Usage/Volume Tier Feedback Use Case for Congestion Exposure

draft-mcdysan-conex-volumetier-usecase-00

Dave McDysan
Outline

• Background
 – Submitted/presented as part of draft-mcdysan-conex-other-usecases-00 in Beijing
 – From minutes
 • Some people expressed interest, but others
 – believed out of scope since it was not part of mechanism draft
 – could potentially be built of the conex abstract mechanism
 • Request made to submit individual draft

• Problem Statement & Objectives
• Potential Support using Abstract Mechanism
• Additional Support with other Mechanisms
• Next Steps
Problem Statement/ Objectives

• Problem Statement
 – Complex for users to track/manage volume usage
 – Volume counting doesn’t discriminate between heavy usage when congestion occurs or doesn’t
 – Need better incentive for LEDBAT style and/or lower effort transport

• Objectives
 – Inform receiver of cumulative volume and tier crossing trend
 – Inform receiver whether congestion counting is occurring
 – Standardize on means to indicate to receiver sets of packets not subject to congestion counting
 – Enable a means for recharging
Potential Support using Abstract Mechanism

• WG Charter item for standardization of feedback from receiver to sender
 – If made extensible, then many sub-experiments could be performed

• Local implementation functions
 – Counting usage/volume differently based upon abstract mechanism signaled congestion experienced
 – Lower effort marked packet counting

• What is missing is feed forward information that meets objectives
 – operating over a longer timescale
Additional Support with other Mechanisms

• Usage/volume counter similar to a forwarding queue, but operates over much longer timescale

• Since timescale is large, no need to feed forward information in each packet
 - Most benefit occurs for long-lived, heavy volume flows
 • e.g., video streaming or large file transfer

• Use experimental TCP and IPv6 hop-by-hop options header to implement feed forward “probe” packets from sender to receiver
 - Requires cooperation between TCP sender and receiver similar to that assumed in Conex
 - Needs to be part of TCP flow (e.g., possible experimental use of urgent pointer)
 - “Probe” packets at IPv6 nodes don’t require fast path processing
 • these packets could be handled by a “special processor”
Probe Request Packet

• Periodically transmitted by sender
• Intercepted by IPv6 element supporting experimental codepoints and forwarded to Special Processor

• Probe Request Contents
 – Request information on the users usage/volume tier
 – Request statistics on usage
 – Request threshold trend report
 – Request not counting this flow since it is lower effort
Probe Response Packet

- Generated by Special Processor from Polled Usage Counters and IPv6 Element config
- Delivered to receiver (and API) and relayed back to sender (and API)
- Contents
 - Duration and cap for the volume measurement tier
 - Packets and octets received/sent
 - Total, conex marked, dropped, lower effort
 - Fraction of the usage tier already used
 - Tier crossing alert if current trend persists
 - A pointer (e.g., URL) and identification of authentication method that for queries
 - alternative charging methods (e.g., recharging)
 - secure method for accessing counters, configuration data
 - Other congestion measures (e.g., Shapley value)
Next Steps

• Inviting others interested in concept to discuss on the list or privately
• Potentially submit to iccrg as a research topic
 – For example, investigation of other measures of congestion (e.g., Shapley value)