Constrained RESTful Environments
WG (core)

Chairs:
Cullen Jennings <fluffy@cisco.com>

Carsten Bormann <cabo@tzi.org> With some help from Peter Saint-Andre...

Mailing List:
core@ietf.org
Jabber:

core@jabber.ietf.org

http://6lowapp.net core@IETF80, 2011-03-28 1

* We assume people have read the drafts

* Meetings serve to advance difficult issues by making
good use of face-to-face communications

 Be aware of the IPR principles, according to RFC 3979
and its updates

v'Blue sheets
v'Scribe(s)

http://6lowapp.net core@IETF80, 2011-03-28

IAB Workshop and Tutorial on
Interconnecting Smart Objects
with the Internet (2011-03-25/-26)

* http://www.iab.org/about/workshops/smartobjects/
tutorial.html

* http://www.iab.org/about/workshops/smartobjects/
index.html

* See position papers and slides there
* IAB workshop report to come out

* One thing became clear that may be worth reporting
about:

http://6lowapp.net core@IETF80, 2011-03-28 3

10/100 vs. 50/250

 There is not just a single class of “constrained node”

* Class 0: too small to securely run on the Internet
“too constrained”

e Class 1: ~10 KiB data, ~100 KiB code

“quite constrained”, “10/100”

e Class 2: ~50 KiB data, ~250 KiB code

“not so constrained”, “50/250”

* These classes are not clear-cut, but may structure the
discussion and help avoid talking at cross-purposes

http://6lowapp.net core@IETF80, 2011-03-28 4

Milestones (from WG charter page)
http://datatracker.ietf.org/wa/core/charter/

Document submissions to IESG:

Apr 2010 Select WG doc for basis of CoAP protocol

e Dec 2010 1 — CoAP spec* with mapping to HTTP REST
submitted to IESG as PS

Dec 2010 2 — Constrained security bootstrapping spec
submitted to IESG as PS

* Jan 2011 Recharter to add things
reduced out of initial scope

http://datatracker.ietf.org/wg/core/charter/
http://datatracker.ietf.org/wg/core/charter/

Drafts http://tools.ietf.org/wg/core/

Draft name Rev. Dated Status Comments, Issues
Active:
A, draft-ietf-core-observe 02 2011-03-14 Active mmwi/17
Q draft-ietf. -link-format -03 2011-03-14 Active mmm(/18
Q draft-ietf-core-coap 05 2011-03-14 Active = (0/64
A draft-ietf-core-block 02 2011-03-14 Active mmw1/16
Related Active Documents (not working group documents):
(To see all core-related documents, go to
core-related drafts in the ID-archive)
Q draft-vanderstok-core-be 03 2011-03-14
Q draft-garcia-core-security -01 2011-03-14
‘ Q draft-castellani-core-http-coap-mapping 01 2011-03-14
OQ‘ draft-castellani-core-coap-overhead -01 2011-03-14
Q draft-braun-core-compressed-ipfix 02 2011-03-14
Q draft-bormann-coap-mis 07 2011-03-14
Q draft-rahman-core-groupcomm 04 2011-03-11
O A draft-bormann-core-simple-server-discovery 00 2011-03-08 O Mon
Q draft-vial-core-link-format-wadl -00 2011-03-07 @ Wed
‘ Q draft-hartke-core-coap-http 00 2011-03-07 O Wed (1f time pCI'IIlitS)
Q draft-castellani-core-trans -00 2011-03-07
-00 2011-03-07

O Q draft-brandt-coap-subnet-discovery
Q draft-moritz-core-soap-over-coap-00
http://6lowapp.net core@IETF80, 2011-03-28 6

13:00
13:10
13:15
13:40
13:55
14:20
14:40

15:00 retire to Wednesday, 15:10
15:15 Group Communication

15:25

15:35 HTTP Mapping

15:50

80t IETF: core WG Agenda

Introduction, Agenda, Status

1 — link-format
1 — core CoAP
1 — block

1 — observe

2 — basic security

discovery

CoAP Usage

new: SOAP;

16:10 retire
http://6lowapp.net

; overhead; security

core@IETF80, 2011-03-28

Chairs (10)

ZS (5)

ZS (25)

CB (15)

KH (25)

ZS (20)

CB+AB (20)

Chairs (05)

AR (10)

PV (10)

KH+AC (15)

GM ZS AC OG
(5 each)

7

13:00
13:10
13:15
13:40
13:55
14:20
14:40

15:00 retire to Wednesday, 15:10
15:15 Group Communication

15:25

15:35 HTTP Mapping

15:50

80t IETF: core WG Agenda

Introduction, Agenda, Status

1 — link-format
1 — core CoAP
1 — block

1 — observe

2 — basic security

discovery

CoAP Usage

new: SOAP;

16:10 retire
http://6lowapp.net

; overhead; security

core@IETF80, 2011-03-28

Chairs (10)

ZS (5)

ZS (25)

CB (15)

KH (25)

ZS (20)

CB+AB (20)

Chairs (05)

AR (10)

PV (10)

KH+AC (15)

GM ZS AC OG
(5 each)

8

CoRE Link Format
draft-ietf-core-link-format-03

Z. Shelby

CoRE WG, IETF-80 Prague
e

What is the CoRE Link Format

CoAP CoAP
Client Server

CON [0xaf6] GET /.well-known/core

ACK [Oxaf6] 2.05 Content "</sensors>..."
-

REQ: GET /.well-known/core

RES: 2.05 Content

</sensors>;ct=40;rt="index";rt="Sensor Index",
</sensors/temp>;rt="TemperatureC";if="sensor",
</sensors/light>;ct=41;rt="LightLux";if="sensor",
<http://www.example.com/sensors/t123>;anchor="/sensors/temp"
;rel="describedby",

</t>;anchor="/sensors/temp";rel="alternate"

Progress since Beijing

WGLC completed on Jan 26th
Thanks everyone for the comments
9 tickets identified during LC
Editorial improvements

Text about alternative web linking formats

Added use case examples
Discovery
Resource Collections
Resource Directory

Clarified difference to RFC5988

Using WADL in Interface Descriptions

REQ: GET /.well-known/core
RES: 2.00 OK

</tmp>;n="AirTemperature"; d="http://www.example.org/hal.wadl#sensor.temperature",

</tmp/thr>;n="TemperatureAlarm"; d="http://www.example.org/
hal.wadl#parameter.threshold"

</pwr>;n="PowerConsumption"; d="http://www.example.org/em eter.power",

</pwr/thr>;n="PowerAlarm"; d="http://www.example.org/efM2.wadf#parameter.threshold"

<application xmlns="http://wadl.dev.java.net/2009/02" xmlns:xsi="http://www.w3.o0rg/
2001/XMLSchema-instance" xsi:schemaLocatign="http://wadl.dev.java.net/2009/02
wadl.xsd"> <resource_ type id="meter.po ">

<method name="GET" id="GetPower">

<request> <representation mediaType="application/xml" /> </request>
</method> </resource type>

<resource type id="parameter.threshold">

<method name="PUT" id="SetThreshold> <request> <representation
mediaType="application/xml" /> </request>

< See draft-vial-core-link-format-wadl-00
method> </resource type>

Current Status

RFC5988 “Web Linking” published
The CoRE link format is derived from this
Document has been stable for 6 months
Tested in two plugfest events
Only trivial issues found in Beijing, fixed in -03
Has been universally implemented
No known open issues

13:00
13:10
13:15
13:40
13:55
14:20
14:40

15:00 retire to Wednesday, 15:10
15:15 Group Communication

15:25

15:35 HTTP Mapping

15:50

80t IETF: core WG Agenda

Introduction, Agenda, Status

1 — link-format
1 — core CoAP
1 — block

1 — observe

2 — basic security

discovery

CoAP Usage

new: SOAP;

16:10 retire
http://6lowapp.net

; overhead; security

core@IETF80, 2011-03-28

Chairs (10)

ZS (5)

ZS (25)

CB (15)

KH (25)

ZS (20)

CB+AB (20)

Chairs (05)

AR (10)

PV (10)

KH+AC (15)

GM ZS AC OG
(5 each)

14

Constrained Application Protocol
draft-ietf-core-coap-05

Z. Shelby, K. Hartke, C. Bormann, B. Frank

CoRE WG, IETF-80 Prague
e

Progress since Beijing

Plugfest held in Beijing on coap-04
Tested with —observe and —block

-05 released based on Beijing WG feedback
13 tickets closed plus editorial work

So what did we change?
Document was reorganized for easier reading
Several editorial improvements
Minor technical changes
JANA scheme registration improved

-
Editorial Improvements

Piggy-backed response term added

No more deferred responses

Section added on message size implementation
considerations

Clarification made on human readable error
payloads

Definition of COAP methods improved
Clarified the uniqueness of tokens

Clarified relation between elective/critical and
option numbers

Technical Improvements

GET requests now return a 2.05 (Content)
response instead of 2.00 (OK) response (#104)

Added text to allow 2.02 (Deleted) responses in
reply to POST requests (#105)

Improved message deduplication rules (#1006)
Max-Age removed from requests (#107)
Location-Query Option added (#113)

ETag length set to 1-8 bytes (#123)

Current Issues

How to respond to a NON request?
UTF8 URI matching needs clarification
AT TP mapping section

Separating standards part from
Implementation advice

Security updates

How to respond to a NON request?
 Gen | | Somer |

NON [0xaf5] POST /reading

77?77

Right, that doesn’t work...
coap-05 current ignores this

Ticket: Clarify that a NON is not ACKed,
however a response still is sent (on a new
message exchange).

UTF8 URI matching needs clarification

We specify the use of UTF-8 compatible URIs in
Net-Unicode Form [RFC5198]

Why? HTTP mapping compatibility

Comparing arbitrary UTF-8s in a constrained
device would not be sane

The intention is that CoOAP implementations
simply do an opaque binary comparison of URIs

Ticket: Section 6.2 should make that more
explicit

HTTP mapping section

Section 8 defines a CoAP-HTTP mapping

The current description goes into more detail than is
needed in the protocol specification

draft-hartke-core-coap-http-00 suggests
Simple standard text (Section 2)
Implementation considerations and examples

Ticket: Adopt the simple standard text for core-coap,
create a new HT TP mapping guide I-D with
Implementation considerations and examples with the
WG

Security Updates

Currently unclear if coap-05 is specifying IPSec or DTLS,
and in what modes

Ticket: Clarify that DTLS is the must-implement security
mechanism for CoAP

SharedKey (PSK), MultiKey (PSK) and Certificate mode are
related to DTLS

Pre-shared key mode is must implement

NoSec mode (thus no DTLS) may be used in combination with
IPSec, L2 encryption or cases where security really isn’t needed

IPSec section still needed, but to be moved and edited
appropriately.

Security Updates

Ticket: Must implement cipher suites need updates and
alignment with ZigBee IP

Remove SHOULD wording before each...

TLS PSK WITH_AES 128 CCM_8 must implement for
SharedKey and MultiKey modes

TLS ECDHE _ECDSA WITH AES 128 CCM_8 must
implement for Certificate mode

Ticket: IPSec section should reference draft-kivinen-
ipsecme-ikev2-minimal (informational)

Ticket: Clarify the interaction of DTLS authentication and
resource access control

.
Next Steps

Document has been stable since Beljing
Mainly editorial improvements in -05

Tested in two plugfest events

Well implemented (20+ implementations?)

A few minor updates identified

13:00
13:10
13:15
13:40
13:55
14:20
14:40

15:00 retire to Wednesday, 15:10
15:15 Group Communication

15:25

15:35 HTTP Mapping

15:50

80t IETF: core WG Agenda

Introduction, Agenda, Status

1 — link-format
1 — core CoAP
1 — block

1 — observe

2 — basic security

discovery

CoAP Usage

new: SOAP;

16:10 retire
http://6lowapp.net

; overhead; security

core@IETF80, 2011-03-28

Chairs (10)

ZS (5)

ZS (25)

CB (15)

KH (25)

ZS (20)

CB+AB (20)

Chairs (05)

AR (10)

PV (10)

KH+AC (15)

GM ZS AC OG
(5 each)

26

The block option

« Some resource representations are > MTU bytes

 Transfer in blocks

0

©12345¢67
Fotototototot-t+-+

Iblocknr M| szx | M: More Blocks

S S S SR

0 1 szx: logz Blocksize — 4
©1234567895012345

e I R T S P SpU SR S
| block nr [M| szx |
ottt -ttt -t -F-F-F-F+-+-+-+ .« . .
0 1) Decisions:
©12345678901234567890123 . .
bttt roteabototota-eorrsr-++ @ Block size 1S power of 2

| block nr [M] szx |

U S 16 S BlOCk Size S 2048

http://6lowapp.net core@IETF80, 2011-03-28 27

2048

* Just an accident
* Not compatible with CoAP MTU of 1152

* Relegate code point szx = 7 to Reserved

http://6lowapp.net core@IETF80, 2011-03-28

28

The block option vs. methods

 GET: trivial
Receiver: watch Etag to obtain parts of same resource repr.
Also works for asynchronous responses (subscriptions)
* initiative is with responder, then!

 PUT, POST: trigger actual update on M=0

manage parallel operations based on token option

* Block is CRITICAL

http://6lowapp.net core@IETF80, 2011-03-28 29

#45 large responses to POST/PUT

 Block can be used either on request body (POST/
PUT) or on response body (GET), not both

do we need large POST/PUT responses? If yes:
add a second option?

http://6lowapp.net core@IETF80, 2011-03-28 30

Wait a minute...

* We don’t have response bodies to PUT or POST
* PUT/POST: 2.04 (Changed), 2.01 (Created)

e “Methods with payload are PUT and POST, and the
response codes with payload are 2.05 (Content) and
the error codes.”

 Enable payload with 2.04, 2.01
* Provide generic 2.00 OK for generic POST responses

http://6lowapp.net core@IETF80, 2011-03-28 31

Block option

* “In the response for a GET or in the request for a PUT
or POST, the Block option describes...”

Method code influences semantics of option
Could add another option for PUT/POST response... Naah.

e Clean this up:
* Block1 option for request payloads (PUT, POST)
 Block2 for response payloads (GET, PUT, POST)

(Allocate new numbers for both to provide some grace period in testing;
free old number 13 on July 1st.)

http://6lowapp.net core@IETF80, 2011-03-28)

13:00
13:10
13:15
13:40
13:55
14:20
14:40

15:00 retire to Wednesday, 15:10
15:15 Group Communication

15:25

15:35 HTTP Mapping

15:50

80t IETF: core WG Agenda

Introduction, Agenda, Status

1 — link-format
1 — core CoAP
1 — block

1 — observe

2 — basic security

discovery

CoAP Usage

new: SOAP;

16:10 retire
http://6lowapp.net

; overhead; security

core@IETF80, 2011-03-28

Chairs (10)

ZS (5)

ZS (25)

CB (15)

KH (25)

ZS (20)

CB+AB (20)

Chairs (05)

AR (10)

PV (10)

KH+AC (15)

GM ZS AC OG
(5 each)

33

observe: status

* Basic concepts are stable

* Discussion about the server-side state needed
per observation relationship:
« |P address + port number
* Token
« Lifetime (timer, running down)

http://6lowapp.net core@IETF80, 2011-03-28 34

Removing the lifetime

* We never had a really good use case

* Observation relationship already terminates when:
CON response answered by RST
node not reachable
error on server side (final notification)
re-install/remove observation relationship

 Change “lifetime” to “observe”

* An Observation relationship is now only terminated in
the above cases

http://6lowapp.net core@IETF80, 2011-03-28 35

Without lifetime, how to detect
reordering?

* Detection needed in non-continual cases to enable
eventual consistency
* Was using lifetime counters

* Now using a single per-server counter

roughly counting seconds
sequence number arithmetic
no potential for reordering between times sequence number

wraps...

http://6lowapp.net core@IETF80, 2011-03-28 36

Keepalives?

* Well-known problem
garbage-collect at server side
actually get the notifications on client side

 Taking away lifetime takes away source of
expectation for timescales

Do we try to set such an expectation?
24 hours?

http://6lowapp.net core@IETF80, 2011-03-28

37

13:00
13:10
13:15
13:40
13:55
14:20
14:40

15:00 retire to Wednesday, 15:10
15:15 Group Communication

15:25

15:35 HTTP Mapping

15:50

80t IETF: core WG Agenda

Introduction, Agenda, Status

1 — link-format
1 — core CoAP
1 — block

1 — observe

2 — basic security

discovery

CoAP Usage

new: SOAP;

16:10 retire
http://6lowapp.net

; overhead; security

core@IETF80, 2011-03-28

Chairs (10)

ZS (5)

ZS (25)

CB (15)

KH (25)

ZS (20)

CB+AB (20)

Chairs (05)

AR (10)

PV (10)

KH+AC (15)

GM ZS AC OG
(5 each)

38

CoAP Security

Zach Shelby, Oscar Garcia-Morchon, Cullen Jennings, Carsten Bormann

CoRE WG, IETF-80 Prague
e

Thing lifecycle and security framework

- T T TEEEAN

—Manufactured
Installed

l Commissioned

I

—

\

—Reconfiguration
SW Update

-Appl Reconfiguration_

./\|’

IJ: Operational

time
Thing security model [__] Bootstrapping
Networksecudly. [ece3 APPICHIONBEGEIY=SSnm o e cccesssseonsevssoss ,
.
.
H Configuration
Application Node A s || Application Entity
Trary Mepecccncnncncnnns nspo
i Security L i Security
R
Network | Network Service Network Service
L2 | L2 I L2

Operational

— Removal |

imissioned |

See draft-garcia-core-security

CoAP Security

draft-ietf-core-coap must satisfy BCP 61
How are we doing on that?
Security mechanism: DTLS
DTLS mode: PSK (must-implement), Certificates
Must-implement cipher suite for each
What about key management in PSK mode?

draft-sarikaya-core-sbootstrapping is a nice survey of
techniques

draft-garcia-core-security is great background
Now we really need one must-implement solution

Security Bootstrapping Requirements

Must work on “10/100” devices
Simple constrained networks

Support for DTLS PSK mode of CoAP
SharedKey and MultiKey modes

Pre-installing, imprinting and updating keys
Provide interoperability
Each device needs:
One or more keys for use with DTLS
psk_identity per key (the correct key to use)

What are our options?

Basic Security Bootstrapping
Specify something simple in CoRE
Simple mother-duckling

Don’t specify how a node gets into duckling mode
Could be battery insert, button press etc.

Pre-installed key or imprint/update over CoAP

PANA/EAP-TTLSvO [RFC5281]
Network access control
TTLS could be used to distribute keys
Used by ZigBee IP
Overkill as must-implement?
e

Basic Security Bootstrapping (strawman)

Storing key+ID as CoAP resources
/.well-known/core-keys

Mother-duckling (mutual!)
Local proxy as a security manager

Discovering new devices
Network layer information (e.g. ND, routing)
CoRE discovery

Installing/updating keys
PUT /.well-known/core-keys/{identity}/TLS PSK...
Default root identity for authentication

Basic Security Bootstrapping

Cipher Key psk_identity
TLS_PSK... Key 1
TLS_PSK... Key 2

Cipher Key psk_identity
TLS_PSK... Key 1
TLS_PSK... Key 2

1)
F:row
/ \

’ \

Imprint 1 Imprint 1
\

O

@m

O

y 4

®

e
Conclusions

Basic security bootstrapping needed
We have a charter item to do this
One focused goal to support CoAP
Key mechanism for DTLS PSK
What is in-scope?
A very simple bootstrapping mechanism
What is out-of-scope?
Non-default authorization
User-interfaces
Everything else

13:00
13:10
13:15
13:40
13:55
14:20
14:40

15:00 retire to Wednesday, 15:10
15:15 Group Communication

15:25

15:35 HTTP Mapping

15:50

80t IETF: core WG Agenda

Introduction, Agenda, Status

1 — link-format
1 — core CoAP
1 — block

1 — observe

2 — basic security

discovery

CoAP Usage

new: SOAP;

16:10 retire
http://6lowapp.net

; overhead; security

core@IETF80, 2011-03-28

Chairs (10)

ZS (5)

ZS (25)

CB (15)

KH (25)

ZS (20)

CB+AB (20)

Chairs (05)

AR (10)

PV (10)

KH+AC (15)

GM ZS AC OG
(5 each)

47

draft-bormann-core-
simple-server-discovery

* draft-core-link-format provides resource discovery
once a server is known

* how to discover a new server?

e draft-bormann-core-simple-server-discovery
describes a server discovery protocol in use in the

SAHARA project

Thanks: Bengt Kohrt, Julian Kornberger, Henning Muller,
Christian Thedieck, Philip Nguyen

http://6lowapp.net core@IETF80, 2011-03-28 48

Discovery Protocol

 CoAP Server Discovery Server (CSDS): a server that
collects resource discovery information, and
presents it in integrated form (e.g., in own /.well-known/core)

New CoAP servers that want to provide discoverable
services can make themselves known at the CSDSs

PUT to coap://CSDS/.well-known/core
with link-format as payload
empty:
CSDS is encouraged to GET the client’s /.well-known/core

http://6lowapp.net core@IETF80, 2011-03-28 49

How to find a CSDS?

Candidate CSDS: An IP address that might or might
not be useful for conversion to a CSDS URI

Find Candidates from:

specific static configuration (e.g., anycast addresses), if any,
the ABRO option of 6LoWPAN-ND [I-D.ietf-6lowpan-nd],
other ND options that might point to servers (e.g., RDNSS),
DHCPvV6 options that might be defined later.

http://6lowapp.net core@IETF80, 2011-03-28 50

IETF-80, CoORE WG March 2011

Discovery
across subnets

draft-brandt-coap-subnet-discovery

Anders Brandt
Sigma Designs 51
abr@sdesigns.dk

IETF-80, CoORE WG March 2011

Discovery
across subnets

draft-brandt-coap-subnet-discovery

Anders Brandt
Sigma Designs
abr@sdesigns.dk

Scenario: Service Provider bundle

52

Scenario: Service Provider bundle

« Border router assigns
— L2 short addresses

— Routable IP prefix (autoconfigured)
— 6LoWPan CIDs B

Internet

52

Scenario: Service Provider bundle

« Border router assigns
— L2 short addresses

— Routable IP prefix (autoconfigured)
— 6LoWPan CIDs

« User control
— Smart phone widgets
— Web portal

* Provider: Remote support call center
» User: Floor plan for drag-n-drop management

52

Scenario: Service Provider bundle

'4

Intarnet

53

Scenario: Service Provider bundle

« Second router added
— NO user configuration
— Backbone routing protocol
— Automatic subnet assignment (ULA) B

R

* Discovery
— In ALL subnets
— From any subnet
— Also battery powered nodes (sleeping)

53

Requirements

54

Requirements

« Subnet considerations
— Discovery client may be anywhere

— Discovery requests may traverse several subnets
— Zero-config LLN subnet prefix (ULA)

54

Requirements

« Subnet considerations
— Discovery client may be anywhere

— Discovery requests may traverse several subnets
— Zero-config LLN subnet prefix (ULA)

 Traffic patterns
— Avoid LLN multicast
— Support sleeping nodes
— Limit LLN traffic

54

Requirements

95

Requirements

« Discovery principles
— Use existing CoAP Link Format principles

— Support filtered requests
« ?n="LightDimmer”

95

Requirements

« Discovery principles
— Use existing CoAP Link Format principles

— Support filtered requests
« ?n="LightDimmer”

— Scalable
* No data aggregation / synchronization in a single gateway
* Query more discovery gateways in bigger networks

95

Requirements

« Discovery principles
— Use existing CoAP Link Format principles

— Support filtered requests
« ?n="LightDimmer”

— Scalable
* No data aggregation / synchronization in a single gateway
* Query more discovery gateways in bigger networks

— Report legacy devices
» Protocol must allow discovery of legacy technologies

95

Requirements

56

Requirements

« Zero-configuration

— Consumer-grade systems =

« Subnet discovery right out of the box
» Subnet prefixes must be routable
» Backbone routing protocol needed

56

CoAP Discovery

* Two interface types

Caching CoAP Discovery gateway

Y

CoAP Discovery

* Two interface types

Caching CoAP Discovery gateway

non-caching interface
2001:1002::1

LAN style
subnets

Y

CoAP Discovery

* Two interface types

Caching CoAP Discovery gateway

LLN style
subnets

caching interface non-caching interface
2001:1001::1 2001:1002::1

LAN style
subnets

Y

CoAP Discovery

58

CoAP Discovery

(non-caching) Discovery Gateway interface
— Announces an access point to CoAP resources

— Offers multicast discovery from other subnets
» E.g. discovery client in LLN, CoAP server in LAN

58

CoAP Discovery

(non-caching) Discovery Gateway interface
— Announces an access point to CoAP resources

— Offers multicast discovery from other subnets
» E.g. discovery client in LLN, CoAP server in LAN

« Caching Discovery Gateway interface

— Protects LLN bandwidth
» E.g. discovery client in LAN, CoAP server in multi-hop LLN

— Eliminates need for multicast
— Supports sleeping nodes
— Caches ONLY discovery data

58

Example: Gateway Discovery

A B PAN1
PAN1
C,D PAN2
PAN2
E,F PAN3
PAN3

GW1

GW2

GW3

LAN1

N\

LAN1T —— LANT1

GW4

LAN2 —— LAN2

/

LAN1 G, H

Client

* (on-link)

59

Example: Gateway Discovery

A B PAN1
PAN1
C,D PAN2
PAN2
E,F PAN3
PAN3

GW1

GW2

GW3

LAN1

\ / mc:Get GW
LAN1 —— LAN1 GW4 |LAN2 —— LAN2
/ Client
LAN1 G, H
* (on-link)

59

Example: Gateway Discovery

A B PAN1
PAN1
C,D PAN2
PAN2
E,F PAN3
PAN3

GW1

GW2

GW3

LAN1

N\

LAN1T —— LANT1

GW4

LAN2 —— LAN2

/

LAN1 G, H

Client

* (on-link)

59

Example: Gateway Discovery

A B PAN1
PAN1
C,D PAN2
PAN2
E,F PAN3
PAN3

GW1

GW2

GW3

LAN1

\ uc:GW4LAN1>
LAN1 —— LAN1 GW4 |LAN2 —— LAN2
/ Client
LAN1 G, H
* (on-link)
« GW4LAN1

59

Example: Gateway Discovery

A B PAN1
PAN1
C,D PAN2
PAN2
E,F PAN3
PAN3

GW1

GW2

GW3

LAN1

N\

LAN1T —— LANT1

GW4

LAN2 —— LAN2

/

LAN1 G, H

Client

* (on-link)
* GW4LAN1

59

Example: Gateway Discovery

A B PAN1
PAN1
C,D PAN2
PAN2
E,F PAN3
PAN3

GW1

GW2

GW3

LAN1
uc:Get GW
LAN1 — LAN GW4 |LAN2 —— LAN2
Client
LAN1 G, H
* (on-link)
« GW4LAN1

59

Example: Gateway Discovery

A B PAN1
PAN1
C,D PAN2
PAN2
E,F PAN3
PAN3

GW1

GW2

GW3

LAN1

N\

LAN1T —— LANT1

GW4

LAN2 —— LAN2

/

LAN1 G, H

Client

* (on-link)
* GW4LAN1

59

Example: Gateway Discovery

PAN1

PAN2

PAN3

GW1

GW2

GW3

LAN1T —— LANT1

GW4

/

LAN1 G, H

LAN2 —— LAN2
Client

* (on-link)
* GW4LAN1

59

Example: Gateway Discovery

A B PAN1
PAN1
C,D PAN2
PAN2
E,F PAN3
PAN3

GW1

GW2

GW3

LAN1

N\

LAN1T —— LANT1

GW4

LAN2 —— LAN2

/

LAN1 G, H

Client

* (on-link)
* GW4LAN1

59

Example: Gateway Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

uc:GW1PAN1

LAN1

>

uc:GW2PAN2

>

LAN1T —— LANT1

GW4

LAN2 —— LAN2

Client

uc:GW3PAN3

>

LAN1

G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
« GW3PAN3

59

Example: Gateway Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

LAN2 —— LAN2
Client

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
« GW3PAN3

59

Example: Gateway Discovery

<

uc:Get GW
PANI[GW1 | LAN1
PAN2| GW?2 LAN1 —— LAN1 GW4 |LAN2 —— LAN2
/ Client
PAN3[GW3 LAN1 G, H
* (on-link)
« GW4LAN1
« GW1PAN1
« GW2PAN2
« GW3PAN3

59

Example: Gateway Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

LAN2 —— LAN2
Client

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
« GW3PAN3

59

Example: Gateway Discovery

uc: ”” >
PAN1 GW1 LAN1
PAN2| GW?2 LAN1 —— LAN1 GW4 |LAN2 —— LAN2
/ Client
PAN3[GW3 LAN1 G, H
* (on-link)
« GW4LAN1
« GW1PAN1
« GW2PAN2
« GW3PAN3

59

Example: Gateway Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

LAN2 —— LAN2
Client

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
« GW3PAN3

59

Example: Gateway Discovery

PAN1 GW1 LAN1

< uc:Get GW

PAN2| GW?2 LAN1 —— LAN1 GW4 |LAN2 —— LAN2

/ Client

PAN3[GW3 |[LAN1T GH
* (on-link)
« GW4LAN1
« GW1PAN1
« GW2PAN2
« GW3PAN3

59

Example: Gateway Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

LAN2 —— LAN2
Client

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
« GW3PAN3

59

Example: Gateway Discovery

PAN1 GW1 LAN1
uc: ”” >
PAN2| GW?2 LAN1 —— LAN1 GW4 |LAN2 —— LAN2
/ Client
PAN3[GW3 LAN1 G, H
* (on-link)
« GW4LAN1
« GW1PAN1
« GW2PAN2
« GW3PAN3

59

Example: Gateway Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

LAN2 —— LAN2
Client

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
« GW3PAN3

59

Example: Gateway Discovery

PAN1 GW1 LAN1
PAN2| GW?2 LAN1 —— LAN1 GW4 |LAN2 —— LAN2
Client
uc:Get GW

PAN3[GW3 LAN1 G, H
* (on-link)
« GW4LAN1
« GW1PAN1
« GW2PAN2
« GW3PAN3

59

Example: Gateway Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

LAN2 —— LAN2
Client

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
« GW3PAN3

59

Example: Gateway Discovery

PAN1 GW1 LAN1
PAN2| GW?2 LAN1 —— LAN1 GW4 |LAN2 —— LAN2
Client
uc: ”” >
PAN3[GW3 LAN1 G, H
* (on-link)
« GW4LAN1
« GW1PAN1
« GW2PAN2
« GW3PAN3

59

Example: Gateway Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

LAN2 —— LAN2
Client

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
« GW3PAN3

59

Example: Server Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
*« GW3PAN3

LAN2 —— LAN2
Client

60

Example: Server Discovery

PAN1 GW1 LAN1

PAN1
\ < mc:Get servers

PAN2| GW?2 LAN1 —— LAN1 GW4 |LAN2 —— LAN2

PAN2 / Client

PAN3[GW3 LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2

+ GW3PAN3
60

Example: Server Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
*« GW3PAN3

LAN2 —— LAN2
Client

60

Example: Server Discovery

PAN1 GW1 LAN1

PAN1
\ (none)

PAN2| GW?2 LAN1 —— LAN1 GW4 |LAN2 —— LAN2

PAN2 / Client

PAN3[GW3 LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2

+ GW3PAN3
60

Example: Server Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
*« GW3PAN3

LAN2 —— LAN2
Client

60

Example: Server Discovery

PAN1 GW1 LAN1

uc:Get servers
PAN2| GW?2 LAN1— LAN GW4 |LAN2 —— LAN2

Client

PAN3[GW3 LAN1 G,H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2

+ GW3PAN3
60

Example: Server Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
*« GW3PAN3

LAN2 —— LAN2
Client

60

Example: Server Discovery

A B PAN1 GWA1 LAN1
PAN1
<mc:Get server
C,D PAN2| GW?2 LAN1 —— LAN1 GW4 |LAN2 —— LAN2

PAN2 / Client

PAN3[GW3 LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2

+ GW3PAN3
60

Example: Server Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
*« GW3PAN3

LAN2 —— LAN2
Client

60

Example: Server Discovery

PAN1

PAN2

PAN3

GW1

GW2

GW3

LAN1

N\

LAN1 —— LAN1 GW4 |LAN2 —— LAN2
lient
y uc: H
uc: G
LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
*« GW3PAN3

60

Example: Server Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1 —— LAN1 GW4 |LAN2 —— LAN2

/ Client

LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2

+ GW3PAN3
60

Example: Server Discovery

< uc:Get servers

N

PAN1 GW1 LAN1

PAN1 \

PAN2| GW?2 LAN1 —— LAN1 GW4 |LAN2 —— LAN2

PAN2 / Client

PAN3[GW3 LAN1 G, H

*G
*H
* (on-link)
* GW4LAN1
* GW1PAN1
* GW2PAN2
*« GW3PAN3

60

Example: Server Discovery

PAN1

PAN2

GW1

GW2

PAN3

GW3

LAN1

N\

LAN1 —— LAN1 GW4 |LAN2 —— LAN2

/ Client

LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2

+ GW3PAN3
60

Example: Server Discovery

PAN1

PAN2

PAN3

GW1

GW2

GW3

uc: ’A, B” >
LAN1

LAN1 —— LAN1 GW4 |LAN2 —— LAN2
/ Client
LAN1 G, H
« G
«H
* (on-link) e A
« GWA4LAN1 .B
« GW1PAN1
« GW2PAN2
« GW3PAN3

60

Example: Server Discovery

PAN1

PAN2

PAN3

GW1

GW2

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
*« GW3PAN3

LAN2 —— LAN2

w>I

Client

60

Example: Server Discovery

GW1

LAN1

uc:Get servers

GW2

PAN3

GW3

LAN1T —— LANT1

GW4

/

LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
*« GW3PAN3

LAN2 —— LAN2

w>I

Client

60

Example: Server Discovery

PAN1

PAN2

PAN3

GW1

GW2

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
*« GW3PAN3

LAN2 —— LAN2

w>I

Client

60

Example: Server Discovery

PAN1 GW1 LAN1
uc: 'C, D” >
PAN2| GW?2 LAN1 —— LAN1 GW4 |LAN2 —— LAN2
/ Client
PAN3[GW3 LAN1 G, H
.G
«H
* (on-link) e A
« GW4LAN1 .B
« GW1PAN1 .C
« GW2PAN2 .D
« GW3PAN3

60

Example: Server Discovery

PAN1

PAN2

PAN3

GW1

GW2

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
*« GW3PAN3

LAN2 —— LAN2

TOwW>» IO

Client

60

Example: Server Discovery

PAN1 GW1 LAN1
PAN2| GW?2 LAN1 —— LAN1 GW4 |LAN2 —— LAN2
Client
uc:Get servers
PAN3[GW3 LAN1 G, H
.G
«H
* (on-link) e A
« GW4LAN1 .B
« GW1PAN1 .C
« GW2PAN2 .D
« GW3PAN3

60

Example: Server Discovery

PAN1

PAN2

PAN3

GW1

GW2

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
*« GW3PAN3

LAN2 —— LAN2

TOwW>» IO

Client

60

Example: Server Discovery

60

PAN1 GW1 LAN1
PAN2| GW?2 LAN1 —— LAN1 GW4 |LAN2 —— LAN2
Client
uc: 'E, F” >
PAN3[GW3 LAN1 G, H
.G
«H
* (on-link) e A
« GW4LAN1 .B
« GW1PAN1 .C
« GW2PAN2 .D
« GW3PAN3 \E
. F

Example: Server Discovery

PAN1

PAN2

PAN3

GW1

GW2

GW3

LAN1

N\

LAN1T —— LANT1

GW4

/

LAN1 G, H

* (on-link)

* GW4LAN1
* GW1PAN1
* GW2PAN2
*« GW3PAN3

LAN2 —— LAN2

MTMUOO®>IOE

Client

60

Further Work

61

Further Work

62

Further Work

* Advertizing node properties to
caching discovery gateway

62

Further Work

* Advertizing node properties to
caching discovery gateway

* M2M-style SHORT, well-defined paths
for standard device types
— Sensors
— Dimmers
— Generic On-Off devices
— efc.

62

Further Work, Cont’d

63

Further Work, Cont’d

* Need for prefix NAT?

— Attractive to keep LLN prefixes static

 Sensor & Remote control associations to IP addresses
are difficult to update

— ISPs may assign dynamic IPv6 prefixes (?)
— User may change ISP

63

Further Work, Cont’d

* Need for prefix NAT?

— Attractive to keep LLN prefixes static

 Sensor & Remote control associations to IP addresses
are difficult to update

— ISPs may assign dynamic IPv6 prefixes (?)
— User may change ISP

« Coordination with other discovery drafts

— What to add/change in this draft?
— Inputs are welcome!

63

IETF-80, Prague, Internet of Things Workshop March 2011

draft-brandt-coap-subnet-discovery

Anders Brandt
Sigma Designs 64
abr@sdesigns.dk

IETF-80, Prague, Internet of Things Workshop March 2011

Thank You

draft-brandt-coap-subnet-discovery

Anders Brandt
Sigma Designs 64
abr@sdesigns.dk

13:00
13:10
13:15
13:40
13:55
14:20
14:40

15:00 retire to Wednesday, 15:10
15:15 Group Communication

15:25

15:35 HTTP Mapping

15:50

80t IETF: core WG Agenda

Introduction, Agenda, Status

1 — link-format
1 — core CoAP
1 — block

1 — observe

2 — basic security

discovery

CoAP Usage

new: SOAP;

16:10 retire
http://6lowapp.net

; overhead; security

core@IETF80, 2011-03-28

Chairs (10)

ZS (5)

ZS (25)

CB (15)

KH (25)

ZS (20)

CB+AB (20)

Chairs (05)

AR (10)

PV (10)

KH+AC (15)

GM ZS AC OG
(5 each)

65

13:00
13:10
13:15
13:40
13:55
14:20
14:40

15:00 retire to Wednesday, 15:10
15:15 Group Communication

15:25

15:35 HTTP Mapping

15:50

80t IETF: core WG Agenda

Introduction, Agenda, Status

1 — link-format
1 — core CoAP
1 — block

1 — observe

2 — basic security

discovery

CoAP Usage

new: SOAP;

16:10 retire
http://6lowapp.net

; overhead; security

core@IETF80, 2011-03-28

Chairs (10)

ZS (5)

ZS (25)

CB (15)

KH (25)

ZS (20)

CB+AB (20)

Chairs (05)

AR (10)

PV (10)

KH+AC (15)

GM ZS AC OG
(5 each)

66

Group Communication for
CoAP

Akbar Rahman (Editor)

(with much input from Kerry Lynn, Peter Bigot,
Peter van der Stok, and others)

IETF 80, March 2011

http://tools.ietf.org/html/draft-rahman-core-groupcomm-04

e ad

1 ETF

'_/."/"./"/'7
- A 4
1 E

T F

Security Considerations

e As per major comment from IETF79 (Beijing),
reviewed output of:

IETF MSEC (Multicast Security)

In particular, [RFC3740], [RFC5374] and [RFC40406]
are very instructive

IRTF SAMRG (Scalable Adaptive Multicast
Research Group)

¢ And derived the following requirements for
securing group communications in CoAP

R >
A 4

T F

Group Security Requirements |«
for CoAP (1/3) '

m s

e REQ1: Group communications data encryption:

Important CoOAP group communications shall be encrypted (using a group key) to
preserve confidentiality. It shall also be possible to send CoAP group
communications in the clear (i.e. unencrypted) for low value data.

e REQ2: Group communications source data authentication:

Important CoOAP group communications shall be authenticated by verifying the
source of the data (i.e. that it was generated by a given and trusted group
member). It shall also be possible to send unauthenticated CoAP group
communications for low value data.

e REQS3: Group communications limited data authentication:

Less important COAP group communications shall be authenticated by simply
verifying that it originated from one of the group members (i.e. without explicitly
identifying the source node). This is a weaker requirement (but simpler to
implement) than REQZ2. It shall also be possible to send unauthenticated CoAP
group communications for low value data.

R >
A 4

Group Security Requirements |« g

for CoAP (2/3) '

m s

e REQ4: Group key management:

There shall be a secure mechanism to manage the cryptographic keys (e.g.
generation and distribution) belonging to the group; the state (e.g. current
membership) associated with the keys; and other security parameters.

e REQ5: Use of Multicast IPSec:

The CoAP protocol [I-D.ietf-core-coap] allows IPSec to be used as one option to
secure CoAP. If IPSec is used at the CoAP level, then multicast IPSec [RFC5374]
should be used for securing CoAP group communications.

e REQG: Independence from underlying routing security:

CoAP group communication security shall not be tied to the security of underlying
routing and distribution protocols such as PIM [RFC4601] and ROLL [I-D.ietf-roll-
rpl]. Insecure or inappropriate routing (including multicast routing) may cause loss
of data to CoAP but will not affect the authenticity or secrecy of CoOAP group
communications.

Group Security ReqUirements SO0+
for COAP (3/3) XE

e REQTY: Interaction with HTTPS:

The security scheme for CoAP group communications shall account for the fact
that it may need to interact with HTTPS (Hypertext Transfer Protocol Secure)
when a transaction involves a node in the general Internet (non-constrained
network).

CoAP Multicast and HTTP
Unicast Interworking (1/2)

CoAP CoAP CoAP/HTTP HTTP

Node 1 Node 2 Proxy Node
l		
REQUEST I		
(Group Join)		
I	--mmmemmmeee	
RESPONSE		
€ ==cccceccccccaa	=ceecccccccaas	
	REQUEST	
	(Group Join)	
	--m = mmmm e >	
	RESPONSE	
< =cecncccnce..		
l		
		HTTP REQUEST
I	(URI to	
		unicast addr)
	R	
I		
	Map URI	
	to multicast address	
l		
REQUEST (to multicast addr)		
€ mmmmmmmmmeees		
=mmmmmmmmmmmm e e		

(optional) RESPONSE

CoAP Multicast and HTTP . . A
Unicast Interworking (2/2) PR

e Proxy node needs to have the following functionalities to interwork
CoAP/UDP (multicast) and HTTP/TCP (unicast):

Incoming HTTP Request will carry a URI (with HTTP scheme)

At the proxy node, the URI will then be again resolved (with CoAP
scheme) to an IP multicast. This may be accomplished, for example, by
using DNS-SD

The proxy node will then multicast the CoAP Request to the appropriate
nodes

e COAP proxy can be considered to be a "non-transparent”
proxy according to [RFC2616]:

Specifically, [RFC2616] states that a "non-transparent proxy is a proxy
that modifies the request or response in order to provide some added
service to the user agent, such as group annotation services, media type
transformation, protocol reduction or anonymity filtering."

%
W

P
U
K
C

A

B

S~
A 4

Background %
1 ET F

= This draft is a follow up to our previous draft on “Sleeping
and Multicast Considerations for COAP” which was in a
problem statement format:

= During the previous CORE Webex calls, we were asked to
produce satellite drafts to more precisely identify the
problems and provide some initial solution proposals for:

= Group Communications (as the more general problem of
multicast) — This draft

= Sleeping Nodes — TBD draft (but in progress)

http://tools.ietf.org/html/draft-rahman-core-sleeping-00
http://tools.ietf.org/html/draft-rahman-core-sleeping-00

S~
A 4

Potential Approaches for Group |<«
i T F

Communication

= There are three alternative approaches for CoAP group
communications each with associated pros/cons:

= JP Multicast
= Qverlay (Proxy based) Multicast
= CoAP Application level Group Management

IP Multicast <

S~
A 4

T F

= Concept:

= CoAP sub-networks to be connected directly to IP multicast enabled
routers (e.g. running PIM-SM [RFC4601]).

= Sending CoAP node can directly transmit group messages by
setting IP address to selected multicast IP group address

= Receiver CoAP nodes use MLD [RFC3810] to subscribe (listen) to
any messages sent to selected IP multicast group

= Pros
= Most efficient solution since done at IP layer
= ROLL [draft-ietf-roll-rpl-14] assumes IP multicast supported
= CoAP-03 draft [section 4.1] assumes IP multicast supported
= Cons

= P multicast is not generally deployed outside of corporate LANs
and a few ISPs. So we may specify IP multicast support but
practically it may often not be deployed

Overlay (Proxy based) Multicast (1/2) /<«

S~
A 4

T F

= Concept:

We define overlay multicast as one that utilizes an infrastructure
based on proxies (rather than an IP router based multicast
backbone) to deliver IP multicast packets to an end device

Since ROLL and CoAP drafts already support MLD (see pg. 4), we
propose MLD Proxy [RFC3810] to be used as the overlay multicast
approach

Specifically, the CoAP proxy node will also support Proxy MLD

Receiver CoAP nodes use MLD Proxy signaling to subscribe (listen)
to any messages sent to selected IP multicast group

The CoAP (MLD) proxy node would be responsible for delivering
any IP multicast message to the subscribed CoAP devices

Note that the CoAP (MLD) proxy need not necessarily be connected
to an external multicast backbone

Overlay (Proxy based) Multicast (2/2) <00+
1 ET F
Pros
= Ties well into existing CoAP proxy concept
Cons

= Tt is not obvious that existing MLD Proxy [RFC 3810] allows the
specific scenario we are proposing. Further investigation required.

S~
A 4

T F

CoAP Application level Group Mgmt |«

= Concept:
= Perform all group communications at the CoAP application level
= Expand CoAP headers to allow simple group mgmt functions (Join,
Leave, etc.)
= The CoAP proxy node would be responsible for group mgmt

= Any CoAP node that wanted to send a message to a CoAP group
would first send the CoAP message to the proxy. The proxy would
then explode it out to the group

= Pros
= Functionality fully within the CoAP protocol (and CORE WG control)

= Analogous approach as Email group management (and other Apps)

= Cons
= Has high overhead compared to lower layer solutions

S~
A 4

Group Resource Manipulation (1/3) |«
1 ET F

= Needed to replicate functionality of existing standards, e.g.
BACnet's Alarm and Event Notification service

= Two forms of group resource manipulation should be
supported:
= Push (PUT or MPUT) as for example “turn off all lights
simultaneously”

= Pull (GET or MGET) as for example “return all the
resources matching a well known URI”

= Conceptually, the result of a MGET or MPUT should be the
same as if the client had unicast them serially

S~
A 4

Group Resource Manipulation (2/3) |«
1 ET F

= Limit manipulation to idempotent methods (PUT/GET/DEL)

= Repeat requests can then be used to increase reliability
of receipt

= Requires a consistent naming and addressing scheme for
groups
= Multicast is the easy case; can use DNS to resolve
FQDN in authority to multicast or unicast address

= (Can a group be represented by a list of addresses as well?

= If so, perhaps this argues for a group scheme, e.q.
“coapm” to signal a proxy to do fan-out task

S~
A 4

Group Resource Manipulation (3/3) |«
1 ET F

= Target resource must be located at same port and path for
all group members

= Suggests a need to advertise path, port or have a priori
agreement

13:00
13:10
13:15
13:40
13:55
14:20
14:40

15:00 retire to Wednesday, 15:10
15:15 Group Communication

15:25

15:35 HTTP Mapping

15:50

80t IETF: core WG Agenda

Introduction, Agenda, Status

1 — link-format
1 — core CoAP
1 — block

1 — observe

2 — basic security

discovery

CoAP Usage

new: SOAP;

16:10 retire
http://6lowapp.net

; overhead; security

core@IETF80, 2011-03-28

Chairs (10)

ZS (5)

ZS (25)

CB (15)

KH (25)

ZS (20)

CB+AB (20)

Chairs (05)

AR (10)

PV (10)

KH+AC (15)

GM ZS AC OG
(5 each)

84

CoAP Utilization for Building Control

draft-vanderstok-core-bc-03

Grouping/Discovery/Legacy/Commissioning

Peter van der Stok;
Kerry Lynn

March 30, 2011

Groups and multicast

A typical BC installation may have 1000s of “points”
Group members are typically within 1-2 hop distance from source

Authority:
Node (host [:socket]) resolves to a unicast IP address

Group (set of nodes) resolves to a scoped multicast group IP
address or set of serial IP unicasts (ref: group-comm I-D)

DNS stores multicast group IP address in A or AAAA record

Group operation is sent to multicast group IP address.
The resource is identified with a single path on all group members

Assuming hosts with legacy representations (ZigBee, BACnet, ..)

End-point of a given legacy XXX function is prefixed by:
/.well-known/XXX (we refer to this as the “schema”)

March 30, 2011, Reference 86

XXX legacy gateway

XXX host behind gateway represented by:
* |IP address

« Gateway IP + part
« Path in gateway
* URI

XXX network

XXX
device

XXX XXX
device device

XXX

XXX
device

XXX
device

CoAP

XXX
device
March 30, 2011, Reference

87

core-bc Describes DNS-based Service Discovery

Central server solves:
Large set > 100 nodes per domain; Grouping (over subnets)

DNS-SD:
Based on mature, well-known technology
Service instance name is of form
<Instance>.<ServiceType>.<Location>
Subtypes: e.g. zigbee. sub. coap. udp
These labels used to create PTR and SRV records

TXT records contain “key=value™ attributes

Proposed attribute:
schema=.well-known/XXX (XXX legacy representation)

March 30, 2011, Reference 88

Proposed Extension to link-format to Support
DNS-SD

Each link that defines a functional entry point should
provide the following attributes:

— sn = service instance name (unique within domain)

— st = service type (defaults to “coap”)

— SS = service subtype

Read by an installation tool and used to create DNS-SD
records.

Satisfies REQS8 of coap-req

March 30, 2011, Reference 89

-—

=

—

-~

Location: lamp4/office5/hilton8.org

sn: 545aafgh678uu8
B e

ss: _light._zigbee
IP: f02::45 readable
\ Y J
IP: fdfd::1234 @
/DNS-SD h

identifier: 545aafgh678uu8._light. zigbee. sub. coap._ udp.hilton8.

AAAA: fdfd::1234
SRV: lamp4/officed/hilton8.org; portyy
TXT. schema=zigbee ss=_light. zigbee /

U

March 30, 2011, Reference 90

Example of commissioning procedure

Assume an installation tool, DNS server on-line
DNS is initialized with domain(s)
Host has link-local address plus possibly others

Need <Instance>.<ServiceType>.<Location> triple to create DNS-SD
records

Location = DNS domain name (zone)
Instance = based on function + EUI-64 or vendor s/n;
readable by bar coder of tool
buffered, plus injected into device as “sn” attribute
ServiceType = read from device as “st” attribute
Service Subtype = read from device as “ss” attribute

Installation tool collects attributes from device (including key=value)
and installs PTR, SRV, AAAA and TXT records into DNS server

March 30, 2011, Reference

91

13:00
13:10
13:15
13:40
13:55
14:20
14:40

15:00 retire to Wednesday, 15:10
15:15 Group Communication

15:25

15:35 HTTP Mapping

15:50

80t IETF: core WG Agenda

Introduction, Agenda, Status

1 — link-format
1 — core CoAP
1 — block

1 — observe

2 — basic security

discovery

CoAP Usage

new: SOAP;

16:10 retire
http://6lowapp.net

; overhead; security

core@IETF80, 2011-03-28

Chairs (10)

ZS (5)

ZS (25)

CB (15)

KH (25)

ZS (20)

CB+AB (20)

Chairs (05)

AR (10)

PV (10)

KH+AC (15)

GM ZS AC OG
(5 each)

92

HTTP mapping

e Charter item:

There also may be proxies that interconnect between
other Internet protocols and the Devices using the CoAP
protocol. The WG will define a mapping from CoAP to an
HTTP REST API; this mapping will not depend on a
specific application.

* Not quite clear which direction is meant (which end is
the server and which end is the client).

 Whatever we define will be generic, i.e. not for a
specific application or non-REST use of HTTP.

http://6lowapp.net core@IETF80, 2011-03-28 93

HTTP Mapping

Klaus Hartke

HTTP Mapping

WG is chartered to define a mapping between CoAP and HTTP
Need to figure out
1. how it works

2. what to put in the draft (i.e. what needs to be standardised
so implementations will interoperate)

The current specification goes into more detail than is needed

Proposal: clear separation between the specification and
possible implementations

CoAP HTTP
node node

HTTP/CoAP Reverse Proxy

HTTP request with http:// URI

<
o L
CoAP "HTTP
server client

Proxy

® proxy appears to the client just like an ordinary HT TP server
® N0 special configuration on the HTTP client is necessary
e proxy decides where to send CoAP requests

CoAP/HTTP Reverse Proxy

CoAP request with coap:// URI

>
[. @
CoAP ~ HTTP
client server

Proxy

® proxy appears to the client just like an ordinary CoAP server
® NO special configuration on the CoAP client is necessary
e proxy decides where to send HTTP requests

HTTP/CoAP Forward Proxy

HTTP request with coap:// URI

<
o L
CoAP "HTTP
server client

Proxy

e client sends HT TP request naming the CoAP server as target
e client must be specially configured to use the proxy
e proxy sends CoAP requests to the COAP server

CoAP/HTTP Forward Proxy

CoAP request with http:// URI

>
[. @
CoAP ~ HTTP
client server

Proxy

e client sends CoAP request naming the HT TP server as target
e client must be specially configured to use the proxy
e proxy sends HTTP requests to the HTTP server

Proxy Implementation

CoAP request

with http:// URI

<

CoAP response

Proxy Implementation

CoAP request
Translate

with http://URI | T >

< Translate
CoAP response

Proxy Implementation

CoAP request
Translate

with http:// URI oo T >

CoAP
DTL.S | Token
UDP .

- Translate
CoAP response

Proxy Implementation

CoAP request

with http:// URI

COAP
DTL.S | Token
UDP .

<

CoAP response

Proxy Implementation

CoAP request

with http:// URI

<

CoAP response

¥— What we need to standardise

Specification

Define for any
HTTP request with an http:// URI

CoAP request with a coap:// URI
CoAP request with an http:// URI

HTTP request with a coap:// URI

the response that the proxy is expected
to return to the client

Specification

Define for any

HTTP request with an http:// URI
RFC 2616

CoAP request with a coap:// URI
draft-ietf-core-coap

CoAP request with an http:// URI
draft-hartke-core-coap-http

HTTP request with a coap:// URI
to do

the response that the proxy is expected
to return to the client

draft-hartke-core-coap-http-00

Section 2 Specification

Defines for any

CoAP request with an http:// URI

the response that the proxy Is
expected to return to the client

Section 3 Implementation considerations

Payload conversion, ETag mapping,
Block-wise transfers, Redirect
handling, Examples, ...

draft-castellani-http-coap-mapping-01

A reference for HTTP-CoAP mapping implementors

Angelo P. Castellani and Salvatore Loreto

Proxy Terminology

 HTTP-CoAP forward proxy (client knows it)
— Client knowledge required

* HTTP-COAP reverse proxy (server is known by it)

— Proxy knowledge required

* HTTP-CoAP transparent proxy (aka intercepting)

— No knowledge required at all (+1)

HTTP mapping: current issues

Where the CoAP proxy should be placed?

Should we handle HTTP on IPv4 and CoAP on IPv6?
Is DNS useful to perform HTTP-CoAP mapping?

Do we want transparent URI mapping?

How do we map CoAP multicast to HTTP unicast?
How do we map CoAP observe directly to HTTP?

HC Proxy placement: where?

HC Proxy
HC Proxy

Typically forward
Early TCP to UDP conversion

No link-local multicasting

Managed on client-side (clients trusts it)

-
~ ’K‘

HC Proxy

ically reverse or transpat
Late TCP to UDP conversion (beti
Link-local multicasting (if available
Managed on server-side (can clients trust it~

HTTP/IPv4 to CoAP/IPv6 using DNS

IAB workshop result: IP version mismatch?

— Typically HTTP clients run over IPv4
— CoAP nodes are expected to use IPv6/6LoWPAN

A simple solution: DNS

— node.coap.foo.bar A record points to the proxy
— node.coap.foo.bar AAAA record points to the node

HTTP/IPv4 clients will be directed to the proxy

Proxy identifies the node w/ HTTP/1.1 Host header
— Can also identify groups of nodes (e.g. multicast addr)

HTTP-CoAP: transparent URI mapping

* coap:// resources accessible using HTTP

— CoAP server offers
coap://node.coap.foo.com/temperature

— HTTP clients access it at
http://node.coap.foo.com/temperature

— The URI does not change! (except the schema)

HTTP/IPv4-CoAP/IPv6 Example

HTTP Client (C) HTTP-CoAP Proxy (P)

IPv4 SRC: C DST: P
GET /temperature HTTP/1.1
Host: node.coap.foo.com

IPv4 SRC: P DST: C
HTTP/1.1 200 OK
225C

IPvé SRC: C/P DST: S
CON temperature

CoAP Server (S)

IPv6é SRC: S DST: C/P
ACK 2.00
225C

C

HTTP-CoAP: unicast to

GET /temp HTTP/1.1
Host: temp-nodes.coap.foo.com

<

HTTP/1.1 200 OK
Content-Type: multipart/mixed; boundary=not

--not
Content-Type: message/http

HTTP/1.1 200 OK
Link: <http://node2.coap.foo.com/temp>; rel=via

21.2C

--not
Content-Type: message/http

HTTP/1.1 200 OK
Link: <http://node1.coap.foo.com/temp>; rel=via

225C

--not--

>

NON 2.00
21.2C
<

NON GET temp

\f

multicast

S

S2

NON 2.00
23.9C

S3

NON 2.00
225C
<

.. Timeout ..

13:00
13:10
13:15
13:40
13:55
14:20
14:40

15:00 retire to Wednesday, 15:10
15:15 Group Communication

15:25

15:35 HTTP Mapping

15:50

80t IETF: core WG Agenda

Introduction, Agenda, Status

1 — link-format
1 — core CoAP
1 — block

1 — observe

2 — basic security

discovery

CoAP Usage

new: SOAP;

16:10 retire
http://6lowapp.net

; overhead; security

core@IETF80, 2011-03-28

Chairs (10)

ZS (5)

ZS (25)

CB (15)

KH (25)

ZS (20)

CB+AB (20)

Chairs (05)

AR (10)

PV (10)

KH+AC (15)

GM ZS AC OG
(5 each)

118

SOAP over CoAP - Motivation

* SOAP is basis for Devices Profile for Web Service (DPWS)

— SOAP profile for ,constrained’ devices including Discovery,
Eventing and Security

— Aligned with and extendable by W3C SOAP Web services
framework

— Seamless integration of devices in business infrastructures
* SOAP (in constrained environments) transport via

— SOAP over HTTP: suffering from TCP

— SOAP over UDP: suffering from unreliability

— SOAP over CoAP: lightweight and reliable

 EXISOAP over CoAP is mapping seamless with
XML SOAP over HTTP

draft-moritz-core-soap-over-coap-00

SOAP over CoAP

Map DPWS (not SOAP!) one- and two-way
exchange patterns on CoAP message layer

Use POST method and appropriate response
codes

Supported media type XML Infoset
(SOAP+XML, EXI, FI)

Response destination addressing
(i.e. WS-Addressing anonymous endpoint)

Map WS-Addressing message id on CoAP token
option

draft-moritz-core-soap-over-coap-00

Foo over CoAP - Issues

e draft-ietf-core-block-02

— Payload only for either request or response

e draft-ietf-core-coap-05

— POST has no payload in response

— User defined header options (i.e. SOAPAction)
e For SOAP (not DPWS!) one-way MEP
* Use unassigned header options

draft-moritz-core-soap-over-coap-00

Advertisement block:
draft-bormann-coap-misc-07

* User-defined option:
reuse option number 14 (first fencepost)
elective
any length > 0 is a user-defined option
recommended to start with SDNV of enterprise number
- static byte string -- makes it easy to allocate a unique value

e ek L R N I I ik L L R e ik e
|1 0000001061 110011| private opt-id]| value...

e ek L R N I I ik L L R e ik e
\ SDNV of enterprise number /

Figure 1: Example option value for user-defined option

http://6lowapp.net core@IETF80, 2011-03-28 122

draft-castellani-coap-overhead-01

Angelo P. Castellani and Mattia Gheda

Avoid Token to reduce complexity

* With Token
— Simple server devices allocate 8B more per request
— Adds 9B overhead to non-empty packets

— Session matching is hard
* CON/NON pkts: match (IP, port, Token)
* Non-empty ACK pkts: match (IP, port, Token, MID)
* Empty ACK/RST pkts: match (IP, port, MID)

* No Token

— Less overhead and memory consumption

— Simpler session matching:
 CON/NON: match (IP, port)
* ACK/RST: match (IP, port, MID)

New virtual message type: CONACKSs

e What if the ACK is lost? CoAP client CoAP server
* Current: CON MID=6f4e
— If no ACK is received the CON GET temperature >
MUST be retransmitted ACK MID=6f4e

N\

— Not efficient and more complex

to implement! (2;(8:)\1 |'|;/|2|D5=gi3sk
? < . .
* Proposed
— New virtual message type:
CONACKs

— A new CON piggybacks the ACK

New header proposal

0 1 2

0123456789012 34567890123
e e et 2t s A e A
|Ver| T | OC M| A | AC | SMID |
tot—t -ttt -ttt —+—+

Action (A): identifies empty msgs, requests, 1xx, 2xx,
3xX, 4xX, 5XX, 6xX responses

Action Code (AC): gives details about the specific
request (GET, POST, etc.) or response

Sequential MID (SMID): sequentially growing
message ID.

— Do we need more than 8 bits?

More parts (M): message is not complete. (optional)

Example: bidirectional large messages

Client Server
: CON [M=1,SMID=100], POST, /configuration ———>:
:< ————————————————————————— ACK [M=0,SMID=100] :

: CON [M=0,SMID=101] -—--——=-——=="=="—"="=—"—==——————— >:
:< ———————————————— CON [M=1,SMID=102], 2.00 OK :
: ACK [M=0,SMID=102] -—-—-——="""—""="—"—="———"—————— >:
:< ————————————————————————— CON [M=0, SMID=103] :
|
|
|

CONACK

Security: What does the charter say?

e Security, particularly keying of new Devices, is very
challenging for these applications.

* The WG will work to select approaches to security
bootstrapping which are realistic given the
constraints and requirements of the network.

 To ensure that any two nodes can join together, all
nodes must implement at least one universal
bootstrapping method.

http://6lowapp.net core@IETF80, 2011-03-28 128

Security Considerations
in the |IP-based Internet of Things

Oscar Garcia-Morchon,
Sye Loong Keoh, Sandeep S. Kumar, René Hummen and Rene Struik

Philips Research, RWTH Aachen, Struik Security Consultancy

Thing lifecycle and security framework

(m === Y Sttt ettty \
—Manufactured | —Reconfiguration
I Installed : I sw update — Removal |
l Commissioned _' | ~Appl Reconfiguration _ — Decommissioned |
= s (-----
- s wsm w?| | | eewm eewm e ew s

‘- l) time

T ——
Thing security model] Bootstrapping = eeeee
R Y ot i i v SRS -
. 1
. .
' - Configuration
HowE Application . 1 avoicaticn Node A | ¢ |[Application Entty
Trar Mepecccnccncccnnns
2?“'@ i SPO Transport | securty Transport Seculty
rvice] e
Network Network I Network M| Serice Network Service
L2 | L2 I L2 & L2

Features and requirements (1/2)

Bootstrapping Operation @

Incremental deployment End-to-End security
] . Attackers \
Identity and key management Mobility support launch ~___
resource
Privacy-aware identification Group membership exhaustion >
- . o . attack ~——» l
Resource-constrains, DoS @

Entity Authentication
@ @ E2E Encryption

IP < loT ‘ integrity protection @
translation —~T « T > &
Y - 5 o
A s @ —— -G
Internet \ . - \ : .\. . \ @

O < T > ; ."-'?.'0 |'¢':'L-f.' \
6LOWPAN & @
GLOWPAN

Features and requirements (2/2)

Distributed vs. Centralized
architecture

Centralized
management

b A
Backd L]

LOWPAN Exiended LoWPAN
® Distributed ad-hoc
® ® ® o security domain
® ®
@ @ ELOWPAN Router

@ ELOWPAN Node
Ad-Noc LOWPAN

Bootstrapping a thing'’s identity
and keying materials

Association of things
to each other

Still open

Assessment of security mechanisms (security & operation & performance)
Flexible security architecture and operational policies
Selection and coordination of a default security suite

Definition of a standard lightweight bootstrapping protocol

13:00
13:10
13:15
13:40
13:55
14:20
14:40

15:00 retire to Wednesday, 15:10
15:15 Group Communication

15:25

15:35 HTTP Mapping

15:50

80t IETF: core WG Agenda

Introduction, Agenda, Status

1 — link-format
1 — core CoAP
1 — block

1 — observe

2 — basic security

discovery

CoAP Usage

new: SOAP;

16:10 retire

; overhead; security

Chairs (10)

ZS (5)

ZS (25)

CB (15)

KH (25)

ZS (20)

CB+AB (20)

Chairs (05)

AR (10)

PV (10)

KH+AC (15)

GM ZS AC OG
(5 each)

