Net wor k Wor ki ng Group E. Rescorla

Internet-Draft RTFM I nc.
I ntended status: Standards Track J. Hil debrand
Expires: Septenber 8, 2011 Ci sco Systens, Inc.

March 7, 2011

JavaScri pt Message Security Format
draft-rescorl a-jsns-00.txt

Abst r act

Many applications require the ability to send cryptographically
secured nessages. \While the | ETF has defined a nunber of formats for
such nessages (e.g. CMsS) those formats use encodi ngs which are not
congeni al for Wb applications. This docunent describes a new

crypt ographi ¢ nessage format which is based on JavaScript Object
Notation (JSON) and thus is easy for Wb applications to generate and
par se.

Status of this Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute

wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nmay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on Septenber 8, 2011.
Copyright Notice

Copyright (c) 2011 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust's Legal
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 1]

Internet-Draft JSMS March 2011

include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

This docunment may contain material from | ETF Docunents or | ETF
Contri butions published or nmade publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the | ETF Trust the right to allow
nmodi fi cations of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
outside the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to fornmat
it for publication as an RFC or to translate it into | anguages other
than Engli sh.

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 2]

Internet-Draft JSMS

Tabl e of Contents

1.
2.
3

wWwww

ONoO

8
8.

rAAA

OoOrAMPOAADONE

I ntroduction .

Conventi ons Used In Th| s Docurrent.

Overvi ew .

1. Operati onal Nbdes

.2. Conventions .
.3. Certificate Proce55| ng .
.4. Certificate Dscovery

Message For mat
Base64 Handl i ng
Content nj ect
Conmon El enent s
Si gned Data
.1. Signature Conput atl on
.2. Signature Verification .
Encrypted Data . .
.1. Message Encryption .
.2. Message Decryption .
.3. Key Derivation .
.4. CWK Encryption .
Conposi tion .
VerS| on Processing .
| ANA Consi derations
Security Considerations
Ref er ences . . .
1. Normative Ref erences .
2. Informative References .

H D

o101 01Ol

Appendi x A, JSON Schena .

A

>>Pr PP
oo wNy

1. Message Contents Scherra
Conmon El enents Schema .

Si gned Message Schema .

PKI X Certificate Chain Schema
Encrypt ed Message Schema .
Reci pi ent Schena .

Append|x B. Acknow edgrrenté .
Aut hors’ Addresses . .

Rescorla & Hil debrand

Expi res Septenber 8, 2011

March 2011

Co~N~NOoOOOOODOUIAADMDMD

NNNNNNRRRRPRPRRRRRPRRERRRRRERR
WWWRROOONNUTUTUAUUOMDWWNO

[Page 3]

Internet-Draft JSMS March 2011

1. Introduction

Many applications require the ability to send cryptographically
secured (encrypted, digitally signed, etc.) nessages. Wile the |ETF
has defined a nunber of formats for such nessages, those formats are
wi dely viewed as being excessively conplicated for the demands of Wb
applications, which typically only need the ability to secure sinple
messages. |In addition, existing formats use encodi ng nechani sns
(e.g., ASN.1 BER/DER) which are not congenial for Wb applications.
This presents an obstacle to the deploynent of strong security by
such applications.

Thi s docunent describes a new cryptographi c nmessage format,
JavaScri pt Message Security (JSMS) intended to neet the need of the
Web environnent. VWhile JSMS is nodel ed on existing formats --

principally CMS [RFC5652] -- it uses JavaScript Cbject Notation
(JSON) rather than ASN. 1/BER/ DER, nmeking it far easier for Wb
applications to handle. In the interest of sinplicity, JSM5 al so

omts as nany as possible of the CM5 nodes (multiple signatures,
passwor d- based encryption).

2. Conventions Used In This Docunent

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

3. Overview

The JSMS nmessage format is sinply a JSON [RFC4627] dictionary with an
appropriate collection of fields. Each operating node will have a
separate set of fields, with a common field to distinguish between

t he nodes.

3.1. Operational Mdes
JSMS supports two operational nodes:

Encrypted Data
A bl ock of data encrypted under a random nessage encrypti on key
(MEK). The MEK is then separately encrypted for each recipient,
either via symmetric or asynmetric encryption. The data is always
integrity protected, either via a separate Message Aut hentication
Code (MAC) or an Authenticated Encryption with Associated Data
(AEAD) al gorithm such as AES- GCM or AES- CCM

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 4]

Internet-Draft JSMS March 2011

Si gned Dat a
A bl ock of data signed by a single signer using his asymetric key
and optionally carrying his certificate. Miltiple signatures are
not permitted in order to keep things sinple.

Any ot her desired security functions are provided by conposition of
these nodes. For instance, a signed and encrypted nessage is
produced by first creating a Signed nessage and then encrypting that
data. (See Section 4.6 for nmore on conposition

3.2. Conventions
In general, JSMS follows the followi ng structural conventions:

M nim ze inplementation conplexity
Wher ever possi bl e, protocol choices have been nade such that the
time and effort required to inplenent the protocol in nmany
di fferent progranm ng | anguages will be minimzed. This nmeans
that optim zations for bandw dth, CPU, and nenory utilization have
been explicitly avoi ded.

Base64 as the only encoding
Any data that does not have a straightforward string
representation (binary values, large integers, etc.) is base64-
encoded (see: [RFC4648]). In sone cases, hexadeci nal encodi ngs
m ght be nore conveni ent, but consistency is even nore inportant
to reduce inplenmentation conplexity.

No canonicalization
In many cryptographi c nessage formats, canonical encodings are
used to allow the sane value to be conputed at both sender and
recipient (e.g., for digital signatures). This is inconvenient in
JSON, which just views nmessages as a bundl e of key/val ue pairs.
I nst ead, whenever canonicalization would be required, the rel evant
data is serialized and base64-encoded for transport, allow ng both
sides to run conputations over the sane original set of octets.

| n-menory processi ng
We assune that the entire message can fit in main menory and nake
no effort to design a wire representati on which can be handl ed in
smal |l chunks in a single pass. This nmeans, for instance, that
there is no need to have a nmessage digest indicator at the
begi nning of the nessage and then the signature at the end, as is
done in CM5. Fields are sinply serialized in whatever order is
nost convenient for the JSON inplenentation. The exanples in this
docunent are generally shown in whatever order seems nost readabl e
and are not normative.

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 5]

Internet-Draft JSMS March 2011

3.3. Certificate Processing

Experi ence has shown that certificate handling (path construction) is
one of the trickier parts of building a cryptographic system Wile
JSMS supports PKI X certificates, its certificate processing is far
simpler than that of CM5. Wen a JSMS agent provides its
certificate, it must provide an ordered chain (as in TLS [RFC5246])
termnating in its owm certificate, thus renmoving the need to
construct certificate paths. The certificates MJST be ordered with
the end-entity certificate first and each certificate that foll ows
signing the certificate inmmediately preceding it. 1In addition
because many inplenentations will not want to do any ASN. 1/ BER
processing at all, we will define a Web Servi ce which applications
can use for chain validation and translation to an easy-to-parse
format. (See [TODQ).

3.4. Certificate Discovery

JSM5 will often be used in an online nessaging environnent with users
that have an address of the form user @omai n, such as enmnil, XWP, or
SIP. As such, protocols such as WebFi nger [I-D. hamrmer-webfinger] or
an end-to-end protocol can be used to retrieve appropriate
certificates. Downstream uses of JSMS SHOULD define a discovery
mechani sm sui tabl e for the intended use

4. Message For mat

Al of the field definitions in this section nake use of JSON Schena
[1-D.zyp-json-schema]. For each of the fields that is designed to
hol d an enunerated value, a registry will be created all ow ng other
values to be used in addition to the values enunerated in the schensn.

4.1. Base64 Handling

As stated in section 3.1 of [RFC4648], Base64 does not require
linefeeds after a specific nunber of characters. Since linefeeds are
not valid characters in a JSON string, whenever a field is specified
to be Base64-encoded in this docunment, it MJST NOT include any line
breaks. Base64-encoded fields al so MUST NOT incl ude JSON encoded

I i nefeeds such as "\n". Any linebreaks in the m ddle of Base64-
encoded sections of the exanples are unintended side-effects of the
production process.

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 6]

Internet-Draft JSMS March 2011

I mpl enentati on Note: Mich existing Base64-encodi ng code will
generate |inefeeds every 64 or 76 characters of output. Ensure
that these |inefeeds are renoved before inserting the output into
a JSON structure.

4.2. Content Object

JSMS operates by providing transformati ons on "Content" objects,
whi ch are just mme-typed JSON objects. These objects are then
wrapped in a signed/encrypted wapper with the follow ng fields:

Content Type: A M ME [RFC2045] nedia type that MJUST be incl uded
i ndicating the type of the "Data" field.

Type: The constant string "content™, to facilitate easy
determnation that this is the target content. This is useful
(for exanple) in certain operating conditions where you nust
continue to unwap |ayers of signatures until you get to the
content. This field MJST be incl uded.

Data: The data value MJST be included as a text encoded as Base64
(See: [RFC4648]).

ID: An OPTIONAL universally unique ID that identifies this nessage,
for use in detecting replay attacks.

Created: An OPTIONAL field describing the UTC date/tine that the
content was encoded into JSON, formatted according to the "date-
time" production of [RFC3339].

Signing and encryption transforma "Content" object into "Signed" and
"Encrypted" objects respectively. Verification and decryption
transform"Si gned" and "Encrypted" objects back into "Content"

obj ects. For exanple:

{
"Cont ent Type": "text/plain; charset=UTF-8",
"Type":"content",
"Dat a": " SGVsb&Bsl| Fdvemxk Cg==",
"I D'":"746a4c9f - 8e84- 4313- b669- 81590ee2949e",
"Created":"2011-03-07T16: 17Z"

}

Fi gure 1: Content Exanple
4.3. Conmon El enents

A JSMS nessage is a JSON dictionary object containing a set of
speci fic val ues.

The following fields MIST be present in all nessages:

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 7]

Internet-Draft JSMS March 2011

Version: The version nunber. For this specification this value MIST
be set to the string "1.0". See Section 5 for details on version
handl i ng.

Type: The type of the nmessage. MJST be either "signed" or
"encrypted”, to indicate a signed nessage (Section 4.4) or an
encrypted nmessage (Section 4.5) respectively.

4.4. Signed Data

A "signed" nessage contains a signed data block plus a digita
signature over that data. To sinplify inplenentation, only one
signer is allowed. 1In addition to the required fields from
Section 4.3, the fields in a signature nessage are:

SignedData: This field MJUST consist of a Base64-encoded "Content"
structure (see Section 4.2), which MIUST have been encoded into
octets as UTF-8 prior to Base64-encoding. The signature is
comput ed over the UTF-8 octet stream before Base64-encoding to
ensure that the sender and receiver have the exact sane
representation.

Di gest Algorithm The nessage digest used to conpute the signature.
This field MIUST be present for RSA-based signatures but MAY be
omtted for future signatures which do not allow flexible digests.
For now, this field MJUST have the val ue "SHA-256", neaning the
di gest al gorithm was SHA-256 [FI PS-180-3].

SignatureAlgorithm The signature algorithmused to conmpute the
signature. This field MJST be present. For now, this field MJST
have t he val ue "RSA- PKCS1-1.5", meaning the signature al gorithm
was RSASSA- PKCS1-v1l 5 as specified in [RFC3447].

Signer: The signer’s identity, expressed as a URI [RFC3986]. This
field MUST be present.

Cert Chain: The signer’s certificate chain, if any (see
Section 4.4.2.1).

Signature: The Base64-encoded signature, which MJST be included (see
Section 4.4.1).

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 8]

Internet-Draft JSMS March 2011

" Si gnedDat a" : " ewogl CAgl kNvbnRl bnRUeXBlI | j 0i dGv4dCOwbGFpbj sgY2hhcn
N dD1VVEYt OCl sCi Agl CAi VH wZSI 61 m\vbnRI bnQ LAogl CAg
| KRhdGEi G JTR1ZzYkc4cOl GZHZj bXhr QRc9PSI sCi Agl CAi SU
Q O | SBNDZhNGVBZi 04ZTgOLTQzMIM Yj Y20S04MTUsMGVE M kO
OAUi LAogl CAgl kNyZWFOZWQ O | yMDEXLTAZzLTA3VDE2QG E3W
| Kf Q@==",

"Di gest Al gorithm:"SHA- 256",

" Si gnat ur eAl gorit hnm': " RSA- PKCS1- 1. 5",

"Si gner": " xnpp: roneo@xanpl e. net",

"Signature": "sNsxJlt Uaz4pSzAt Ji PZagUW4SwWigWex Gof f K/ WIRDI 2uq7TxN
1 VOSWGE kv Q7 CaTABbeUuc6c KGO YxnH5hME3bHB5L9PKPWSj Xz X0
68RPxQyPI i 2YJDDHKVPbof Ea86CLgYcwTF5qr cL7f QFvl RSOVXpS
SJf I di AINA+nEnk="

Figure 2: Signed Message Exanple
4.4.1. Signature Conputation

The signature is conputed over the string prior to base64 encodi ng.
I.e., the processing order for encoding is:

1. Serialize the inner "Content" value into a UTF8-encoded oct et
series X

2. Compute the signature value over X, and call the result Y. (In
the case of signatures which use digests, this neans feed the
literal octets of the signature into the digest function.)

3. Conpute the Base64 representation of X and insert it into the
"SignedData" field of the nessage.

4. Conpute the Base64 representation of Y, and insert the result
into the "Signature" field.

This procedure renpoves dependencies on the exact serialization
algorithm variation in spacing, field order, etc. do not affect
signature validity since the Base64 representation preserves them on
the wire and protects them from nodification by internediaries.

Note: An alternative algorithmwould be to conpute the signature on
the base64 representation itself, but this has two di sadvant ages:
(1) any internmediari es which change spacing/line breaks would
break the signature. (2) it is inconsistent with the algorithmfor
encryption (Section 4.5), which is designed to avoid multiple
base64 encodi ng.

This procedure only specifies the input to the signature conputation

The details of the conputation depend on the signature al gorithm
itself. The mapping fromcode points to algorithns is found in

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 9]

Internet-Draft JSMS March 2011

Section 6.
4.4.2. Signature Verification

In order to verify the signature, the steps of the previous section
are reversed.

1. Process the provided "Signer" and "CertChain" fields as described
in Section 4.4.2.1 in order to determ ne the sender’s public key.

2. Base64 decode the "SignedData" field in order to recover a string
X.

3. Verify the "Signature" field against X using the sender’s public

key and the "SignatureAl gorithm and "Di gest Al gorithm fields.

If the signature fails, return an error.

Deserialize X to recover the inner "Content" val ue.

Check any "ID' or "Created" fields for replay.

Using the val ue of the "Content Type" field to give MM type

cont ext, Base64-decode the "Data" field to retrieve the intended

nmessage

ook

4.4.2.1. Certificate Processing

JSMS uses the "CertChain" elenent to carry certificate chains. For
the monment, each certificate in the chain is expected to be a PKI X
certificate BER-encoded then Base64-encoded. Future versions of this
docunent will likely specify other valid certificate formats, since
one of the goals of this format is to avoid . The neaning of the
fields is described bel ow

Type: The type of the certificate chain. The only defined value is
"PKI X", referring to PKIX [RFC5280] certificates.

Chain: An array of certificate values. 1In the case of "PKIX'
certificates this is a list of base64-encoded DER/ BER PKI X
certificate values. PKIX certificates MJUST be represented in
order with each certificate certifying the next and the fina
certificate representing the end-entity.

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 10]

Internet-Draft JSMS March 2011

"Type": " PKI X",
"Chain": [

"M | CPj CCAaegAW BAgl BETANBgkghki GOw0BAQUFADBDVRMAMEQ
YKCZI mi ZPy LGQBGRYDY29t MReWFQYKCZI mi ZPy LGQBGRYHZXhh
bXBs ZTETMBEGAL UEAX MKRXhhb XBs ZSBDQT Ae FWOWNDAO Mz Ax ND
| 1Mz RaFWOWNTAOMz AXNDI 1Mz RaMEMK Ez ARBgoJki aJk/ | sZAEZ
FgN b20xFzAVBgoJki aJk/ | sZAEZFgdl eGFt ¢ Gxl MRMMEQYDVQ
QDEwpFeGFt cGxl | ENBM Gf MAOGCSgGSI b3 DQEBAQUAA4A GNADCB
i QKBgQDC15dt KHCqW88j LoBwOe7bboUt 1WhPej Q +SJyR3Ad74
Dpyj CMAMBabl t Ft G561 5my UDf gR6UDBJ Z3Ht 2gZVo8Rc Gr X8ckR
Tzp+P5m\bnal dF9epFVT5cdoN PHHTs SpoX+vWshyt 81UKwW 17
nOf | z+4qMs0SCOEqQpPj A2 YYnmrhH6Q DAQAB0OI wQDAdBgNVHQAE
FgQUCG vhTPI OUp6+1 KTj nBqSi CELDI wDg YDVROPAQH BAQDAg
EGVA8 GAL Ud EWEB/ wQFMAMBAF 8wDQYJKoZI hvc NAQEFBQADg YEA
bPgCdKzZh4nmQEp!l QvbHI Tr TxH+/ ZI E6nFk DPqdgMR2f z RDhVf KL
fvk7888+I +f LI S/ BZuKar h9Hpv1X/ vs5XK82al gO6hNUWEY 7yb
uM t xV6&RQE G YDhMyvevi uSf kpDgW vi mi\hs 25HOL 7 0DaNn Xf
P6k YE8Kkr vFXyU 63zn2KE="

"M | CcTCCAdggAW BAgl BEj ANBgkghki GOw0BAQUFADBDVRMAMEQ
YKCZI m ZPy LGQBGRYDY29t MReWFQYKCZI m ZPy LGQBGRYHZXhh
bXBs ZTETMBEGAL UEAX MKRXhhb XBs ZSBDQT Ae FWOWNDAS MT Ux MT
AM FaFWOWNTAz MTUXMTQAM FaMEMKEz ARBgoJki aJk/ | sZAEZ
FgN b20xFzAvBgoJki aJk/ | sZAEZFgdl eG-t cGxl MRMAMEQYDVQ
QPEWpFbmMRWs0aXR5M GF MAOGCSqGSI b3 DQEBAQUAAAGNADCB
i QKBgQ@hauQDMI cCPPQB7UeTX8Ue/ b10H ppl r wo3Xs7bZW n
+I MYWa8j 50d4f r nt G wLQX3KuJl 6Qdf hYj TE+oTf UxuHyq4xpJ
Cf RLJt snZz CCEgFK6Rg2wXx Ti 2z8L3pD7DMVRf j Kye9WjzwEUxh
LsE/ It FHqLI VQUEOXGo5r yFpX/ | wvi DAQABo 3Uwe z AhBgNVHREE
G AYgRZI bmQuZWs0aXR5QGV4A YWLwh GUU' Y29t MBOGA1 Ud Dg QABB
QXe51 w 0TWZuGQECIsFk/ Aj kHdbTAf BgNVHSMVMEGDAWIBQ aK+F
MBg5Snr 4gpOCc GpKI | s M ACBgNVH@BBAF 8 EBAMCBs AWDQYJ Ko
ZI hvc NAQEFBQADYG YEAACAONFt oMyG7 G YOr XHFI Rr hBMrur cdi
FKQON HA4gwa2R7 AANWQoLgFbOHLYNg3TGOBII 7SgEVe M-dwWRT
s50yZKnDvyJj ZpCHn7+5ZDdO0t hi 6G- kWI'g8zdhPBqj pMrKsr 9z
1E3kWORI 6r wgdJKGDs6EYHbpc 7vHhdORRepi Xc0="

Figure 3: PKI X CertChain Exanple

The recipient MIST verify the certificate chain (in the case of PKIX
certificates according to [RFC5280]). |If any validation failure
occurs, the inplenentati on MIST abort processing and return an error.

Once the certificate chain is validated, the end-entity certificate

must contain an identity which nmatches the "Signer" field. 1In the
case of PKI X certificates, the certificate MJST contain a

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 11]

Internet-Draft JSMS March 2011

subj ect Alt Nane field of type "uniformResourceldentifier". This field
MUST be equivalent to the URI in the "Signer" field. |If not, an
error MJUST be returned.

4.5. Encrypted Data

An "encrypted" nmessage contains an encrypted "Content" block. Al
"encrypted" nessages contain a symetric integrity check, either via
a MAC or via an AEAD [RFC5116] al gorithm such as Gal oi s/ Count er Mde
(&M [GCM). A nessage nmay be encrypted to an arbitrary nunber of
reci pients. Each recipient is represented by a "Recipient" block
whi ch contains a copy of the keying material encrypted for that
recipient. Both synmetric and asymetric key establishnent is
supported. In order to support both integrity and encryption, what
is carried in the Recipient block is a Content Master Key (CMK) which
is then used with a Key Derivation Function (KDF) to generate the
Content Encryption Key (CEK) used to encrypt the nessage and the
Content Integrity Key (CIK) used with the MAC. In addition to the
required fields from Section 4.3 the fields in an encrypted nmessage
are:

Recipients: The list of recipients. This is an array of Recipient
obj ects, each of which establishes the CMK for that recipient.

KDF: Specifies the key derivation function used to generate the CEK
and the CIK fromthe CW. This field MAY be absent if an AEAD
algorithmis used, in which case the CEK is derived by copying the
CWK.

Encryption: Specifies the properties of the encryption. The
Algorithmfield MIST contain the encryption algorithmand the IV
field specifies the initialization vector (if required for the
algorithm. This field MIST be present.

Integrity: Specifies the properties of the integrity check. The
Algorithmfield MIST contain the MAC al gorithm and the Value field
MUST contain the MAC. This field MAY be absent if no integrity
check is used.

Data: Contains the ciphertext.

Each Reci pi ent object provides an encrypted copy of the CW for a
single recipient. The meaning of the fields is described bel ow

KEKi dentifier Describes the key encrypting key (KEK) used to encrypt
the CMK. Either a "RecipientName" or a "Keyldentifier" MJST be
provided. |f the "RecipientNane" is provided, then a
"CertificateDigest” SHOULD be provided.

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 12]

Internet-Draft JSMS March 2011

Reci pi ent Name: Provides the recipient’s name in URI form

CertificateDigest: For now, the SHA-1 fingerprint of the PKIX
certificate associated with the recipient.

Keyldentifier The nane of a shared symmetric key known to both
sender and recipient. This need not be globally unique as |ong
as it is unique within the recipient’s context.

Algorithm The algorithmused to encrypt the CMK. For now, one of

" RSA- PKCS1- 1. 5" (neani ng RSASSA- PKCS1-v1_5 as specified in

[RFC3447]) or "AES-256-CBC' (meaning [FIPS-180-3]). Note the JSMs

only supports key transport and not key agreenment (since key

agreenment can always be turned into key transport).
Val ue: The COWK encrypted under the specified algorithmand key.

.5.1. Message Encryption
The nmessage encryption process is as foll ows.

1. Cenerate a random CMK. The CWK MJIST have a length at |east equa
to that of the larger of the required integrity or encryption
keys and MJUST be generated randomy. See [RFC4086] for

consi derati ons on generating randomvalues. [[TODO - we need a

section on generating randomess in browsers - it's easy to screw

up 1]

Encrypt the CWK for each recipient (see Section 4.5.4)

Generate a random 1V (if required for the algorithm.

Run the key derivation algorithm (see Section 4.5.3) to generate

the CEK and CIK (if not using an AEAD al gorithm.

Serialize the content into a bitstring M

Encrypt Musing the CEK and IV to formthe bitstring C

Set the Val ue el enent equal to the base64-encoded representation

of C.

8. If not using an AEAD al gorithm conpute the function | = MAC(CI K,
C) using the chosen integrity algorithm Note that this is EtA
encryption which is considered the best cryptographic choice
(See: [krawczyk-ate]). Set the Integrity.Value elenent equal to
t he base64- encoded representation of |

Pwn

No o

.5.2. Message Decryption

The message decryption process is the reverse of the encryption
process.

1. ldentify a Recipient block which appears to reference a key known
to the recipient.

2. Decrypt the CWK. If this fails and another Recipient block
appears plausible, that MAY be tried.

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 13]

Internet-Draft JSMS March 2011

3. Run the key derivation algorithm (see Section 4.5.3) to generate
the CEK and CIK (if not using an AEAD al gorithm.

4. 1If not using an AEAD algorithm compute the integrity check val ue
I” on the binary representation of the Value el enent using the

indicated integrity check. |If the Integrity.Value does not natch
I", then an error MJST be reported and processi ng MJST be
abort ed.

5. Decrypt the binary representation of the Value el enment and out put
the result

4.5.3. Key Derivation

The key derivation process converts the CMK into a CEK. It assunes
as a primtive a Key Derivation Function (KDF) which notionally takes
t hree argunents:

Mast er Key: The master key used to conpute the individual use keys
Label: The use key label, used to differentiate individual use keys
Length: The length of the desired use key

The only real KDF specified in this docunent is the TLS PRF, which is
i nvoked as PRF(MasterKey, Label) with an enpty seed and produces an
arbitrary length output. The appropriate nunmber of bits (Length) is
simply extracted fromthe begi nning of the output. The KDF nane
"P_XXX" in this docunent refers the the TLS [RFC5246] PRF usi ng P_XXX
as the underlying P_hash function.

To conmpute the CEK fromthe CWK, the |abel "Encryption" is used.
To conpute the CIK fromthe CWK, the |abel "Integrity" is used.

When AEAD al gorithnms are used the KDF el enent MUST NOT be present.
When they are not used, it MJST be present.

4.5.4. CWMK Encryption
JSMS supports two forns of CMK encryption

0 Asynmetric encryption under the recipient’s public key.
0 Symmetric encryption under a shared key.

4.5.4.1. Asymetric Encryption
In the asymetric encryption node, the CMK is encrypted under the
recipient’s public key. The only currently defined asynmetric

encryption nmode i s RSA-PKCS1-1.5, which refers to [RFC3447] RSAES-
PKCS1-v1_5.

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 14]

Internet-Draft JSMS March 2011

4.5.4.2. Symmetric Encryption

In the symmetric encryption node, the CMK is encrypted under a
symretric key shared between the sender and receiver. Al such nobdes
MUST provide integrity for the CM. This docunent defines four such
nodes: AES-128-CBC, AES-256-CBC referring to the [RFC5649] AES key
wr appi ng nodes and AES-128- GCM AES-256-CGCM referring to AES
encryption with GCM For GCM the random 64-bit IV is prepended to

t he ci phertext.

4.6. Conposition

Thi s docunment does not specify a conbination signed and encrypted
nmode. However, because the contents of a message can be arbitrary,
and encryption and data origin authentication can be provi ded by
recursively encapsulating nultiple JSM5 nessages. |In general
senders SHOULD sign the nessage and then encrypt the result (thus
encrypting the signature). This prevents attacks in which the
signature is stripped, |leaving just an encrypted nmessage, as well as
provi ding privacy for the signer.

5. Version Processing
For the noment, all version nunbers in the protocol MJST be 1.0.

Receivers MJUST return an error for any other version nunber. Mbre
i nteresting version processing will be defined in the future.

6. | ANA Consi derati ons

[TODO
0 Register MM types
0 Registries for signature, encryption, MAC
o Well known HTTP URLs
7. Security Considerations

Much nore to follow here

8. References
8. 1. Nor mati ve Ref erences

[RFC2045] Freed, N. and N. Borenstein, "Miltipurpose Internet Mail
Extensions (M ME) Part One: Format of |nternet Message

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 15]

Internet-Draft JSMS March 2011

Bodi es", RFC 2045, Novenber 1996.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Level s", BCP 14, RFC 2119, March 1997.

[RFC3339] Kiyne, G, Ed. and C. Newran, "Date and Tinme on the
Internet: Tinmestanps", RFC 3339, July 2002.

[RFC3447] Jonsson, J. and B. Kaliski, "Public-Key Cryptography
St andards (PKCS) #1: RSA Cryptography Specifications
Version 2.1", RFC 3447, February 2003.

[RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomess
Requirements for Security", BCP 106, RFC 4086, June 2005.

[RFC4627] Crockford, D., "The application/json Media Type for
JavaScript Object Notation (JSON)", RFC 4627, July 2006.

[RFC4648] Josefsson, S., "The Basel6, Base32, and Base64 Data
Encodi ngs", RFC 4648, Cctober 2006.

[RFC5116] MGew, D., "An Interface and Al gorithns for Authenticated
Encryption", RFC 5116, January 2008.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
Housley, R, and W Polk, "Internet X 509 Public Key
Infrastructure Certificate and Certificate Revocation List
(CRL) Profile", RFC 5280, May 2008.

[RFC5649] Housley, R and M Dworkin, "Advanced Encryption Standard
(AES) Key Wap with Padding Al gorithni, RFC 5649,
Sept enber 2009.

[1-D. zyp-json-schena]
Zyp, K. and G Court, "A JSON Media Type for Describing
the Structure and Meani ng of JSON Documents”,
draft-zyp-json-schema-03 (work in progress),
Novenber 2010.

[FI PS-180- 3]
National Institute of Standards and Technol ogy (N ST),
"Secure Hash Standard (SHS)", FIPS PUB 180- 3,
Cct ober 2008.

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 16]

Internet-Draft JSMS March 2011

8.2. Informative References

[RFC3986] Berners-Lee, T., Fielding, R, and L. Masinter, "Uniform
Resource ldentifier (URI): Generic Syntax", STD 66,
RFC 3986, January 2005.

[I-D. hanmer - webf i nger]
Hamrer - Lahav, E., Fitzpatrick, B., and B. Cook, "The
WebFi nger Protocol ", draft-hamrer-webfinger-00 (work in
progress), October 2009.

[RFC5652] Housley, R, "Cryptographic Message Syntax (CvB)", STD 70,
RFC 5652, Septenber 2009.

[krawczyk- at e]
Krawczyk, H., "The Oder of Encryption and Authentication
for Protecting Conmunications (or: How Secure |Is SSL?)",
Advances in cryptol ogy--CRYPTO 2001 August 2001.

[&M National Institute of Standards and Technol ogy (N ST),
"Recommendati on for Bl ock Ci pher Mdes of Operation:
Gal oi s/ Counter Mbde (GCM and GVAC', SP 800- 38D,
Novemnber 2007.

Appendi x A, JSON Schema

The followi ng schemas fornmally define various nanmespaces used in this
docunent, in conformance with [I-D.zyp-json-schema]. Because

val i dation of JSON docunents is optional, these schemas are not
normati ve and are provided for descriptive purposes only.

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 17]

Internet-Draft JSMS March 2011

A.1. Message Contents Schenma
{

"description":"Message Contents",
"type":"object",
"properties":{
" Cont ent Type": {
"description":"A M ME content type",
"type":"string",
"required":true
1
"Type":{
"description":"Dictionary type",
"type":"string",
"enuni:["content"],
"required":true
1
"Data": {
"description":"The underlying data",
"type":"string",
"required":true
1
"ID:{
"description":"(optional) unique ID for this nessage",
"type":"string"

"Created": {
"description":"(optional) time the nessage was created",

"type":"string",
"format":"date-tine"

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 18]

Internet-Draft JSMS March 2011

A.2. Common El enents Schema

{
"description":"The basic schema for a JSM5 nessage",
"type":"object",
"properties":{
"Type":{
"description":"Message type",
"type":"string",
"enuni:["signed", "encrypted"]
}
"Version": {
"description":"Version nunber for the nmessage",
"type":"string",
"enunt':["1.0"]
}
}
}

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 19]

Internet-Draft JSMS March 2011

A. 3. Signed Message Schenm
{

"description":"A signed nessage",
"type":"object",
"ext ends": message_schenms,
"properties":{
"Signature": {
"description":"The signature over the SignedData",
"type":"object",
"properties":{
" Si gnedDat a": {
"description":"content to be signed, Base64",
"type":"string",
"required":true
1
"Di gest Al gorithm':{
"description":"",
"type":"string",
"enunt: [" SHA- 256"]
}

i gnatureAl gorithm:{
"description":"",
"type":"string",

"enunt': [" RSA- PKCS1- 1. 5"]
}

" Signer": {
"description":"",
"type":"string",
"format":"uri",
"required":true

’

"CertChain": {

"description":"the signer’s cert chain",
"type":"PKl Xcertchai n"

"Signature": {
"description":"the signature",
"type":"string",
"required":true

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 20]

Internet-Draft JSMS March 2011

A.4. PKIX Certificate Chain Schemn

{
"description":"A chain of PKIX certificates",
"id":"PKI Xcertchain",
"properties":{
"Type":{
"description":"The type of certificate chain",
"type":"string"
“enun': ["PKI X"] 1},
"Chai n":{
"description":"PKI X certs ordered fromroot to end",
"type":"array",
"items":{
"description":"A base64-encoded BER certificate",
"type":"string"

A.5. Encrypted Message Schenm

"description":"An encrypted object",
"type":"object",
"extends": message_schens,
"properties":{
"Reci pients":{
"description":"The list of recipient blocks",
"type":"array",
"required":true
"itenms":{
"description":"A single recipient block",
"type":"Recipient"

} il
"KDF": {
"description":
"The KDF used to derive the MAC and encryption keys"
"type":"string",
"enuni': [" P_SHA256"]
}

Encryption":{
"description":"Encryption control information",
"type":"object",
"required":true
"properties":{

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 21]

Internet-Draft JSMS March 2011

"Algorithm:{
"description":"The algorithmused to encrypt",
"type":"string",
"enunt': [" AES- 256- CBC']

’
I AVARR|
"description":"Initialization vector (base64)",
"type":"string"
}
}
’
"Integrity":{
"description":"The integrity control information",
"type":"object",
"properties”:{
"Al gorithni:{
"description":"The MAC al gorithni,
"type":"string",
"enuni': [" HVAC- SHA- 256"]
},
"Val ue": {
"description":"The MAC val ue (base64-encoded)",
"type":"string",
"required":true
}
}
},
"Data": {
"description":"The ci phertext (Base64-encoded)",
"type":"string",
"required":true
}

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 22]

Internet-Draft JSMS March 2011

A. 6. Recipient Schema

{
"description":"The recipient of an encrypted object"”,
"type":"object",
"id":"Recipient",
"properties":{
"KEKi dentifier":{
"type":"object",
"description":"ldentifies the key encrypting key",
"properties":{
"Reci pi ent Name": {
"type":"string",
"description":"The recipient’s nane",
"format":"uri”
},
"CertificateDi gest":{
"type":"string",
"description":"Recipient’s cert fingerprint"
}
"Keyldentifier":{
"type":"string",
"description": "Shared synmetric key (opaque)"”
}
}
’
"Al gorithni:{
"description":"The algorithmused to protect the CW"
"type":"string",
"enuni: [" RSA- PKCS1- 1. 5", "AES-256-CBC']
}
"Val ue": {
"description": "Base64 of the encrypted CW"
"type":"string"
}
}
}

Appendi x B. Acknow edgnents
[TODO

Rescorla & Hil debrand Expi res Septenber 8, 2011 [Page 23]

Internet-Draft

Aut hors’ Addr esses

Eric Rescorl a
RTFM I nc.

2064 Edgewood Drive
Palo Alto, CA 94303

USA

Email: ekr@tfmcom

Joe Hil debrand

Ci sco Systens, Inc.

JSMS

1899 Wknoop Street, Suite 600
Denver, CO 80202

USA

Email: jhil debr @i sco.com

Rescorla & Hil debrand

Expi res Septenber 8, 2011

March 2011

[Page 24]

