
SIPCORE Working Group C. Holmberg
Internet−Draft Ericsson
Intended status: Standards Track March 3, 2011
Expires: September 4, 2011

 Session Initiation Protocol (SIP) Response Code for Indication of
 Terminated Dialog
 draft−ietf−sipcore−199−06.txt

Abstract

 This specification defines a new Session Initiation Protocol (SIP)
 response code, 199 Early Dialog Terminated, that a SIP forking proxy
 and a User Agent Server (UAS) can use to indicate towards upstream
 SIP entities (including the User Agent Client (UAC)) that an early
 dialog has been terminated, before a final response is sent towards
 the SIP entities.

Status of this Memo

 This Internet−Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet−Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet−Drafts. The list of current Internet−
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet−Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet−Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet−Draft will expire on September 4, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license−info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Holmberg Expires September 4, 2011 [Page 1]

Internet−Draft 199 March 2011

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Applicability and Limitation 4
 4. User Agent Client behavior 5
 5. User Agent Server behavior 6
 6. Proxy behavior . 7
 7. Backward compatibility . 9
 8. Usage with SDP offer/answer 10
 9. Message Flow Examples . 10
 9.1. Example with a forking proxy which generates 199 10
 9.2. Example with a forking proxy which receives 200 OK 11
 9.3. Example with two forking proxies, of which one
 generates 199 . 12
 10. Security Considerations 13
 11. IANA Considerations . 13
 11.1. IANA Registration of the 199 response code 14
 11.2. IANA Registration of the 199 option−tag 14
 12. Acknowledgements . 14
 13. Change Log . 14
 14. References . 15
 14.1. Normative References 15
 14.2. Informational References 16
 Author’s Address . 16

Holmberg Expires September 4, 2011 [Page 2]

Internet−Draft 199 March 2011

1. Introduction

 As defined in RFC 3261 [RFC3261], a Session Initiation Protocol (SIP)
 early dialog is created when a non−100 provisional response is sent
 to the initial dialog initiation request (e.g. INVITE, outside an
 existing dialog). The dialog is considered to be in early state
 until a final response is sent.

 When a proxy receives an initial dialog initiation request, it can
 forward the request towards multiple remote destinations. When the
 proxy does that, it performs forking [RFC3261].

 When a forking proxy receives a non−100 provisional response, or a
 2xx final response, it forwards the response upstream towards the
 sender of the associated request. After a forking proxy has
 forwarded a 2xx final response, it normally generates and sends
 CANCEL requests downstream towards all remote destinations where it
 previously forked the request associated with the 2xx final response
 and from which it has yet not received a final response. The CANCEL
 requests are sent in order to terminate any outstanding early dialogs
 associated with the request.

 Upstream SIP entities might receive multiple 2xx final responses.
 When a SIP entity receives the first 2xx final response, and it does
 not intend to accept any subsequent 2xx final response, it will
 automatically terminate any other outstanding early dialog associated
 with the request. If the SIP entity receives a subsequent 2xx final
 response, it will normally generate and send an ACK request, followed
 with a BYE request, using the dialog identifier retrieved from the
 2xx final response.

 NOTE: A User Agent Client (UAC) can use the Request−Disposition
 header field [RFC3841] to request that proxies do not generate and
 send CANCEL requests downstream once they have received the first 2xx
 final response.

 When a forking proxy receives a non−2xx final response, it does not
 always immediately forward the response upstream towards the sender
 of the associated request. Instead, the proxy "stores" the response
 and waits for subsequent final responses from other remote
 destinations where the associated request was forked. At some point
 the proxy uses a specified mechanism to determine the "best" final
 response code, and forwards a final response using that response code
 upstream towards the sender of the associated request. When an
 upstream SIP entity receives the non−2xx final response it will
 release resources associated with the session. The UAC will
 terminate, or retry, the session setup.

Holmberg Expires September 4, 2011 [Page 3]

Internet−Draft 199 March 2011

 Since the forking proxy does not always immediately forward non−2xx
 final responses, upstream SIP entities (including the UAC that
 initiated the request) are not immediately informed that an early
 dialog has been terminated, and will therefore maintain resources
 associated with the early dialog reserved until a final response is
 sent by the proxy, even if the early dialog has already been
 terminated. A SIP entity could use the resources for other things,
 e.g. to accept subsequent early dialogs that it otherwise would
 reject.

 This specification defines a new SIP response code, 199 Early Dialog
 Terminated. A forking proxy can send a 199 provisional response to
 inform upstream SIP entities that an early dialog has been
 terminated. A UAS can send a 199 response code, prior to sending a
 non−2xx final response, for the same purpose. SIP entities that
 receive the 199 response can use it to trigger the release of
 resources associated with the terminated early dialog. In addition,
 SIP entities might also use the 199 response to make policy related
 decisions related to early dialogs. For example, a media gate
 controlling SIP entity might use the 199 response when deciding for
 which early dialogs media will be passed.

 Section 9 contains signalling examples that show when and how a
 forking proxy generates 199 responses in different situations.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Applicability and Limitation

 The 199 response code is an optimization, and it only optimizes how
 quickly recipients might be informed about terminated early dialogs.
 The achieved optimization is limited. Since the response is normally
 not sent reliably by an UAS, and can not be sent reliably when
 generated and sent by a proxy, it is possible that some or all of the
 199 responses get lost before they reach the recipients. In such
 cases, recipients will behave the same as if the 199 response code
 were not used at all.

 One example for which a UAC could use the 199 response, is that when
 it receives a 199 response it releases resources associated with the
 terminated early dialog. The UAC could also use the 199 response to
 make policy related decisions related to early dialogs. For example,

Holmberg Expires September 4, 2011 [Page 4]

Internet−Draft 199 March 2011

 if a UAC is playing media associated with an early dialog, and it
 then receives a 199 response indicating the early dialog has been
 terminated, it could start playing media associated with a different
 early dialog.

 Applications designers utilizing the 199 response code MUST ensure
 that the application’s user experience is acceptable if all 199
 responses are lost, and not delivered to the recipients.

4. User Agent Client behavior

 When a UAC sends an initial dialog initiation request, and if it is
 willing to receive 199 responses, it MUST insert a "199" option−tag
 in the Supported header field [RFC3261] of the request. The option−
 tag indicates that the UAC supports, and is willing to receive, 199
 responses. A UAC SHOULD NOT insert a "199" option−tag in the Require
 or the Proxy−Require header field [RFC3261] of the request, since in
 many cases it would result in unnecessary session establishment
 failures.

 NOTE: The UAC always needs to insert a "199" option−tag in the
 Supported header field, in order to indicate that it supports, and is
 willing to receive, 199 responses, even if it also inserts the
 option−tag in the Require or Proxy−Require header field.

 It is RECOMMENDED that a UAC does not insert a "100rel" option−tag
 [RFC3262] in the Require header field when it also indicates support
 of 199 responses, unless the UAC also uses some other SIP extension
 or procedure that mandates it to do so. The reason is that proxies
 are not allowed to generate and send 199 responses when the UAC has
 required provisional responses to be sent reliably.

 When a UAC receives a 199 response, it might release resources
 associated with the terminated early dialog. A UAC might also use
 the 199 response to make policy related decisions related to early
 dialogs.

 NOTE: The 199 response indicates that the early dialog has been
 terminated, so there is no need for the UAC to send a BYE request in
 order to terminate the early dialog when it receives the 199
 response.

 NOTE: The 199 response does not affect other early dialogs associated
 with the session establishment. For those the normal SIP rules,
 regarding transaction timeout etc, still apply.

 Once a UAC has received and accepted a 199 response, it MUST NOT send

Holmberg Expires September 4, 2011 [Page 5]

Internet−Draft 199 March 2011

 Any media associated with the early dialog. In addition, if the UAC
 is able to associate received media with early dialogs, it MUST NOT
 process any received media associated with the early dialog that was
 terminated.

 If multiple usages [RFC5057] are used within an early dialog, and it
 is not clear which dialog usage the 199 response terminates, SIP
 entities that keep dialog state SHALL NOT release resources
 associated with the early dialog when they receive the 199 response.

 If a UAC receives an unreliably sent 199 response on a dialog which
 has not previously been established (this can happen if a 199
 response reaches the client before the 18x response that would
 establish the early dialog) it SHALL discard the 199 responses. If a
 UAC receives a reliably sent 199 response on a dialog which has not
 previously been created, it MUST acknowledge the 199 response, as
 described in RFC 3262 [RFC3262].

 If a UAC has received a 199 response for all early dialogs, and no
 early dialog associated session establishment remains, it maintains
 the "Proceeding" state [RFC3261] and waits for possible subsequent
 early dialogs to be established, and eventually for a final response
 to be received.

5. User Agent Server behavior

 If a UAS receives an initial dialog initiation request, with a
 Supported header field that contains a "199" option−tag, it SHOULD
 NOT send a 199 response on an early dialog associated with the
 request, before it sends a non−2xx final response. Cases where a UAS
 might send a 199 response are if it has been configured to do so due
 to lack of support of the 199 response code by forking proxies or
 other intermediate SIP entities, or it is used in an environment that
 specifies that it shall send a 199 response before sending a non−2xx
 response.

 NOTE: If a UAS has created multiple early dialogs associated with an
 initial dialog initiation request (the UAS is acting similar to a
 forking proxy), it does not always intend to send a final response on
 all of those early dialogs.

 NOTE: If the Require header field of an initial dialog initiation
 request contains a "100rel" option−tag, proxies will not be able to
 generate and send 199 responses. In such cases the UAS might choose
 to send a 199 response on an early dialog, before it sends a non−2xx
 final response, even if it would not do so in other cases.

Holmberg Expires September 4, 2011 [Page 6]

Internet−Draft 199 March 2011

 If the Supported header field of an initial dialog initiation request
 does not contain a "199" option−tag, the UAC MUST NOT send a 199
 response on any early dialog associated with the request.

 When a UAS generates a 199 response, the response MUST contain a To
 header field tag parameter [RFC3261], in order for other entities to
 identify the early dialog that has been terminated. The UAS MUST
 also insert a Reason header field [RFC3326] that contains a response
 code which describes the reason why the early dialog was terminated.
 The UAS MUST NOT insert a "199" option−tag in the Supported, Require
 or Proxy−Require header field of the 199 response.

 If a UAS intends to send 199 responses, and if it supports the
 procedures defined in RFC 3840 [RFC3840], it MAY during the
 registration procedure use the sip.extensions feature tag [RFC3840]
 to indicate support of the 199 response code.

 A 199 response SHOULD NOT contain an SDP offer/answer message body,
 unless required by the rules in RFC 3264 [RFC3264].

 According to RFC 3264, if an INVITE request does not contain an SDP
 offer, and the 199 response is the first reliably sent response
 associated with the request, the 199 response is required to contain
 an SDP offer. In this case the UAS SHOULD send the 199 response
 unreliably, or send the 199 response reliably and include an SDP
 offer with no m− lines in the response.

 Since a 199 response is only used for information purpose, the UAS
 SHOULD send it unreliably, unless the "100rel" option−tag is present
 in the Require header field of the associated request.

6. Proxy behavior

 When a proxy receives a 199 response to an initial dialog initiation
 request, it MUST process the response as any other non−100
 provisional response. The proxy will forward the response upstream
 towards the sender of the associated request. The proxy MAY release
 resources it has reserved associated with the early dialog that is
 terminated. If a proxy receives a 199 response out of dialog, it
 MUST process it as other non−100 provisional responses received out
 of dialog.

 When a forking proxy receives a non−2xx final response to an initial
 dialog initiation request, that it recognizes as terminating one or
 more early dialogs associated with the request, it MUST generate and
 send a 199 response upstream for each of the terminated early dialogs
 that satisfy each of the following conditions:

Holmberg Expires September 4, 2011 [Page 7]

Internet−Draft 199 March 2011

 − the forking proxy does not intend to forward the final response
 immediately (in accordance with rules for a forking proxy)

 − the UAC has indicated support (by inserting the "199" option−tag in
 a Supported header field) of the 199 response code in the associated
 request

 − the UAC has not required provisional responses to be sent reliably
 (by inserting the "100rel" option−tag in a Require or Proxy−Require
 header field) in the associated request

 − the forking proxy has not already received and forwarded a 199
 response for the early dialog

 − the forking proxy has not already sent a final response for any of
 the early dialogs

 As a consequence, once a final response to an initial dialog
 initiation request has been issued by the proxy, no further 199
 responses associated with the request will be generated or forwarded
 by the proxy.

 When a forking proxy forks an initial dialog initiation request, it
 generates a unique Via header branch parameter value for each forked
 leg. A proxy can determine whether additional forking has occurred
 downstream of the proxy by storing the top Via branch value from each
 response which creates an early dialog. If the same top Via branch
 value is received for multiple early dialogs, the proxy knows that
 additional forking has occurred downstream of the proxy. A non−2xx
 final response received for a specific early dialog also terminates
 all other early dialog for which the same top Via branch value was
 received in the responses which created those early dialogs.

 Based on implementation policy, a forking proxy MAY wait before
 sending the 199 response, e.g. if it expects to receive a 2xx final
 response on another dialog shortly after it received the non−2xx
 final response which triggered the 199 response.

 When a forking proxy generates a 199 response, the response MUST
 contain a To header field tag parameter, that identifies the
 terminated early dialog. A proxy MUST also insert a Reason header
 field that contains the SIP response code of the response that
 triggered the 199 response. The SIP response code in the Reason
 header field informs the receiver of the 199 response about the SIP
 response code that was used by the UAS to terminate the early dialog,
 and the receiver might use that information for triggering different
 types of actions and procedures. The proxy MUST NOT insert a "199"
 option−tag in the Supported, Require or Proxy−Require header field of

Holmberg Expires September 4, 2011 [Page 8]

Internet−Draft 199 March 2011

 the 199 response.

 A forking proxy that supports generating of 199 responses MUST keep
 track of early dialogs, in order to determine whether to generate a
 199 response when the proxy receives a non−2xx final response. In
 addition, a proxy MUST keep track on which early dialogs it has
 received and forwarded 199 responses, in order to not generate
 additional 199 responses for those early dialogs.

 If a forking proxy receives a reliably sent 199 response for a
 dialog, for which it has previously generated and sent a 199
 response, it MUST forward the 199 response. If a proxy receives an
 unreliably sent 199 response, for which it has previously generated
 and sent a 199 response, it MAY forward the response, or it MAY
 discard it.

 When a forking proxy generates and sends a 199 response, the response
 SHOULD NOT contain a Contact header field or a Record−Route header
 field [RFC3261].

 If the Require header field of an initial dialog initiation request
 contains a "100rel" option−tag, a proxy MUST NOT generate and send
 199 responses associated with that request. The reason is that a
 proxy is not allowed to generate and send 199 responses reliably.

7. Backward compatibility

 Since all SIP entities involved in a session setup do not necessarily
 support the specific meaning of the 199 Early Dialog Terminated
 provisional response, the sender of the response MUST be prepared to
 receive SIP requests and responses associated with the dialog for
 which the 199 response was sent (a proxy can receive SIP messages
 from either direction). If such request is received by a UA, it MUST
 act in the same way as if it had received the request after sending
 the final non−2xx response to the INVITE request, as specified in RFC
 3261. A UAC that receives a 199 response for an early dialog MUST
 NOT send any further requests on that dialog, except for requests
 which acknowledge reliable responses. A proxy MUST forward requests
 according to RFC 3261, even if the proxy has knowledge that the early
 dialog has been terminated.

 A 199 response does not "replace" a final response. RFC 3261
 specifies when a final response is sent.

Holmberg Expires September 4, 2011 [Page 9]

Internet−Draft 199 March 2011

8. Usage with SDP offer/answer

 A 199 response SHOULD NOT contain an SDP offer/answer [RFC3264]
 message body, unless required by the rules in RFC 3264.

 If an INVITE request does not contain an SDP offer, and the 199
 response is the first reliably sent response, the 199 response is
 required to contain an SDP offer. In this case the UAS SHOULD send
 the 199 response unreliable, or include an SDP offer with no m− lines
 in a reliable 199 response.

9. Message Flow Examples

9.1. Example with a forking proxy which generates 199

 The figure shows an example, where a proxy (P1) forks an INVITE
 received from UAC. The forked INVITE reaches UAS_2, UAS_3 and UAS_4,
 which send 18x provisional responses in order to establish early
 dialogs between themselves and the UAC. UAS_2 and UAS_3 reject the
 INVITE by sending a 4xx error response each. When P1 receives the
 4xx responses it immediately sends 199 responses towards the UAC, to
 indicate that the early dialogs for which it received the 4xx
 responses have been terminated. The early dialog leg is shown in
 parenthesis.

Holmberg Expires September 4, 2011 [Page 10]

Internet−Draft 199 March 2011

 UAC P1 UAS_2 UAS_3 UAS_4
 | | | | |
 |−− INVITE −−>| | | |
 | |−−− INVITE (2) −>| | |
 | |−−− INVITE (3) −−−−−−−−−>| |
 | |−−− INVITE (4) −−−−−−−−−−−−−−−−−>|
 | |<−− 18x (2) −−−−−| | |
 |<− 18x (2) −−| | | |
 | |<−− 18x (3) −−−−−−−−−−−−−| |
 |<− 18x (3) −−| | | |
 | |<−− 18x (4) −−−−−−−−−−−−−−−−−−−−−|
 |<− 18x (4) −−| | | |
 | |<−− 4xx (2) −−−−−| | |
 | |−−− ACK (2) −−−−>| | |
 |<− 199 (2) −−| | | |
 | |<−− 4xx (3) −−−−−−−−−−−−−| |
 | |−−− ACK (3) −−−−−−−−−−−−>| |
 |<− 199 (3) −−| | | |
 | |<−− 200 (4) −−−−−−−−−−−−−−−−−−−−−|
 |<− 200 (4) −−| | | |
 |−− ACK (4) −>| | | |
 | |−−− ACK (4) −−−−−−−−−−−−−−−−−−−−>|
 | | | | |

 Figure 1: Example call flow

9.2. Example with a forking proxy which receives 200 OK

 The figure shows an example, where a proxy (P1) forks an INVITE
 request received from UAC. The forked request reaches UAS_2, UAS_3
 and UAS_4, that all send 18x provisional responses in order to
 establish early dialogs between themselves and the UAC. Later UAS_4
 accepts the session and sends a 200 OK final response. When P1
 receives the 200 OK responses it immediately forwards it towards the
 UAC. P1 does not send 199 responses for the early dialogs from UAS_2
 and UAS_3, since P1 has yet not received any final responses on those
 early dialogs (even if P1 sends CANCEL requests to UAS_2 and UAS_3 P1
 may still receive 200 OK final response from UAS_2 or UAS_3, that P1
 would have to forward towards the UAC. The early dialog leg is shown
 in parenthesis.

Holmberg Expires September 4, 2011 [Page 11]

Internet−Draft 199 March 2011

 UAC P1 UAS_2 UAS_3 UAS_4
 | | | | |
 |−− INVITE −−>| | | |
 | |−−− INVITE (2) −>| | |
 | |−−− INVITE (3) −−−−−−−−−>| |
 | |−−− INVITE (4) −−−−−−−−−−−−−−−−−>|
 | |<−− 18x (2) −−−−−| | |
 |<− 18x (2) −−| | | |
 | |<−− 18x (3) −−−−−−−−−−−−−| |
 |<− 18x (3) −−| | | |
 | |<−− 18x (4) −−−−−−−−−−−−−−−−−−−−−|
 |<− 18x (4) −−| | | |
 | |<−− 200 (4) −−−−−−−−−−−−−−−−−−−−−|
 |<− 200 (4) −−| | | |
 |−− ACK (4) −>| | | |
 | |−−− ACK (4) −−−−−−−−−−−−−−−−−−−−>|
 | | | | |

 Figure 2: Example call flow

9.3. Example with two forking proxies, of which one generates 199

 The figure shows an example, where a proxy (P1) forks an INVITE
 request received from UAC. One of the forked requests reaches UAS_2.
 The other requests reach another proxy (P2), that forks the request
 to UAS_3 and UAS_4. UAS_3 and UAS_4 send 18x provisional responses
 in order to establish early dialogs between themselves and UAC.
 Later UAS_3 and UAS_4 reject the INVITE request by sending a 4xx
 error response each. P2 does not support the 199 response code, and
 forwards a single 4xx response. P1 supports the 199 response code,
 and when it receives the 4xx response from P2, it also manages to
 associate the early dialogs from both UAS_3 and UAS_4 with the
 response. Therefore it generates and sends two 199 responses to
 indicate that the early dialogs from UAS_3 and UAS_4 have been
 terminated. The early dialog leg is shown in parenthesis.

Holmberg Expires September 4, 2011 [Page 12]

Internet−Draft 199 March 2011

 UAC P1 P2 UAS_2 UAS_3 UAS_4
 | | | | | |
 |−− INVITE −−>| | | | |
 | |−− INVITE (2) −−−−−−−−−−−−−−−−−−>| | |
 | |−− INVITE −−−−>| | | |
 | | |−−− INVITE (3) −−−−−−−−−>| |
 | | |−−− INVITE (4) −−−−−−−−−−−−−−−−−>|
 | | |<−− 18x (3) −−−−−−−−−−−−−| |
 | |<− 18x (3) −−−−| | | |
 |<− 18x (3) −−| | | | |
 | | |<−− 18x (4) −−−−−−−−−−−−−−−−−−−−−|
 | |<− 18x (4) −−−−| | | |
 |<− 18x (4) −−| | | | |
 | | |<−− 4xx (3) −−−−−−−−−−−−−| |
 | | |−−− ACK (3) −−−−−−−−−−−−>| |
 | | |<−− 4xx (4) −−−−−−−−−−−−−−−−−−−−−|
 | | |−−− ACK (4) −−−−−−−−−−−−−−−−−−−−>|
 | |<− 4xx (3) −−−−| | | |
 | |−− ACK (3) −−−>| | | |
 |<− 199 (3) −−| | | | |
 |<− 199 (4) −−| | | | |
 | |<− 200 (2) −−−−−−−−−−−−−−−−−−−−−−| | |
 |<− 200 (2) −−| | | | |
 |−− ACK (2) −>| | | | |
 | |−− ACK (2) −−−−−−−−−−−−−−−−−−−−−>| | |
 | | | | | |

 Figure 3: Example call flow

10. Security Considerations

 General security issues related to SIP responses are described in RFC
 3261. Due to the nature of the 199 response, it may be attractive to
 use it for launching attacks in order to terminate specific early
 dialogs (other early dialogs will not be affected). In addition, if
 a man−in−the−middle generates and sends a 199 response, which
 terminates a specific dialog, towards the UAC, it can take a while
 until the UAS finds out that the UAC, and possible stateful
 intermediates, have terminated the dialog. SIP security mechanisms
 (e.g. hop−to−hop TLS) can be used to minimize, or eliminate, the risk
 for such attacks.

11. IANA Considerations

 This section registers a new SIP response code and a new option−tag,

Holmberg Expires September 4, 2011 [Page 13]

Internet−Draft 199 March 2011

 according to the procedures of RFC 3261.

11.1. IANA Registration of the 199 response code

 This section registers a new SIP response code, 199. The required
 information for this registration, as specified in RFC 3261, is:

 RFC Number: RFC XXXX [[NOTE TO IANA: Please replace XXXX with the
 RFC number of this specification]]

 Response Code Number: 199

 Default Reason Phrase: Early Dialog Terminated

11.2. IANA Registration of the 199 option−tag

 This section registers a new SIP option−tag, 199. The required
 information for this registration, as specified in RFC 3261, is:

 Name: 199

 Description: This option−tag is for indicating support of the 199
 Early Dialog Terminated provisional response code. When present
 in a Supported header of a request, it indicates that the UAC
 supports the 199 response code. When present in a Require or
 Proxy−Require header field of a request, it indicates that the
 UAS, or proxies, MUST support the 199 response code. It does
 not require the UAS, or proxies, to actually send 199
 responses.

12. Acknowledgements

 Thanks to Paul Kyzivat, Dale Worley, Gilad Shaham, Francois Audet,
 Attila Sipos, Robert Sparks, Brett Tate, Ian Elz, Hadriel Kaplan,
 Timothy Dwight, Dean Willis, Serhad Doken, John Elwell, Gonzalo
 Camarillo, Adam Roach, Bob Penfield, Tom Taylor, Ya Ching Tan, Keith
 Drage, Hans Erik van Elburg and Cullen Jennings for their feedback
 and suggestions.

13. Change Log

 [RFC EDITOR NOTE: Please remove this section when publishing]

 Changes from draft−ietf−sipcore−199−04

Holmberg Expires September 4, 2011 [Page 14]

Internet−Draft 199 March 2011

 o "Usage with 100rel" section removed based on comments from John
 Elwell (31.01.2011)
 o Editorial corrections based on comments from Paul Kyzivat
 (31.01.2011)

 Changes from draft−ietf−sipcore−199−03
 o RFC 3262 update removed
 o Functional modification: proxy must not send 199 in case of
 Require:100rel
 o Recommendation that UAC does not require reliable provisional
 responses with 199
 o Clarification that Require:199 does not mandate the UAS to send a
 199 response
 o Clarification that a UAC needs to insert the 199 option−tag in a
 Supported header field, even if it also inserts the option−tag in
 a Require or Proxy−Require header field
 o Editorial corrections

 Changes from draft−ietf−sipcore−199−02
 o Usage example section rewritten and clarified
 o Requirement has been removed
 o SIP has been added to document title
 o Acronyms expanded in the abstract and throughout the document
 o Editorial fixes throughout the document
 o Indication added that document is aimed for standards track
 o Some references made informative
 o Additional text added regarding the usage of the Reason header
 o SBC latching text has been removed
 o Usage of Require/Proxy−Require header removed
 o Additional text added regarding sending SDP offer in 199
 o Note added, which clarifies that 199 does not affect other early
 dialogs
 o References added to Security Considerations
 o Clarification of local ringing tone
 o Clarification that media must not be sent or processed after 199
 o Text regarding sending media on terminated dialogs added to
 security section
 o Change: UAS must send 199 reliably in case of Require:100rel
 o Change: Section 4 of RFC 3262 updated

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

Holmberg Expires September 4, 2011 [Page 15]

Internet−Draft 199 March 2011

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 June 2002.

 [RFC3262] Rosenberg, J. and H. Schulzrinne, "Reliability of
 Provisional Responses in Session Initiation Protocol
 (SIP)", RFC 3262, June 2002.

 [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
 with Session Description Protocol (SDP)", RFC 3264,
 June 2002.

 [RFC3326] Schulzrinne, H., Oran, D., and G. Camarillo, "The Reason
 Header Field for the Session Initiation Protocol (SIP)",
 RFC 3326, December 2002.

 [RFC3840] Rosenberg, J., Schulzrinne, H., and P. Kyzivat,
 "Indicating User Agent Capabilities in the Session
 Initiation Protocol (SIP)", RFC 3840, August 2004.

14.2. Informational References

 [RFC3841] Rosenberg, J., Schulzrinne, H., and P. Kyzivat, "Caller
 Preferences for the Session Initiation Protocol (SIP)",
 RFC 3841, August 2004.

 [RFC5057] Sparks, R., "Multiple Dialog Usages in the Session
 Initiation Protocol", RFC 5057, November 2007.

 [3GPP.24.182]
 3GPP, "IP Multimedia Subsystem (IMS) Customized Alerting
 Tones (CAT); Protocol specification", 3GPP TS 24.182.

 [3GPP.24.628]
 3GPP, "Common Basic Communication procedures using IP
 Multimedia (IM)Core Network (CN) subsystem; Protocol
 specification", 3GPP TS 24.628.

Holmberg Expires September 4, 2011 [Page 16]

Internet−Draft 199 March 2011

Author’s Address

 Christer Holmberg
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: christer.holmberg@ericsson.com

Holmberg Expires September 4, 2011 [Page 17]

