
Network Working Group J. Schaad
Internet-Draft Soaring Hawk Consulting
Intended status: Standards Track January 21, 2011
Expires: July 25, 2011

 Email Policy Service Trust Processing
 draft-schaad-eps-trust-00

Abstract

 Write Me

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 25, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Schaad Expires July 25, 2011 [Page 1]

Internet-Draft EPS TRUST January 2011

Table of Contents

 1. Introduction . 3
 1.1. XML Nomenclature and Name Spaces 3
 1.2. Requirements Terminology 4
 2. Components . 5
 2.1. WS-Trust 1.3 . 5
 3. Model . 6
 3.1. Sender Processing . 6
 3.2. Recieving Agent Processing 7
 4. Initial Token and Policy Acquisition 9
 4.1. Request Policy Information 9
 4.2. Request Policy Information Response 10
 5. Sending A Message . 12
 5.1. Send Message Request 12
 5.2. Send Message Response 13
 6. Decoding A Message . 15
 6.1. Requesting Message Key 15
 6.2. Requesting Message Key Response 15
 7. Security Considerations 17
 8. IANA Considerations . 18
 9. Normative References . 19
 Appendix A. XML Schema . 20
 Author’s Address . 21

Schaad Expires July 25, 2011 [Page 2]

Internet-Draft EPS TRUST January 2011

1. Introduction

1.1. XML Nomenclature and Name Spaces

 The following name spaces are used in this document:

 +-----+--+----------------+
 | Pre | Namespace | Specification(|
 | fix | | s) |
 +-----+--+----------------+
eps	http://ietf.org/2011/plasma/	This
		Specification
S11	http://schemas.xmlsoap.org/soap/envelope/	[SOAP11]
S12	http://www.w3.org/2003/05/soap-envelope	[SOAP12]
wst	http://docs.oasis-open.org/ws-sx/ws-trust/	[WS-TRUST]
	200512	
wsu	http://docs.oasis-open.org/wss/2004/01/oas	[WS-Security]
	is-200401-wss-wssecurity-utility-1.0.xsd	
wss	http://docs.oasis-open.org/wss/2004/01/oas	[WS-Security]
e	is-200401-wss-wssecurity-secext-1.0.xsd	
wss	http://docs.oasis-open.org/wss/oasis-wss-w	[WS-Security]
e11	security-secext-1.1.xsd	
ds	http://www.w3.org/2000/09/xmldsig#	[XML-Signature
]
xen	http://www.w3.org/2001/04/xmlenc#	[XML-Encrypt]
c		
wsp	http://schemas.xmlsoap.org/ws/2004/09/poli	[WS-Policy]
	cy	
wsa	http://www.w3.org/2005/08/addressing	[WS-Addressing
]
xs	http://www.w3.org/2001/XMLSchema	[XML-Schema1][
		XML-Schema2]
 +-----+--+----------------+

Schaad Expires July 25, 2011 [Page 3]

Internet-Draft EPS TRUST January 2011

1.2. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Schaad Expires July 25, 2011 [Page 4]

Internet-Draft EPS TRUST January 2011

2. Components

2.1. WS-Trust 1.3

 We use WS-Trust as the basis for the protocol presented in this
 document. WS-Trust is a secure messaging protocol used for security
 token exchange to enable the issuance and dissemination of
 credentials within different trust domains. WS-Trust 1.3 is
 specified by OASIS in [WS-TRUST]. WS-Trust is built on SOAP (see
 [SOAP12]) to provide a messaging structure.

 Implementers of this protocol MUST implement the HTTP binding.

 Implementers of this protocol MUST implement SOAP 1.2. Support for
 SOAP 1.1 [SOAP11] is OPTIONAL.

Schaad Expires July 25, 2011 [Page 5]

Internet-Draft EPS TRUST January 2011

3. Model

 To be supplied from the problem statement document.

 (1)(3) +----------+
 +----------->|Sending |<------------+
 | |Agent | |
 (2) v +----------+ v
 +----------+ ^ +---------+
 |Email | | |Mail |
 |Policy |<----------+ |Transfer |
 |Service | |Agent |
 +----------+ +---------+
 () ^ +----------+ ^
 | |Receiving | |
 +----------->|Agent |<------------+
 ()() +----------+

 Figure 1: Message Access Control Actors

 List the boxes above and give some info about them.

 Email Policy Service is the gateway controller for accessing a
 message. Although it is represented as a single box in the
 diagram, there is no reason for it to be in practice. Each of the
 three protocols could be talking to different instances of a
 common system. This would allow for a server to operated by
 Company A, but be placed in Company B’s network thus reducing the
 traffic sent between the two networks.

 Mail Transfer Agent is the entity or set of entities that is used to
 move the message from the sender to the receiver. Although this
 document describes the process in terms of mail, any method can be
 used to transfer the message.

 Receiving Agent is the entity that consumes the message.

 Sending Agent is the entity that originates the message.

3.1. Sender Processing

 We layout the general steps that need to be taken by the sender of an
 EPS message. The numbers in the steps below refer to the numbers in
 the upper half of Figure 1. A more detailed description of the
 processing is found in Section 4 for obtaining the security policies
 that can be applied to a messages and Section 5 for sending a

Schaad Expires July 25, 2011 [Page 6]

Internet-Draft EPS TRUST January 2011

 message.

 1. The Sending Agent sends a message to one or more Email Policy
 Services in order to obtain the set of policies that it can apply
 to a message along with a security token to be used in proving
 the authorization. Details of the message send can be found in
 Section 4.1.

 2. The Email Policy Service examines the set of policies that it
 understands and checks to see if the requester is authorized to
 send messages with the policy.

 3. The Email Policy Service returns the set of policies and an
 security token to the Sending Agent. Details of the message sent
 can be found in Section 4.2.

 4. The Sending Agent selects the Email Policy(s) to be applied to
 the message, along with the set of recipients for the message.

 5. The Sending Agent relays the selected information to the Email
 Policy Service along with the security token. Details of this
 message can be found in Section 5.1.

 6. The Email Policy Service creates the recipient info attribute as
 defined in [EPS-ASN].

 7. The Email Policy Service returns the created attribute to the
 Sending Agent. Details of this message can be found in
 Section 5.2.

 8. The Sending Agent composes the CMS EnvelopedData content type
 placing the returned attribute into a KEKRecipientInfo structure
 and then send the message to the Mail Transport Agent.

3.2. Recieving Agent Processing

 We layout the general steps that need to be taken by the sender of an
 EPS message. The numbers in the steps below refer to the numbers in
 the lower half of Figure 1. A more detailed description of the
 processing is found in Section 6.

 1. The Receiving Agent obtains the message from the Mail Transport
 Agent.

 2. The Receiving Agent starts to decode the message and in that
 process locates an EvelopedData content type which has a
 KEKRecipientInfo structure with a XXXX attribute.

Schaad Expires July 25, 2011 [Page 7]

Internet-Draft EPS TRUST January 2011

 3. The Receiving Agent processes the SignedData content of the XXXX
 attribute to determine that communicating with it falls within
 accepted policy.

 4. The Receiving Agent transmits the content of the XXXX attribute
 to the referenced Email Policy Service. The details of this
 message can be found in Section 6.1.

 5. The Email Policy Service decrypts the content of the message and
 applies the policy to the credentials provided by the Receiving
 Agent.

 6. If the policy passes, the Email Policy Service returns the
 appropriate key or RecipientInfo structure to the Receiving
 Agent. Details of this message can be found in Section 6.2.

 7. The Receiving Agent proceeds to decrypt the message and perform
 normal processing.

Schaad Expires July 25, 2011 [Page 8]

Internet-Draft EPS TRUST January 2011

4. Initial Token and Policy Acquisition

 The first step in the process is for the sending agent to acquire the
 set of policies that it is permitted to use in labeling a message.
 This is done by a request and response. For this purpose we define
 two new uri values to be used in the wst:RequestType field:

 urn:ietf:params:ns:eps-xml:RequestSendToken is used to identify a
 request to receive a set of security policies that can be used
 along with a security token to identify the sending agent when
 sending a message.

 It is assumed that the Email Policy Server will do an exhaustive set
 of tests to check which security policies are usable by the sending
 agent in order to label messages. As this is going to be a
 computationally intensive operation, the process is expected to be
 done infrequently compared to sending messages. The data and
 security token returned is therefore expected to be good for a period
 of time. In situations where changes to privileges change and it is
 important that the system correctly enforce them, then a subsequence
 check on just the label presented at the time the mail message is
 sent.

4.1. Request Policy Information

 Send a wst:RequestSecurityToken message to the Email Policy Service.
 The request will contain at least the following elements:

 A wst:RequestType containing a
 urn:ietf:params:ns:eps-xml:#RequestSendToken URI MUST be included.

 An example of a message requesting the set of policy information is:

 <s12:Envelope>
 <s12:Body>
 <wst:RequestSecurityToken>
 <wst:RequestType>
 urn:ietf:params:xml:ns:eps-xml:#RequestSendToken
 </wst:RequestType>
 </wst:RequestSecurityToken>
 </s12:Body>
 </s12:Envelope>

 In this example the identity information of the requester is implicit
 from the transport protocol used.

Schaad Expires July 25, 2011 [Page 9]

Internet-Draft EPS TRUST January 2011

4.2. Request Policy Information Response

 Receive a wst:RequestSecurityTokenResponse message with the following
 elements:

 A wst:RequestedSecruityToken element containing the security token
 MUST be included. The format of the security token is not
 specified and is implementation specific, it is not expected that
 . Examples of items that could be used as security tokens are
 SAML statements, encrypted record numbers in a server database.

 A eps:PolicySet containing the set of policies that the server has
 been ascertained are acceptable for the querier to use in labeling
 email messages MUST be included.

 A wst:Lifetime giving the life time of the token SHOULD be
 included. It is not expected that this should be determinable
 from the token itself and thus must be independently provided.
 There is no guarantee that the token will be good during the
 lifetime as it make get revoked due to changes in credentials,
 however the client is permitted to act as if it where. The token
 provided may be used for duration. If this element is absent, it
 should be assumed that the token is either a one time token or of
 limited duration.

 An example of a message returning the set of policy information is:

 <s12:Envelope>
 <s12:Body>
 <wst:RequestSecurityTokenResponse>
 <wst:RequestedSecurityToken>
 <me:CustomToken>ABCDEFGHIJKLMN
 </me:CustomToken>
 </wst:RequestedSecurityToken>
 <wst:RequestedProofToken>
 <wst:BinarySecret>PGRGFCDE</wst:BinarySecret>
 </wst:RequestedProofToken>
 <eps:PolicySet>
 <eps:Policy>
 <eps:Name>Policy Name #1</eps:Name>
 <eps:Identifier>
 http://this.is.a.com/policyX
 </eps:Identifier>
 <eps:ReferencePoint>
 http://Point.com/serverName
 </eps:ReferencePoint>
 <eps:ReferencePoint>
 http://ietf.org/email-policy-servers/ad-hoc/PolicyServer

Schaad Expires July 25, 2011 [Page 10]

Internet-Draft EPS TRUST January 2011

 </eps:ReferencePoint>
 <eps:Options>
 <eps:Option name="Category">
 <eps:OptionValue value="1">Non-classified
 </eps:OptionValue>
 <eps:OptionValue value="2">Restricted
 </eps:OptionValue>
 <eps:OptionValue value="3">Classified
 </eps:OptionValue>
 <eps:OptionValue value="4">Don’t Read Me
 </eps:OptionValue>
 </eps:Option>
 </eps:Options>
 </eps:Policy>
 <eps:Policy>
 <eps:Name>Ad Hoc Corperate Policy</eps:Name>
 <eps:Identifier>
 http://ietf.org/email-policies/ad-hoc
 </eps:Identifier>
 <eps:ReferencePoint>
 http://ietf.org/email-policies/ad-hoc/PolicyServer
 </eps:ReferencePoint>
 </eps:Policy>
 <eps:Policy>
 <eps:Name>IETF Basic Policy 1</eps:Name>
 <eps:Identifier>
 http://ietf.org/email-policies/basic-1
 </eps:Identifier>
 <eps:ReferencePoint>
 http://ietf.org/email-policy-servers/ad-hoc/PolicyServer
 </eps:ReferencePoint>
 <eps:AllowNameList value="yes"/>
 </eps:Policy>
 </eps:PolicySet>
 </wst:RequestSecurityTokenResponse>
 </s12:Body>
 </s12:Envelope>

 In this example, the Email Policy Service is returning three
 different policies that can be used along with a security token and a
 key to be used with the token when sending a message.

Schaad Expires July 25, 2011 [Page 11]

Internet-Draft EPS TRUST January 2011

5. Sending A Message

 When the sending agent is ready to build the list of recipient info
 structures, it builds a request message containing the label, the key
 encryption key and other information required for decryption to send
 to the Email Policy Service. It will then get back a response
 containing a CMS SignedData object to be included in a
 KEKRecipientInfo object.

 To identify this operation we have defined a new uri
 urn:ietf:params:ns:eps-xml:RequestSendToken.

5.1. Send Message Request

 The process we are looking at is: Send a wst:RequestSecurityToken to
 the Email Policy Service. The request MUST contain at least the
 following elements:

 A wst:RequestType containing a
 urn:ietf:params:ns:eps-xml:RequestSendToken URI.

 Put in the previously assigned tokens as if you were doing a token
 renewal.

 An eps:SendMessage as defined in this document.

 An example of a message returning the set of policy information is:

Schaad Expires July 25, 2011 [Page 12]

Internet-Draft EPS TRUST January 2011

 <s12:Envelope>
 <s12:Body>
 <wst:RequestSecurityToken>
 <wst:RequestType>
 urn:ietf:params:ns:eps-xml:RequestSendToken
 </wst:RequestType>
 <eps:SendMessageRequest>
 <eps:RecipientData>
 <eps:CompoundLabel action="or">
 <eps:Label
 name="http://ietf.org/policies/basic1">
 <eps:addressList>
 jimsch@example.com;
 patrick@example.com;
 paul@example.com
 </eps:addressList></eps:Label>
 <eps:CompoundLabel action="and">
 <eps:Label
 name="http://this.is.a.com/policyX?Category=4"/>
 <eps:Label name="http://ietf.org/policies"/>
 </eps:CompoundLabel>
 </eps:CompoundLabel>
 <eps:Recipient name="trevor@microsoft.com">
 <eps:Key>
 <eps:Identifier>....</eps:Identifier>
 <eps:RecipientInfo>....</eps:RecipientInfo>
 </eps:Key>
 <eps:Key>
 <eps:Identifier>....</eps:Identifier>
 <eps:RecipientInfo>....</eps:RecipientInfo>
 </eps:Key>
 </eps:Recipient>
 <eps:DefaultRecipient>
 <eps:Identifier>....</eps:Identifier>
 <wst:BinarySecret></wst:BinarySecret>
 </eps:DefaultRecipient>
 </eps:RecipientData>
 </eps:SendMessageRequest>
 </wst:RequestSecurityToken>
 </s12:Body>
 </s12:Envelope>

5.2. Send Message Response

 Receive a wst:RequestSecurityTokenResponse from the Email Policy
 Service. The response MUST contain at least the following elements:

Schaad Expires July 25, 2011 [Page 13]

Internet-Draft EPS TRUST January 2011

 An eps:SendMessageResponse as defined in this document.

 An example of a message returning the set of policy information is:

 <s12:Envelope>
 <s12:Body>
 <wst:RequestSecurityTokenResponse>
 <eps:SignedDataBlob/>
 </wst:RequestSecurityTokenResponse>
 </s12:Body>
 </s12:Envelope>

Schaad Expires July 25, 2011 [Page 14]

Internet-Draft EPS TRUST January 2011

6. Decoding A Message

 When the receiving agent is ready to decrypt the message, it
 identifies that there is a KEKRecipientInfo object which contains a
 key attribute identified by id-keyatt-eps-token. It validates that
 communicating with the Email Policy Service is within local policy
 and then sends a request to the service to obtain the encryption key
 for the message.

 To identify this operation we have defined a new uri
 urn:ietf:params:ns:eps-xml:RequestReadToken.

 In some cases the recipient of a message is not authorized to use the
 same set of labels for sending a message. For this purpose a token
 can be returned in the message along with the key so that recipient
 of the can reply to the message using the same set of security
 labels.

6.1. Requesting Message Key

 Send a wst:RequestSecurityToken message to the EMail Policy Server.
 The request MUST contain at least the following elements:

 A wst:RequestType containing a
 urn:ietf:params:ns:eps-xml:RequestReadToken URI.

 A eps:ReadMessageRequest defined in this document.

 An example of a message returning the set of policy information is:

 <s12:Envelope>
 <s12:Body>
 <wst:RequestSecurityToken>
 <wst:RequestType>
 urn:ietf:params:ns:eps-xml:RequestReadToken
 </wst:RequestType>
 <eps:SignedDataBlob/>
 </wst:RequestSecurityToken>
 </s12:Body>
 </s12:Envelope>

6.2. Requesting Message Key Response

 Receive a wst:RequestSecurityTokenResponse message from the Email
 Policy Server. The response contains the following elements:

 An eps:ReadMessageResponse.

Schaad Expires July 25, 2011 [Page 15]

Internet-Draft EPS TRUST January 2011

 An example of a message returning the set of policy information is:

 <s12:Envelope>
 <s12:Body>
 <wst:RequestSecurityTokenResponse>
 <wst:RequestedSecurityToken>
 <me:CustomToken>....</me:CustomToken>
 </wst:RequestedSecurityToken>
 <wst:RequestedProofToken>
 <wst:BinarySecret></wst:BinarySecret>
 </wst:RequestedProofToken>
 <eps:Key>...</eps:Key>
 <eps:Key>...</eps:Key>
 <eps:PolicySet>....</eps:PolicySet>
 </wst:RequestSecurityTokenResponse>
 </s12:Body>
 </s12:Envelope>

Schaad Expires July 25, 2011 [Page 16]

Internet-Draft EPS TRUST January 2011

7. Security Considerations

 To be supplied after we have a better idea of what the document looks
 like.

Schaad Expires July 25, 2011 [Page 17]

Internet-Draft EPS TRUST January 2011

8. IANA Considerations

 We should have at least one name space to be registered.

Schaad Expires July 25, 2011 [Page 18]

Internet-Draft EPS TRUST January 2011

9. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [EPS-ASN] Schaad, J., "Email Policy Service ASN.1 Processing", Work
 In Pgoress draft-eps-smime-00, Jan 2011.

 [SOAP11] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A.,
 Mendelsohn, N., Nielsen, H., Thatte, S., and D. Winer,
 "Simple Object Access Protocol (SOAP) 1.1", W3C NOTE NOTE-
 SOAP-20000508, May 2000.

 [SOAP12] Lafon, Y., Gudgin, M., Hadley, M., Moreau, J., Mendelsohn,
 N., Karmarkar, A., and H. Nielsen, "SOAP Version 1.2 Part
 1: Messaging Framework (Second Edition)", World Wide Web
 Consortium Recommendation REC-soap12-part1-20070427,
 April 2007,
 <http://www.w3.org/TR/2007/REC-soap12-part1-20070427>.

 [WS-TRUST]
 Lawrence, K., Kaler, C., Nadalin, A., Goodner, M., Gudgin,
 M., Barbir, A., and H. Granqvist, "WS-Trust 1.3", OASIS
 Standard ws-trust-200512, March 2007, <http://
 docs.oasis-open.org/ws-sx/ws-trust/200512/
 ws-trust-1.3-os.html>.

Schaad Expires July 25, 2011 [Page 19]

Internet-Draft EPS TRUST January 2011

Appendix A. XML Schema

Schaad Expires July 25, 2011 [Page 20]

Internet-Draft EPS TRUST January 2011

Author’s Address

 Jim Schaad
 Soaring Hawk Consulting

 Email: ietf@augustcellars.com

Schaad Expires July 25, 2011 [Page 21]

