach, Store, Fetch, etc.) for the definitions of the
payl oad contents.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 47]

Internet-Draft RELOAD Base March 2011

ext ensi ons
Extensions to the nessage. Currently no extensions are defined,
but new extensions can be defined by the process described in
Section 13. 14.

Al'l extensions have the followi ng form

type
The extension type.

critical
Whet her this extension nmust be understood in order to process the
message. |If critical = True and the recipient does not understand
the message, it MJST generate an Error_Unknown_Ext ension error
If critical = False, the recipient MAY choose to process the

message even if it does not understand the extension

ext ension_contents
The contents of the extension (extension-dependent).

5.3.3.1. Response Codes and Response Errors

A peer processing a request returns its status in the nessage_code
field. |If the request was a success, then the nessage code is the
response code that matches the request (i.e., the next code up). The
response payload is then as defined in the request/response

descri ptions.

If the request has failed, then the nessage code is set to Oxffff

(error) and the payl oad MJST be an error_response PDU, as shown
bel ow.

When the nmessage code is Oxffff, the payl oad MIST be an
Err or Response

public struct {
uint 16 error_code;

opaque error_info<0..2"16-1>
} ErrorResponse

The contents of this structure are as foll ows:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 48]

Internet-Draft RELOAD Base March 2011

error_code
A numeric error code indicating the error that occurred.

error_info
An optional arbitrary byte string. Unless otherw se specified,
this will be a UTF-8 text string providing further information
about what went w ong.

The following error code values are defined. The nuneric val ues for
these are defined in Section 13.9.

Error_Forbi dden: The requesting node does not have permi ssion to
make this request.

Error_Not Found: The resource or peer cannot be found or does not
exi st.

Error_Request _Tineout: A response to the request has not been
received in a suitable anmount of time. The requesting node MAY
resend the request at a later tine.

Error_Data_Too_Od: A store cannot be conpl eted because the
storage_time precedes the existing val ue.

Error_Data_Too O d: A store cannot be conpl eted because the
storage_tine precedes the existing val ue.

Error_Data_Too_Large: A store cannot be conpl eted because the
requested object exceeds the size linits for that kind.

Error_Generation_Counter_Too _Low. A store cannot be conpleted
because the generation counter precedes the existing val ue.

Error_Inconpatible_with_Overlay: A peer receiving the request is
using a different overlay, overlay algorithm or hash algorithm

Error _Unsupported_Forwardi ng_Option: A peer receiving the request
with a forwarding options flagged as critical but the peer does
not support this option. See section Section 5.3.2.3.

Error _TTL_Exceeded: A peer receiving the request where the TTL got
decrenented to zero. See section Section 5.3.2.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 49]

Internet-Draft RELOAD Base March 2011

Error _Message_Too _Large: A peer receiving the request that was too
| arge. See section Section 5.6.

Error _Response_Too_Large: A peer would have generated a response
that is too |arge per the max_response_l ength field.

Error_Config Too_Od: A destination peer received a request with a
configuration sequence that’s too old. See Section 5.3.2.1.

Error_Config Too New. A destination node received a request with a
configuration sequence that’'s too new. See Section 5.3.2.1.

Error _Unknown_Ki nd: A destination node received a request with an
unknown kind-id. See Section 6.4.1.2.

Error _In_Progress: An Attach is already in progress to this peer.
See Section 5.5.1.2.

Error _Unknown_Extension: A destination node received a request with
an unknown extensi on.

5.3.4. Security Bl ock

The third part of a RELOAD nessage is the security block. The
security block is represented by a SecurityBl ock structure:

enum { x509(0), (255) } certificate_ type;

struct {
certificate_type type;
opaque certificate<0..2"16-1>;

} CGenericCertificate;

struct {
GenericCertificate certificates<0..2"16-1>;
Si gnature si gnat ur e;

} SecurityBl ock;

The contents of this structure are:

certificates
A bucket of certificates.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 50]

Internet-Draft RELOAD Base March 2011

si gnature
A signature over the nessage contents.

The certificates bucket SHOULD contain all the certificates necessary
to verify every signature in both the nessage and the interna

message objects. This is the only location in the message which
contains certificates, thus allowing for only a single copy of each
certificate to be sent. In systens which have sone alternate
certificate distribution nmechanism sone certificates MAY be onitted.
However, inplenentors should note that this creates the possibility

t hat nessages may not be immedi ately verifiable because certificates
nmust first be retrieved.

Each certificate is represented by a GenericCertificate structure,
whi ch has the foll ow ng contents:

type
The type of the certificate. Only one type is defined: x509
representing an X. 509 certificate.

certificate
The encoded version of the certificate. For X 509 certificates,
it is the DER form

The signature is conputed over the payl oad and parts of the
forwardi ng header. The payload, in case of a Store, nay contain an
addi tional signature conputed over a StoreReq structure. Al
signatures are formatted using the Signature elenent. This el enent
is also used in other contexts where signatures are needed. The

i nput structure to the signature conputation varies depending on the
data el ement bei ng signed.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 51]

Internet-Draft RELOAD Base March 2011

enum { reservedSi gnerldentity(0),
cert_hash(1), (255)} SignerldentityType;

struct {
select (identity type) {
case cert_hash;

HashAl gorithm hash_al g; /'l From TLS
opaque certificate_hash<0..278-1>
[* This structure may be extended with new types if necessary*/
1
} SignerldentityVal ue;
struct {
Si gnerldentityType identity_type;
uint16 | engt h;
Si gnerl dentityVal ue identity[Signerldentity.length];
} Signerldentity;
struct {
Si gnat ur eAndHashAl gorit hm al gorithm /1 From TLS
Signerldentity identity;
opaque si gnature_val ue<0..2"16-1>

} Signature;

The signature construct contains the follow ng val ues:

al gorithm
The signature algorithmin use. The algorithmdefinitions are
found in the | ANA TLS SignatureAl gorithm Registry. Al
i mpl ement ati ons MJST support RSASSA- PKCS1-v1 5 [RFC3447]
signatures with SHA-256 hashes.

identity
The identity used to formthe signature.

si gnat ure_val ue
The val ue of the signature.

The only currently permtted identity format is a hash of the
signer’s certificate. The hash alg field is used to indicate the

al gorithmused to produce the hash. The certificate_hash contains
the hash of the certificate object (i.e., the DER encoded
certificate). The Signerldentity structure is typed purely to allow
for future (unanticipated) extensibility.

For signatures over nessages the input to the signature is conputed
over:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 52]

Internet-Draft RELOAD Base March 2011

overlay || transaction_id || MessageContents || Signerldentity

where overlay and transaction_id cone fromthe forwardi ng header and
| | indicates concatenation

The input to signatures over data values is different, and is
described in Section 6. 1.

Al'l RELQAD nessages MJST be signed. Upon receipt, the receiving node
MUST verify the signature and the authorizing certificate. This
check provides a nininmal |evel of assurance that the sending node is
a valid part of the overlay as well as cryptographic authentication
of the sending node. |In addition, responses MJST be checked as
fol | ows:

1. The response to a nessage sent to a specific Node-ID MJUST have
been sent by that Node-I1D.

2. The response to a nmessage sent to a Resource-1d MJST have been
sent by a Node-1D which is as close to or closer to the target
Resource-1d than any node in the requesting node’ s nei ghbor
tabl e.

The second condition serves as a prinmitive check for responses from
wildly wong nodes but is not a conplete check. Note that in periods
of churn, it is possible for the requesting node to obtain a cl oser
nei ghbor while the request is outstanding. This will cause the
response to be rejected and the request to be retransmtted.

In addition, sone nethods (especially Store) have additiona
aut henti cation requirenents, which are described in the sections
covering those nethods.

5.4. Overlay Topol ogy

As di scussed in previous sections, RELOAD does not itself inplenent
any overlay topology. Rather, it relies on Topology Plugins, which
allow a variety of overlay algorithns to be used while naintaining
the sane RELQOAD core. This section describes the requirenments for
new t opol ogy plugins and the met hods that RELQAD provides for overlay
t opol ogy nai nt enance.

5.4.1. Topol ogy Plugin Requirements

When specifying a new overlay algorithm at |least the follow ng need
to be descri bed:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 53]

Internet-Draft RELOAD Base March 2011

0 Joining procedures, including the contents of the Join nmessage.

o Stabilization procedures, including the contents of the Update
message, the frequency of topol ogy probes and keepalives, and the
mechani sm used to detect when peers have di sconnect ed.

0 Exit procedures, including the contents of the Leave nessage.

0 The length of the Resource-I1Ds. For DHTs, the hash algorithmto
comput e the hash of an identifier.

0 The procedures that peers use to route nessages.

o The replication strategy used to ensure data redundancy.

Al'l overlay algorithnms MJST specify naintenance procedures that send
Updates to clients and peers that have established connections to the
peer responsible for a particular I D when the responsibility for that
I D changes. Because tracking this information is difficult, overlay
al gorithms MAY sinply specify that an Update is sent to all nenbers
of the Connection Tabl e whenever the range of I1Ds for which the peer

i s responsi bl e changes.

5.4.2. Methods and types for use by topol ogy plugins

This section describes the nmethods that topol ogy plugins use to join,
| eave, and nmintain the overlay.

5.4.2.1. Join

A new peer (but one that already has credentials) uses the JoinReq
message to join the overlay. The JoinReq is sent to the responsible
peer depending on the routing mechani smdescribed in the topol ogy
plugin. This notifies the responsible peer that the new peer is
taki ng over sone of the overlay and it needs to synchronize its

state.
struct {
Nodel d j 0i ni ng_peer _i d;
opaque overl ay_specific_data<0..2"16-1>
} Joi nReq;

The m ni mal Joi nReq contains only the Node-1D which the sendi ng peer
wi shes to assune. Overlay algorithns MAY specify other data to
appear in this request. Receivers of the JoinReq MJST verify that
the joining peer_id field matches the Node-1D used to sign the
message and if not MJUST reject the nessage with an Error_Forbi dden
error.

If the request succeeds, the respondi ng peer responds with a Joi nAns
message, as defined bel ow

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 54]

Internet-Draft RELOAD Base March 2011

struct {
opaque overl ay_specific_data<0..2716- 1>

} Joi nAns;

If the request succeeds, the respondi ng peer MJST foll ow up by
executing the right sequence of Stores and Updates to transfer the
appropriate section of the overlay space to the joining peer. In
addition, overlay algorithms MAY define data to appear in the
response payl oad that provides additional info.

In general, nodes which cannot form connections SHOULD report an
error. However, inplenentations MJST provi de sone nechani sm wher eby
nodes can deternine that they are potentially the first node and take
responsibility for the overlay. This specification does not mandate
any particul ar mechanism but a configuration flag or setting seens
appropri at e.

5.4.2.2. Leave
The LeaveReq nessage is used to indicate that a node is exiting the

overlay. A node SHOULD send this nessage to each peer with which it
is directly connected prior to exiting the overl ay.

struct {
Nodel d | eavi ng_peer _i d;
opaque overl ay_specific_data<0..2"16- 1>

} LeaveReq;

LeaveReq contains only the Node-ID of the |leaving peer. Overlay

al gorithms MAY specify other data to appear in this request.

Recei vers of the LeaveReq MUST verify that the |eaving_peer_id field
mat ches the Node-ID used to sign the nessage and if not MJIST reject
the nmessage with an Error_Forbi dden error

Upon receiving a Leave request, a peer MJST update its own routing
tabl e, and send the appropriate Store/Update sequences to re-
stabilize the overl ay.

5.4.2.3. Update

Update is the primary overl ay-specific nai ntenance nessage. It is
used by the sender to notify the recipient of the sender’s view of
the current state of the overlay (its routing state), and it is up to
the recipient to take whatever actions are appropriate to deal with
the state change. 1In general, peers send Update nessages to all
their adj acenci es whenever they detect a topology shift.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 55]

Internet-Draft RELOAD Base March 2011

When a peer receives an Attach request with the send_update flag set
to "true" Section 5.4.2.4, it MJST send an Update nessage back to the
sender of the Attach request after the completion of the
correspondi ng | CE check and TLS connection. Note that the sender of
a such Attach request nmay not have joined the overlay yet.

When a peer detects through an Update that it is no |onger
responsible for any data value it is storing, it MJST attenpt to
Store a copy to the correct node unless it knows the newy
responsi bl e node already has a copy of the data. This prevents data
| oss during | arge-scal e topology shifts such as the nergi ng of
partitioned overl ays.

The contents of the UpdateReq nessage are conpletely overlay-
specific. The UpdateAns response is expected to be either success or
an error.

5.4.2. 4. RouteQuery

The RouteQuery request allows the sender to ask a peer where they
woul d route a nessage directed to a given destination. 1n other
words, a RouteQuery for a destination X requests the Node-ID for the
node that the receiving peer would next route to in order to get to
X. A RouteQuery can al so request that the receiving peer initiate an
Update request to transfer the receiving peer’s routing table.

One inmportant use of the RouteQuery request is to support iterative
routing. The sender selects one of the peers in its routing table
and sends it a RouteQuery nessage with the destination_object set to
the Node-ID or Resource-ID it wishes to route to. The receiving peer
responds with informati on about the peers to which the request woul d
be routed. The sending peer MAY then use the Attach nmethod to attach
to that peer(s), and repeat the RouteQuery. Eventually, the sender
gets a response froma peer that is closest to the identifier in the
destination_object as determ ned by the topol ogy plugin. At that

poi nt, the sender can send nessages directly to that peer

5.4.2.4.1. Request Definition

A Rout eQueryReq nessage indicates the peer or resource that the
requesting node is interested in. It also contains a "send_update"
option allowi ng the requesting node to request a full copy of the
ot her peer’s routing table.

struct {
Bool ean send_updat e;
Desti nation destination
opaque overl ay_specific_data<0..2"16-1>

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 56]

Internet-Draft RELOAD Base March 2011

} Rout eQuer yReq;
The contents of the RouteQueryReq nessage are as foll ows:

send_updat e
A single byte. This may be set to "true" to indicate that the

requester w shes the responder to initiate an Update request
i Mmediately. Qherwi se, this value MJUST be set to "fal se"

destination
The destination which the requester is interested in. This may be
any valid destination object, including a Node-1D, conpressed ids,

or Resource-1D.

overlay specific_data
O her data as appropriate for the overlay.

5.4.2.4.2. Response Definition

A response to a successful RouteQueryReq request is a RouteQueryAns
message. This is conpletely overlay specific.

5.4.2.5. Probe

Probe provides primtive "exploration"” services: it allows node to
det ermi ne which resources another node is responsible for; and it
al | ows sone di scovery services using nmulticast, anycast, or
broadcast. A probe can be addressed to a specific Node-ID, or the
peer controlling a given location (by using a Resource-ID). In
either case, the target Node-I1Ds respond with a sinple response
cont ai ni ng sonme status information

5.4.2.5.1. Request Definition

The ProbeReq nessage contains a list (potentially enpty) of the
pi eces of status information that the requester would |ike the

responder to provide.

enum { reservedProbel nformati on(0), responsible set(1),
num resources(2), uptinme(3), (255}
Pr obel nf or mati onType;

struct {

Pr obel nf or mati onType request ed_i nf 0<0. . 2"8- 1>;
} ProbeReq

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 57]

Internet-Draft RELOAD Base March 2011

The currently defined values for Probelnformation are:

responsi bl e_set
i ndi cates that the peer should Respond with the fraction of the
overlay for which the responding peer is responsible.

num r esour ces
i ndi cates that the peer should Respond with the nunber of
resources currently being stored by the peer

uptime
i ndi cates that the peer should Respond with how | ong the peer has
been up in seconds.

5.4.2.5.2. Response Definition

A successful ProbeAns response contains the information el enments
requested by the peer

struct {
sel ect (type) {
case responsi bl e_set:
ui nt 32 responsi bl e_ppb

case num.resources
ui nt 32 num resour ces;

case uptine:

ui nt 32 upti ne;
[* This type may be extended */

}i _

} Probel nfornationDat a;

struct {
Pr obel nf or mati onType type;
uint8 | engt h;
Pr obel nf or mat i onDat a val ue;

} Probel nformati on;
struct {

Pr obel nf or mati on probe_i nf 0<0..2"16- 1>;
} ProbeAns;

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 58]

Internet-Draft RELOAD Base March 2011

A ProbeAns nessage contains a sequence of Probel nfornmation
structures. Each has a "length" indicating the length of the
followi ng value field. This structure allows for unknown option
types.

Each of the current possible Probe information types is a 32-bit

unsi gned integer. For type "responsible_ppb", it is the fraction of
the overlay for which the peer is responsible in parts per billion
For type "numresources”, it is the nunber of resources the peer is

storing. For the type "uptinme" it is the nunber of seconds the peer
has been up.

The respondi ng peer SHOULD i ncl ude any val ues that the requesting
node requested and that it recognizes. They SHOULD be returned in
the requested order. Any other values MJST NOT be returned.

5.5. Forwardi ng and Link Managenent Layer

Each node nmai ntains connections to a set of other nodes defined by
the topol ogy plugin. This section defines the methods RELOAD uses to
form and mai ntai n connecti ons between nodes in the overlay. Three
net hods are defined:

Attach: used to form RELOAD connections between nodes. Wen node
A wants to connect to node B, it sends an Attach nessage to node B
through the overlay. The Attach contains A's |ICE paraneters. B
responds with its I CE paraneters and the two nodes performICE to
formconnection. Attach also allows two nodes to connect via No-

I CE instead of full ICE

AppAt t ach: used to formapplication |ayer connections between
nodes.
Pi ng: is a sinple request/response which is used to verify

connectivity of the target peer
5.5.1. Attach

A node sends an Attach request when it wishes to establish a direct
TCP or UDP connection to another node for the purpose of sending
RELOAD nessages.

As described in Section 5.1, an Attach may be routed to either a
Node-1D or to a Resource-1D. An Attach routed to a specific Node-1D
will fail if that node is not reached. An Attach routed to a
Resource-1D will establish a connection with the peer currently
responsi ble for that Resource-ID, which may be useful in establishing
a direct connection to the responsi ble peer for use with frequent or

| arge resource updates

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 59]

Internet-Draft RELOAD Base March 2011

An Attach in and of itself does not result in updating the routing
tabl e of either node. That function is performed by Updates. |If
node A has Attached to node B, but not received any Updates from B,
it MAY route nmessages which are directly addressed to B through that
channel but MJST NOT route nessages through B to other peers via that
channel . The process of Attaching is separate fromthe process of
becom ng a peer (using Join and Update), to prevent hal f-open states
where a node has started to form connections but is not really ready
to act as a peer. Thus, clients (unlike peers) can sinply Attach

wi t hout sending Join or Update.

5.5.1.1. Request Definition

An Attach request nmessage contains the requesting node | CE connection
paraneters formatted into a binary structure.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 60]

Internet-Draft RELOAD Base

enum { reservedOverl ayLi nk(0), DTLS-UDP-SR(1),
DTLS- UDP- SR- NO- | CE(3), TLS-TCP-FH NO- | CE(4)
(255) } Overl ayLi nkType;

enum { reservedCand(0), host(1), srflx(2), prflx(3),
(255) } CandType;

struct {
opaque name<0. . 2*16- 1>
opaque val ue<0. . 2"16- 1>

} | ceExtension;

struct {
| pAddr essPor t addr _port;
Overl ayLi nkType overlay_link
opaque f oundat i on<0. . 255>
ui nt 32 priority;
CandType type;
sel ect (type){

case host:
; /* Not hing */
case srflx:
case prflx:
case rel ay:
| pAddr essPor t rel _addr_port;
1
| ceExt ensi on ext ensi ons<0. . 2"16- 1>
} lceCandi dat €;

struct {
opaque uf rag<o0. . 2"8-1>
opaque passwor d<0. . 2"8- 1>
opaque rol e<0..278-1>
| ceCandi dat e candi dat es<0. . 2716- 1>
Bool ean send_updat e;

} AttachRegAns;

The val ues contained in AttachReqAns are:

ufrag
The username fragnent (from | CE)

password

Jenni ngs, et al. Expi res Septenber 15, 2011

March 2011

relay(4),

[Page

61]

Internet-Draft RELOAD Base March 2011

The | CE password.

role
An active/ passivel/actpass attribute from RFC 4145 [RFC4145]. This
val ue MUST be 'passive’ for the offerer (the peer sending the
Attach request) and 'active for the answerer (the peer sending
the Attach response).

candi dat es

One or nore | CE candidate val ues, as described bel ow
send_updat e

Has the sane neaning as the send update field in RouteQueryReq.

Each I CE candidate is represented as an |ceCandi date structure, which
is adirect translation of the information fromthe ICE string
structures, with the exception of the conponent ID. Since there is
only one conponent, it is always 1, and thus |left out of the PDU

The renmai ning values are specified as foll ows:

addr _port
corresponds to the connection-address and port productions.

overlay link
corresponds to the Overl ayLi nkType production, Overlay Link
protocols used with No-ICE MJST specify "No-I1CE" in their
description. Future overlay link values can be added be defi ning
new Overl ayLi nkType values in the 1ANA registry in Section 13.10.
Future extensions to the encapsulation or fram ng that provide for
backward conpatibility with that specified by a previously defined
Overl ayLi nkType val ues MJST use that previous val ue.
Overl ayLi nkType protocols are defined in Section 5.6
A single AttachRegAns MJST NOT incl ude both candi dates whose
Overl ayLi nkType protocols use ICE (the default) and candi dates
that specify "No-I1CE".

foundati on
corresponds to the foundation production

priority
corresponds to the priority production

type
corresponds to the cand-type production

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 62]

Internet-Draft RELOAD Base March 2011

rel _addr_port

corresponds to the rel-addr and rel-port productions. Only

present for type "relay".

ext ensi ons

| CE extensions. The nane and value fields correspond to binary

transl ations of the equivalent fields in the | CE extensions.

These val ues shoul d be generated using the procedures described in
Section 5.5.1.3.

5.5.1.2. Response Definition

If a peer receives an Attach request, it MJST determi ne how to
process the request as foll ows:

(0]

If it has not initiated an Attach request to the originating peer
of this Attach request, it MJST process this request and SHOULD
generate its own response with an AttachRegAns. It should then
begi n | CE checks.
If it has already sent an Attach request to and received the
response fromthe originating peer of this Attach request, and as
a as a result, an I CE check and TLS connection is in progress,
then it SHOULD generate an Error_In_Progress error instead of an
At t achRegAns
If it has already sent an Attach request to but not yet received
the response fromthe originating peer of this Attach request, it
SHOULD apply the follow ng tie-breaker heuristic to determ ne how
to handle this Attach request and the inconplete Attach request it
has sent out:
* |f the peer’s own Node-1D is smaller, it MJST cancel its own
i nconpl ete Attach request. It MJST then process this Attach
request, generate an AttachRegAns response, and proceed with
the correspondi ng | CE check
* |f the peer’'s own Node-IDis larger, it MJST generate an
Error _In_Progress error to this Attach request, then proceed to
wait for and conplete the Attach and the corresponding | CE
check it has ori ginat ed.
If the peer is overl oaded or detects sone other kind of error, it
MAY generate an error instead of an AttachRegAns.

When a peer receives an Attach response, it SHOULD parse the response
and begin its own | CE checks.

5.5.1.3. Using ICE Wth RELOAD

This section describes the profile of ICE that is used with RELOAD.
RELOAD i npl enentati ons MJST inplement full |CE

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 63]

Internet-Draft RELOAD Base March 2011

In I CE as defined by [RFC5245], SDP is used to carry the ICE
paraneters. |In RELQAD, this function is performed by a binary
encoding in the Attach method. This encoding is nore restricted than
the SDP encodi ng because the RELOAD environnent is sinpler

0 Only a single nmedia streamis supported.

0o In this case, the "strean! refers not to RTP or other types of
medi a, but rather to a connection for RELOAD itself or for SIP
si gnal i ng.

0 RELOAD only allows for a single offer/answer exchange. Unlike the
usage of ICE within SIP, there is never a need to send a
subsequent offer to update the default candidates to natch the
ones sel ected by I CE

An agent follows the I CE specification as described in [RFC5245] with
the changes and additional procedures described in the subsections
bel ow

5.5.1.4. Collecting STUN Servers

ICE relies on the node having one or nore STUN servers to use. In
conventional ICE, it is assuned that nodes are configured with one or
nmore STUN servers through sone out of band nechanism This is stil
possi ble in RELOAD but RELOAD al so | earns STUN servers as it connects
to other peers. Because all RELOAD peers inplenent |CE and use STUN
keepal i ves, every peer is a capable of responding to STUN Bi ndi ng
requests [RFC5389]. Accordingly, any peer that a node knows about
can be used like a STUN server -- though of course it nmay be behind a
NAT.

A peer on a well-provisioned wi de-area overlay will be configured
with one or nore bootstrap nodes. These nodes make an initial |ist
of STUN servers. However, as the peer forms connections with
additional peers, it builds nore peers it can use |like STUN servers.

Because conplicated NAT topol ogi es are possible, a peer nmay need nore
than one STUN server. Specifically, a peer that is behind a single
NAT will typically observe only two | P addresses in its STUN checks:
its local address and its server reflexive address froma STUN server
outside its NAT. However, if there are nore NATs involved, it may

| earn additional server reflexive addresses (which vary based on
where in the topology the STUN server is). To maximze the chance of
achieving a direct connection, a peer SHOULD group other peers by the
peer-refl exi ve addresses it discovers through them It SHOULD t hen
sel ect one peer fromeach group to use as a STUN server for future
connecti ons.

Only peers to which the peer currently has connections may be used.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 64]

Internet-Draft RELOAD Base March 2011

If the connection to that host is lost, it MJST be renoved fromthe
list of stun servers and a new server fromthe sane group MJST be
sel ected unless there are no others servers in the group in which
case sone ot her peer MAY be used

5.5.1.5. Gathering Candi dates

When a node wi shes to establish a connection for the purposes of
RELOAD signaling or application signaling, it follows the process of
gathering candi dates as described in Section 4 of |CE [RFC5245].
RELOAD utilizes a single conponent. Consequently, gathering for
these "streans" requires a single conponent. |In the case where a
node has not yet found a TURN server, the agent would not include a
rel ayed candi dat e.

The | CE specification assunes that an | CE agent is configured wth,
or sonehow knows of, TURN and STUN servers. RELQOAD provides a way
for an agent to learn these by querying the overlay, as described in
Section 5.5.1.4 and Section 8.

The default candi date sel ection described in Section 4.1.4 of ICE is
i gnored; defaults are not signaled or utilized by RELOAD.

An alternative to using the full |CE supported by the Attach request
is to use No-ICE nechani sm by providing candi dates with "No-1CE"
Overlay Link protocols. Configuration for the overlay indicates
whet her or not these Overlay Link protocols can be used. An overlay
MUST be either all ICE or all No-ICE

No-1CE will not work in all of the scenarios where | CE woul d work
but in sonme cases, particularly those with no NATs or firewalls, it
will work. Therefore it is RECOWENDED that full |CE be used even
for a node that has a public, unfiltered |IP address, to take

advant age of STUN connectivity checks, etc.

5.5.1.6. Prioritizing Candi dates

At the time of witing, UDP is the only transport protocol specified
to work with ICE. However, standardization of additional protocols
for use with ICE is expected, including TCP and datagramoriented
protocol s such as SCTP and DCCP. In particular, UDP encapsul ati ons
for SCTP and DCCP are expected to be standardized in the near future,
greatly expanding the avail able Overlay Link protocols available for
RELOAD. When additional protocols are available, the foll ow ng
prioritization is RECOMVENDED:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 65]

Internet-Draft RELOAD Base March 2011

0o Highest priority is assigned to nmessage-oriented protocols that
of fer well-understood congestion and flow control w thout head of
Iine blocking. For exanple, SCTP without message ordering, DCCP,
or those protocols encapsul ated usi ng UDP.

0 Second highest priority is assigned to streamoriented protocols,
e.g. TCP.

0 Lowest priority is assigned to protocols encapsul ated over UDP
that do not inplement well-established congestion control
algorithnms. The DILS/UDP with SR overlay link protocol is an
exanpl e of such a protocol.

5.5.1.7. Encoding the Attach Message

Section 4.3 of |CE describes procedures for encoding the SDP for
conveyi ng RELOAD candi dates. Instead of actually encodi ng an SDP,
the candidate information (1P address and port and transport
protocol, priority, foundation, type and related address) is carried
within the attributes of the Attach request or its response.
Simlarly, the username fragnent and password are carried in the
Attach nmessage or its response. Section 5.5.1 describes the detailed
attribute encoding for Attach. The Attach request and its response
do not contain any default candidates or the ice-lite attribute, as
these features of ICE are not used by RELQAD.

Since the Attach request contains the candidate information and short
termcredentials, it is considered as an offer for a single nmedia
streamthat happens to be encoded in a format different than SDP, but
is otherwi se considered a valid offer for the purposes of follow ng
the I CE specification. Simlarly, the Attach response is considered
a valid answer for the purposes of follow ng the | CE specification.

5.5.1.8. Verifying | CE Support

An agent MJST skip the verification procedures in Section 5.1 and 6.1
of ICE. Since RELOAD requires full ICE fromall agents, this check
is not required.

5.5.1.9. Rol e Determ nation

The roles of controlling and controlled as described in Section 5.2
of ICE are still utilized with RELOAD. However, the offerer (the
entity sending the Attach request) will always be controlling, and
the answerer (the entity sending the Attach response) wll always be
controlled. The connectivity checks MJST still contain the |CE-
CONTROLLED and | CE- CONTRCLLI NG attri butes, however, even though the
role reversal capability for which they are defined will never be
needed with RELOAD. This is to allow for a comon codebase between
| CE for RELOAD and | CE for SDP.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 66]

Internet-Draft RELOAD Base March 2011

5.5.1.10. Full ICE

When neither side has provided an No-ICE candi date, connectivity
checks and noninations are used as in regular |ICE

5.5.1.10.1. Connectivity Checks

The processes of formng check lists in Section 5.7 of ICE
schedul i ng checks in Section 5.8, and checking connectivity checks in
Section 7 are used with RELOAD wi t hout change

5.5.1.10.2. Concluding ICE

The procedures in Section 8 of ICE are followed to conclude ICE, with
the follow ng exceptions:

o0 The controlling agent MUST NOT attenpt to send an updated offer
once the state of its single nmedia streamreaches Conpl et ed.

0 Once the state of |ICE reaches Conpl eted, the agent can inedi ately
free all unused candidates. This is because RELOAD does not have
the concept of forking, and thus the three second delay in Section
8.3 of | CE does not apply.

5.5.1.10.3. Media Keepalives

STUN MUST be utilized for the keepalives described in Section 10 of
| CE.

5.5.1.11. No-ICE

No- 1 CE is sel ected when either side has provided "no | CE' Overlay

Li nk candidates. STUN is not used for connectivity checks when doi ng
No- 1 CE; instead the DILS or TLS handshake (or simlar security |ayer
of future overlay link protocols) forms the connectivity check. The
certificate exchanged during the (D) TLS handshake nust match the node
that sent the AttachRegAns and if it does not, the connection MJST be
cl osed.

5.5.1.12. Subsequent O fers and Answers

An agent MJST NOT send a subsequent offer or answer. Thus, the
procedures in Section 9 of | CE MJST be ignored.

5.5.1.13. Sending Media
The procedures of Section 11 of ICE apply to RELOAD as wel |

However, in this case, the "nedia" takes the formof application
| ayer protocols (RELOAD) over TLS or DTLS. Consequently, once |ICE

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 67]

Internet-Draft RELOAD Base March 2011

processing conpletes, the agent will begin TLS or DILS procedures to
establish a secure connection. The node which sent the Attach
request MJST be the TLS server. The other node MJST be the TLS
client. The server MJST request TLS client authentication. The
nodes MJST verify that the certificate presented in the handshake

mat ches the identity of the other peer as found in the Attach
message. Once the TLS or DILS signaling is conplete, the application
protocol is free to use the connection.

The concept of a previous selected pair for a conponent does not
apply to RELOAD, since ICE restarts are not possible with RELOAD.

5.5.1.14. Receiving Media

An agent MJST be prepared to receive packets for the application
protocol (TLS or DILS carrying RELOAD, SIP or anything else) at any
time. The jitter and RTP considerations in Section 11 of |ICE do not
apply to RELOAD.

5.5.2. AppAttach

A node sends an AppAttach request when it wishes to establish a
direct connection to another node for the purposes of sending
application | ayer nessages. AppAttach is nearly identical to Attach,
except for the purpose of the connection: it is used to transport
non- RELOAD "nedia". A separate request is used to avoid inplenentor
confusi on between the two nmethods (this was found to be a real
problemw th initial inplementations). The AppAttach request and its
response contain an application attribute, which indicates what
protocol is to be run over the connection.

5.5.2.1. Request Definition

An AppAttachReq nessage contains the requesting node’'s | CE connection
paraneters formatted into a binary structure.

struct {
opaque uf rag<0. . 2"8- 1>;
opaque passwor d<0. . 2"8-1>;
uintl16 application;
opaque rol e<0..278- 1>;
| ceCandi dat e candi dat es<0. . 2"16- 1>;

} AppAttachReq;

The val ues contained in AppAttachReq and AppAttachAns are:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 68]

Internet-Draft RELOAD Base March 2011

ufrag
The usernane fragment (from | CE)

password
The | CE password.

application
A 16-bit application-id as defined in the Section 13.5. This
nunber represents the I ANA registered application that is going to
send data on this connection. For SIP, this is 5060 or 5061.

role
An active/ passivel/actpass attribute from RFC 4145 [RFC4145].

candi dat es
One or nore | CE candi date val ues

The application using connection set up with this request is
responsi ble for providing sufficiently frequent keep traffic for NAT
and Firewall| keep alive and for deciding when to close the

connecti on.

5.5.2.2. Response Definition

If a peer receives an AppAttach request, it SHOULD process the
request and generate its own response with a AppAttachAns. It should
then begin I CE checks. Wen a peer receives an AppAttach response,
it SHOULD parse the response and begin its own |ICE checks. If the
application IDis not supported, the peer MIST reply with an
Error_Not _Found error.

struct {
opaque uf rag<0. . 2"8- 1>;
opaque passwor d<0. . 2"8- 1>;
ui nt 16 application;
opaque rol e<0..278-1>;
| ceCandi dat e candi dat es<0. . 2"16- 1>;

} AppAttachAns;

The meaning of the fields is the sane as in the AppAttachReq.
5.5.3. Ping
Ping is used to test connectivity along a path. A ping can be

addressed to a specific Node-I1D, to the peer controlling a given
| ocation (by using a resource ID), or to the broadcast Node-I1D

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 69]

Internet-Draft RELOAD Base March 2011

(27128-1).
5.5.3.1. Request Definition
struct {

opaque<0. . 2716- 1> paddi ng;
} PingReq

The Ping request is enpty of neaningful contents. However, it may
contain up to 65535 bytes of padding to facilitate the discovery of
overlay maxi num packet sizes.

5.5.3.2. Response Definition

A successful PingAns response contains the information el enents
requested by the peer

struct {
ui nt 64 response_i d;
ui nt 64 time;

} PingAns;

A Pi ngAns nessage contains the follow ng el enents:

response_id
A randomly generated 64-bit response ID. This is used to
di stingui sh Ping responses.

time
The tine when the Ping response was created represented in the
same way as storage tine defined in Section 6.

5.5.4. ConfigUpdate

The ConfigUpdate nmethod is used to push updated configuration data
across the overlay. Wenever a node detects that another node has
old configuration data, it MJST generate a ConfigUpdate request. The
Confi gUpdate request allows updating of two kinds of data: the
configuration data (Section 5.3.2.1) and kind infornmation

(Section 6.4.1.1).

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 70]

Internet-Draft RELOAD Base March 2011

5.5.4.1. Request Definition

enum { reservedConfigUpdate(0), config(1l), kind(2), (255) }
Confi gUpdat eType;

t ypedef uint 32 Ki ndl d;
typedef opaque Ki ndDescri pti on<0..2"16- 1>
struct {

Confi gUpdat eType type;

ui nt 32 | engt h;

sel ect (type) {
case config:
opaque confi g_dat a<0. . 2"24- 1>

case kind:
Ki ndDescri ption ki nds<0. . 2"24- 1>

/* This structure may be extended with new types*/
1
} Confi gUpdat eReq;

The ConfigUpdat eReq nmessage contains the follow ng el ements:

type
The type of the contents of the nessage. This structure allows
for unknown content types.

| engt h
The length of the remai nder of the nmessage. This is included to
preserve backward conpatibility and is 32 bits instead of 24 to
facilitate easy conversion between network and host byte order

config_data (type==config)
The contents of the configurati on docunent.

ki nds (type==ki nd)
One or nmore XM ki nd-bl ock productions (see Section 10.1). These
MUST be encoded with UTF-8 and assunme a default nanmespace of
"urn:ietf:parans: xm : ns: p2p: confi g- base”

5.5.4.2. Response Definition
struct {

} Confi gUpdat eAns

If the ConfigUpdateReq is of type "config" it MJUST only be processed
if all the following are true

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 71]

Internet-Draft RELOAD Base March 2011

o0 The sequence nunber in the docunent is greater than the current
configuration sequence nunber.

o The configuration docunent is correctly digitally signed (see
Section 10 for details on signatures.

O herwi se appropriate errors MJST be generat ed.

If the ConfigUpdateReq is of type "kind" it MJST only be processed if
it is correctly digitally signed by an acceptabl e kind signer as
specified in the configuration file. Details on kind-signer field in

the configuration file is described in Section 10.1. |In addition, if
the kind update conflicts with an existing known kind (i.e., it is
signed by a different signer), then it should be rejected with
"Error_Forbidden". This should not happen in correctly functioning
overl ays.

If the update is acceptable, then the node MJUST reconfigure itself to
match the new information. This may include addi ng perm ssions for
new ki nds, deleting old kinds, or even, in extreme circunstances,
exiting and reentering the overlay, if, for instance, the DHT

al gorithm has changed

The response for ConfigUpdate is enpty.
5.6. Overlay Link Layer

RELOAD can use nmultiple Overlay Link protocols to send its nmessages.
Because ICE is used to establish connections (see Section 5.5.1.3),
RELOAD nodes are able to detect which Overlay Link protocols are

of fered by ot her nodes and establish connections between them Any
link protocol needs to be able to establish a secure, authenticated
connection and to provide data origin authenticati on and nessage
integrity for individual data elenents. RELOAD currently supports
three Overlay Link protocols:

0 DITLS [RFC4347] over UDP with Sinple Reliability (SR
0 TLS [RFC5246] over TCP with Frami ng Header, No-I|CE
o DTLS [RFC4347] over UDP with SR, No-ICE

Not e that al though UDP does not properly have "connections", both TLS
and DTLS have a handshake which establishes a sinmlar, statefu
association, and we sinply refer to these as "connections" for the
pur poses of this docunent.

If a peer receives a nessage that is larger than val ue of max-
message-si ze defined in the overlay configuration, the peer SHOULD
send an Error_Message Too _Large error and then close the TLS or DILS
session fromwhi ch the nessage was received. Note that this error
can be sent and the session closed before receiving the conplete

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 72]

Internet-Draft RELOAD Base March 2011

message. |If the forwarding header is larger than the nmax-nmessage-
size, the receiver SHOULD close the TLS or DTLS session without
sendi ng an error.

The Franming Header (FH) is used to frame nessages and provide tinng
when used on a reliable stream based transport protocol. Sinple
Reliability (SR) makes use of the FH to provide congestion control
and sem -reliability when using unreliable nessage-oriented transport
protocols. W wll first define each of these algorithms, then
define overlay link protocols that use them

Note: We expect future Overlay Link protocols to define replacenents
for all conponents of these protocols, including the fram ng header
These protocol s have been chosen for sinplicity of inplementation and
reasonabl e perfornmance

Note to inplenenters: There are inherent tradeoffs in utilizing
short tinmeouts to determine when a link has failed. To balance the
tradeoffs, an inplenentation should be able to quickly act to renpve
entries fromthe routing table when there is reason to suspect the
link has failed. For exanple, in a Chord-derived overlay algorithm
a closer finger table entry could be substituted for an entry in the
finger table that has experienced a tinmeout. That entry can be
restored if it proves to resune functioning, or replaced at sone
point in the future if necessary. End-to-end retransm ssions wll
handl e any | ost messages, but only if the failing entries do not
remain in the finger table for subsequent retransm ssions.

5.6.1. Future Overlay Link Protocols

The only currently defined overlay link protocols are TLS and DTLS

It is possible to define new link-layer protocols and apply themto a
new overlay using the "overlay-Ilink-protocol" configuration directive
(see Section 10.1.). However, any new protocols MJST neet the

foll owi ng requirenents.

Endpoi nt aut hentication Wen a node forns an association with
anot her endpoint, it MJST be possible to cryptographically verify
that the endpoint has a given Node-1d.

Traffic origin authentication and integrity Wen a node receives
traffic fromanother endpoint, it MJST be possible to
cryptographically verify that the traffic came froma given
association and that it has not been nodified in transit fromthe
other endpoint in the association. The overlay |link protocol MJST
al so provide replay prevention/detection

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 73]

Internet-Draft RELOAD Base March 2011

Traffic confidentiality Wen a node sends traffic to another
endpoint, it MJST NOT be possible for a third party not involved
in the association to deternmne the contents of that traffic.

Any new overlay protocol MJIST be defined via RFC 5226 Standards
Action; see Section 13.11

5.6.1.1. HP

In a Host Identity Protocol Based Overlay Networking Environnent (H P
BONE) [I-D.ietf-hip-bone] H P [RFC5201] provi des connection
managenment (e.d., NAT traversal and nobility) and security for the
overlay network. The P2PSI P Wrking G oup has expressed interest in
supporting a H P-based |ink protocol. Such support would require
speci fying such details as:

0 How to issue certificates which provided identities neaningful to
the H P base exchange. W anticipate that this would require a
mappi ng between ORCHI Ds and Nodel ds.

0 Howto carry the HHP I1 and |12 nessages.

0 How to carry RELOAD nmessages over H P

[I-D.ietf-hip-reload-instance] docunents work in progress on using
RELOAD with the HI P BONE.

5.6.1.2. |ICE-TCP

The I CE-TCP draft [I-D.ietf-music-ice-tcp] should allow TCP to be
supported as an Overlay Link protocol that can be added using | CE

5.6.1.3. Message-oriented Transports

Modern nmessage-oriented transports of fer high performance, good
congestion control, and avoid head of Iine blocking in case of |ost
data. These characteristics make them preferable as underlying
transport protocols for RELOAD links. SCTP w thout nmessage ordering
and DCCP are two exanpl es of such protocols. However, currently they
are not well-supported by commonly avail abl e NATs, and specifications
for I CE session establishnent are not avail abl e.

5.6.1.4. Tunnel ed Transports

As of the time of this witing, there is significant interest in the
| ETF comunity in tunneling other transports over UDP, notivated by
the situation that UDP is well-supported by nodern NAT hardware, and
simlar performance can be achieved to native inplenentation
Currently SCTP, DCCP, and a generic tunneling extension are being

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 74]

Internet-Draft RELOAD Base March 2011

proposed for message-oriented protocols. Baset et al. have proposed
tunneling TCP over UDP for simlar reasons

[1-D. baset-tsvwg-tcp-over-udp]. Once ICE traversal has been
specified for these tunneled protocols, they should be
straightforward to support as overlay |ink protocols.

5.6.2. Frami ng Header

In order to support unreliable links and to allow for quick detection
of link failures when using reliable end-to-end transports, each
message is wapped in a very sinple fram ng | ayer (FranedMessage)
which is only used for each hop. This |ayer contains a sequence
number whi ch can then be used for ACKs. The sane header is used for
both reliable and unreliable transports for sinplicity of

i mpl ement at i on.

The definition of FranedMessage is:

enum { data(128), ack(129), (255)} FranedMessageType;

struct {
FramedMessageType type;
sel ect (type) {
case dat a:
ui nt 32 sequence;
opaque nmessage<0. . 2"24- 1>,
case ack:
ui nt 32 ack_sequence;
ui nt 32 received;

I

} FranedMessage;

The type field of the PDUis set to indicate whether the nessage is
data or an acknow edgenent.

If the nessage is of type "data", then the renmmi nder of the PDU is as
fol | ows:

sequence

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 75]

Internet-Draft RELOAD Base March 2011

the sequence nunber. This increnents by 1 for each franed nessage
sent over this transport session.

nessage
the nmessage that is being transmtted.

Each connection has it own sequence nunber space. Initially the
value is zero and it increnents by exactly one for each message sent
over that connection

When the receiver receives a nessage, it SHOULD i medi ately send an
ACK message. The receiver MJST keep track of the 32 npbst recent
sequence nunbers received on this association in order to generate
the appropriate ack.

If the PDU is of type "ack", the contents are as foll ows:

ack _sequence
The sequence nunber of the nessage bei ng acknow edged.

recei ved
A bitmask indicating if each of the previous 32 sequence nunbers
before this packet has been anong the 32 packets nobst recently
received on this connection. When a packet is received with a
sequence nunber N, the receiver |ooks at the sequence nunber of
the previously 32 packets received on this connection. Call the
previously received packet number M For each of the previous 32
packets, if the sequence nunber Mis |l ess than N but greater than
N-32, the NMbit of the received bitnmask is set to one; otherw se
it is zero. Note that a bit being set to one indicates positively
that a particul ar packet was received, but a bit being set to zero
means only that it is unknown whether or not the packet has been
recei ved, because it m ght have been received before the 32 nost
recently received packets.

The received field bits in the ACK provide a hi gh degree of
redundancy so that the sender can figure out which packets the
recei ver has received and can then estimte packet |loss rates. |If
the sender al so keeps track of the tine at which recent sequence
nunbers have been sent, the RTT can be estinated.

5.6.3. Sinple Reliability

When RELQOAD is carried over DTLS or another unreliable |ink protocol
it needs to be used with a reliability and congestion contro
mechani sm which is provided on a hop-by-hop basis. The basic
principle is that each nessage, regardl ess of whether or not it
carries a request or response, will get an ACK and be reliably

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 76]

Internet-Draft RELOAD Base March 2011

retransmtted. The receiver’'s job is very sinple, limted to just
sending ACKs. All the conplexity is at the sender side. This allows
the sending inplementation to trade off performance versus

i mpl ementation conplexity w thout affecting the wire protocol

5.6.3.1. Retransm ssion and Fl ow Contro

Because the receiver’s role is limted to providing packet

acknow edgenents, a wi de variety of congestion control algorithnms can
be i npl emented on the sender side while using the sane basic wire
protocol. |In general, senders MAY inplenent any rate control schene
of their choice, provided that it is REQURED to be no nore
aggressi ve then TFRC RFC5348] .

The follow ng section describes a sinple, inefficient, scheme that
complies with this requirenent. Another alternative would be TFRC SP
[RFC4828] and use the received bitmask to allow the sender to conpute
packet | oss event rates.

5.6.3.1.1. Trivial Retransm ssion

A node SHOULD retransmit a nessage if it has not received an ACK
after an interval of RTO ("Retransm ssion TineQut"). The node MJST
double the tinme to wait after each retransmission. |In each
retransm ssion, the sequence nunber is increnented.

The RTOis an estimate of the round-trip time (RTT). Inplenmentations
can use a static value for RTO or a dynami c estimate which wll

result in better perfornance. For inplenentations that use a static
val ue, the default value for RTOis 500 ns. Nodes MAY use snaller
values of RTOif it is known that all nodes are within the |oca
network. The default RTO MAY be chosen larger, and this is
RECOMVENDED if it is known in advance (such as on high | atency access
links) that the round-trip tine is |arger

| mpl enent ati ons that use a dynamic estinmate to conpute the RTO MJST
use the algorithm described in RFC 2988 RFC2988], with the exception
that the value of RTO SHOULD NOT be rounded up to the nearest second
but instead rounded up to the nearest mllisecond. The RTT of a
successful STUN transaction fromthe ICE stage is used as the initia
measurenent for forrmula 2.2 of RFC 2988. The sender keeps track of
the time each message was sent for all recently sent nessages. Any
time an ACK is received, the sender can conpute the RTT for that
message by | ooking at the tine the ACK was received and the tine when
the message was sent. This is used as a subsequent RTT neasurenent
for formula 2.3 of RFC 2988 to update the RTO estimate. (Note that
because retransni ssions receive new sequence nunbers, all received
ACKs are used.)

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 77]

Internet-Draft RELOAD Base March 2011

The value for RTOis calculated separately for each DILS session

Ret ransm ssions continue until a response is received, or until a
total of 5 requests have been sent or there has been a hard | CW
error [RFC1122] or a TLS alert. The sender knows a response was
received when it receives an ACK with a sequence nunber that
indicates it is a response to one of the transm ssions of this
messages. For exanple, assunming an RTO of 500 ms, requests would be
sent at times O ms, 500 ns, 1500 nms, 3500 nms, and 7500 nms. |If all
retransm ssions for a nessage fail, then the sendi ng node SHOULD

cl ose the connection routing the nessage.

To determine when a link may be failing without waiting for the fina
ti meout, observe when no ACKs have been received for an entire RTO
interval, and then wait for three retransm ssions to occur beyond
that point. [If no ACKs have been received by the tine the third
retransm ssion occurs, it is RECOMWENDED that the |ink be renpved
fromthe routing table. The link MAY be restored to the routing
table if ACKs resune before the connection is closed, as described
above.

Once an ACK has been received for a nessage, the next nessage can be
sent, but the peer SHOULD ensure that there is at |least 10 ns between
sendi ng any two nessages. The only tine a value |less than 10 ns can
be used is when it is known that all nodes are on a network that can
support retransm ssions faster than 10 ns with no congestion issues.

5.6.4. DTLS/UDP with SR

This overlay link protocol consists of DTLS over UDP while
i mpl ementing the Sinple Reliability protocol. STUN Connectivity
checks and keepalives are used.

5.6.5. TLS/TCP with FH, No-ICE

This overlay link protocol consists of TLS over TCP with the franing
header. Because ICE is not used, STUN connectivity checks are not
used upon establishing the TCP connection, nor are they used for
keepal i ves.

Because the TCP |l ayer’'s application-level tineout is too slowto be
useful for overlay routing, the Overlay Link inplenentation MJST use
the franmi ng header to nmeasure the RTT of the connection and cal cul ate
an RTO as specified in Section 2 of [RFC2988]. The resulting RTOis
not used for retransm ssions, but as a tineout to indicate when the
link SHOULD be renoved fromthe routing table. It is RECOMVENDED
that such a connection be retained for 30s to deternmine if the
failure was transient before concluding the link has failed

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 78]

Internet-Draft RELOAD Base March 2011

per manent|y.

When sendi ng candidates for TLS/ TCP with FH, No-1CE, a passive
candi dat e MJUST be provi ded.

5.6.6. DTLS/UDP with SR, No-ICE

This overlay link protocol consists of DILS over UDP while
i npl ementing the Sinple Reliability protocol. Because |ICE is not
used, no STUN connectivity checks or keepalives are used.

5.7. Fragnentati on and Reassenbly

In order to all ow transm ssion over datagram protocols such as DTLS,
RELOAD nessages may be fragmented

Any node along the path can fragnent the nessage but only the fina
destination reassenbles the fragments. Wen a node takes a packet
and fragments it, each fragnment has a full copy of the Forwarding
Header but the data after the Forwardi ng Header is broken up in
appropriate sized chunks. The size of the payl oad chunks needs to
take into account space to allow the via and destination lists to
grow. Each fragnment MJST contain a full copy of the via and
destination list and MJST contain at |east 256 bytes of the nessage
body. |If the via and destination list are so large that this is not
possi bl e, RELOAD fragmentation is not perforned and | P-I|ayer
fragmentation is allowed to occur. When a message nust be
fragmented, it SHOULD be split into equal -sized fragnents that are no
| arger than the PMIU of the next overlay link mnus 32 bytes. This
istoallowthe via list to grow before further fragmentation is
required.

Note that this fragmentation is not optimal for the end-to-end path -
a nmessage may be refragnented nultiple tinmes as it traverses the
overlay but is only assenbled at the final destination. This option
has been chosen as it is far easier to inplement than e2e PMIU

di scovery across an ever-changing overlay, and it effectively
addresses the reliability issues of relying on |IP-1layer
fragmentation. However, PING can be used to allow e2e PMIU to be

i mpl emented i f desired.

Upon receipt of a fragnented nmessage by the intended peer, the peer
holds the fragments in a holding buffer until the entire nessage has
been received. The nessage is then reassenbled into a single nessage
and processed. In order to mtigate denial of service attacks,
receivers SHOULD tine out inconplete fragnents after nmaxi num request
lifetinme (15 seconds). Note this tine was derived from|l ooking at
the end to end retransnission tinme and saving fragments | ong enough

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 79]

Internet-Draft RELOAD Base March 2011

for the full end to end retransmi ssions to take place. ldeally the
recei ver woul d have enough buffer space to deal with as many
fragments as can arrive in the maxi numrequest lifetime. However, if
the receiver runs out of buffer space to reassenble the nessages it
MUST drop the nmessage.

When a nessage is fragnented, the fragnment offset value is stored in
the lower 24 bits of the fragnent field of the forwardi ng header.
The offset is the nunmber of bytes between the end of the forwarding
header and the start of the data. The first fragnent therefore has
an offset of 0. The first and last bit indicators MJST be
appropriately set. |If the nessage is not fragnented, then both the
first and last fragnent bits are set to 1 and the offset is O
resulting in a fragnment val ue of 0xCO0000000. Note that this means
that the first fragnent bit is always 1, so isn’t actually that
usef ul .

6. Data Storage Protocol
RELOAD provi des a set of generic mechanisns for storing and
retrieving data in the Overlay Instance. These nechani sns can be
used for new applications sinply by defining new code points and a

smal | set of rules. No new protocol nechanisns are required.

The basic unit of stored data is a single StoredData structure:

struct {
ui nt 32 | engt h;
ui nt 64 storage_ti ne;
ui nt 32 lifetine;
St or edDat aVal ue val ue;
Si gnature si gnature;

} StoredDat a;

The contents of this structure are as foll ows:
| ength

The size of the StoredData structure in octets excluding the size
of length itself.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 80]

Internet-Draft RELOAD Base March 2011

storage_time
The tinme when the data was stored represented as the nunber of
m | 1iseconds el apsed since mdnight Jan 1, 1970 UTC not counting
| eap seconds. This will have the sane val ues for seconds as
standard UNI X tinme or POSIX tine. Mire information can be found
at [UnixTinme]. Any attenpt to store a data value with a storage
time before that of a value already stored at this | ocati on MIST
generate a Error_Data Too_Od error. This prevents rollback
attacks. Note that this does not require synchroni zed cl ocks:
the receiving peer uses the storage tine in the previous store,
not its own clock
A node that is attenpting to store new data in response to a user
request (rather than as an overlay naintenance operation such as
occurs during unpartitioning) is rejected with an
Error_Data Too_Od error, the node MAY elect to performits store
using a storage_tine that increnents the value used with the
previous store. This situation nmay occur when the clocks of nodes
storing to this location are not properly synchronized.

lifetime
The validity period for the data, in seconds, starting fromthe
tinme of store.

val ue
The data value itself, as described in Section 6. 2.

si gnature
A signature as defined in Section 6.1.

Each Resource-1D specifies a single location in the Overlay Instance.
However, each location may contain nmultiple StoredData val ues

di stinguished by Kind-1D. The definition of a kind describes both
the data val ues which may be stored and the data nodel of the data.
Sone data nodels allow nultiple values to be stored under the sane
Kind-1D. Section Section 6.2 describes the avail abl e data nodel s.
Thus, for instance, a given Resource-ID night contain a single-val ue
el ement stored under Kind-1D X and an array containing nmultiple

val ues stored under Kind-1D Y.

6.1. Data Signature Conputation
Each StoredData elenment is individually signed. However, the
signature al so must be self-contained and cover the Kind-1D and

Resource-1D even though they are not present in the StoredData
structure. The input to the signature algorithmis:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 81]

Internet-Draft RELCAD Base March 2011
resource_id || kind || storage_tine || StoredDataVal ue |
Signerldentity

Wiere || indicates concatenation
Where these val ues are:

resource_id
The resource | D where this data is stored

ki nd
The Kind-1D for this data.
storage_time
The contents of the storage tinme data val ue.
St or edDat aVal ue
The contents of the stored data value, as described in the
previ ous sections.

Signerldentity
The signer identity as defined in Section 5. 3.4.

Once the signature has been conputed, the signature is represented
using a signature element, as described in Section 5.3.4.

6.2. Data Mbdels
The protocol currently defines the foll owi ng data nodel s:
0 single value
0 array

o dictionary

These are represented with the StoredDataVal ue structure. The actua
dat aModel is known fromthe kind being stored.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 82]

Internet-Draft RELOAD Base March 2011

struct {

Bool ean exi sts;

opaque val ue<0. . 2732- 1>;
} Dat aVal ue;
struct {

sel ect (dataModel) {
case singl e _val ue:
Dat aVal ue singl e_val ue_entry;

case array:
ArrayEntry array_entry;

case dictionary:
Di ctionaryEntry dictionary_entry;

/* This structure may be extended */
¥
} StoredDat aval ue;
We now di scuss the properties of each data nodel in turn:

6.2.1. Single Value

A single-value elenment is a sinple sequence of bytes. There may be
only one single-value elenent for each Resource-ID, Kind-1D pair.

A single value elenent is represented as a DataVal ue, which contains
the followi ng two el enents:

exi sts
This value indicates whether the value exists at all. [If it is
set to False, it neans that no value is present. |If it is True,

that nmeans that a value is present. This gives the protocol a
mechani sm for indicating nonexi stence as opposed to enpti ness.

val ue
The stored data.

6.2.2. Array

An array is a set of opaque val ues addressed by an integer index.
Arrays are zero based. Note that arrays can be sparse. For
instance, a Store of "X' at index 2 in an enpty array produces an
array with the values [NA, NA, "X']. Future attenpts to fetch
elements at index O or 1 will return values with "exists" set to
Fal se.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 83]

Internet-Draft RELOAD Base March 2011

A array elenment is represented as an ArrayEntry:

struct {
ui nt 32 i ndex;
Dat aVal ue val ue;

} ArrayEntry;

The contents of this structure are:

i ndex
The index of the data elenment in the array.

val ue
The stored data.

6.2.3. Dictionary
A dictionary is a set of opaque val ues indexed by an opaque key with
one value for each key. A single dictionary entry is represented as
fol |l ows:

A dictionary element is represented as a DictionaryEntry:

t ypedef opaque Di cti onar yKey<0. . 2"16- 1>
struct {

Di cti onar yKey key;

Dat aval ue val ue;

} DictionaryEntry;

The contents of this structure are:

key
The dictionary key for this val ue.

val ue
The stored data.

6.3. Access Control Policies

Every kind which is storable in an overlay MJST be associated with an
access control policy. This policy defines whether a request froma

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 84]

Internet-Draft RELOAD Base March 2011

gi ven node to operate on a given val ue should succeed or fail. It is
anticipated that only a small number of generic access contro
policies are required. To that end, this section describes a small
set of such policies and Section 13.4 establishes a registry for new
policies if required. Each policy has a short string identifier
which is used to reference it in the configuration docunent.

6.3.1. USER-MATCH

In the USER- MATCH policy, a given value MJST be witten (or
overwritten) if and only if the request is signed with a key
associated with a certificate whose user name hashes (using the hash
function for the overlay) to the Resource-1D for the resource.

Recall that the certificate may, depending on the overlay
configuration, be self-signed.

6.3.2. NODE- MATCH

In the NODE- MATCH policy, a given value MJST be witten (or
overwritten) if and only if the request is signed with a key
associated with a certificate whose Node-I1D hashes (using the hash
function for the overlay) to the Resource-ID for the resource.

6.3.3. USER- NODE- VATCH

The USER- NODE- MATCH policy may only be used with dictionary types.
In the USER- NODE- MATCH policy, a given value MJST be witten (or
overwritten) if and only if the request is signed with a key
associated with a certificate whose user nane hashes (using the hash
function for the overlay) to the Resource-ID for the resource. In
addition, the dictionary key MJST be equal to the Node-ID in the
certificate.

6.3.4. NODE- MULTI PLE

I n the NODE- MULTI PLE policy, a given value MJUST be witten (or
overwritten) if and only if the request is signed with a key
associated with a certificate containing a Node-ID such that
H(Node-ID || i) is equal to the Resource-ID for sone small integer
value of i. When this policy is in use, the maxi nrumval ue of i MJST
be specified in the kind definition

Note that as i is not carried on the wire, the verifier MJST iterate

through potential i values up to the maxi mumvalue in order to
determ ne whether a store is acceptable.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 85]

Internet-Draft RELOAD Base March 2011

6.4. Data Storage Methods
RELOAD provi des several methods for storing and retrieving data:

Store values in the overlay

Fetch values fromthe overlay

Stat: get netadata about values in the overlay
Find the values stored at an individual peer

O O0OO0Oo

These nethods are each described in the foll owi ng sections.
6.4.1. Store

The Store method is used to store data in the overlay. The format of
the Store request depends on the data nmodel which is determ ned by
t he ki nd.

6.4.1.1. Request Definition

A StoreReq nessage is a sequence of StoreKindData val ues, each of
whi ch represents a sequence of stored values for a given kind. The
same Kind-1D MJUST NOT be used twice in a given store request. Each
value is then processed in turn. These operati ons MJST be atonic.
If any operation fails, the state MIUST be rolled back to before the
request was received.

The store request is defined by the StoreReq structure:

struct {
Ki ndl d ki nd;
ui nt 64 gener ati on_counter;
St or edDat a val ues<0. . 2732- 1>;
} StorekKi ndDat a;
struct {
Resourcel d resource,
ui nt8 replica_nunber;
St or eKi ndDat a ki nd_dat a<0. . 2232- 1>;
} StoreReq;

A single Store request stores data of a nunber of kinds to a single
resource location. The contents of the structure are:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 86]

Internet-Draft RELOAD Base March 2011

resource
The resource to store at.

replica_nunber
The nunber of this replica. Wen a storing peer saves replicas to
other peers each peer is assigned a replica nunber starting from1
and sent in the Store nessage. This field is set to 0 when a node
is storing its owm data. This allows peers to distinguish replica
wites fromoriginal wites.

ki nd_dat a
A series of elenents, one for each kind of data to be stored.

If the replica nunber is zero, then the peer MJST check that it is
responsi ble for the resource and, if not, reject the request. |If the
replica nunber is nonzero, then the peer MJST check that it expects
to be a replica for the resource and that the request sender is
consistent with being the responsible node (i.e., that the receiving
peer does not know of a better node) and, if not, reject the request.

Each StoreKindData el ement represents the data to be stored for a
single Kind-1D. The contents of the elenent are:

ki nd
The Kind-1D. |Inplenentations MJST reject requests correspondi ng
t o unknown ki nds.

generati on_count er
The expected current state of the generation counter
(approxi mately the nunmber of tines this object has been witten;
see below for details).

val ues
The value or values to be stored. This nay contain one or nore
stored_data val ues dependi ng on the data nodel associated with
each ki nd.

The peer MJST performthe foll owi ng checks:

o0 The Kind-1D is known and support ed.

0 The signatures over each individual data elenent (if any) are
valid. |If this check fails, the request MJST be rejected with an
Error _For bi dden error.

o Each elenent is signed by a credential which is authorized to
wite this kind at this Resource-1D. |If this check fails, the
request MJST be rejected with an Error_Forbi dden error

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 87]

Internet-Draft RELOAD Base March 2011

o For original (non-replica) stores, the peer MJST check that if the
generation counter is non-zero, it equals the current value of the
generation counter for this kind. This feature allows the
generation counter to be used in a way simlar to the HITP Etag
feature.

o For replica Stores, the peer MJST set the generation counter to
mat ch the generation counter in the nessage, and MJUST NOT check
the generation counter against the current value. Replica Stores
MUST NOT use a generation counter of O.

0 The storage tine values are greater than that of any val ue which
woul d be replaced by this Store.

0 The size and nunber of the stored values is consistent with the
limts specified in the overlay configuration

If all these checks succeed, the peer MJST attenpt to store the data
val ues. For non-replica stores, if the store succeeds and the data

i s changed, then the peer nust increase the generation counter by at
| east one. If there are nultiple stored values in a single
StoreKindData, it is pernmissible for the peer to increase the
generation counter by only 1 for the entire Kind-1D, or by 1 or nore
than one for each value. Accordingly, all stored data val ues nust
have a generation counter of 1 or greater. 0 is used in the Store
request to indicate that the generation counter should be ignored for
processing this request; however the responsible peer should increase
the stored generation counter and should return the correct
generation counter in the response.

When a peer stores data previously stored by another node (e.g., for
replicas or topology shifts) it MJST adjust the lifetine val ue
downward to reflect the amount of tinme the value was stored at the
peer. The adjustnment SHOULD be inplemented by an al gorithm
equivalent to the following: at the tinme the peer initially receives
the StoreReq it notes the local tine T. Wien it then attenpts to do a
StoreReq to anot her node it should decrenent the lifetine val ue by
the difference between the current local time and T.

Unl ess ot herwi se specified by the usage, if a peer attenpts to store
data previously stored by another node (e.g., for replicas or

topol ogy shifts) and that store fails with either an
Error_Generation_Counter _Too Low or an Error_Data Too old error, the
peer MJST fetch the newer data fromthe peer generating the error and
use that to replace its own copy. This rule allows resynchronization
after partitions heal

The properties of stores for each data nodel are as foll ows:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 88]

Internet-Draft RELOAD Base March 2011

Si ngl e-val ue:
A store of a new single-value elenment creates the elenment if it
does not exist and overwites any existing value with the new
val ue.

Array:
A store of an array entry replaces (or inserts) the given val ue at
the | ocation specified by the index. Because arrays are sparse, a
store past the end of the array extends it w th nonexistent val ues
(exists=False) as required. A store at index Oxffffffff places
the new value at the end of the array regardl ess of the I ength of
the array. The resulting StoredData has the correct index val ue
when it is subsequently fetched.

Dictionary:
A store of a dictionary entry replaces (or inserts) the given
val ue at the location specified by the dictionary key.

The following figure shows the relationship between these structures
for an exanple store which stores the follow ng values at resource
"1234"

0 The value "abc" in the single value location for kind X

0 The value "foo" at index O in the array for kind Y
o0 The value "bar" at index 1 in the array for kind Y

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 89]

Internet-Draft RELOAD Base

Store
resource=1234
repli ca_nunber
/ \
/ \
St or eKi ndDat a St
ki nd=X (Si ngl e- Val ue) ki

March 2011

=0

or eKi ndDat a
nd=Y (Array)

generation_counter = 99 generation_counter = 107

| /\

I
St or edDat a /

storage_time = XXXXXXX /
lifetime = 86400 /
signature = XXXX /

I
[St or edDat a
| storage_time =
I YYYYyyyyy
| lifetinme = 86400
| signature = YYYY
I
St or edDat aVal ue [
val ue="abc" |

I
St or edDat aVal ue
i ndex=0
val ue="f oo"

6.4.1.2. Response Definition

In response to a successful

Store request the peer

St or edDat a
storage_time =
2222727
lifetime = 33200
signature = 7777
I
I
I

I
St or edDat aVal ue
i ndex=1
val ue="bar"

MJUST return a

St oreAns nessage containing a series of StoreKi ndResponse el enents
containing the current value of the generation counter for each
Kind-1D, as well as a list of the peers where the data will be
replicated by the node processing the request.

struct {
Ki ndl d ki nd;
ui nt 64 generation_counter;
Nodel d replicas<0..2"16-1>;

} StoreKi ndResponse;

struct {
St or eKi ndResponse
} StoreAns;

Jenni ngs, et al.

Expi res Sept enber

ki nd_r esponses<0..2"16- 1>;

15, 2011 [Page 90]

Internet-Draft RELOAD Base March 2011

The contents of each StoreKi ndResponse are:

ki nd
The Ki nd-1D being represented.

generati on_count er
The current value of the generation counter for that Kind-ID

replicas
The list of other peers at which the data was/will be replicated.
In overlays and applications where the responsible peer is
i ntended to store redundant copies, this allows the storing peer
to independently verify that the replicas have in fact been
stored. It does this verification by using the Stat nethod. Note
that the storing peer is not required to performthis
verification.

The response itself is just StoreKi ndResponse val ues packed end-to-
end.

If any of the generation counters in the request precede the
correspondi ng stored generation counter, then the peer MJST fail the
entire request and respond with an Error_GCenerati on_Counter_Too_Low
error. The error_info in the ErrorResponse MIUST be a StoreAns
response containing the correct generation counter for each kind and
the replica list, which will be enpty. For original (non-replica)
stores, a node which receives such an error SHOULD attenpt to fetch
the data and, if the storage tinme value is newer, replace its own
data with that newer data. This rule inproves data consistency in
the case of partitions and mnerges.

If the data being stored is too large for the allowed limt by the
gi ven usage, then the peer MJST fail the request and generate an
Error_Data_Too_Large error

If any type of request tries to access a data kind that the node does
not know about, an Error_Unknown_Ki nd MJUST be generated. The
error_info in the Error_Response is:

Ki ndl d unknown_ki nds<0. . 278-1>
which lists all the kinds that were unrecogni zed. A node which
receives this error MIST generate a ConfigUpdate nessage which

contains the appropriate kind definition (assumng that in fact a
ki nd was used which was defined in the configuration docunent).

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 91]

Internet-Draft RELOAD Base March 2011

6.4.1.3. Renoving Val ues

This version of RELOAD (unli ke previous versions) does not have an
explicit Renove operation. Rather, values are Renpbved by storing
"nonexi stent" values in their place. Each DataVal ue contains a
bool ean val ue called "exists" which indicates whether a value is
present at that location. In order to effectively renove a val ue,
the owner stores a new DataVal ue wth:

exists = fal se
value = {} (0 I ength)

Storing nodes MJUST treat these nonexistent values the same way they
treat any other stored value, including overwiting the existing

val ue, replicating them and aging them out as necessary when
lifetinme expires. Wien a stored nonexistent value's lifetine
expires, it is sinply renoved fromthe storing node |like any other
stored value expiration. Note that in the case of arrays and
dictionaries, this may create an inplicit, unsigned "nonexistent"
value to represent a gap in the data structure. However, this val ue
isn't persistent nor is it replicated. It is sinply synthesized by
the storing node.

6.4.2. Fetch
The Fetch request retrieves one or nore data el enents stored at a

gi ven Resource-1D. A single Fetch request can retrieve nultiple
di fferent Kkinds.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 92]

Internet-Draft RELOAD Base March 2011

6.4.2.1. Request Definition

struct {
i nt32 first;
i nt32 | ast;
} ArrayRange;

struct {
Ki ndl d ki nd;
ui nt 64 generati on;
uintl16 | engt h;

sel ect (dataModel) {
case single_value: ; [* Empty */

case array:
ArrayRange i ndi ces<0..2"16-1>

case dictionary:
Di cti onar yKey keys<0..2"16- 1>

[* This structure may be extended */

} nodel specifier;
} StoredDat aSpecifier;

struct {

Resourcel d resource,

St or edDat aSpeci fi er speci fiers<0..2"16-1>
} Fet chReq;

The contents of the Fetch requests are as foll ows:

resource
The Resource-ID to fetch from

specifiers
A sequence of StoredDataSpecifier values, each specifying sone of
the data values to retrieve.

Each St oredDat aSpecifier specifies a single kind of data to retrieve

and (if appropriate) the subset of values that are to be retrieved.
The contents of the StoredDataSpecifier structure are as foll ows:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 93]

Internet-Draft RELOAD Base March 2011

ki nd
The Kind-1D of the data being fetched. Inplenentations SHOULD
reject requests correspondi ng to unknown ki nds unless specifically
configured ot herwi se.

dat aMbdel
The data nodel of the data. This is not transmtted on the wire
but comes fromthe definition of the kind.

generation
The | ast generation counter that the requesting node saw. This
may be used to avoid unnecessary fetches or it may be set to zero.

I ength
The length of the rest of the structure, thus allow ng
extensibility.

nmodel _specifier
A reference to the data val ue being requested within the data
nmodel specified for the kind. For instance, if the data nodel is
"array", it mght specify sonme subset of the val ues.

The nodel specifier is as foll ows:

o |If the data nmodel is single value, the specifier is enpty.

o If the data nodel is array, the specifier contains a |list of
ArrayRange el enents, each of which contains two integers. The
first integer is the beginning of the range and the second is the
end of the range. O is used to indicate the first elenment and
Oxffffffff is used to indicate the final elenment. The first
i nteger must be less than the second. Wile multiple ranges MAY
be specified, they MUST NOT overl ap

o If the data nodel is dictionary then the specifier contains a list

of the dictionary keys being requested. If no keys are specified,
than this is a wildcard fetch and all key-value pairs are
ret ur ned.

The generation counter is used to indicate the requester’s expected

state of the storing peer. |If the generation counter in the request
mat ches the stored counter, then the storing peer returns a response
with no StoredData val ues.

Not e that because the certificate for a user is typically stored at
the sane | ocation as any data stored for that user, a requesting node
that does not already have the user’s certificate should request the
certificate in the Fetch as an optim zation

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 94]

Internet-Draft RELOAD Base March 2011

6.4.2.2. Response Definition

The response to a successful Fetch request is a FetchAns nessage
containing the data requested by the requester

struct {
Ki ndl d ki nd;
ui nt 64 gener ati on;
St or edDat a val ues<0. . 2"32- 1>
} Fet chKi ndResponse
struct {
Fet chKi ndResponse ki nd_r esponses<0..2"32-1>
} Fet chAns;

The FetchAns structure contains a series of FetchKi ndResponse
structures. There MJST be one FetchKi ndResponse el ement for each
Kind-1D in the request.

The contents of the FetchKi ndResponse structure are as foll ows:

ki nd
the kind that this structure is for

generation
the generation counter for this kind.

val ues
the relevant values. |f the generation counter in the request
mat ches the generation counter in the stored data, then no
StoredData val ues are returned. Oherwise, all relevant data
val ues MJST be returned. A nonexistent value is represented with
"exists" set to Fal se

There is one subtle point about signature conputation on arrays. |If
the storing node uses the append feature (where the

i ndex=0xffffffff), then the index in the StoredData that is returned
will not match that used by the storing node, which would break the
signature. 1In order to avoid this issue, the index value in the
array is set to zero before the signature is conputed. This inplies
that nalicious storing nodes can reorder array entries w thout being
det ect ed.

6.4.3. Stat

The Stat request is used to get netadata (length, generation counter
digest, etc.) for a stored elenent without retrieving the el enent

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 95]

Internet-Draft RELOAD Base March 2011

itself. The nane is fromthe UNI X stat(2) systemcall which perforns
a simlar function for files in a file system It also allows the
requesting node to get a list of matching el ements wi thout requesting

the entire el enent.

6.4.3.1. Request Definition

The Stat request is identical to the Fetch request. It sinply
specifies the elenents to get netadata about.
struct {
Resourcel d resource,
St or edDat aSpeci fi er speci fiers<0..2"16- 1>;
} StatReq;

6.4.3.2. Response Definition

The Stat response contains the sanme sort of entries that a Fetch
response woul d contain; however, instead of containing the el enent
data it contains metadata.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 96]

Jenni ngs,

Internet-Draft

struct {
Bool ean
ui nt 32
HashAl gorithm
opaque
} Met aDat a;

struct {
ui nt 32
Met aDat a
} ArrayEntryMet a;

struct {
Di cti onar yKey
Met aDat a
} DictionaryEntryMeta;

struct {
sel ect (nodel) {
case singl e _val ue:
Met aDat a

case array:
ArrayEntryMet a

case dictionary:

Di ctionaryEntryMeta

RELCAD Base

exi sts;

val ue_I engt h;
hash_al gorithm
hash_val ue<0. . 255>;

i ndex;
val ue;

key;
val ue;

singl e_val ue_entry;

array_entry;

dictionary_entry;

/* This structure may be extended */

¥
} Met aDat aVal ue;

struct {
ui nt 32
ui nt 64
ui nt 32
Met aDat aVal ue
} StoredMet aDat a;

struct {
Ki ndl d
ui nt 64
St or edMet aDat a
} Stat Ki ndResponse;

struct {

St at Ki ndResponse
} Stat Ans;

et al.

val ue_| engt h;
storage_ti ne;
lifetine;
nmet adat a;

ki nd;
gener ati on;
val ues<0. . 2"32- 1>;

ki nd_r esponses<0. . 2"32- 1>;

Expi res Septenber 15, 2011

March 2011

[Page

97]

Internet-Draft RELOAD Base March 2011

The structures used in StatAns parallel those used in FetchAns: a
response consists of multiple StatKi ndResponse val ues, one for each
kind that was in the request. The contents of the StatKi ndResponse
are the sane as those in the FetchKi ndResponse, except that the
values list contains StoredMetaData entries instead of StoredData
entries.

The contents of the StoredMetaData structure are the sane as the
corresponding fields in StoredData except that there is no signature
field and the value is a MetaDataVal ue rather than a StoredDat aval ue.

A MetaDataValue is a variant structure, |like a StoredbDataVal ue,
except for the types of each arm which replace DataValue with
Met aDat a.

The only really new structure is MetaData, which has the foll ow ng
contents:

exi sts
Sane as in DataVal ue

val ue_ | ength
The I ength of the stored val ue.

hash_al gorit hm
The hash algorithmused to performthe digest of the val ue.

hash_val ue
A digest of the val ue using hash_al gorithm

6.4.4. Find

The Find request can be used to explore the Overlay Instance. A Find
request for a Resource-ID R and a Kind-1D T retrieves the Resource-ID
(if any) of the resource of kind T known to the target peer which is
closest to R This nethod can be used to wal k the Overlay Instance by
iteratively fetching R n+l=nearest(1l + R n).

6.4.4.1. Request Definition

The Fi ndReq nessage contains a Resource-1D and a series of Kind-IDs
identifying the resource the peer is interested in.

struct {

Resourcel d resource;

Ki ndl d ki nds<0. . 2"8-1>
} FindReq;

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 98]

Internet-Draft RELOAD Base March 2011

The request contains a list of Kind-1Ds which the Find is for, as
i ndi cated bel ow

resource
The desired Resource-ID

ki nds
The desired Kind-1Ds. Each value MIST only appear once, and if
not the request MJST be rejected with an error

6.4.4.2. Response Definition
A response to a successful Find request is a FindAns nessage

contai ning the closest Resource-ID on the peer for each kind
specified in the request.

struct {
Ki ndl d ki nd;
Resourcel d cl osest;

} Fi ndKi ndDat a;

struct {
Fi ndKi ndDat a resul ts<0..2716-1>
} FindAns;

If the processing peer is not responsible for the specified
Resource-1D, it SHOULD return an Error_Not Found error code

For each Kind-1D in the request the response MJST contain a

Fi ndKi ndDat a i ndi cating the closest Resource-1D for that Kind-ID

unl ess the kind is not allowed to be used with Find in which case a
Fi ndKi ndData for that Kind-1D MJUST NOT be included in the response.

If a Kind-I1Dis not known, then the correspondi ng Resource-|I D MJST be
0. Note that different Kind-1Ds nmay have different cl osest Resource-
| Ds.

The response is sinply a series of FindKindData el ements, one per
ki nd, concatenated end-to-end. The contents of each el ement are:

ki nd
The Ki nd-1D.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 99]

Internet-Draft RELOAD Base March 2011

cl osest
The cl osest resource IDto the specified resource ID. This is O
if no resource IDis known.

Note that the response does not contain the contents of the data
stored at these Resource-IDs. |f the requester wants this, it nust
retrieve it using Fetch

6.4.5. Defining New Ki nds

There are two ways to define a new kind. The first is by witing a
docunent and registering the kind-id with ANA. This is the
preferred nethod for kinds which nay be widely used and reused. The
second nmethod is to sinply define the kind and its paraneters in the
configuration docunment using the section of kind-id space set aside
for private use. This nethod MAY be used to define ad hoc kinds in
new overl ays.

However a kind is defined, the definition nmust include:

The meaning of the data to be stored (in some textual form.
The Kind-1D

The data nodel (single value, array, dictionary, etc).

The access control nodel.

O o0Oo0oOo

In addition, when kinds are registered with | ANA, each kind is
assigned a short string name which is used to refer to it in
configuration docunents.

Wi | e each kind needs to define what data nodel is used for its data,
that does not mean that it nust define new data nodels. \Were
practical, kinds should use the existing data nodels. The intention
is that the basic data nodel set be sufficient for nost applications/
usages.

7. Certificate Store Usage
The Certificate Store usage allows a peer to store its certificate in
the overlay, thus avoiding the need to send a certificate in each

nmessage - a reference may be sent instead.

A user/peer MJST store its certificate at Resource-1Ds derived from
two Resource Nanes:

o The user nane in the certificate.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 100]

Internet-Draft RELOAD Base March 2011

0o The Node-ID in the certificate.

Note that in the second case the certificate is not stored at the
peer’s Node-ID but rather at a hash of the peer’s Node-1D. The
intention here (as is common throughout RELOAD) is to avoid nmaking a
peer responsible for its own data.

A peer MJST ensure that the user’s certificates are stored in the
Overlay Instance. New certificates are stored at the end of the
list. This structure allows users to store an old and a new
certificate that both have the same Node-1D, which allows for
nmgration of certificates when they are renewed.

Thi s usage defines the foll ow ng kinds:

Narme: CERTI FI CATE_BY_NCDE
Data Model: The data nodel for CERTIFI CATE_BY_NODE data is array.

Access Control: NODE- MATCH

Nane: CERTI FI CATE BY_USER
Data Mbdel: The data nodel for CERTIFI CATE BY USER data is array.

Access Control: USER- MATCH

8. TURN Server Usage

The TURN server usage allows a RELOAD peer to advertise that it is
prepared to be a TURN server as defined in [RFC5766]. Wen a node
starts up, it joins the overlay network and forns several connections
in the process. |If the ICE stage in any of these connections returns
a reflexive address that is not the sane as the peer’s perceived
address, then the peer is behind a NAT and not a candidate for a TURN
server. Additionally, if the peer’s IP address is in the private
address space range, then it is also not a candidate for a TURN
server. Qherw se, the peer SHOULD assune it is a potential TURN
server and follow the procedures bel ow.

If the node is a candidate for a TURN server it will insert some
pointers in the overlay so that other peers can find it. The overlay
configuration file specifies a turn-density paraneter that indicates
how many tinmes each TURN server should record itself in the overlay.
Typically this should be set to the reciprocal of the estimte of

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 101]

Internet-Draft RELOAD Base March 2011

what percentage of peers will act as TURN servers. |If the turn-
density is not set to zero, for each value, called d, between 1 and
turn-density, the peer forms a Resource Nane by concatenating its
Node-1D and the value d. This Resource Nanme is hashed to forma
Resource-1D. The address of the peer is stored at that Resource-ID
usi ng type TURN- SERVI CE and the TurnServer object:

struct {
uint8 iteration;
| pAddr essAndPor t server _address;

} TurnServer;

The contents of this structure are as foll ows:

iteration
the d val ue

server _address
the address at which the TURN server can be contact ed.

Note: Correct functioning of this algorithmdepends on having turn-
density be an reasonabl e estimate of the reciprocal of the
proportion of nodes in the overlay that can act as TURN servers.
If the turn-density value in the configuration file is too |ow,
then the process of finding TURN servers becones nore expensive as
mul ti pl e candi date Resource-I1Ds nust be probed to find a TURN
server.

Peers that provide this service need to support the TURN extensions
to STUN for nedia relay as defined in [RFC5766] .

This usage defines the following kind to indicate that a peer is
willing to act as a TURN server:

Name TURN- SERVI CE

Data Mbdel The TURN- SERVI CE kind stores a single value for each
Resource- 1 D.

Access Contr ol NODE- MULTI PLE, with maxi numiterati on counter 20.

Peers can find other servers by selecting a random Resource-I1D and
then doing a Find request for the appropriate Kind-1D with that
Resource-1D. The Find request gets routed to a random peer based on
the Resource-ID. If that peer knows of any servers, they will be
returned. The returned response nmay be enpty if the peer does not
know of any servers, in which case the process gets repeated with
some ot her random Resource-ID. As long as the ratio of servers
relative to peers is not too low, this approach will result in

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 102]

Internet-Draft RELOAD Base March 2011

9.

finding a server relatively quickly.

Chord Al gorithm

This algorithmis assigned the nane chord-reload to indicate it is an
adaptation of the basic Chord DHT al gorithm

This algorithmdiffers fromthe originally presented Chord al gorithm

[Chord]. It has been updated based on nore recent research results
and i npl enentati on experiences, and to adapt it to the RELOAD
protocol. A short list of differences:

o The original Chord al gorithmspecified that a single predecessor
and a successor list be stored. The chord-reload al gorithm
attenpts to have nore than one predecessor and successor. The
predecessor sets help other neighbors learn their successor |ist.

0 The original Chord specification and analysis called for iterative
routing. RELOAD specifies recursive routing. In addition to the
performance inplications, the cost of NAT traversal dictates
recursive routing.

o0 Finger table entries are indexed in opposite order. Oiginal
Chord specifies finger[0] as the i nmedi ate successor of the peer
chord-rel oad specifies finger[0] as the peer 180 degrees around
the ring fromthe peer. This change was nade to sinplify
di scussion and i npl enmentation of variable sized finger tables.
However, with either approach no nmore than (log N) entries should
typically be stored in a finger table.

0 The stabilize() and fix _fingers() algorithns in the original Chord
algorithmare nerged into a single periodic process.

Stabilization is inplemented slightly differently because of the
| ar ger nei ghborhood, and fix_fingers is not as aggressive to
reduce | oad, nor does it search for optinmal matches of the finger
table entries.

0 RELOAD uses a 128 bit hash instead of a 160 bit hash, as RELOAD is
not designed to be used in networks with close to or nore than
272128 nodes (and it is hard to see how one woul d assenbl e such a
net wor k) .

0 RELQAD uses randoni zed finger entries as described in
Section 9.7.4.2.

o This algorithmallows the use of either reactive or periodic
recovery. The original Chord paper used periodic recovery.
Reactive recovery provides better performance in small overlays,
but is believed to be unstable in |large (>1000) overlays with high
| evel s of churn [handling-churn-usenix04]. The overlay
configuration file specifies a "chord-reactive" el enent that
i ndi cates whet her reactive recovery should be used.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 103]

Internet-Draft RELOAD Base March 2011

9.1. Overview

The al gorithm described here is a nodified version of the Chord
algorithm Each peer keeps track of a finger table and a nei ghbor
table. The neighbor table contains at |east the three peers before
and after this peer in the DHT ring. There nmay not be three entries
in all cases such as small rings or while the ring topology is
changing. The first entry in the finger table contains the peer

hal f-way around the ring fromthis peer; the second entry contains
the peer that is 1/4 of the way around; the third entry contains the
peer that is 1/8th of the way around, and so on. Fundanentally, the
chord data structure can be thought of a doubly-linked list formed by
knowi ng the successors and predecessor peers in the neighbor table,
sorted by the Node-ID. As long as the successor peers are correct,
the DHT will return the correct result. The pointers to the prior
peers are kept to enable the insertion of new peers into the |ist
structure. Keeping nultiple predecessor and successor pointers nakes
it possible to nmaintain the integrity of the data structure even when
consecutive peers sinultaneously fail. The finger table fornms a skip
list, so that entries in the linked Iist can be found in Ol og(N))
time instead of the typical (N time that a linked |list would

provi de.

A peer, n, is responsible for a particular Resource-IDk if k is |ess
than or equal to n and k is greater than p, where p is the Node-I|D of
the previous peer in the neighbor table. Care nust be taken when
computing to note that all math is nodul o 27128

9.2. Hash Function

For this Chord topol ogy plugin, the size of the Resource-IDis 128
bits. The hash of a Resource-ID is conputed using SHA-1

[RFC3174]then truncating the SHA-1 result to the nost significant 128
bits.

9.3. Routing

The routing table is the union of the neighbor table and the finger
tabl e.

If a peer is not responsible for a Resource-ID k, but is directly
connected to a node with Node-ID k, then it routes the nessage to
that node. Oherwise, it routes the request to the peer in the

routing table that has the largest Node-ID that is in the interva

between the peer and k. If no such node is found, it finds the
smal | est Node-I1d that is greater than k and routes the nessage to
t hat node

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 104]

Internet-Draft RELOAD Base March 2011

9.4. Redundancy

When a peer receives a Store request for Resource-ID k, and it is
responsi ble for Resource-ID k, it stores the data and returns a
success response. It then sends a Store request to its successor in
t he nei ghbor table and to that peer’s successor. Note that these
Store requests are addressed to those specific peers, even though the
Resource-1D they are being asked to store is outside the range that
they are responsible for. The peers receiving these check they cane
froman appropriate predecessor in their neighbor table and that they
are in a range that this predecessor is responsible for, and then
they store the data. They do not thenselves performfurther Stores
because they can determine that they are not responsible for the
Resource-1 D

Managi ng replicas as the overlay changes is described in
Section 9.7.3.

The sequential replicas used in this overlay algorithm protect

agai nst peer failure but not against malicious peers. Additiona
replication fromthe Usage is required to protect resources from such
attacks, as discussed in Section 12.5. 4.

9.5. Joining

The join process for a joining party (JP) with Node-ID n is as
fol | ows.

1. JP MJST connect to its chosen bootstrap node.

2. JP SHOULD send an Attach request to the admitting peer (AP) for
Node-I D n. The "send_update" flag should be used to acquire the
routing table for AP.

3. JP SHOULD send Attach requests to initiate connections to each of
the peers in the neighbor table as well as to the desired finger
table entries. Note that this does not populate their routing
tabl es, but only their connection tables, so JP will not get
messages that it is expected to route to other nodes.

4. JP MJST enter all the peers it has contacted into its routing
tabl e.

5. JP MJST send a Join to AP. The AP sends the response to the
Joi n.

6. AP MJST do a series of Store requests to JP to store the data
that JP will be responsible for

7. AP MUST send JP an Update explicitly labeling JP as its
predecessor. At this point, JP is part of the ring and
responsi ble for a section of the overlay. AP can now forget any
data which is assigned to JP and not AP.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 105]

Internet-Draft RELOAD Base March 2011

8. The AP MJST send an Update to all of its neighbors with the new
val ues of its neighbor set (including JP)
9. The JP MJST send Updates to all the peers in its neighbor table.

If JP sends an Attach to AP with send update, it inmmedi ately knows
nmost of its expected neighbors from AP s routing table update and can
directly connect to them This is the RECOMVENDED procedur e.

If for some reason JP does not get AP's routing table, it can stil

popul ate its neighbor table increnentally. It sends a Ping directed
at Resource-1D n+l (directly after its own Resource-1D). This allows
it to discover its own successor. Call that node p0. It then sends

a ping to pO+1 to discover its successor (pl). This process can be
repeated to di scover as many successors as desired. The val ues for
the two peers before p will be found at a | ater stage when n receives
an Update. An alternate procedure is to send Attaches to those nodes
rat her than pings, which forns the connections i mediately but nmay be
slower if the nodes need to collect | CE candidates, thus reducing
paral l el i sm

In order to set up its finger table entry for peer i, JP sinply sends
an Attach to peer (n+27(128-i). This will be routed to a peer in
approxi mately the right location around the ring.
The j oi ni ng peer MJST NOT send any Update nessage placing itself in
the overlay until it has successfully conpleted an Attach with each
peer that should be in its neighbor table.

9.6. Routing Attaches

When a peer needs to Attach to a new peer in its neighbor table, it
MUST source-route the Attach request through the peer fromwhich it

| earned the new peer’s Node-ID. Source-routing these requests allows
the overlay to recover frominstability.

Al'l other Attach requests, such as those for new finger table
entries, are routed conventionally through the overl ay.

9.7. Updates

A chord Update is defined as

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 106]

Internet-Draft RELOAD Base March 2011

enum { reserved (0),
peer_ready(1), neighbors(2), full(3), (255) }
Chor dUpdat eType

struct {
ui nt 32 upti ne;
Chor dUpdat eType type;
sel ect (type) {
case peer_ready: [* Enmpty */

case nei ghbors:

Nodel d predecessor s<0. . 2"16- 1>

Nodel d successor s<0. . 2716- 1>
case full:

Nodel d predecessor s<0. . 2"16- 1>

Nodel d successors<0..2"16- 1>

Nodel d fingers<0..2716- 1>

};
} Chor dUpdat e;

The "uptine"” field contains the time this peer has been up in
seconds.

The "type" field contains the type of the update, which depends on
the reason the update was sent.

peer _ready: this peer is ready to receive nmessages. This nessage
is used to indicate that a node which has Attached is a peer and
can be routed through. It is also used as a connectivity check to
non- nei ghbor peers.

nei ghbors: this version is sent to menbers of the Chord nei ghbor
tabl e.

full: this version is sent to peers which request an Update with a
Rout eQuer yReq.

If the nmessage is of type "neighbors", then the contents of the
message will be:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 107]

Internet-Draft RELOAD Base March 2011

pr edecessors
The predecessor set of the Updating peer

successors
The successor set of the Updating peer.

If the message is of type "full", then the contents of the nessage
will be:

pr edecessors
The predecessor set of the Updating peer

successors
The successor set of the Updating peer.

fingers
The finger table of the Updating peer, in nunerically ascending
order.

A peer MJST nmintain an association (via Attach) to every nenber of
its neighbor set. A peer MJST attenpt to maintain at |east three
predecessors and three successors, even though this will not be
possible if the ring is very small. It is RECOMWENDED that Ol og(N))
predecessors and successors be maintained in the nei ghbor set.

9.7.1. Handling Neighbor Failures

Every tine a connection to a peer in the neighbor table is lost (as
determi ned by connectivity pings or the failure of sone request), the
peer MJST renove the entry fromits neighbor table and replace it
with the best match it has fromthe other peers in its routing table.
If using reactive recovery, it then sends an i medi ate Update to al
nodes in its Neighbor Table. The update will contain all the Node-
IDs of the current entries of the table (after the failed one has
been renoved). Note that when replacing a successor the peer SHOULD
del ay the creation of new replicas for successor replacenent hol d-
down time (30 seconds) after renmoving the failed entry fromits

nei ghbor table in order to allow a triggered update to informit of a
better match for its neighbor table.

If the neighbor failure effects the peer’s range of responsible |Ds,
then the Update MUST be sent to all nodes in its Connection Tabl e.

A peer MAY attenpt to reestablish connectivity with a |ost nei ghbor

either by waiting additional tinme to see if connectivity returns or
by actively routing a new Attach to the lost peer. Details for these

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 108]

Internet-Draft RELOAD Base March 2011

procedures are beyond the scope of this docunent. In no event does
an attenpt to reestablish connectivity with a | ost nei ghbor allow the
peer to remain in the neighbor table. Such a peer is returned to the
nei ghbor table once connectivity is reestablished.

If connectivity is lost to all successor peers in the neighbor table,
then this peer should behave as if it is joining the network and use
Pings to find a peer and send it a Join. |If connectivity is lost to
all the peers in the finger table, this peer should assune that it
has been di sconnected fromthe rest of the network, and it should
periodically try to join the DHT

9.7.2. Handling Finger Table Entry Failure

If a finger table entry is found to have failed, all references to
the failed peer are renoved fromthe finger table and replaced with
the cl osest preceding peer fromthe finger table or neighbor table.

If using reactive recovery, the peer initiates a search for a new
finger table entry as described bel ow.

9.7.3. Receiving Updates

When a peer, N, receives an Update request, it exanm nes the Node-I|Ds
in the UpdateReq and at its neighbor table and decides if this

Updat eReq woul d change its neighbor table. This is done by taking
the set of peers currently in the neighbor table and conparing them
to the peers in the update request. There are two nmjor cases:

0 The UpdateReq contains peers that match N s nei ghbor table, so no
change i s needed to the neighbor set.

0 The UpdateReq contains peers N does not know about that should be
in Ns neighbor table, i.e. they are closer than entries in the
nei ghbor tabl e.

In the first case, no change is needed.

In the second case, N MJST attenpt to Attach to the new peers and if
it is successful it MJST adjust its neighbor set accordingly. Note
that it can nmaintain the now inferior peers as neighbors, but it MJST
remenber the cl oser ones.

After any Pings and Attaches are done, if the neighbor table changes
and the peer is using reactive recovery, the peer sends an Update
request to each menber of its Connection Table. These Update
requests are what end up filling in the predecessor/successor tables
of peers that this peer is a neighbor to. A peer MJST NOT enter
itself in its successor or predecessor table and instead should | eave

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 109]

Internet-Draft RELOAD Base March 2011

the entries enpty.

If peer Nis responsible for a Resource-1D R, and N di scovers that
the replica set for R (the next two nodes in its successor set) has
changed, it MJST send a Store for any data associated with Rto any
new node in the replica set. It SHOULD NOT del ete data from peers
whi ch have left the replica set.

When a peer N detects that it is no longer in the replica set for a
resource R (i.e., there are three predecessors between Nand R), it
SHOULD del ete all data associated with Rfromits local store

When a peer discovers that its range of responsible | Ds have changed,
it MUST send an Update to all entries in its connection table.

9.7.4. Stabilization

There are four conponents to stabilization

1. exchange Updates with all peers in its neighbor table to exchange
st at e.

2. search for better peers to place in its finger table.

3. search to determine if the current finger table size is
sufficiently large.

4. search to deternine if the overlay has partitioned and needs to
recover.

9.7.4.1. Updating neighbor table

A peer MJST periodically send an Update request to every peer inits
Connection Table. The purpose of this is to keep the predecessor and
successor lists up to date and to detect failed peers. The default
time is about every ten minutes, but the configuration server SHOULD
set this in the configuration docunent using the "chord-update-
interval" elenment (denoninated in seconds.) A peer SHOULD randomy
of fset these Update requests so they do not occur all at once.

9.7.4.2. Refreshing finger table

A peer MJIST periodically search for new peers to replace invalid

(repeated) entries in the finger table. A finger table entry i is
valid if it is in the range [n+2"(128-i),
n+27(128-(i-1))-2~(128-(i+1))]. Invalid entries occur in the finger

tabl e when a previous finger table entry has failed or when no peer
has been found in that range.

A peer SHOULD NOT send Ping requests |ooking for new finger table

entries nore often than the configuration el enent "chord- ping-
interval", which defaults to 3600 seconds (one per hour).

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 110]

Internet-Draft RELOAD Base March 2011

Two possi bl e nethods for searching for new peers for the finger table
entries are presented:

Alternative 1: A peer selects one entry in the finger table from
anong the invalid entries. It pings for a new peer for that finger
table entry. The selection SHOULD be exponentially weighted to
attenpt to replace earlier (lower i) entries in the finger table. A
sinmple way to inmplenent this selection is to search through the
finger table entries fromi=0 and each tinme an invalid entry is
encountered, send a Ping to replace that entry with probability 0.5.

Alternative 2: A peer nonitors the Update nmessages received fromits
connections to observe when an Update indicates a peer that would be
used to replace in invalid finger table entry, i, and flags that
entry in the finger table. Every "chord-ping-interval" seconds, the
peer selects from anong those flagged candi dates using an
exponentially weighted probability as above.

When searching for a better entry, the peer SHOULD send the Ping to a
Node-I D sel ected randomy fromthat range. Random selection is
preferred over a search for strictly spaced entries to mnimze the
effect of churn on overlay routing [mnimzing-churn-si gconmD6]. An
i mpl ement ati on or subsequent specification MAY choose a nethod for
selecting finger table entries other than choosing randomy w thin
the range. Any such alternate methods SHOULD be enpl oyed only on
finger table stabilization and not for the selection of initia

finger table entries unless the alternative nmethod is faster and

i nposes | ess overhead on the overl ay.

A peer MAY choose to keep connections to nmultiple peers that can act
for a given finger table entry.

9.7.4.3. Adjusting finger table size

If the finger table has |l ess than 16 entries, the node SHOULD attenpt
to discover nore fingers to grow the size of the table to 16. The
val ue 16 was chosen to ensure high odds of a node maintaining
connectivity to the overlay even with strange network partitions.

For many overlays, 16 finger table entries will be enough, but as an
overlay grows very large, nore than 16 entries may be required in the
finger table for efficient routing. An inplenentation SHOULD be
capabl e of increasing the nunber of entries in the finger table to
128 entri es.

Note to inplenenters: Although Iog(N) entries are all that are

required for optimal performance, careful inplenentation of
stabilization will result in no additional traffic being generated

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 111]

Internet-Draft RELOAD Base March 2011

when maintaining a finger table larger than log(N) entries.

| mpl enenters are encouraged to nmake use of RouteQuery and al gorithns
for determ ning where new finger table entries may be found.

Conpl ete details of possible inplenmentations are outside the scope of
this specification.

A sinmpl e approach to sizing the finger table is to ensure the finger
table is large enough to contain at |least the final successor in the
peer’s nei ghbor table.

9.7.4.4. Detecting partitioning

To detect that a partitioning has occurred and to heal the overlay, a
peer P MUST periodically repeat the discovery process used in the
initial join for the overlay to | ocate an appropriate bootstrap node,
B. P should then send a Ping for its own Node-ID routed through B. I|f
a response is received froma peer S, which is not P's successor,
then the overlay is partitioned and P should send an Attach to S
routed through B, followed by an Update sent to S. (Note that S

may not be in P s neighbor table once the overlay is healed, but the
connection will allow S to discover appropriate neighbor entries for
itself via its own stabilization.)

Future specifications nmay describe alternative nechanisns for
determining when to repeat the discovery process.

9.8. Route query

For this topology plugin, the RouteQueryReq contains no additiona

i nformati on. The Rout eQueryAns contains the single node ID of the
next peer to which the respondi ng peer woul d have routed the request
nmessage in recursive routing:

struct {
Nodel d next _peer;
} Chor dRout eQuer yAns;

The contents of this structure are as foll ows:

next _peer
The peer to which the responding peer would route the nessage in
order to deliver it to the destination listed in the request.

If the requester has set the send_update flag, the responder SHOULD
initiate an Update immedi ately after sending the RouteQueryAns.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 112]

Internet-Draft RELOAD Base March 2011

9.9. Leaving

To support extensions, such as [I-D. maenpaa- p2psi p-sel f-tuning],
Peers SHOULD send a Leave request to all menbers of their nei ghbor
table prior to exiting the Overlay Instance. The
overlay_specific_data field MUST contain the ChordLeaveData structure
defined bel ow

enum { reserved (0),
fromsucc(1l), frompred(2), (255) }
Chor dLeaveType;

struct {
Chor dLeaveType type;

sel ect(type) {
case from succ

Nodel d successor s<0..2"16- 1>
case from pred:
Nodel d predecessors<0. . 2"16- 1>

1
} ChordLeaveDat a;
The 'type’ field indicates whether the Leave request was sent by a
predecessor or a successor of the recipient:

fromsucc
The Leave request was sent by a successor

frompred
The Leave request was sent by a predecessor.
If the type of the request is '"fromsucc', the contents will be:
successors
The sender’s successor |ist.
If the type of the request is "frompred , the contents will be:

pr edecessors
The sender’s predecessor |ist.

Any peer which receives a Leave for a peer n in its neighbor set

follows procedures as if it had detected a peer failure as described
in Section 9.7.1.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 113]

Internet-Draft RELOAD Base March 2011

10. Enrollnment and Bootstrap

The section defines the format of the configuration data as well the
process to join a new overl ay.

10.1. COverlay Configuration

This specification defines a new content type "application/
p2p-overl ay+xm " for an MME entity that contains overlay
informati on. An exanple docunent is shown bel ow.

<?xm version="1.0" encodi ng="UTF-8"?>
<overlay xm ns="urn:ietf:parans: xm :ns: p2p: confi g-base"
xm ns: ext="urn:ietf:parans: xm : ns: p2p: confi g- ext 1"
xm ns: chord="urn:ietf:parans: xm : ns: p2p: confi g-chord">
<configuration instance-nane="overl ay. exanpl e. org" sequence="22"
expiration="2002-10- 10T07: 00: 00Z" ext: ext-exanpl e="stuff" >
<t opol ogy- pl ugi n> CHORD- RELOAD </t opol ogy- pl ugi n>
<node-i d- | engt h>16</ node-i d- | engt h>
<root-cert>
M | DJDCCAo2gAW BAgl BADANBgk ghki GOw0 BAQUFADBWMIE WCQYDVQQGEWI VUz ET
MBEGA1UECBMKQR FsaWzvcnbp YTERVASBGALUEBXM U2Ful Epvc2UxDj AMBgNVBAOT
BXNpcd OMsSkwIwYDVQQLEYBTaXBpdCBUZXNOI ENI cnRpzZmi j YXRI | EF1dGhvemnd 0
eTAeFWOWVE ASMIgxM | xNTJaFwOx Mz ASMIUxM | xNTJaMHAx Cz AJBgNVBAYTAI VT
MRMAEQYDVQQ EwpDYWkpZmBy b h MREWDWY DVQRHEWNh TYWA g Sz ZTEOVAWGAL UE
ChMFc 2l waXQxKTANBgNVBAsTI FNpcd 01 FRI ¢3Qg@2Vydd maVWNhd GUgQXvV0a@y
aXR5M G MAOGCSqGSI b3 DQEBAQUAAAGNADCBI QKBgQDDI h6 Dk c UDL Dy K9BEUxkud
+nJ4xr CVGKf gj HnbXaSuHi Et nf ELHWOW nz kBNz ZpJu30yzsxwf Kol KugdNUr D4
N3vi G cweN35LgP/ KnbN34cavXHr 4Z1 gxH+QdKB3hQTpQa38A7YXdaoz6goVef t 5
M 74z03GN\KP/ G9BoKOGI5Q DAQABo4HNM HKMBOGAL Ud Dg QABBRr Rhc U6pR2J YBU
bhNU2qHj VBSht j CBngYDVROj Bl GSM GPgBRr Rhc U6pR2J YBUbhNU2gHj VBSht qFO
pHI we DEL MAk GA1 UEBh MCVWIVK Ez ARBgNVBAg TCk Nhb @ nb3JuaWEx ETAPBgNVBAC T
CFNhbi BKb3NI MAWDAYDVQKEWZz aXBpd DEp MCc GALUECX Mg U2l waXQgVGVzdCBD
ZXJ0aWzZpY2F0ZSBBd XRob3J pdHMCAQAWDAYDVROTBAUWAWEB/ z ANBgkghki GOwOB
AQUFAAOBg QW RV 1ZGTRXxbH8/ Eqkd SCz SoUPr s+r QqROxdQac9wWNY/ nl ZbkR30
qAez G5Sf nkl vf +DOg5RxQq/ +Y61 03LRepc7KeVDpapl M-Gnpf Ksi bETM pwzay NQ
QuUf 4cKBi F+65Ue7hZubDJa2EM/8gWit wEhGDYcl pFU9Yozy S1Chv Ug==
</root-cert>
<root-cert> YnFkl GNl cnQK </root-cert>
<enrol | nent - server>https://exanpl e. org</enrol | nent -server>
<enrol | nent - server>https://exanpl e. net</enrol | nent - server>
<sel f-signed-pernitted
di gest ="shal" >f al se</sel f-si gned- perni tted>
<boot strap- node address="192.0.0.1" port="6084" />
<boot strap- node address="192.0.2.2" port="6084" />
<boot strap- node address="2001: DB8: : 1" port="6084" />
<turn-density> 20 </turn-density>
<mul ti cast-bootstrap address="192.0.0.1" />

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 114]

Internet-Draft RELOAD Base March 2011

<mul ti cast-bootstrap address="233.252.0.1" port="6084" />
<clients-pernmtted> false </clients-permtted>
<no-ice> fal se </ no-ice>
<chor d: chor d-updat e-i nterval >
400</ chor d: chor d-updat e-i nt erval >
<chor d: chor d- pi ng-i nt erval >30</ chord: chor d- pi ng-i nterval >
<chord: chord-reactive> true </chord: chord-reactive>
<shar ed-secret > password </shared-secret>
<max- message- si ze>4000</ max- nessage- si ze>
<initial-ttl> 30 </initial-ttl>
<overl ay-1i nk-protocol >TLS</ over| ay- i nk- prot ocol >
<ki nd- si gner> 47112162e84c69ba </ ki nd- si gner >
<ki nd- si gner > 6eba45d31a900c06 </ ki nd-si gner>
<bad- node> 6ebc45d31a900c06 </bad-node>
<bad- node> 6ebc45d31a900ca6 </ bad-node>

<ext : exanpl e- ext ensi on> f oo </ ext: exanpl e- ext ensi on>

<r equi r ed- ki nds>
<ki nd- bl ock>
<ki nd name="S| P- REG STRATI ON' >
<dat a- nodel >S| NGLE</ dat a- nodel >
<access-contr ol >USER- MATCH</ access- contr ol >
<max- count >1</ max- count >
<max- si ze>100</ max- si ze>
</ ki nd>
<ki nd- si gnat ur e>
VGhpcyBpcyBub3Qycm naHGhCg==
</ ki nd- si gnat ur e>
</ ki nd- bl ock>
<ki nd- bl ock>
<ki nd id="2000">
<dat a- nodel >ARRAY</ dat a- nodel >
<access-cont r ol >NODE- MULTI PLE</ access-control >
<max- node- nul ti pl e>3</ max- node- nul ti pl e>
<max- count >22</ max- count >
<max- si ze>4</ max- si ze>
<ext : exanpl e- ki nd- ext ensi on> 1
</ ext : exanpl e- ki nd- ext ensi on>
</ ki nd>
<ki nd- si gnat ur e>
VGhpcyBpcyBub3Qycm naHGhCg==
</ ki nd- si gnat ur e>
</ ki nd- bl ock>
</ requi r ed- ki nds>
</ configuration>
<si ghat ur e> VGhpcyBpcyBub3Qycm naHGhCg== </ si ghat ur e>

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 115]

Internet-Draft RELOAD Base March 2011

<configuration instance-name="ot her. exanpl e. net">
</ configuration>
<si gnat ur e> VGhpcyBpcyBub3Qycm naHGhCg== </ si gnat ur e>

</ overl ay>

The file MJUST be a well fornmed XM. docurment and it SHOULD contain an
encodi ng declaration in the XML declaration. |If the charset
paraneter of the MME content type declaration is present and it is
different fromthe encodi ng declaration, the charset paraneter takes
precedence. Every application confornming to this specification MJST
accept the UTF-8 character encoding to ensure m ninal
interoperability. The nanespace for the elenments defined in this
specification is urn:ietf:parans: xm :ns: p2p: confi g- base and
urn:ietf:parans: xm :ns: p2p: config-chord"

The file can contain nultiple "configuration" elenents where each one
contains the configuration information for a different overlay. Each
"configuration"” has the follow ng attributes:

i nstance-nane: nane of the overlay

expiration: time in the future at which this overlay configuration
is no longer valid. The peer SHOULD retrieve a new copy of the
configuration at a randomy selected tinme that is before the
expiration tinme.

sequence: a nonotonically increasing sequence nunber between 1 and
2716- 2

I nsi de each overlay elenment, the follow ng el enments can occur

topol ogy-plugin This el ement defines the overlay al gorithm being
used. If missing the default is "CHORD RELOAD".

node-id-l1ength This elenent contains the length of a Nodeld
(Nodel dLength) in bytes. This value MJST be between 16 (128 bits)
and 20 (160 bits). |If this element is not present, the default of
16 is used.

root-cert This el enent contains a base-64 encoded X 509v3
certificate that is a root trust anchor used to sign all
certificates in this overlay. There can be nore than one root-
cert elenent.

enrol | nent - server This el ement contains the URL at which the
enrol | nent server can be reached in a "url" element. This URL
MUST be of type "https:". More than one enroll nent-server el enent
may be present.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 116]

Internet-Draft RELOAD Base March 2011

sel f-signed-pernmitted This elenment indicates whether self-signed
certificates are permtted. |If it is set to "true", then self-
signed certificates are allowed, in which case the enroll nent-
server and root-cert elenents nmay be absent. Qherwi se, it SHOULD
be absent, but MAY be set to "false". This elenent also contains
an attribute "digest" which indicates the digest to be used to
conpute the Node-ID. Valid values for this paranmeter are "shal"
and "sha256" representing SHA-1 [RFC3174] and SHA- 256 [RFC4634]
respectively. Inplenentations MIST support both of these
al gorithns.

boot st rap- node This el enent represents the address of one of the
bootstrap nodes. It has an attribute called "address" that
represents the | P address (either I Pv4 or |1 Pv6, since they can be
di stingui shed) and an optional attribute called "port" that
represents the port and defaults to 6084. The IP address is in
typi cal hexadeci mal form using standard period and col on
separators as specified in [RFC5952]. More than one bootstrap-
peer el ement may be present.

turn-density This elenent is a positive integer that represents the
approxi mate reciprocal of density of nodes that can act as TURN
servers. For exanple, if 5% of the nodes can act as TURN servers

this would be set to 20. |If it is not present, the default val ue
is 1. |If there are no TURN servers in the overlay, it is set to
zero.

mul ti cast - bootstrap This el enent represents the address of a
mul ti cast, broadcast, or anycast address and port that may be used
for bootstrap. Nodes SHOULD |isten on the address. It has an
attributed called "address" that represents the | P address and an
optional attribute called "port" that represents the port and
defaults to 6084. Mdre than one "multicast-bootstrap" el ement may

be present.

clients-permtted This el enent represents whether clients are
permtted or whether all nodes nust be peers. If it is set to
"true" or absent, this indicates that clients are permtted. |If

it is set to "false" then nodes are not allowed to remain clients
after the initial join. There is currently no way for the overlay
to enforce this.

no-ice This el enent represents whether nodes are required to use
the "No-ICE" Overlay Link protocols in this overlay. If it is
absent, it is treated as if it were set to "false".

chor d- updat e-i nt erval The update frequency for the Chord-rel oad
topol ogy plugin (see Section 9).
chor d- pi ng-i nterval The ping frequency for the Chord-rel oad

topol ogy plugin (see Section 9).

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 117]

Internet-Draft RELOAD Base March 2011

chord-reactive Whet her reactive recovery should be used for this
overlay. Set to "true" or "false". Default if mssing is "true"
(see Section 9).

shared-secret |f shared secret node is used, this contains the
shared secret.

max- message-si ze Maxi mum size in bytes of any nessage in the
overlay. |If this value is not present, the default is 5000.

initial-ttl Initial default TTL (tinme to live, see Section 5.3.2)
for messages. |If this value is not present, the default is 100.

overlay-link-protocol Indicates a pernissible overlay link protoco
(see Section 5.6.1 for requirenents for such protocols). An
arbitrary nunber of these elenents nay appear. |f none appear,
then this inplies the default value, "TLS', which refers to the
use of TLS and DTLS. |If one or nore el ements appear, then no
default val ue applies.

ki nd- si gner This contains a single Node-I1D in hexadeci nal and
indicates that the certificate with this Node-IDis allowed to
sign kinds. Identifying kind-signer by Node-ID instead of
certificate allows the use of short lived certificates w thout
constantly having to provide an updated configuration file.

bad- node This contains a single Node-1D in hexadeci nal and
indicates that the certificate with this Node-ID MJUST NOT be
considered valid. This allows certificate revocation. An
arbitrary nunber of these elenments can be provided. Note that
because certificates may expire, bad-node entries need only be
present for the lifetime of the certificate. Technically
speaki ng, bad node-ids may be reused once their certificates have
expired, the requirenent for node-ids to be pseudo randomy
generated gives this event a vani shing probability.

I nsi de each overlay el ement, the required-kinds elenents can al so
occur. This elenment indicates the kinds that nenbers nust support
and contains multiple kind-block elements that each define a single
kind that MJST be supported by nodes in the overlay. Each kind-bl ock
consists of a single kind el enment and a ki nd-signature. The kind

el ement defines the kind. The kind-signature is the signature
comput ed over the kind el ement.

Each kind has either an id attribute or a nane attribute. The nane
attribute is a string representing the kind (the nane registered to
I ANA) while the id is an integer kind-id allocated out of private
space.

In addition, the kind el ement contains the follow ng el ements:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 118]

Internet-Draft RELOAD Base March 2011

max-count: the maxi mum nunber of val ues which nenbers of the overlay
must support.

data-nodel: the data nodel to be used
max- si ze: the maxi mum si ze of individual val ues
access-control: the access control nodel to be used.

max- node-mul tiple: This is optional and only used when the access
control is NODE-MJULTIPLE. This indicates the maxi num val ue for
the i counter. This is an integer greater than O.

Al'l of the non optional values MJST be provided. |If the kind is
registered with | ANA, the data-nodel and access-control el enents MJST
mat ch those in the kind registration, and clients MJST ignore themin
favor of the | ANA versions. Miltiple required-kinds el enments MAY be
present.

The ki nd-bl ock el ement al so MJUST contain a "kind-signature" el enent.
This signature is conputed across the kind fromthe begi nning of the
first < of the kind to the end of the last > of the kind in the sane
way as the signature el enent described later in this section

The configuration file is a binary file and cannot be changed -

i ncludi ng whitespace changes - or the signature will break. The
signature is conmputed by taking each configuration el enment and
starting from and including, the first < at the start of
<configuration> up to and including the > in </configuration> and
treating this as a binary blob that is signed using the standard
SecurityBl ock defined in Section 5.3.4. The SecurityBlock is base 64
encoded usi ng the base64 al phabet from RFC] RFC4648] and put in the
signature elenent follow ng the configuration object in the
configuration file.

When a node receives a new configuration file, it MJST change its
configuration to neet the new requirenents. This may require the
node to exit the DHT and re-join. |If a node is not capabl e of
supporting the new requirenents, it MJST exit the overlay. |f sone
i nformati on about a particular kind changes from what the node
previ ously knew about the kind (for exanple the max size), the new
information in the configuration files overrides any previously

| earned information. [|f any kind data was signed by a node that is
no longer allowed to sign kinds, that kind MJST be discarded al ong
with any stored information of that kind. Note that forcing an
aval anche restart of the overlay with a configuration change that
requires re-joining the overlay may result in serious perfornmance
probl ens, including total collapse of the network if configuration
paraneters are not properly considered. Such an event may be
necessary in case of a conpromi sed CA or simlar problem but for

| arge overlays should be avoided in alnost all circunstances.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 119]

I nt er net - Dr af

t

RELOAD Base March 2011

10. 1. 1. Rel ax NG G ammar

The grammar for the configuration data is:

nanespace chord
nanespace | ocal =

"urn:ietf:parans: xnl:ns: p2p: config-chord"”

default namespace p2pcf = "urn:ietf:parans: xm :ns: p2p: confi g- base"
nanespace rng = "http://relaxng.org/ ns/structure/1.0"
anything =

(elenment * { anything }
| attribute * { text }
| text)*

foreign-elenents = element * - (p2pcf:* | local:* | chord:¥*)

{ anything }*

foreign-attributes = attribute * - (p2pcf:*|local:*|chord:*)

{ text }*

foreign-nodes = (foreign-attributes | foreign-elenents)*

start = elenment p2pcf:overlay {
overl ay- el enent

}

overl ay-el ement & element configuration {

1+

attribute instance-nanme { xsd:string },
attribute expiration { xsd:dateTime }?
attribute sequence { xsd:long }?,
foreign-attributes*,

par anet er

overl ay-el enent &= el enent signature {

attribute algorithm{ signature-algorithmtype }?
xsd: base64Bi nary

}*
signature-algorithmtype | = "rsa-shal"
signature-algorithmtype |= xsd:string # signature al g extensions

paraneter &= el enent topol ogy-plugin { topol ogy-plugin-type }?

t opol ogy- plugln type | = xsd:string # topo plugin extensions
paraneter &= el ement max- nessage-si ze { xsd:unsignedlint }?
paraneter &= element initial-ttl { xsd:int }?

paraneter &= element root-cert { xsd:base64Binary }*
paraneter &= el ement required-kinds { kind-block* }?
paraneter &= elenent enroll nment-server { xsd:anyURl }*
paraneter &= elenent kind-signer { xsd:string }*

paraneter &= el ement bad-node { xsd:string }*

Jenni ngs, et

al .

Expi res Septenber 15, 2011 [Page 120]

Internet-Draft RELOAD Base March 2011

paraneter &= elenment no-ice { xsd:boolean }?

paraneter &= el ement shared-secret { xsd:string }?
paraneter &= el ement overlay-link-protocol { xsd:string }*
paraneter &= elenent clients-permtted { xsd:bool ean }?
paraneter &= elenment turn-density { xsd:int }?

paranmeter &= el ement node-id-length { xsd:int }?

paranmeter &= foreign-el ements*

paranmeter &=
el ement sel f-signed-permtted {
attribute digest { self-signed-digest-type },
xsd: bool ean

}?
sel f-si gned-di gest-type | = "shal"
sel f-signed-digest-type |= xsd:string # signature di gest extensions

paraneter &= el enment bootstrap-node {
attribute address { xsd:string },
attribute port { xsd:int }?
}*

paraneter &= elenent nulticast-bootstrap {
attribute address { xsd:string },
attribute port { xsd:int }?
}*

ki nd- bl ock = el ement ki nd-bl ock {
el ement kind {
(attribute nane { kind-nanes }
| attribute id { xsd:int }),
ki nd- par anet er
} &
el ement ki nd-signature {
attribute algorithm{ signature-algorithmtype }?
xsd: base64Bi nary
}?
}
ki nd- paraneter &= el ement max-count { xsd:int }
ki nd- paraneter &= el enment max-size { xsd:int }
ki nd- paraneter &= el enment max-node-nultiple { xsd:int }?

ki nd- paraneter &= el ement data-nodel { data-nodel -type }

dat a- nodel -type | = "SI NGLE"

dat a- nodel -type | = " ARRAY"

dat a- nodel -type | = " DI CTI ONARY"
|:

dat a- nodel -t ype xsd: string # data nodel extensions

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 121]

Internet-Draft RELOAD Base March 2011

10.

ki nd- paraneter &= el ement access-control { access-control-type }
access-control -type | = "USER- MATCH'

access-control -type | = " NODE- MATCH'

access-control -type | = " USER- NODE- MATCH"

access-control -type | = "NODE- MULTI PLE"

access-control -type | = xsd:string # access control extensions

ki nd- paranmeter &= foreign-el ements*

" TURN- SERVI CE"

" CERTI FI CATE_BY_NCDE"

" CERTI FI CATE_BY_USER"

xsd: string # kind extensions

ki nd- nanes
ki nd- nanes
ki nd- nanes
ki nd- nanes

Chord specific paraneters

t opol ogy- pl ugi n-type | = " CHORD- RELOAD"

paraneter &= el enment chord: chord-ping-interval { xsd:int }?
paraneter &= el enment chord: chord-update-interval { xsd:int }?
paraneter &= el ement chord: chord-reactive { xsd:boolean }?

2. Discovery Through Configuration Server

When a node first enrolls in a new overlay, it starts with a
di scovery process to find a configuration server

The node first determ nes the overlay nane. This value is provided
by the user or sone other out of band provisioning nmechanism The
out of band nechani sns nmay al so provide an optional URL for the
configuration server. |If a URL for the configuration server is not
provi ded, the node MJUST do a DNS SRV query using a Service nanme of
"p2psi p-enrol 1" and a protocol of TCP to find a configuration server
and formthe URL by appending a path of "/.well-known/p2psip-enroll”
to the overlay nanme. This uses the "well known URI" franmework
defined in [RFC5785]. For exanple, if the overlay nane was

exanpl e.com the URL woul d be
"https://exanpl e.com /. well-known/ p2psi p-enrol | "

Once an address and URL for the configuration server is determ ned,
the peer forns an HTTPS connection to that | P address. The
certificate MUST natch the overlay nane as described in [RFC2818].
Then the node MJST fetch a new copy of the configuration file. To do
this, the peer perforns a GET to the URL. The result of the HITP GET
is an XM. configuration file described above, which repl aces any
previously learned configuration file for this overlay.

For overlays that do not use a configuration server, nodes obtain the
configuration information needed to join the overlay through sone out

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 122]

Internet-Draft RELOAD Base March 2011

10.

of band approach such an XML configuration file sent over enail
3. Credentials

If the configuration docunent contains a enrollnent-server el enent,
credentials are required to join the Overlay Instance. A peer which
does not yet have credentials MJUST contact the enroll nent server to
acquire them

RELOAD defines its own trivial certificate request protocol. W
woul d have |iked to have used an existing protocol but were concerned
about the inplenmentation burden of even the sinplest of those
protocol s, such as [RFC5272] and [RFC5273]. Qur objective was to
have a protocol which could be easily inplenmented in a Wb server

whi ch the operator did not control (e.g., in a hosted service) and
was conpatible with the existing certificate handling tooling as used
with the Web certificate infrastructure. This neans accepting bare
PKCS#10 requests and returning a single bare X 509 certificate.

Al t hough the M ME types for these objects are defined, none of the
exi sting protocols support exactly this nodel

The certificate request protocol is perforned over HITPS. The
request is an HTTP POST with the followi ng properties:

o |If authentication is required, there is a URL paraneter of
"password" and "usernane" containing the user’s nanme and password
in the clear (hence the need for HITPS)

0 The body is of content type "application/pkcsl0", as defined in
[RFC2311] .

0 The Accept header contains the type "application/pkix-cert",
indicating the type that is expected in the response.

The enrol Il ment server MJST authenticate the request using the

provi ded user nane and password. |f the authentication succeeds and
the requested user nane is acceptable, the server generates and
returns a certificate. The SubjectAltNanme field in the certificate
contains the follow ng val ues:

0 One or nore Node-IDs which MJST be cryptographically random
[RFC4086] . Each MUST be chosen by the enrollnent server in such a
way that they are unpredictable to the requesting user. E.g., the
user MJST NOT be informed of potential (random) Node-1Ds prior to
aut henticating. Each is placed in the subjectAltName using the
uni f or MResourcel dentifier type and MJST contain RELOAD URI s as
described in Section 13.15 and MJST contain a Destination |ist
with a single entry of type "node_id".

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 123]

Internet-Draft RELOAD Base March 2011

0 Asingle nane this user is allowed to use in the overlay, using
type rfc822Nane.

The certificate is returned as type "application/pkix-cert" as
defined in [RFC2585], with an HTTP status code of 200 OK
Certificate processing errors should be treated as HTTP errors and
have appropriate HTTP status codes.

The client MJST check that the certificate returned was signed by one
of the certificates received in the "root-cert" list of the overlay
configuration data. The node then reads the certificate to find the
Node-1Ds it can use.

10.3.1. Self-CGenerated Credentials

If the "self-signed-permtted" elenent is present in the
configuration and set to "true", then a node MJST generate its own
self-signed certificate to join the overlay. The self-signed
certificate MAY contain any user nane of the users choice.

The Node-1D MJST be conputed by applying the digest specified in the
sel f-signed-permtted el enent to the DER representation of the user’s
public key (nore specifically the subjectPublicKeylnfo) and taking
the high order bits. Wen accepting a self-signed certificate, nodes
MUST check that the Node-I1D and public keys match. This prevents
Node-I D theft.

Once the node has constructed a self-signed certificate, it MAY join
the overlay. Before storing its certificate in the overlay

(Section 7) it SHOULD |l ook to see if the user nane is already taken
and if so choose another user name. Note that this only provides
protection agai nst accidental nanme collisions. Nanme theft is stil
possible. If protection against name theft is desired, then the
enrol | nent service must be used.

10.4. Searching for a Bootstrap Node

If no cached bootstrap nodes are available and the configuration file
has an nulticast-bootstrap el enent, then the node SHOULD send a Ping
request over UDP to the address and port found to each nulticast-
bootstrap el ement found in the configuration docunent. This MAY be a
mul ticast, broadcast, or anycast address. The Ping should use the

wi | dcard Node-1D as the destination Node-1D

The responder node that receives the Ping request SHOULD check that
the overlay nanme is correct and that the requester peer sending the
request has appropriate credentials for the overlay before respondi ng
to the Ping request even if the response is only an error

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 124]

Internet-Draft RELOAD Base March 2011

10.5. Contacting a Bootstrap Node

In order to join the overlay, the joining node MJST contact a node in
the overlay. Typically this neans contacting the bootstrap nodes,
since they are reachable by the |ocal peer or have public IP
addresses. If the joining node has cached a list of peers it has
previously been connected with in this overlay, as an optimzation it
MAY attenpt to use one or nore of them as bootstrap nodes before
falling back to the bootstrap nodes listed in the configuration file.

When contacting a bootstrap node, the joining node first forns the
DTLS or TLS connection to the bootstrap node and then sends an Attach
request over this connection with the destination Node-1D set to the
j oi ni ng node’ s Node- I D

When the requester node finally does receive a response from sone
respondi ng node, it can note the Node-ID in the response and use this
Node-I D to start sending requests to join the Overlay |Instance as
described in Section 5.4.

After a node has successfully joined the overlay network, it wll
have direct connections to several peers. Sonme MAY be added to the
cached bootstrap nodes list and used in future boots. Peers that are
not directly connected MJUST NOT be cached. The suggested nunber of
peers to cache is 10. Algorithns for determ ning which peers to
cache are beyond the scope of this specification

11. Message Fl ow Exanpl e

The follow ng abbreviation are used in the nessage flow diagranms: JP
= joining peer, AP = admitting peer, NP = next peer after the AP, NNP
= next next peer which is the peer after NP, PP = previous peer
before the AP, PPP = previous previous peer which is the peer before
the PP, BP = bootstrap peer

In the foll owi ng exanple, we assune that JP has formed a connection
to one of the bootstrap nodes. JP then sends an Attach through that
peer to a resource ID of itself (JP). 1t gets routed to the

adm tting peer (AP) because JP is not yet part of the overlay. Wen
AP responds, JP and AP use ICE to set up a connection and then set up
TLS. Once AP has connected to JP, AP sends to JP an Update to

popul ate its Routing Table. The followi ng exanple shows the Update
happeni ng after the TLS connection is forned but it could al so happen
before in which case the Update woul d often be routed through other
nodes.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 125]

responds,

Internet-Draft

I
I
|
I
I
I
I
I
|
I
I
I
I
I
|
I
I
I
| Att achAns
I

|

I

I

I
I
|
| Updat e
I
I
I
I

Jenni ngs, et al.

I
| Attach Dest=JP
I e i >

RELCAD Base

Expi res Sept enber

15, 2011

The JP then fornms connections to the appropriate nei ghbors,
NP, by sending an Attach which gets routed via other nodes.
JP and NP use ICE and TLS to set up a connecti on.

March 2011

such as
When NP

[Page 126]

| nt er net -

Draft

At t achAns

RELCAD Base

PP AP

NP

Attach NP|

JP al so needs to populate its finger table (for Chord).

Attach to a variety of

| ocations around the overl ay.

It

March 2011

i ssues an

The di agram

bel ow shows it sending an Attach hal fway around the Chord ring to the
JP + 27127.

Jenni ngs,

et al.

Expi res Sept enber

15, 2011

[Page 127]

Internet-Draft RELOAD Base March 2011

JP NP XX TP

I

|

I I I
| Attach JP+2<<126 |
[EEREEEEE > |
I

I

I
I
I
I
I
|
| Attach JP+2<<126 |
I
I
I

| Attach JP+2<<126

|
I
I
| <-------- I
I
I
|

Once JP has a reasonabl e set of connections, it is ready to take its
place in the DHT. It does this by sending a Join to AP. AP does a
series of Store requests to JP to store the data that JP will be
responsible for. AP then sends JP an Update explicitly |abeling JP
as its predecessor. At this point, JPis part of the ring and
responsible for a section of the overlay. AP can now forget any data
which is assigned to JP and not AP.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 128]

Internet-Draft RELOAD Base March 2011

JP PPP PP Al NP NNP BP
I I I
Joi nReq	
I >	
I I I	
I I I	
Joi nAns	
o e m e e e e e e e e e a o	
I I I	
I I I	
StoreReq Data A	
I	
I I	
St oreAns	

I I

I

St or eAns | |
[---mmmm e - >

| | |

I I I

| Updat eReq| |
S

I I I

I I I

| Updat eAns| |
[=-mmmmr >

In Chord, JP' s neighbor table needs to contain its own predecessors.
It couldn’t connect to them previously because it did not yet know
their addresses. However, now that it has received an Update from
AP, it has AP's predecessors, which are also its own, so it sends
Attaches to them Below it is shown connecting to AP's cl osest

pr edecessor, PP.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 129]

March 2011

RELCAD Base

Internet-Draft

>

eeeee 2>
I
I
I

I
|
I
I
I
T
I
I
I

T

Updat eReq
Updat eAns
Updat eReq
Updat eAns
Updat eReq
Updat eAns

[Page 130]

2011

15,

Expi res Sept enber

et al.

Jenni ngs,

Internet-Draft RELOAD Base March 2011

Finally, now that JP has a copy of all the data and is ready to route
messages and receive requests, it sends Updates to everyone in its
Routing Table to tell themit is ready to go. Below, it is shown
sendi ng such an update to TP.

JP NP XX TP
I I I I
I I I I
I I I I
| Updat e | | |
[=--mmmm e >|

I I I

I I I

Updat eAns| | |
I

I

I

I

I

12. Security Considerations
12.1. Overview

RELOAD provi des a generic storage service, albeit one designed to be
useful for P2PSIP. In this section we discuss security issues that
are likely to be relevant to any usage of RELOAD. Mre background

i nformati on can be found in [RFC5765].

In any Overlay Instance, any given user depends on a nunber of peers
with which they have no well-defined rel ationship except that they
are fellow nenbers of the Overlay Instance. |In practice, these other
nodes rmay be friendly, lazy, curious, or outright nmalicious. No
security system can provide conplete protection in an environnent
where nost nodes are malicious. The goal of security in RELOAD is to
provi de strong security guarantees of some properties even in the
face of a large nunber of malicious nodes and to allow the overlay to
function correctly in the face of a nodest nunber of nalicious nodes.

P2PSI P depl oynents require the ability to authenticate both peers and
resources (users) without the active presence of a trusted entity in
the system We describe two nechanisns. The first mechanismis
based on public key certificates and is suitable for genera

depl oynents. The second is an adm ssion control nechani sm based on
an overl ay-wi de shared synmetric key.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 131]

Internet-Draft RELOAD Base March 2011

12.

12.

2. Attacks on P2P Overl ays

The two basic functions provided by overlay nodes are storage and
routing: sone node is responsible for storing a peer’s data and for
allowing a third peer to fetch this stored data. her nodes are
responsi ble for routing messages to and fromthe storing nodes. Each
of these issues is covered in the follow ng sections.

P2P overlays are subject to attacks by subversive nodes that may
attenpt to disrupt routing, corrupt or renbve user registrations, or
eavesdrop on signaling. The certificate-based security algorithns we
describe in this specification are intended to protect overlay
routing and user registration information in RELOAD nmessages.

To protect the signaling fromattackers pretending to be valid peers
(or peers other than thenselves), the first requirenent is to ensure
that all messages are received fromauthorized nenbers of the
overlay. For this reason, RELOAD transports all nessages over a
secure channel (TLS and DTLS are defined in this docunent) which
provi des nmessage integrity and authentication of the directly
communi cating peer. |In addition, nessages and data are digitally
signed with the sender’s private key, providing end-to-end security
for communi cati ons.

3. Certificate-based Security

This specification stores users’ registrations and possibly other
data in an overlay network. This requires a solution to securing
this data as well as securing, as well as possible, the routing in
the overlay. Both types of security are based on requiring that
every entity in the system (whether user or peer) authenticate
cryptographically using an asynmetric key pair tied to a certificate.

When a user enrolls in the Overlay Instance, they request or are
assigned a uni que nanme, such as "alice@ht.exanple.net". These nanes
are unique and are neant to be chosen and used by humans nuch like a
SI P Address of Record (AOR) or an enmil address. The user is also
assigned one or nore Node-1Ds by the central enrollnent authority.
Both the name and the Node-1D are placed in the certificate, along
with the user’s public key.

Each certificate enables an entity to act in two sorts of roles:

0 As a user, storing data at specific Resource-IDs in the Overlay
I nstance corresponding to the user nane.

0 As a overlay peer with the Node-1D(s) listed in the certificate.

Note that since only users of this Overlay Instance need to validate

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 132]

Internet-Draft RELOAD Base March 2011

a certificate, this usage does not require a global PKI. |nstead,
certificates are signed by a central enrollnent authority which acts
as the certificate authority for the Overlay Instance. This
authority signs each peer’'s certificate. Because each peer possesses
the CA's certificate (which they receive on enrollnent) they can
verify the certificates of the other entities in the overlay w thout
further communi cation. Because the certificates contain the user/
peer’s public key, communications fromthe user/peer can be verified
in turn.

If self-signed certificates are used, then the security provided is
significantly decreased, since attackers can nount Sybil attacks. In
addition, attackers cannot trust the user names in certificates
(though they can trust the Node-1Ds because they are
cryptographically verifiable). This scheme may be appropriate for
some smal |l depl oynents, such as a snall office or an ad hoc overl ay
set up anong participants in a neeting where all hosts on the network
are trusted. Sone additional security can be provided by using the
shared secret admnission control scheme as well.

Because all stored data is signed by the owner of the data the
storing peer can verify that the storer is authorized to performa
store at that Resource-1D and al so allow any consuner of the data to
verify the provenance and integrity of the data when it retrieves it.

Note that RELOAD does not itself provide a revocation/status
mechani sm (t hough certificates may of course include OCSP responder
information). Thus, certificate |ifetinmes should be chosen to

bal ance the conproni se wi ndow versus the cost of certificate renewal .
Because RELOAD is already designed to operate in the face of sone
fraction of malicious peers, this formof conpronise is not fatal

Al'l inplementations MIST inplement certificate-based security.
12. 4. Shared-Secret Security

RELCAD al so supports a shared secret admi ssion control schene that
relies on a single key that is shared anong all nmenbers of the
overlay. It is appropriate for small groups that wish to forma
private network w thout conplexity. |In shared secret node, all the
peers share a single symmetric key which is used to key TLS-PSK

[RFC4279] or TLS-SRP [RFC5054] nopde. A peer which does not know the
key cannot form TLS connections with any other peer and therefore
cannot join the overlay.

One natural approach to a shared-secret schene is to use a user-

entered password as the key. The difficulty with this is that in
TLS- PSK node, such keys are very susceptible to dictionary attacks.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 133]

Internet-Draft RELOAD Base March 2011

12.

12.

| f passwords are used as the source of shared-keys, then TLS-SRP is a
superior choice because it is not subject to dictionary attacks.

5. Storage Security

When certificate-based security is used in RELOAD, any given
Resource-1 D) Kind-1D pair is bound to sone snmall set of certificates
In order to wite data, the witer must prove possession of the
private key for one of those certificates. Myreover, all data is
stored, signed with the sane private key that was used to authorize
the storage. This set of rules nakes questions of authorization and
data integrity - which have historically been thorny for overlays -
relatively sinple.

5.1. Authorization

When a client wants to store sone value, it first digitally signs the
value with its own private key. It then sends a Store request that
contains both the value and the signature towards the storing peer
(which is defined by the Resource Nane construction algorithmfor
that particular kind of value).

When the storing peer receives the request, it nust determnm ne whether
the storing client is authorized to store at this Resource-1D/ Kind-1D
pair. Deternmining this requires conparing the user’s identity to the
requi renents of the access control nodel (see Section 6.3). |If it
satisfies those requirements the user is authorized to wite, pending
quot a checks as described in the next section

For exanple, consider the certificate with the follow ng properties:

User nane: alice@lht. exanpl e.com
Node- | D 013456789abcdef
Seri al : 1234

If Alice wishes to Store a value of the "SIP Location" kind, the
Resource Name will be the SIP ACR "sip:alice@ht. exanple.com'. The
Resource-1D will be determi ned by hashing the Resource Nane. Because
SI P Location uses the USER- NODE- MATCH policy, it first verifies that
the user nane in the certificate hashes to the requested Resource-1D.
It then verifies that the Node-Id in the certificate matches the
dictionary key being used for the store. |If both of these checks
succeed, the Store is authorized. Note that because the access
control nodel is different for different kinds, the exact set of
checks will vary.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 134]

Internet-Draft RELOAD Base March 2011

12.5.2. Distributed Quota

Being a peer in an Overlay Instance carries with it the
responsibility to store data for a given region of the Overlay

I nstance. However, allowing clients to store unlinited anounts of
data woul d create unacceptabl e burdens on peers and woul d al so enabl e
trivial denial of service attacks. RELQOAD addresses this issue by
requiring configurations to define maxi mum sizes for each kind of
stored data. Attenpts to store values exceeding this size MJIST be
rejected (if peers are inconsistent about this, then strange
artifacts will happen when the zone of responsibility shifts and a

di fferent peer becones responsible for overlarge data). Because each
Resource-1D/Kind-1D pair is bound to a snmall set of certificates
these size restrictions also create a distributed quota nmechani sm
with the quotas adm nistered by the central configuration server.

Allowing different kinds of data to have different size restrictions
al l ows new usages the flexibility to define linmts that fit their
needs without requiring all usages to have expansive linmts.

12. 5. 3. Correct ness

Because each stored value is signed, it is trivial for any retrieving
peer to verify the integrity of the stored value. Sone nore care
needs to be taken to prevent version rollback attacks. Rollback
attacks on storage are prevented by the use of store times and
lifetime values in each store. A lifetinme represents the latest tine
at which the data is valid and thus Iinmts (though does not

compl etely prevent) the ability of the storing node to performa

roll back attack on retrievers. |n order to prevent a rollback attack
at the tine of the Store request, we require that storage tinmes be
monot onically increasing. Storing peers MJIST reject Store requests
with storage tinmes smaller than or equal to those they are currently
storing. In addition, a fetching node which receives a data val ue
with a storage tinme older than the result of the previous fetch knows
a roll back has occurred.

12. 5. 4. Resi dual Attacks

The mechani sns descri bed here provides a high degree of security, but
sonme attacks remmin possible. Most sinply, it is possible for
storing nodes to refuse to store a value (i.e., reject any request).
In addition, a storing node can deny know edge of values which it has
previously accepted. To sonme extent these attacks can be aneliorated
by attenpting to store to/retrieve fromreplicas, but a retrieving
client does not know whether it should try this or not, since there
is a cost to doing so.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 135]

Internet-Draft RELOAD Base March 2011

The certificate-based authentication schene prevents a single peer
frombeing able to forge data owned by other peers. Furthernore,

al t hough a subversive peer can refuse to return data resources for
which it is responsible, it cannot return forged data because it
cannot provide authentication for such registrations. Therefore
paral | el searches for redundant regi strations can nitigate nost of
the effects of a conpromised peer. The ultimate reliability of such
an overlay is a statistical question based on the replication factor
and t he percentage of conprom sed peers.

In addition, when a kind is nmultivalued (e.g., an array data nodel),
the storing node can return only some subset of the values, thus
biasing its responses. This can be countered by using single val ues
rat her than sets, but that makes coordinati on between nultiple
storing agents much nore difficult. This is a trade off that nust be
made when desi gni ng any usage

12.6. Routing Security

Because the storage security systemguarantees (within limts) the
integrity of the stored data, routing security focuses on stopping
the attacker fromperformng a DOS attack that misroutes requests in
the overlay. There are a few obvi ous observations to nake about

this. First, it is easy to ensure that an attacker is at |east a
valid peer in the Overlay Instance. Second, this is a DOS attack
only. Third, if a large percentage of the peers on the Overlay
Instance are controlled by the attacker, it is probably inpossible to
perfectly secure against this.

12.6.1. Background

In general, attacks on DHT routing are nounted by the attacker
arranging to route traffic through one or two nodes it controls. In
the Eclipse attack [Eclipse] the attacker tanpers with nessages to
and fromnodes for which it is on-path with respect to a given victim
node. This allows it to pretend to be all the nodes that are
reachabl e through it. 1In the Sybil attack [Sybil], the attacker
registers a |l arge nunber of nodes and is therefore able to capture a

| arge anount of the traffic through the DHT

Both the Eclipse and Sybil attacks require the attacker to be able to
exercise control over her Node-1Ds. The Sybil attack requires the
creation of a large nunber of peers. The Eclipse attack requires
that the attacker be able to inpersonate specific peers. In both
cases, these attacks are limted by the use of centralized,
certificate-based adnission control

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 136]

Internet-Draft RELOAD Base March 2011

12.6.2. Adm ssions Contro

Adm ssion to a RELOAD Overlay Instance is controlled by requiring
that each peer have a certificate containing its Node-1d. The
requirenent to have a certificate is enforced by using certificate-
based mutual authentication on each connection. (Note: the
followi ng only applies when self-signed certificates are not used.)
Whenever a peer connects to another peer, each side automatically
checks that the other has a suitable certificate. These Node-lds are
random y assigned by the central enrollnment server. This has two
benefits:

o It allows the enrollment server to linmt the nunber of Node-IDs
i ssued to any individual user.
o It prevents the attacker from choosing specific Node-Ids.

The first property allows protection against Sybil attacks (provided
the enroll nment server uses strict rate linmting policies). The
second property deters but does not conpletely prevent Eclipse
attacks. Because an Eclipse attacker nust inpersonate peers on the
other side of the attacker, he nmust have a certificate for suitable
Node-I1ds, which requires himto repeatedly query the enroll nent
server for new certificates, which will match only by chance. From
the attacker’s perspective, the difficulty is that if he only has a
smal | nunber of certificates, the region of the Overlay Instance he
is inpersonating appears to be very sparsely popul ated by compari son
to the victims |ocal region

12.6.3. Peer ldentification and Authentication

In general, whenever a peer engages in overlay activity that m ght
affect the routing table it mnmust establish its identity. This
happens in two ways. First, whenever a peer establishes a direct
connection to another peer it authenticates via certificate-based

mut ual authentication. Al nessages between peers are sent over this
protected channel and therefore the peers can verify the data origin
of the last hop peer for requests and responses w thout further

crypt ogr aphy.

In some situations, however, it is desirable to be able to establish
the identity of a peer with whomone is not directly connected. The
nmost natural case is when a peer Updates its state. At this point,
ot her peers may need to update their view of the overlay structure,
but they need to verify that the Update nessage came fromthe actua
peer rather than froman attacker. To prevent this, all overlay
routi ng messages are signed by the peer that generated them

Replay is typically prevented for nessages that inpact the topol ogy

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 137]

Internet-Draft RELOAD Base March 2011

of the overlay by having the information come directly, or be
verified by, the nodes that clained to have generated the update.
Data storage replay detection is done by signing time of the node
that generated the signature on the store request thus providing a
time based replay protection but the tinme synchronization is only
needed between peers that can wite to the sanme |ocation

12.6.4. Protecting the Signaling

The goal here is to stop an attacker from knowi ng who is signaling
what to whom An attacker is unlikely to be able to observe the
activities of a specific individual given the randonization of |Ds
and routing based on the present peers discussed above. Furthernore,
because messages can be routed using only the header information, the
actual body of the RELOAD nessage can be encrypted during
transm ssi on.

There are two lines of defense here. The first is the use of TLS or
DTLS for each conmmuni cations |ink between peers. This provides
protection agai nst attackers who are not nenbers of the overlay. The
second line of defense is to digitally sign each nmessage. This
prevents adversarial peers fromnodifying nmessages in flight, even if
they are on the routing path.

12.6.5. Residual Attacks

The routing security nmechanisns in RELOAD are designed to contain
rather than elimnate attacks on routing. It is still possible for
an attacker to nmount a variety of attacks. |In particular, if an
attacker is able to take up a position on the overlay routing between
A and B it can nmake it appear as if B does not exist or is

di sconnected. It can also advertise false network nmetrics in an
attenpt to reroute traffic. However, these are primarily DCS
at t acks.

The certificate-based security schenme secures the nanespace, but if
an individual peer is conpronised or if an attacker obtains a
certificate fromthe CA, then a nunber of subversive peers can stil
appear in the overlay. While these peers cannot falsify responses to
resource queries, they can respond with error nessages, effecting a
DoS attack on the resource registration. They can al so subvert
routing to other conpronised peers. To defend agai nst such attacks,
a resource search nust still consist of parallel searches for
replicated registrations.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 138]

Internet-Draft RELOAD Base March 2011

13. | ANA Consi derations

This section contains the new code points registered by this
docunent. [NOTE TO | ANA/ RFC-EDI TOR: Pl ease replace RFC-AAAA with
the RFC nunber for this specification in the following list.]

13.1. Well-Known URI Registration

I ANA will make the following "Well Known URI" registration as
described in [RFC5785]:

[[Note to RFC Editor - this paragraph can be renoved before
publication.]] A review request was sent to
wel | known-uri-review@etf.org on October 12, 2010.

URI suffix:	p2psi p-enroll
Change controller:	1ETF <iesg@etf.org>
Specification docunment(s):	[RFC AAAA]
Related information:	None

13.2. Port Registrations

[[Note to RFC Editor - this paragraph can be renoved before
publication.]] 1ANA has already allocated a TCP port for the main
peer to peer protocol. This port has the name p2p-sip and the port
nunber of 6084. | ANA needs to update this registration to be defined
for UDP as well as TCP.

I ANA will rmake the follow ng port registration:
Regi strati on Techni cal

Cont act
Regi strati on Omner

Cul I en Jennings <fluffy@isco.con> |

| ETF <i esg@etf.org>

I I

I I I
I I I
| Transport Protocol | TCP & UDP [
| Port Number | 6084 |
| Service Nane | p2psi p-enroll |
| Description | Peer to Peer Infrastructure [
| | Enroll nent |
| Reference | [RFC- AAAA] [
o oo e e e e e e e e e e e eaao o +

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 139]

Internet-Draft RELOAD Base March 2011

13.3. Overlay Al gorithm Types

| ANA SHALL create a "RELOAD Overlay Al gorithm Type" Registry.
Entries in this registry are strings denoting the nanes of overlay
algorithnms. The registration policy for this registry is RFC 5226
| ETF Review. The initial contents of this registry are:

B S +
| Al gorithm Nane | RFC |
S S +
| CHORD- RELOAD | RFC- AAAA |
- Fomm e +

13.4. Access Control Policies

| ANA SHALL create a "RELOAD Access Control Policy" Registry. Entries
inthis registry are strings denoting access control policies, as
described in Section 6.3. New entries in this registry SHALL be

regi stered via RFC 5226 Standards Action. The initial contents of
this registry are:

S Fom e o - +
| Access Policy | RFC |
o e e e oo - [RS +
USER- MATCH RFC- AAAA |
NODE- MATCH RFC- AAAA |

| |
| USER- NODE- MATCH | RFC- AAAA |
| NODE-MULTIPLE |

13.5. Application-1D

| ANA SHALL create a "RELOAD Application-1D" Registry. Entries in
this registry are 16-bit integers denoting application kinds. Code
points in the range 0x0001 to Ox7fff SHALL be registered via RFC 5226
St andards Action. Code points in the range 0x8000 to Oxf000 SHALL be
regi stered via RFC 5226 Expert Review. Code points in the range
0Oxf001 to Oxfffe are reserved for private use. The initial contents
of this registry are:

S o e e oo o m e e e e e e e eeee oo n +
| Application | Application-ID | Speci fication |
o m e o e oo oo e e e e e e e ao oo - +
I NVALI D [0	RFC- AAAA	
SIP	5060	Reserved for use by SIP Usage
SIP [5061	Reserved for use by SIP Usage	
Reserved	Oxffff	RFC- AAAA
S o a oo oo e e e e e e eeee oo - +

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 140]

Internet-Draft RELOAD Base March 2011

13.

13.

13.

6. Data Kind-ID

| ANA SHALL create a "RELOAD Data Kind-1D" Registry. Entries in this
registry are 32-bit integers denoting data kinds, as described in
Section 4.2. Code points in the range 0x00000001 to Ox7fffffff SHALL
be registered via RFC 5226 Standards Action. Code points in the
range 0x8000000 to Oxf 0000000 SHALL be registered via RFC 5226 Expert
Revi ew. Code points in the range 0Oxf0000001 to Oxfffffffe are
reserved for private use via the kind description mechani sm descri bed
in Section 10. The initial contents of this registry are:

T I Fommmmeas +
| Kind [Ki nd-1D | RFC |
Fom e e e e e e e e oo s Fomm e e e o - +
I NVALID [0	RFC AAAA	
TURN_SERVI CE [2	RFG AAAA	
CERTI FI CATE_BY_NCDE	3	RFC AAAA
CERTI FI CATE_BY_ USER	16	RFC-AAAA
Reserved	Ox7fffffff	RFC AAAA
Reserved	Oxfffffffe	RFC AAAA
e e e e e e e e o Fom e e o Fom e - +

7. Data Mbdel

| ANA SHALL create a "RELOAD Data Mddel" Registry. Entries in this
registry denoting data nodels, as described in Section 6.2. Code
points in this registry SHALL be registered via RFC 5226 Standards
Action. The initial contents of this registry are:

TS [RS +
| Data Model | RFC |
s Fomm e e e o - +
INVALID	RFC AAAA
SINGLE	RFC- AAAA
ARRAY	RFC- AAAA
DI CTIONARY	RFC- AAAA
RESERVED	RFC- AAAA
s Fomm e e e o - +

8. Message Codes

| ANA SHALL create a "RELOAD Message Code" Registry. Entries in this
registry are 16-bit integers denoting nethod codes as described in
Section 5.3.3. These codes SHALL be registered via RFC 5226
Standards Action. The initial contents of this registry are:

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 141]

Internet-Draft

invalid
probe_req
pr obe_ans
attach_req
attach_ans
unused
unused

RELCAD Base

store_req
store_ans
fetch_req
fetch_ans
unused (was renove_req)
unused (was renopve_ans)
find req
find ans
join_req
j 0i n_ans
| eave_req

update_req
updat e_ans

route_query_req
route_query_ans

pi ng_req
pi ng_ans
stat_req
stat_ans
unused (was attachlite_req)
unused (was attachlite_ans)

app_attach_req
app_attach_ans

unused (was app_attachlite_req)
unused (was app_attachlite_ans)
config_update_req

confi g_update_ans

reserved
error

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| leave_ans
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

13. 9.

| ANA SHALL create a "RELOAD Error Code"
registry are 16-bit

Error

Codes

this registry are:

Jenni ngs,

et al. Expi res

Sept enber

0x8000. . Oxfffe
Oxffff

Regi stry.

i ntegers denoting error codes.
be defined via RFC 5226 Standards Action

15, 2011

March 2011

Entries in this
New entries SHALL

The initial

contents of

[Page 142]

Internet-Draft

13.

13.

Jenni ngs,

invalid
Unused

10.

| ANA shal |

defined via RFC 5226 Standards Acti on.

RELCAD Base

I
I
Er r or _For bi dden [
Error _Not _Found |
Error _Request _Ti neout |
Error_Generation_Counter_Too_ Low |
Error _Inconpatible with_Overlay [
Error _Unsupported_ Forwardi ng_Option |
Error_Data_Too_Large |
Error_Data_Too_O d [
Error TTL_ Exceeded |
Error_Message_Too_Large |
Error _Unknown_Ki nd [
Error _Unknown_Ext ensi on |
Error _Response_Too_Large [
Error_Config_Too_Ad [
Error_Config_Too_New |
Error_In_Progress |
reserved [

Overlay Link Types

create a "RELCAD Overlay Link."

©CoOo~NOOUIMWNEFLO

10
11
12
13
14
15
16
17

0x8000. . Oxfffe

March 2011

New entries SHALL be

initially populated with the follow ng val ues:

11.

| ANA shal |

this registry SHALL be defined via RFC 5226 Standards Acti on.

T e I
| Protocol | Code |
e m e e e e e e oo - Homm - - e e e o
| reserved [0 |
| DTLS- UDP- SR | 1]
DTLS- UDP- SR-NO-	CE	3
TLS-TCP-FH NO-ICE	4	
reserved	255	
e m e e e e e e oo - Homm - - e e e o

Overlay Link Protocols

create an "Overlay Link Protocol

Regi stry".

This registry SHALL be

Entries in
Thi s

registry SHALL be initially populated with the foll owi ng val ue:

"TLS".

et al.

Expi res Sept enber

15, 2011

[Page 143]

Internet-Draft RELOAD Base March 2011

13.12. Forwardi ng Options

| ANA shall create a "Forwarding Option Registry”. Entries in this
registry between 1 and 127 SHALL be defined via RFC 5226 Standards
Action. Entries in this registry between 128 and 254 SHALL be
defined via RFC 5226 Specification Required. This registry SHALL be
initially populated with the foll owi ng val ues:

B Homm - - e e e o +
| Forwarding Option | Code | Specification |
e e e e o n Homm e o e oo +
| invalid [0 | RFC- AAAA |
| reserved | 255 | RFC- AAAA |
) Fomm - - - B +

13.13. Probe Information Types

| ANA shall create a "RELOAD Probe Information Type Registry".
Entries in this registry SHALL be defined via RFC 5226 Standards
Action. This registry SHALL be initially populated with the
foll owi ng val ues:

o e e e e o - Homm e o e oo +
| Probe Option | Code | Specification |
o e e e e oo - [S, T +
invalid	0	RFC- AAAA
responsible_set	1	RFC- AAAA
num_resources [2	RFC- AAAA	
uptinme	3	RFC- AAAA
reserved	255	RFC- AAAA
o e e e e oo - [S, T +

13.14. Message Extensions

| ANA shall create a "RELOAD Extensions Registry". Entries in this
registry SHALL be defined via RFC 5226 Specification Required. This
registry SHALL be initially populated with the foll owi ng val ues:

e e e e e oo - Fom e e e - - e e e o +
| Extensions Nane | Code | Specification |
o e e e e o - Fom e e e oo o e oo +
| invalid [0 | RFC- AAAA |
| reserved | OXFFFF | RFC- AAAA |
) Fomm e - - B +

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 144]

Internet-Draft RELOAD Base March 2011

13.15. reload URI Schene

Thi s section describes the schene for a reload URI, which can be used
to refer to either:

o A peer.
0 A resource inside a peer

The reload URI is defined using a subset of the URI schema specified
in Appendi x A of RFC 3986 [RFC3986] and the associated URI GQuidelines
[RFC4395] per the foll owing ABNF synt ax:

RELOAD- URI = "reload://" destination "@ overlay "/"
[specifier]

destination = 1 * HEXDI G
overlay = reg-nane
specifier = 1*HEXDI G

The definitions of these productions are as foll ows:
destinati on: a hex-encoded Destination List object (i.e., multiple

concat enat ed Destination objects with no length prefix prior to
the object as a whole.)

overl ay: the nane of the overl ay.
specifier : a hex-encoded StoredDataSpecifier indicating the data
el ement .

If no specifier is present then this URl addresses the peer which can
be reached via the indicated destination |list at the indicated
overlay nanme. |If a specifier is present, then the URl addresses the
dat a val ue.

13.15.1. URl Registration
[[Note to RFC Editor - please renove this paragraph before
publication.]] Review request was sent to uri-review@etf.org on Cct
7, 2010.

The follow ng sumrmari zes the informati on necessary to register the
rel oad URI.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 145]

Internet-Draft RELOAD Base March 2011

URI Schene Nanme: reload

St at us: per manent

URI Schenme Syntax: see Section 13.15 of RFC AAAA

URI Schene Semantics: The reload URI is intended to be used as a
reference to a RELOAD peer or resource.

Encodi ng Consi derations: The reload URI is not intended to be human-
readable text, so it is encoded entirely in US-ASCI|.

Applications/protocols that use this URI schene: The RELQAD pr ot ocol
described i n RFC- AAAA

Interoperability considerations: See RFC AAAA

Security considerations: See RFC AAAA

Contact: Cullen Jennings <fluffy@isco.cone

Aut hor/ Change controller: |ESG

Ref erences: RFC AAAA

14. Acknow edgnents

This specification is a nerge of the "REsource LCcation And Di scovery
(RELQAD) " draft by David A. Bryan, Marcia Zangrilli and Bruce B.
Lowekanp, the "Address Settlenment by Peer to Peer"” draft by Cullen
Jenni ngs, Jonat han Rosenberg, and Eric Rescorla, the "Security
Extensi ons for RELOAD' draft by Bruce B. Lowekanp and Janes Deveri ck,
the "A Chord-based DHT for Resource Lookup in P2PSIP" by Mrcia
Zangrilli and David A. Bryan, and the Peer-to-Peer Protocol (P2PP)
draft by Sal man A. Baset, Henning Schul zri nne, and Marcin

Mat uszewski . Thanks to the authors of RFC 5389 for text included
fromthat. Vidya Narayanan provided many comments and i nprovenents.

The ideas and text for the Chord specific extension data to the Leave
mechani sms was provided by J. Maenpaa, G Camarillo, and J.
Haut akor pi .

Thanks to the many people who contributed including Ted Hardi e,

M chael Chen, Dan York, Das Saumitra, Lyndsay Canpbell, Brian Rosen,
Davi d Bryan, Dave Craig, and Julian Cain. Extensive working |ast
call comrents were provided by: Jouni Menpaa, Roni Even, Ari
Keranen, John Buford, M chael x Chen, Frederic-Philippe Met, and David
Bryan. Special thanks to Marc Petit-Huguenin who provied an amazi ng
amount to detail ed review

15. References
15. 1. Nor mati ve Ref erences

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Levels", BCP 14, RFC 2119, March 1997.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 146]

Internet-Draft RELOAD Base March 2011

[RFC2585] Housley, R and P. Hoffman, "Internet X 509 Public Key
Infrastructure Operational Protocols: FTP and HTTP",
RFC 2585, May 1999.

[RFC2818] Rescorla, E., "HITP Over TLS", RFC 2818, May 2000.

[RFC2988] Paxson, V. and M Al lman, "Conputing TCP's Retransni ssion
Timer", RFC 2988, Novenber 2000.

[RFC3174] Eastlake, D. and P. Jones, "US Secure Hash Algorithm1
(SHA1)", RFC 3174, Septenber 2001.

[RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
St andards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, February 2003.

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005.

[RFC4279] FEronen, P. and H Tschofenig, "Pre-Shared Key Ci phersuites
for Transport Layer Security (TLS)", RFC 4279,
Decenber 2005.

[RFCA347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
Security", RFC 4347, April 2006.

[RFC4395] Hansen, T., Hardie, T., and L. Masinter, "CQuidelines and
Regi stration Procedures for New URI Schenes", BCP 35,
RFC 4395, February 2006.

[RFC4634] Eastlake, D. and T. Hansen, "US Secure Hash Al gorithns
(SHA and HVAC-SHA)", RFC 4634, July 2006.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, Cctober 2006.

[RFC5245] Rosenberg, J., "Interactive Connectivity Establishnent
(ICE): A Protocol for Network Address Transl ator (NAT)
Traversal for O fer/Answer Protocols", RFC 5245,
April 2010.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC5272] Schaad, J. and M Mers, "Certificate Managenent over CMS
(MO ", RFC 5272, June 2008.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 147]

Internet-Draft RELOAD Base March 2011

15.

[RFC5273] Schaad, J. and M Mers, "Certificate Managenent over CMS
(CVO): Transport Protocols", RFC 5273, June 2008.

[RFC5348] Floyd, S., Handley, M, Padhye, J., and J. Wdner, "TCP
Friendly Rate Control (TFRC): Protocol Specification",
RFC 5348, Septenber 2008.

[RFC5389] Rosenberg, J., Mahy, R, Matthews, P., and D. W ng,
"Session Traversal Utilities for NAT (STUN", RFC 5389,
Cct ober 2008.

[RFC5766] Mahy, R, Matthews, P., and J. Rosenberg, "Traversal Using
Rel ays around NAT (TURN): Relay Extensions to Session
Traversal Utilities for NAT (STUN)", RFC 5766, April 2010.

[RFC5952] Kawanura, S. and M Kawashima, "A Recommendation for |Pv6
Address Text Representation", RFC 5952, August 2010.

2. Informative References

[Chor d] Stoica, |., Mrris, R, Liben-Nowell, D., Karger, D.,
Kaashoek, M, Dabek, F., and H Bal akrishnan, "Chord: A
Scal abl e Peer-to-peer Lookup Protocol for Internet
Applications", | EEE/ ACM Transacti ons on Networ ki ng Vol une
11, Issue 1, 17-32, Feb 2003.

[Eclipse] Singh, A, Ngan, T., Druschel, T., and D. Wll ach,
"Ecli pse Attacks on Overlay Networks: Threats and
Def enses", | NFOCOM 2006, April 2006.

[1-D. baset-tsvwg-tcp-over-udp]
Baset, S. and H. Schul zri nne, "TCP-over-UDP",
draft-baset-tsvwg-tcp-over-udp-01 (work in progress),
June 2009.

[I-D.ietf-hip-bone]
Camarillo, G, N kander, P., Hautakorpi, J., Keranen, A,
and A. Johnston, "H P BONE: Host ldentity Protocol (H P)
Based Overl ay Networking Environment"”,
draft-ietf-hip-bone-07 (work in progress), June 2010.

[I1-D.ietf-hip-rel oad-instance]
Keranen, A., Camarillo, G, and J. Maenpaa, "Host ldentity
Prot ocol - Based Overlay Networking Environment (H P BONE)
I nstance Specification for REsource LCcation And Di scovery
(RELOAD) ", draft-ietf-hip-reload-instance-03 (work in
progress), January 2011.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 148]

Internet-Draft RELOAD Base March 2011

[I-D.ietf-nmusic-ice-tcp]
Rosenberg, J., Keranen, A, Lowekanp, B., and A Roach,
"TCP Candidates with Interactive Connectivity
Establi shnent (ICE)", draft-ietf-music-ice-tcp-12 (work
in progress), February 2011.

[1-D.ietf-p2psip-concepts]
Bryan, D., Matthews, P., Shim E, WIlis, D., and S.
Dawki ns, "Concepts and Termi nol ogy for Peer to Peer SIP",
draft-ietf-p2psip-concepts-03 (work in progress),
Cct ober 2010.

[I-D.ietf-p2psip-sip]
Jenni ngs, C., Lowekanp, B., Rescorla, E., Baset, S., and
H. Schul zrinne, "A SIP Usage for RELQAD',
draft-ietf-p2psip-sip-05 (work in progress), July 2010.

[1-D.jiang-p2psip-rel ay]
Jiang, X., Zong, N., Even, R, and Y. Zhang, "An extension
to RELOAD to support Direct Response and Rel ay Peer
routing”, draft-jiang-p2psip-relay-04 (work in progress),
April 2010.

[I-D. maenpaa- p2psi p-sel f-tuni ng]
Maenpaa, J., Camarillo, G, and J. Hautakorpi, "A Self-
tuning Distributed Hash Table (DHT) for REsource LCcation
And Di scovery (RELQAD)",
dr af t - maenpaa- p2psi p-sel f-tuni ng-01 (work in progress),
Cct ober 2009.

[I-D. maenpaa- p2psi p- servi ce-di scovery]
Maenpaa, J. and G Canarillo, "Service Discovery Usage for
REsource LCcation And Di scovery (RELQAD)",
dr af t - maenpaa- p2psi p- servi ce-di scovery-00 (work in
progress), COctober 2009.

[1-D. pascual - p2psi p-client s]
Pascual , V., Matuszewski, M, Shim E., Zhang, H, and S
Yongchao, "P2PSIP dients",
draft - pascual - p2psi p-clients-01 (work in progress),
February 2008.

[RFC1122] Braden, R, "Requirenents for Internet Hosts -
Conmruni cati on Layers", STD 3, RFC 1122, Cctober 1989.

[RFC2311] Dusse, S., Hoffman, P., Ransdell, B., Lundblade, L., and

L. Repka, "S/M ME Version 2 Message Specification",
RFC 2311, March 1998.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 149]

Internet-Draft RELOAD Base March 2011

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomess
Requirements for Security", BCP 106, RFC 4086, June 2005.

[RFC4145] Yon, D. and G Canarillo, "TCP-Based Media Transport in
the Session Description Protocol (SDP)", RFC 4145,
Sept enber 2005.

[RFCA787] Audet, F. and C. Jennings, "Network Address Translation
(NAT) Behavioral Requirenments for Unicast UDP', BCP 127,
RFC 4787, January 2007.

[RFC4828] Floyd, S. and E. Kohler, "TCP Friendly Rate Control
(TFRC): The Small -Packet (SP) Variant", RFC 4828,
April 2007.

[RFC5054] Taylor, D., Wi, T., Mavrogi annopoulos, N, and T. Perrin,
"Using the Secure Renpbte Password (SRP) Protocol for TLS
Aut henti cation", RFC 5054, Novenber 2007.

[RFC5201] Mbskowitz, R, Ni kander, P., Jokela, P., and T. Henderson,
"Host Identity Protocol”, RFC 5201, April 2008.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housl ey, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, May 2008.

[RFC5765] Schul zrinne, H., Marocco, E., and E. lvov, "Security
| ssues and Sol utions in Peer-to-Peer Systens for Realtine
Comuni cations", RFC 5765, February 2010.

[RFC5785] Nottingham M and E. Hammer-Lahav, "Defining Well-Known
Uni form Resource ldentifiers (URIs)", RFC 5785,
April 2010.
[Sybil] Douceur, J., "The Sybil Attack", |PTPS 02, March 2002.
[Uni xTi ne]
W ki pedia, "Unix Tinme", <http:/w ki pedi a.org/w ki /
Uni x_tinme>.,

[bryan- desi gn- hot p2p08]

Bryan, D., Lowekanp, B., and M Zangrilli, "The Design of
a Versatile, Secure P2PSIP Communi cati ons Architecture for
the Public Internet”, Hot-P2P 08.

[handl i ng- chur n- useni x04]
Rhea, S., Ceels, D., Roscoe, T., and J. Kubi atow cz,

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 150]

Internet-Draft RELOAD Base March 2011

"Handling Churn in a DHT", In Proc. of the USEN X Annual
Techni cal Conference June 2004 USEN X 2004.

[1 ookups- churn- p2p06]
Wi, D., Tian, Y., and K Ng, "Analytical Study on
| mprovi ng DHT Lookup Performance under Churn", |EEE
P2P’ 06.

[m ni m zi ng- chur n- si gconm06]
Godfrey, P., Shenker, S., and |I. Stoica, "Mnimzing Churn
in Distributed Systens", S| GCOVM 2006.

[non-transitive-dhts-worl ds05]
Freedman, M, Lakshm narayanan, K., Rhea, S., and I.
Stoica, "Non-Transitive Connectivity and DHTs",
WORLDS' 05.

[opendht - si gcomD5]
Rhea, S., CGodfrey, B., Karp, B., Kubiatow cz, J.,
Rat nasany, S., Shenker, S., Stoica, |., and H Yu,
"OpenDHT: A Public DHT and its Uses", SIGCOW 05.

[vul nerabilities-acsac04]
Srivatsa, M and L. Liu, "Vulnerabilities and Security
Threats in Structured Peer-to-Peer Systens: A Quantitative
Anal ysi s", ACSAC 2004.

Appendi x A, Change Log
A. 1. Changes since draft-ietf-p2psip-reload-12

o Carified lifetime mnagenent.

0 Mde it clear how direct return response could be put in an
extension .

o Carified distinction between enroll nment and configuration
servers.

0o Carified that the Kindld is 32 bits long. The -12 draft had some
text that said 32 bits and one typo that said 16. Earlier drafts
were said 32 bits.

0 Mscellaneous editorial.

0 Specified the Chord hash was SHA-1 truncated

o Cdarified Attache procedures.

0 Changed nanme in XM. configuration fromchord-rel oad-reactive to
chord-reactive. Made other chord-rel oad- names consi stent.

0 Fixed the relax NG and nade a nore conpl ex configuration exanple.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 151]

Internet-Draft RELOAD Base March 2011

0 Added Error_In_Progress to Error Code table

Appendi x B. Routing Alternatives

Si gni ficant di scussion has been focused on the selection of a routing
algorithmfor P2PSIP. This section discusses the notivations for

sel ecting symmetric recursive routing for RELOAD and descri bes the
ext ensions that would be required to support additional routing

al gorithns.

B.1. |Iterative vs Recursive

Iterative routing has a nunber of advantages. It is easier to debug,
consunes fewer resources on internmedi ate peers, and allows the
querying peer to identify and route around ni sbehavi ng peers
[non-transitive-dhts-worl ds05]. However, in the presence of NATs,
iterative routing is intolerably expensive because a new connecti on
nmust be established for each hop (using I CE) [bryan-design-hotp2p08].

Iterative routing is supported through the RouteQuery mechani sm and
is primarily intended for debugging. It also allows the querying
peer to evaluate the routing decisions made by the peers at each hop
consider alternatives, and perhaps detect at what point the
forwarding path fails.

B.2. Symmetric vs Forward response

An alternative to the synmmetric recursive routing nethod used by
RELOAD is Forward-Only routing, where the response is routed to the
requester as if it were a new nessage initiated by the responder (in
the previous exanple, Z sends the response to A as if it were sending
a request). Forward-only routing requires no state in either the
message or internedi ate peers.

The drawback of forward-only routing is that it does not work when
the overlay is unstable. For exanple, if Ais in the process of
joining the overlay and is sending a Join request to Z, it is not yet
reachable via forward routing. Even if it is established in the
overlay, if network failures produce tenporary instability, A may not
be reachable (and nmay be trying to stabilize its network connectivity
via Attach nessages).

Furt hernmore, forward-only responses are less likely to reach the
querying peer than symmetric recursive ones are, because the forward
path is nore likely to have a failed peer than is the request path
(which was just tested to route the request)
[non-transitive-dhts-worl ds05].

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 152]

Internet-Draft RELOAD Base March 2011

An extension to RELOAD that supports forward-only routing but relies
on symmetric responses as a fall back would be possible, but due to
the conplexities of determ ning when to use forward-only and when to
fall back to symmetric, we have chosen not to include it as an option
at this point.

B.3. Direct Response

Anot her routing option is Direct Response routing, in which the
response is returned directly to the querying node. |n the previous
exanple, if A encodes its |IP address in the request, then Z can
sinply deliver the response directly to A In the absence of NATs or
ot her connectivity issues, this is the optimal routing technique.

The chal | enge of inplenmenting direct response is the presence of

NATs. There are a nunber of conplexities that nust be addressed. In
this discussion, we will continue our assunption that A issued the
request and Z is generating the response.

0 The IP address listed by A may be unreachabl e, either due to NAT
or firewall rules. Therefore, a direct response techni que nust
fall back to symmetric response [non-transitive-dhts-worl ds05].

The hop-by-hop ACKs used by RELOAD allow Z to determ ne when A has
recei ved the nmessage (and the TLS negotiation will provide earlier
confirmation that A is reachable), but this fallback requires a
timeout that will increase the response | atency whenever A is not
reachable from 2z

0 Whenever Ais behind a NAT it will have nultiple candidate IP
addresses, each of which nmust be advertised to ensure
connectivity; therefore Z will need to attenmpt multiple
connections to deliver the response.

0 One (or all) of A's candidate addresses may route fromZ to a
different device on the Internet. In the worst case these nodes
may actually be running RELOAD on the sanme port. Therefore, it is
absol utely necessary to establish a secure connection to
authenticate A before delivering the response. This step
di m ni shes the efficiency of direct response because multiple
roundtrips are required before the nmessage can be delivered.

o If Ais behind a NAT and does not have a connection already
established with Z, there are only two ways the direct response
will work. The first is that A and Z both be behind the same NAT,
in which case the NAT is not involved. In the nore comon case,
when Z is outside A's NAT, the response will only be received if
A's NAT inpl enents endpoint-independent filtering. As the choice
of filtering node confl ates application transparency with security
[RFCA787], and no clear reconmendation is available, the
preval ence of this feature in future devices renains unclear

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 153]

Internet-Draft RELOAD Base March 2011

An extension to RELOAD that supports direct response routing but
relies on symretric responses as a fallback woul d be possible, but
due to the conplexities of determ ning when to use direct response
and when to fallback to symmetric, and the reduced performance for
responses to peers behind restrictive NATs, we have chosen not to
include it as an option at this point.

B.4. Relay Peers

[1-D.jiang-p2psi p-relay] has proposed i npl enenting a form of direct
response by having Aidentify a peer, Q that will be directly
reachabl e by any other peer. A uses Attach to establish a connection
with Q and advertises @s IP address in the request sent to Z. Z
sends the response to Q which relays it to A This then reduces the
| atency to two hops, plus Z negotiating a secure connection to Q

This technique relies on the relative popul ati on of nodes such as A
that require relay peers and peers such as Qthat are capable of

serving as a relay peer. It also requires nodes to be able to
identify which category they are in. This identification problem has
turned out to be hard to solve and is still an open area of

expl orati on.

An extension to RELOAD that supports relay peers is possible, but due
to the complexities of inplenenting such an alternative, we have not
added such a feature to RELOAD at this point.

A concept simlar to relay peers, essentially choosing a relay peer
at random has previously been suggested to solve probl ens of
pairwi se non-transitivity [non-transitive-dhts-worlds05], but
deterministic filtering provided by NATs nakes randomrel ay peers no
more likely to work than the respondi ng peer.

B.5. Symmetric Route Stability

A common concern about synmmetric recursive routing has been that one
or nore peers along the request path may fail before the response is
received. The significance of this problemessentially depends on
the response | atency of the overlay. An overlay that produces slow
responses will be vulnerable to churn, whereas responses that are
delivered very quickly are vulnerable only to failures that occur
over that small interval

The ot her aspect of this issue is whether the request itself can be
successfully delivered. Assum ng typical connection maintenance
intervals, the tine period between the | ast maintenance and the
request being sent will be orders of nagnitude greater than the del ay
bet ween the request being forwarded and the response being received.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 154]

Internet-Draft RELOAD Base March 2011

Therefore, if the path was stable enough to be available to route the
request, it is alnost certainly going to remain available to route
the response.

An overlay that is unstable enough to suffer this type of failure
frequently is unlikely to be able to support reliable functionality
regardl ess of the routing nmechanism However, regardl ess of the
stability of the return path, studies show that in the event of high
churn, iterative routing is a better solution to ensure request

conpl etion [l ookups-churn-p2p06] [non-transitive-dhts-worl ds05]

Finally, because RELOAD retries the end-to-end request, that retry
wi Il address the issues of churn that renain.

Appendix C. Wiy dients?

There are a wide variety of reasons a node may act as a client rather
than as a peer [I-D.pascual -p2psip-clients]. This section outlines
some of those scenarios and how the client’s behavi or changes based
on its capabilities.

C.1. Wiy Not Only Peers?

For a nunber of reasons, a particular node may be forced to act as a
client even though it is willing to act as a peer. These include:

0 The node does not have appropriate network connectivity, typically
because it has a | ow bandw dth network connecti on.

0 The node may not have sufficient resources, such as conputing
power, storage space, or battery power.

o0 The overlay algorithmmy dictate specific requirenents for peer
sel ection. These may include participating in the overlay to
determ ne trustworthiness; controlling the nunber of peers in the
overlay to reduce overly-long routing paths; or ensuring mninmm
application uptinme before a node can join as a peer.

The ultimate criteria for a node to becone a peer are determ ned by
the overlay al gorithm and specific deploynment. A node acting as a
client that has a full inplenmentation of RELOAD and the appropriate
overlay algorithmis capable of locating its responsible peer in the
overlay and using Attach to establish a direct connection to that
peer. In that way, it may elect to be reachabl e under either of the
routi ng approaches listed above. Particularly for overlay algorithns
that elect nodes to serve as peers based on trustworthiness or

popul ation, the overlay algorithmmay require such a client to |locate
itself at a particular place in the overl ay.

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 155]

Internet-Draft RELOAD Base March 2011

C. 2. dients as Application-Level Agents

SI P defines an extensive protocol for registration and security
between a client and its registrar/proxy server(s). Any SIP device
can act as a client of a RELOAD based P2PSIP overlay if it contacts a
peer that inplenents the server-side functionality required by the

SIP protocol. In this case, the peer would be acting as if it were
the user’s peer, and would need the appropriate credentials for that
user.

Application-1evel support for clients is defined by a usage. A usage
of fering support for application-level clients should specify how the
security of the systemis naintained when the data is noved between
the application and RELQAD | ayers.

Aut hor s’ Addr esses

Cul I en Jenni ngs

Ci sco

170 West Tasnan Drive
MS: SJC-21/2

San Jose, CA 95134
USA

Phone: +1 408 421-9990
Email: fluffy@isco.com

Bruce B. Lowekanp (editor)

Skype

Palo Alto, CA

USA

Enmai | : bbl @ owekanp. net

Eric Rescorl a

RTFM I nc.

2064 Edgewood Drive
Palo Alto, CA 94303
USA

Phone: +1 650 678 2350
Email: ekr@tfmcom

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 156]

Internet-Draft RELOAD Base March 2011

Sal man A. Baset

Col unbi a University
1214 Anst er dam Avenue
New York, NY

USA

Emai | : sal man@s. col unbi a. edu
Henni ng Schul zri nne

Col unbi a University
1214 Amst erdam Avenue

New York, NY
USA
Emai |l : hgs@s. col unbi a. edu

Jenni ngs, et al. Expi res Septenber 15, 2011 [Page 157]

