
Network Working Group E. Rescorla
Internet-Draft RTFM, Inc.
Intended status: Standards Track J. Hildebrand
Expires: September 8, 2011 Cisco Systems, Inc.
 March 7, 2011

 JavaScript Message Security Format
 draft-rescorla-jsms-00.txt

Abstract

 Many applications require the ability to send cryptographically
 secured messages. While the IETF has defined a number of formats for
 such messages (e.g. CMS) those formats use encodings which are not
 congenial for Web applications. This document describes a new
 cryptographic message format which is based on JavaScript Object
 Notation (JSON) and thus is easy for Web applications to generate and
 parse.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 8, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Rescorla & Hildebrand Expires September 8, 2011 [Page 1]

Internet-Draft JSMS March 2011

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Rescorla & Hildebrand Expires September 8, 2011 [Page 2]

Internet-Draft JSMS March 2011

Table of Contents

 1. Introduction . 4
 2. Conventions Used In This Document 4
 3. Overview . 4
 3.1. Operational Modes . 4
 3.2. Conventions . 5
 3.3. Certificate Processing 6
 3.4. Certificate Discovery 6
 4. Message Format . 6
 4.1. Base64 Handling . 6
 4.2. Content Object . 7
 4.3. Common Elements . 7
 4.4. Signed Data . 8
 4.4.1. Signature Computation 9
 4.4.2. Signature Verification 10
 4.5. Encrypted Data . 12
 4.5.1. Message Encryption 13
 4.5.2. Message Decryption 13
 4.5.3. Key Derivation . 14
 4.5.4. CMK Encryption . 14
 4.6. Composition . 15
 5. Version Processing . 15
 6. IANA Considerations . 15
 7. Security Considerations 15
 8. References . 15
 8.1. Normative References 15
 8.2. Informative References 17
 Appendix A. JSON Schema . 17
 A.1. Message Contents Schema 18
 A.2. Common Elements Schema 19
 A.3. Signed Message Schema 20
 A.4. PKIX Certificate Chain Schema 21
 A.5. Encrypted Message Schema 21
 A.6. Recipient Schema . 23
 Appendix B. Acknowledgments 23
 Authors’ Addresses . 23

Rescorla & Hildebrand Expires September 8, 2011 [Page 3]

Internet-Draft JSMS March 2011

1. Introduction

 Many applications require the ability to send cryptographically
 secured (encrypted, digitally signed, etc.) messages. While the IETF
 has defined a number of formats for such messages, those formats are
 widely viewed as being excessively complicated for the demands of Web
 applications, which typically only need the ability to secure simple
 messages. In addition, existing formats use encoding mechanisms
 (e.g., ASN.1 BER/DER) which are not congenial for Web applications.
 This presents an obstacle to the deployment of strong security by
 such applications.

 This document describes a new cryptographic message format,
 JavaScript Message Security (JSMS) intended to meet the need of the
 Web environment. While JSMS is modeled on existing formats --
 principally CMS [RFC5652] -- it uses JavaScript Object Notation
 (JSON) rather than ASN.1/BER/DER, making it far easier for Web
 applications to handle. In the interest of simplicity, JSMS also
 omits as many as possible of the CMS modes (multiple signatures,
 password-based encryption).

2. Conventions Used In This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Overview

 The JSMS message format is simply a JSON [RFC4627] dictionary with an
 appropriate collection of fields. Each operating mode will have a
 separate set of fields, with a common field to distinguish between
 the modes.

3.1. Operational Modes

 JSMS supports two operational modes:

 Encrypted Data
 A block of data encrypted under a random message encryption key
 (MEK). The MEK is then separately encrypted for each recipient,
 either via symmetric or asymmetric encryption. The data is always
 integrity protected, either via a separate Message Authentication
 Code (MAC) or an Authenticated Encryption with Associated Data
 (AEAD) algorithm such as AES-GCM or AES-CCM.

Rescorla & Hildebrand Expires September 8, 2011 [Page 4]

Internet-Draft JSMS March 2011

 Signed Data
 A block of data signed by a single signer using his asymmetric key
 and optionally carrying his certificate. Multiple signatures are
 not permitted in order to keep things simple.

 Any other desired security functions are provided by composition of
 these modes. For instance, a signed and encrypted message is
 produced by first creating a Signed message and then encrypting that
 data. (See Section 4.6 for more on composition.

3.2. Conventions

 In general, JSMS follows the following structural conventions:

 Minimize implementation complexity
 Wherever possible, protocol choices have been made such that the
 time and effort required to implement the protocol in many
 different programming languages will be minimized. This means
 that optimizations for bandwidth, CPU, and memory utilization have
 been explicitly avoided.
 Base64 as the only encoding
 Any data that does not have a straightforward string
 representation (binary values, large integers, etc.) is base64-
 encoded (see: [RFC4648]). In some cases, hexadecimal encodings
 might be more convenient, but consistency is even more important
 to reduce implementation complexity.
 No canonicalization
 In many cryptographic message formats, canonical encodings are
 used to allow the same value to be computed at both sender and
 recipient (e.g., for digital signatures). This is inconvenient in
 JSON, which just views messages as a bundle of key/value pairs.
 Instead, whenever canonicalization would be required, the relevant
 data is serialized and base64-encoded for transport, allowing both
 sides to run computations over the same original set of octets.
 In-memory processing
 We assume that the entire message can fit in main memory and make
 no effort to design a wire representation which can be handled in
 small chunks in a single pass. This means, for instance, that
 there is no need to have a message digest indicator at the
 beginning of the message and then the signature at the end, as is
 done in CMS. Fields are simply serialized in whatever order is
 most convenient for the JSON implementation. The examples in this
 document are generally shown in whatever order seems most readable
 and are not normative.

Rescorla & Hildebrand Expires September 8, 2011 [Page 5]

Internet-Draft JSMS March 2011

3.3. Certificate Processing

 Experience has shown that certificate handling (path construction) is
 one of the trickier parts of building a cryptographic system. While
 JSMS supports PKIX certificates, its certificate processing is far
 simpler than that of CMS. When a JSMS agent provides its
 certificate, it must provide an ordered chain (as in TLS [RFC5246])
 terminating in its own certificate, thus removing the need to
 construct certificate paths. The certificates MUST be ordered with
 the end-entity certificate first and each certificate that follows
 signing the certificate immediately preceding it. In addition,
 because many implementations will not want to do any ASN.1/BER
 processing at all, we will define a Web Service which applications
 can use for chain validation and translation to an easy-to-parse
 format. (See [TODO]).

3.4. Certificate Discovery

 JSMS will often be used in an online messaging environment with users
 that have an address of the form user@domain, such as email, XMPP, or
 SIP. As such, protocols such as WebFinger [I-D.hammer-webfinger] or
 an end-to-end protocol can be used to retrieve appropriate
 certificates. Downstream uses of JSMS SHOULD define a discovery
 mechanism suitable for the intended use.

4. Message Format

 All of the field definitions in this section make use of JSON Schema
 [I-D.zyp-json-schema]. For each of the fields that is designed to
 hold an enumerated value, a registry will be created allowing other
 values to be used in addition to the values enumerated in the schema.

4.1. Base64 Handling

 As stated in section 3.1 of [RFC4648], Base64 does not require
 linefeeds after a specific number of characters. Since linefeeds are
 not valid characters in a JSON string, whenever a field is specified
 to be Base64-encoded in this document, it MUST NOT include any line
 breaks. Base64-encoded fields also MUST NOT include JSON-encoded
 linefeeds such as "\n". Any linebreaks in the middle of Base64-
 encoded sections of the examples are unintended side-effects of the
 production process.

Rescorla & Hildebrand Expires September 8, 2011 [Page 6]

Internet-Draft JSMS March 2011

 Implementation Note: Much existing Base64-encoding code will
 generate linefeeds every 64 or 76 characters of output. Ensure
 that these linefeeds are removed before inserting the output into
 a JSON structure.

4.2. Content Object

 JSMS operates by providing transformations on "Content" objects,
 which are just mime-typed JSON objects. These objects are then
 wrapped in a signed/encrypted wrapper with the following fields:

 ContentType: A MIME [RFC2045] media type that MUST be included
 indicating the type of the "Data" field.
 Type: The constant string "content", to facilitate easy
 determination that this is the target content. This is useful
 (for example) in certain operating conditions where you must
 continue to unwrap layers of signatures until you get to the
 content. This field MUST be included.
 Data: The data value MUST be included as a text encoded as Base64
 (See: [RFC4648]).
 ID: An OPTIONAL universally unique ID that identifies this message,
 for use in detecting replay attacks.
 Created: An OPTIONAL field describing the UTC date/time that the
 content was encoded into JSON, formatted according to the "date-
 time" production of [RFC3339].

 Signing and encryption transform a "Content" object into "Signed" and
 "Encrypted" objects respectively. Verification and decryption
 transform "Signed" and "Encrypted" objects back into "Content"
 objects. For example:

 {
 "ContentType":"text/plain; charset=UTF-8",
 "Type":"content",
 "Data":"SGVsbG8sIFdvcmxkCg==",
 "ID":"746a4c9f-8e84-4313-b669-81590ee2949e",
 "Created":"2011-03-07T16:17Z"
 }

 Figure 1: Content Example

4.3. Common Elements

 A JSMS message is a JSON dictionary object containing a set of
 specific values.

 The following fields MUST be present in all messages:

Rescorla & Hildebrand Expires September 8, 2011 [Page 7]

Internet-Draft JSMS March 2011

 Version: The version number. For this specification this value MUST
 be set to the string "1.0". See Section 5 for details on version
 handling.

 Type: The type of the message. MUST be either "signed" or
 "encrypted", to indicate a signed message (Section 4.4) or an
 encrypted message (Section 4.5) respectively.

4.4. Signed Data

 A "signed" message contains a signed data block plus a digital
 signature over that data. To simplify implementation, only one
 signer is allowed. In addition to the required fields from
 Section 4.3, the fields in a signature message are:

 SignedData: This field MUST consist of a Base64-encoded "Content"
 structure (see Section 4.2), which MUST have been encoded into
 octets as UTF-8 prior to Base64-encoding. The signature is
 computed over the UTF-8 octet stream before Base64-encoding to
 ensure that the sender and receiver have the exact same
 representation.

 DigestAlgorithm: The message digest used to compute the signature.
 This field MUST be present for RSA-based signatures but MAY be
 omitted for future signatures which do not allow flexible digests.
 For now, this field MUST have the value "SHA-256", meaning the
 digest algorithm was SHA-256 [FIPS-180-3].

 SignatureAlgorithm: The signature algorithm used to compute the
 signature. This field MUST be present. For now, this field MUST
 have the value "RSA-PKCS1-1.5", meaning the signature algorithm
 was RSASSA-PKCS1-v1_5 as specified in [RFC3447].

 Signer: The signer’s identity, expressed as a URI [RFC3986]. This
 field MUST be present.

 CertChain: The signer’s certificate chain, if any (see
 Section 4.4.2.1).

 Signature: The Base64-encoded signature, which MUST be included (see
 Section 4.4.1).

Rescorla & Hildebrand Expires September 8, 2011 [Page 8]

Internet-Draft JSMS March 2011

 {
 "SignedData":"ewogICAgIkNvbnRlbnRUeXBlIjoidGV4dC9wbGFpbjsgY2hhcn
 NldD1VVEYtOCIsCiAgICAiVHlwZSI6ImNvbnRlbnQiLAogICAg
 IkRhdGEiOiJTR1ZzYkc4c0lGZHZjbXhrQ2c9PSIsCiAgICAiSU
 QiOiI3NDZhNGM5Zi04ZTg0LTQzMTMtYjY2OS04MTU5MGVlMjk0
 OWUiLAogICAgIkNyZWF0ZWQiOiIyMDExLTAzLTA3VDE2OjE3Wi
 IKfQ==",
 "DigestAlgorithm":"SHA-256",
 "SignatureAlgorithm":"RSA-PKCS1-1.5",
 "Signer":"xmpp:romeo@example.net",
 "Signature":"sNsxJltUaz4pSzAtJiPZagUMV4SwWugWexGbffK/WJRDi2uq7TxN
 /V9SwG/kvQ7CaTABbeUuc6cKGO5YxnH5hME3bHB5L9PKPWSjxzxo
 68RPxQyPli2YJDDHKVPbofEa86CLqYcwTF5qrcL7fQFvlRSOVxpS
 SJfIdiAJNA+nEnk="
 }

 Figure 2: Signed Message Example

4.4.1. Signature Computation

 The signature is computed over the string prior to base64 encoding.
 I.e., the processing order for encoding is:

 1. Serialize the inner "Content" value into a UTF8-encoded octet
 series X.
 2. Compute the signature value over X, and call the result Y. (In
 the case of signatures which use digests, this means feed the
 literal octets of the signature into the digest function.)
 3. Compute the Base64 representation of X and insert it into the
 "SignedData" field of the message.
 4. Compute the Base64 representation of Y, and insert the result
 into the "Signature" field.

 This procedure removes dependencies on the exact serialization
 algorithm; variation in spacing, field order, etc. do not affect
 signature validity since the Base64 representation preserves them on
 the wire and protects them from modification by intermediaries.

 Note: An alternative algorithm would be to compute the signature on
 the base64 representation itself, but this has two disadvantages:
 (1) any intermediaries which change spacing/line breaks would
 break the signature. (2) it is inconsistent with the algorithm for
 encryption (Section 4.5), which is designed to avoid multiple
 base64 encoding.

 This procedure only specifies the input to the signature computation.
 The details of the computation depend on the signature algorithm
 itself. The mapping from code points to algorithms is found in

Rescorla & Hildebrand Expires September 8, 2011 [Page 9]

Internet-Draft JSMS March 2011

 Section 6.

4.4.2. Signature Verification

 In order to verify the signature, the steps of the previous section
 are reversed.

 1. Process the provided "Signer" and "CertChain" fields as described
 in Section 4.4.2.1 in order to determine the sender’s public key.
 2. Base64 decode the "SignedData" field in order to recover a string
 X.
 3. Verify the "Signature" field against X using the sender’s public
 key and the "SignatureAlgorithm" and "DigestAlgorithm" fields.
 If the signature fails, return an error.
 4. Deserialize X to recover the inner "Content" value.
 5. Check any "ID" or "Created" fields for replay.
 6. Using the value of the "ContentType" field to give MIME type
 context, Base64-decode the "Data" field to retrieve the intended
 message.

4.4.2.1. Certificate Processing

 JSMS uses the "CertChain" element to carry certificate chains. For
 the moment, each certificate in the chain is expected to be a PKIX
 certificate BER-encoded then Base64-encoded. Future versions of this
 document will likely specify other valid certificate formats, since
 one of the goals of this format is to avoid . The meaning of the
 fields is described below:

 Type: The type of the certificate chain. The only defined value is
 "PKIX", referring to PKIX [RFC5280] certificates.

 Chain: An array of certificate values. In the case of "PKIX"
 certificates this is a list of base64-encoded DER/BER PKIX
 certificate values. PKIX certificates MUST be represented in
 order with each certificate certifying the next and the final
 certificate representing the end-entity.

Rescorla & Hildebrand Expires September 8, 2011 [Page 10]

Internet-Draft JSMS March 2011

 {
 "Type":"PKIX",
 "Chain":[
 "MIICPjCCAaegAwIBAgIBETANBgkqhkiG9w0BAQUFADBDMRMwEQ
 YKCZImiZPyLGQBGRYDY29tMRcwFQYKCZImiZPyLGQBGRYHZXhh
 bXBsZTETMBEGA1UEAxMKRXhhbXBsZSBDQTAeFw0wNDA0MzAxND
 I1MzRaFw0wNTA0MzAxNDI1MzRaMEMxEzARBgoJkiaJk/IsZAEZ
 FgNjb20xFzAVBgoJkiaJk/IsZAEZFgdleGFtcGxlMRMwEQYDVQ
 QDEwpFeGFtcGxlIENBMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCB
 iQKBgQDC15dtKHCqW88jLoBwOe7bb9Ut1WpPejQt+SJyR3Ad74
 DpyjCMAMSabltFtG6l5myUDfqR6UD8JZ3Ht2gZVo8RcGrX8ckR
 Tzp+P5mNbnaldF9epFVT5cdoNlPHHTsSpoX+vW6hyt81UKwI17
 m0flz+4qMs0SOEqpjAm2YYmmhH6QIDAQABo0IwQDAdBgNVHQ4E
 FgQUCGivhTPIOUp6+IKTjnBqSiCELDIwDgYDVR0PAQH/BAQDAg
 EGMA8GA1UdEwEB/wQFMAMBAf8wDQYJKoZIhvcNAQEFBQADgYEA
 bPgCdKZh4mQEplQMbHITrTxH+/ZlE6mFkDPqdqMm2fzRDhVfKL
 fvk7888+I+fLlS/BZuKarh9Hpv1X/vs5XK82aIg06hNUWEy7yb
 uMitxV5G2QsOjYDhMyvcviuSfkpDqWrvimNhs25HOL7oDaNnXf
 P6kYE8krvFXyUl63zn2KE=",
 "MIICcTCCAdqgAwIBAgIBEjANBgkqhkiG9w0BAQUFADBDMRMwEQ
 YKCZImiZPyLGQBGRYDY29tMRcwFQYKCZImiZPyLGQBGRYHZXhh
 bXBsZTETMBEGA1UEAxMKRXhhbXBsZSBDQTAeFw0wNDA5MTUxMT
 Q4MjFaFw0wNTAzMTUxMTQ4MjFaMEMxEzARBgoJkiaJk/IsZAEZ
 FgNjb20xFzAVBgoJkiaJk/IsZAEZFgdleGFtcGxlMRMwEQYDVQ
 QDEwpFbmQgRW50aXR5MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCB
 iQKBgQDhauQDMJcCPPQQ87UeTX8Ue/b10HjppIrwo3Xs7bZWln
 +ImYWa8j5od4frntGfwLQX3KuJI6QdfhYjTE+oTfUxuHyq4xpJ
 CfRLJtsnZzCCEgFK6Rq2wQxTi2z8L3pD7DM2fjKye9WqzwEUxh
 LsE/ItFHqLIVgUE0xGo5ryFpX/IwIDAQABo3UwczAhBgNVHREE
 GjAYgRZlbmQuZW50aXR5QGV4YW1wbGUuY29tMB0GA1UdDgQWBB
 QXe5Iw/0TWZuGQECJsFk/AjkHdbTAfBgNVHSMEGDAWgBQIaK+F
 M8g5Snr4gpOOcGpKIIQsMjAOBgNVHQ8BAf8EBAMCBsAwDQYJKo
 ZIhvcNAQEFBQADgYEAACAoNFtoMgG7CjYOrXHFlRrhBM+urcdi
 FKQbNjHA4gw92R7AANwQoLqFb0HLYnq3TGOBJl7SgEVeM+dwRT
 s5OyZKnDvyJjZpCHm7+5ZDd0thi6GrkWTg8zdhPBqjpMmKsr9z
 1E3kWORi6rwgdJKGDs6EYHbpc7vHhdORRepiXc0="
]
 }

 Figure 3: PKIX CertChain Example

 The recipient MUST verify the certificate chain (in the case of PKIX
 certificates according to [RFC5280]). If any validation failure
 occurs, the implementation MUST abort processing and return an error.

 Once the certificate chain is validated, the end-entity certificate
 must contain an identity which matches the "Signer" field. In the
 case of PKIX certificates, the certificate MUST contain a

Rescorla & Hildebrand Expires September 8, 2011 [Page 11]

Internet-Draft JSMS March 2011

 subjectAltName field of type "uniformResourceIdentifier". This field
 MUST be equivalent to the URI in the "Signer" field. If not, an
 error MUST be returned.

4.5. Encrypted Data

 An "encrypted" message contains an encrypted "Content" block. All
 "encrypted" messages contain a symmetric integrity check, either via
 a MAC or via an AEAD [RFC5116] algorithm such as Galois/Counter Mode
 (GCM: [GCM]). A message may be encrypted to an arbitrary number of
 recipients. Each recipient is represented by a "Recipient" block,
 which contains a copy of the keying material encrypted for that
 recipient. Both symmetric and asymmetric key establishment is
 supported. In order to support both integrity and encryption, what
 is carried in the Recipient block is a Content Master Key (CMK) which
 is then used with a Key Derivation Function (KDF) to generate the
 Content Encryption Key (CEK) used to encrypt the message and the
 Content Integrity Key (CIK) used with the MAC. In addition to the
 required fields from Section 4.3 the fields in an encrypted message
 are:

 Recipients: The list of recipients. This is an array of Recipient
 objects, each of which establishes the CMK for that recipient.
 KDF: Specifies the key derivation function used to generate the CEK
 and the CIK from the CMK. This field MAY be absent if an AEAD
 algorithm is used, in which case the CEK is derived by copying the
 CMK.
 Encryption: Specifies the properties of the encryption. The
 Algorithm field MUST contain the encryption algorithm and the IV
 field specifies the initialization vector (if required for the
 algorithm). This field MUST be present.
 Integrity: Specifies the properties of the integrity check. The
 Algorithm field MUST contain the MAC algorithm and the Value field
 MUST contain the MAC. This field MAY be absent if no integrity
 check is used.
 Data: Contains the ciphertext.

 Each Recipient object provides an encrypted copy of the CMK for a
 single recipient. The meaning of the fields is described below:

 KEKidentifier Describes the key encrypting key (KEK) used to encrypt
 the CMK. Either a "RecipientName" or a "KeyIdentifier" MUST be
 provided. If the "RecipientName" is provided, then a
 "CertificateDigest" SHOULD be provided.

Rescorla & Hildebrand Expires September 8, 2011 [Page 12]

Internet-Draft JSMS March 2011

 RecipientName: Provides the recipient’s name in URI form.
 CertificateDigest: For now, the SHA-1 fingerprint of the PKIX
 certificate associated with the recipient.
 KeyIdentifier The name of a shared symmetric key known to both
 sender and recipient. This need not be globally unique as long
 as it is unique within the recipient’s context.
 Algorithm: The algorithm used to encrypt the CMK. For now, one of
 "RSA-PKCS1-1.5" (meaning RSASSA-PKCS1-v1_5 as specified in
 [RFC3447]) or "AES-256-CBC" (meaning [FIPS-180-3]). Note the JSMS
 only supports key transport and not key agreement (since key
 agreement can always be turned into key transport).
 Value: The CMK encrypted under the specified algorithm and key.

4.5.1. Message Encryption

 The message encryption process is as follows.

 1. Generate a random CMK. The CMK MUST have a length at least equal
 to that of the larger of the required integrity or encryption
 keys and MUST be generated randomly. See [RFC4086] for
 considerations on generating random values. [[TODO - we need a
 section on generating randomness in browsers - it’s easy to screw
 up]]
 2. Encrypt the CMK for each recipient (see Section 4.5.4)
 3. Generate a random IV (if required for the algorithm).
 4. Run the key derivation algorithm (see Section 4.5.3) to generate
 the CEK and CIK (if not using an AEAD algorithm).
 5. Serialize the content into a bitstring M.
 6. Encrypt M using the CEK and IV to form the bitstring C.
 7. Set the Value element equal to the base64-encoded representation
 of C.
 8. If not using an AEAD algorithm, compute the function I = MAC(CIK,
 C) using the chosen integrity algorithm. Note that this is EtA
 encryption which is considered the best cryptographic choice
 (See: [krawczyk-ate]). Set the Integrity.Value element equal to
 the base64-encoded representation of I.

4.5.2. Message Decryption

 The message decryption process is the reverse of the encryption
 process.

 1. Identify a Recipient block which appears to reference a key known
 to the recipient.
 2. Decrypt the CMK. If this fails and another Recipient block
 appears plausible, that MAY be tried.

Rescorla & Hildebrand Expires September 8, 2011 [Page 13]

Internet-Draft JSMS March 2011

 3. Run the key derivation algorithm (see Section 4.5.3) to generate
 the CEK and CIK (if not using an AEAD algorithm).
 4. If not using an AEAD algorithm, compute the integrity check value
 I’ on the binary representation of the Value element using the
 indicated integrity check. If the Integrity.Value does not match
 I’, then an error MUST be reported and processing MUST be
 aborted.
 5. Decrypt the binary representation of the Value element and output
 the result

4.5.3. Key Derivation

 The key derivation process converts the CMK into a CEK. It assumes
 as a primitive a Key Derivation Function (KDF) which notionally takes
 three arguments:
 MasterKey: The master key used to compute the individual use keys
 Label: The use key label, used to differentiate individual use keys
 Length: The length of the desired use key
 The only real KDF specified in this document is the TLS PRF, which is
 invoked as PRF(MasterKey, Label) with an empty seed and produces an
 arbitrary length output. The appropriate number of bits (Length) is
 simply extracted from the beginning of the output. The KDF name
 "P_XXX" in this document refers the the TLS [RFC5246] PRF using P_XXX
 as the underlying P_hash function.

 To compute the CEK from the CMK, the label "Encryption" is used.

 To compute the CIK from the CMK, the label "Integrity" is used.

 When AEAD algorithms are used the KDF element MUST NOT be present.
 When they are not used, it MUST be present.

4.5.4. CMK Encryption

 JSMS supports two forms of CMK encryption:

 o Asymmetric encryption under the recipient’s public key.
 o Symmetric encryption under a shared key.

4.5.4.1. Asymmetric Encryption

 In the asymmetric encryption mode, the CMK is encrypted under the
 recipient’s public key. The only currently defined asymmetric
 encryption mode is RSA-PKCS1-1.5, which refers to [RFC3447] RSAES-
 PKCS1-v1_5.

Rescorla & Hildebrand Expires September 8, 2011 [Page 14]

Internet-Draft JSMS March 2011

4.5.4.2. Symmetric Encryption

 In the symmetric encryption mode, the CMK is encrypted under a
 symmetric key shared between the sender and receiver. All such modes
 MUST provide integrity for the CMK. This document defines four such
 modes: AES-128-CBC, AES-256-CBC referring to the [RFC5649] AES key
 wrapping modes and AES-128-GCM, AES-256-GCM, referring to AES
 encryption with GCM. For GCM the random 64-bit IV is prepended to
 the ciphertext.

4.6. Composition

 This document does not specify a combination signed and encrypted
 mode. However, because the contents of a message can be arbitrary,
 and encryption and data origin authentication can be provided by
 recursively encapsulating multiple JSMS messages. In general,
 senders SHOULD sign the message and then encrypt the result (thus
 encrypting the signature). This prevents attacks in which the
 signature is stripped, leaving just an encrypted message, as well as
 providing privacy for the signer.

5. Version Processing

 For the moment, all version numbers in the protocol MUST be 1.0.
 Receivers MUST return an error for any other version number. More
 interesting version processing will be defined in the future.

6. IANA Considerations

 [TODO]
 o Register MIME types
 o Registries for signature, encryption, MAC
 o Well known HTTP URLs

7. Security Considerations

 Much more to follow here.

8. References

8.1. Normative References

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message

Rescorla & Hildebrand Expires September 8, 2011 [Page 15]

Internet-Draft JSMS March 2011

 Bodies", RFC 2045, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
 Standards (PKCS) #1: RSA Cryptography Specifications
 Version 2.1", RFC 3447, February 2003.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5649] Housley, R. and M. Dworkin, "Advanced Encryption Standard
 (AES) Key Wrap with Padding Algorithm", RFC 5649,
 September 2009.

 [I-D.zyp-json-schema]
 Zyp, K. and G. Court, "A JSON Media Type for Describing
 the Structure and Meaning of JSON Documents",
 draft-zyp-json-schema-03 (work in progress),
 November 2010.

 [FIPS-180-3]
 National Institute of Standards and Technology (NIST),
 "Secure Hash Standard (SHS)", FIPS PUB 180-3,
 October 2008.

Rescorla & Hildebrand Expires September 8, 2011 [Page 16]

Internet-Draft JSMS March 2011

8.2. Informative References

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, January 2005.

 [I-D.hammer-webfinger]
 Hammer-Lahav, E., Fitzpatrick, B., and B. Cook, "The
 WebFinger Protocol", draft-hammer-webfinger-00 (work in
 progress), October 2009.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70,
 RFC 5652, September 2009.

 [krawczyk-ate]
 Krawczyk, H., "The Order of Encryption and Authentication
 for Protecting Communications (or: How Secure Is SSL?)",
 Advances in cryptology--CRYPTO 2001 August 2001.

 [GCM] National Institute of Standards and Technology (NIST),
 "Recommendation for Block Cipher Modes of Operation:
 Galois/Counter Mode (GCM) and GMAC", SP 800-38D,
 November 2007.

Appendix A. JSON Schema

 The following schemas formally define various namespaces used in this
 document, in conformance with [I-D.zyp-json-schema]. Because
 validation of JSON documents is optional, these schemas are not
 normative and are provided for descriptive purposes only.

Rescorla & Hildebrand Expires September 8, 2011 [Page 17]

Internet-Draft JSMS March 2011

A.1. Message Contents Schema

 {
 "description":"Message Contents",
 "type":"object",
 "properties":{
 "ContentType":{
 "description":"A MIME content type",
 "type":"string",
 "required":true
 },
 "Type":{
 "description":"Dictionary type",
 "type":"string",
 "enum":["content"],
 "required":true
 },
 "Data":{
 "description":"The underlying data",
 "type":"string",
 "required":true
 },
 "ID":{
 "description":"(optional) unique ID for this message",
 "type":"string"
 },
 "Created":{
 "description":"(optional) time the message was created",
 "type":"string",
 "format":"date-time"
 }
 }
 }

Rescorla & Hildebrand Expires September 8, 2011 [Page 18]

Internet-Draft JSMS March 2011

A.2. Common Elements Schema

 {
 "description":"The basic schema for a JSMS message",
 "type":"object",
 "properties":{
 "Type":{
 "description":"Message type",
 "type":"string",
 "enum":["signed", "encrypted"]
 },
 "Version":{
 "description":"Version number for the message",
 "type":"string",
 "enum":["1.0"]
 }
 }
 }

Rescorla & Hildebrand Expires September 8, 2011 [Page 19]

Internet-Draft JSMS March 2011

A.3. Signed Message Schema

 {
 "description":"A signed message",
 "type":"object",
 "extends":message_schema,
 "properties":{
 "Signature":{
 "description":"The signature over the SignedData",
 "type":"object",
 "properties":{
 "SignedData":{
 "description":"content to be signed, Base64",
 "type":"string",
 "required":true
 },
 "DigestAlgorithm":{
 "description":"",
 "type":"string",
 "enum":["SHA-256"]
 },
 "SignatureAlgorithm":{
 "description":"",
 "type":"string",
 "enum":["RSA-PKCS1-1.5"]
 },
 "Signer":{
 "description":"",
 "type":"string",
 "format":"uri",
 "required":true
 },
 "CertChain": {
 "description":"the signer’s cert chain",
 "type":"PKIXcertchain"
 },
 "Signature":{
 "description":"the signature",
 "type":"string",
 "required":true
 }
 }
 }
 }
 }

Rescorla & Hildebrand Expires September 8, 2011 [Page 20]

Internet-Draft JSMS March 2011

A.4. PKIX Certificate Chain Schema

 {
 "description":"A chain of PKIX certificates",
 "id":"PKIXcertchain",
 "properties":{
 "Type":{
 "description":"The type of certificate chain",
 "type":"string",
 "enum":["PKIX"] },
 "Chain":{
 "description":"PKIX certs ordered from root to end",
 "type":"array",
 "items":{
 "description":"A base64-encoded BER certificate",
 "type":"string"
 }
 }
 }
 }

A.5. Encrypted Message Schema

 {
 "description":"An encrypted object",
 "type":"object",
 "extends":message_schema,
 "properties":{
 "Recipients":{
 "description":"The list of recipient blocks",
 "type":"array",
 "required":true,
 "items":{
 "description":"A single recipient block",
 "type":"Recipient"
 }
 },
 "KDF":{
 "description":
 "The KDF used to derive the MAC and encryption keys",
 "type":"string",
 "enum":["P_SHA256"]
 },
 "Encryption":{
 "description":"Encryption control information",
 "type":"object",
 "required":true,
 "properties":{

Rescorla & Hildebrand Expires September 8, 2011 [Page 21]

Internet-Draft JSMS March 2011

 "Algorithm":{
 "description":"The algorithm used to encrypt",
 "type":"string",
 "enum":["AES-256-CBC"]
 },
 "IV":{
 "description":"Initialization vector (base64)",
 "type":"string"
 }
 }
 },
 "Integrity":{
 "description":"The integrity control information",
 "type":"object",
 "properties":{
 "Algorithm":{
 "description":"The MAC algorithm",
 "type":"string",
 "enum":["HMAC-SHA-256"]
 },
 "Value":{
 "description":"The MAC value (base64-encoded)",
 "type":"string",
 "required":true
 }
 }
 },
 "Data":{
 "description":"The ciphertext (Base64-encoded)",
 "type":"string",
 "required":true
 }
 }
 }

Rescorla & Hildebrand Expires September 8, 2011 [Page 22]

Internet-Draft JSMS March 2011

A.6. Recipient Schema

 {
 "description":"The recipient of an encrypted object",
 "type":"object",
 "id":"Recipient",
 "properties":{
 "KEKidentifier":{
 "type":"object",
 "description":"Identifies the key encrypting key",
 "properties":{
 "RecipientName":{
 "type":"string",
 "description":"The recipient’s name",
 "format":"uri"
 },
 "CertificateDigest":{
 "type":"string",
 "description":"Recipient’s cert fingerprint"
 },
 "KeyIdentifier":{
 "type":"string",
 "description": "Shared symmetric key (opaque)"
 }
 }
 },
 "Algorithm":{
 "description":"The algorithm used to protect the CMK",
 "type":"string",
 "enum":["RSA-PKCS1-1.5", "AES-256-CBC"]
 },
 "Value":{
 "description": "Base64 of the encrypted CMK",
 "type":"string"
 }
 }
 }

Appendix B. Acknowledgments

 [TODO]

Rescorla & Hildebrand Expires September 8, 2011 [Page 23]

Internet-Draft JSMS March 2011

Authors’ Addresses

 Eric Rescorla
 RTFM, Inc.
 2064 Edgewood Drive
 Palo Alto, CA 94303
 USA

 Email: ekr@rtfm.com

 Joe Hildebrand
 Cisco Systems, Inc.
 1899 Wyknoop Street, Suite 600
 Denver, CO 80202
 USA

 Email: jhildebr@cisco.com

Rescorla & Hildebrand Expires September 8, 2011 [Page 24]

