Address Resolution for Massive number of hosts in Data Center (ARMD)

Problem Statements-01

Linda Dunbar (ldunbar@huawei.com) & Sue Hares (shares@huawei.com)
Murari Sridharan (muraris@microsoft.com)
Narasimhan Venkataramaiah (narave@microsoft.com)
Benson Schliesser(bschlies@cisco.com)
Special Properties of large Internet Data Center

- **Massive number of hosts**
 - Server virtualization makes it easier to instantiate multiple Virtual Machines (VM) on one physical server.

- **Massive number of client subnets (VLANs, or Closed User Groups)**
 - Each client may need 10 plus VLANs for various zones. Some subnets may have their own IP addresses.

- **High desire to dynamically grow and shrink resources to meet the demand and to draw those resources from most optimal locations.**
 - This may lead to hosts belonging to one subnet to span across multiple shelves or locations.
 - Then, the ARP broadcast and ND multicast messages will traverse many backbone links and switches.

<table>
<thead>
<tr>
<th>Amortized Cost</th>
<th>Component</th>
<th>Sub-Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>~45%</td>
<td>Servers</td>
<td>CPU, memory, storage systems</td>
</tr>
<tr>
<td>~25%</td>
<td>Infrastructure</td>
<td>Power distribution and cooling</td>
</tr>
<tr>
<td>~15%</td>
<td>Power draw</td>
<td>Electrical utility costs</td>
</tr>
<tr>
<td>~15%</td>
<td>Network</td>
<td>Links, transit, equipment</td>
</tr>
</tbody>
</table>
Why Layer 2 in Data Center?

- VM migration requires Source and Destination to be in Layer 2
 - VMs being moved need to maintain the same IP addresses
- Many network services such as firewalls and load balancers must be in-line with network traffic in order to function correctly.
 - Some load balancing algorithms, e.g. Direct Server Return, requires all hosts in Layer 2
 - Layer 2 networks often provide a form of traffic engineering for steering traffic through these devices for a given subnet or segment.
- Active/Standby hosts need to be in one Layer 2
ARP problems in general

- **There are lots of ARP messages:**
 - Hosts frequently send out gratuitous ARP.
 - Hosts (applications) age out MAC to target IP mapping very frequently.
 - Usually in minutes.
 - Servers/hosts and their applications behavior are unpredictable

- **The impact of huge amount of ARP messages in one broadcast domain:**
 - Heavy impact to servers
 - Typical low cost Layer 2 switches don’t have sophisticated features to block broadcast data frames or have policy implemented to limit the flooding and broadcast storm.
 - Force switches (e.g. TOR) to learn many useless source MAC addresses
 - For a subnet with 1000 hosts, if there is only one host of the subnet residing under TOR-1, the TOR-1 has to learn all the 1000 MACs for all the hosts because of frequent ARP msgs even though the host under the TOR-1 may only need to talk to a couple of other hosts in the subnet.
 - When hosts’ ARP timer is shorter than switches MAC FDB time-out value, the switches will be refreshed of all the MACs
 - When the TOR-1 has thousands of servers underneath, the MAC FDB can overflow causing more unknown flooding.
ARP/ND Problems get worse when subnets are not confined to one location

- ARP/ND broadcast/multicast messages are no longer confined to smaller number of ports.
- Some hosts might be temporarily out of service during VM migration.
 - Lots of ARP request broadcast messages transmitted from hosts to temporarily out of service hosts.
 - switch does not learn their path because there is no response from those target hosts,
 - causing all ARP msgs from various hosts will be broadcasted repetitively.
- Gratuitous ARP broadcast from new location flood to all TOR switches
Why VLAN (or smaller subnet) alone is not enough

- VLAN works well when all hosts belonging to one VLAN are confined to one location.
- When hosts belonging to one VLAN are placed at different shelves and one shelf has multiple VLAN enabled, all broadcast messages are no longer confined anymore.
 - The effect is same as one large VLAN.