DECADE Architecture

draft-ietf-decade-arch-00

Richard Alimi, Hongqiang Liu, Dirk Kutscher, Akbar Rahman, Richard Yang
DECADE Architecture Objectives (Reminder)

• Architecture for accessing in-network storage
 – Entities and protocol (interfaces)
 – For enhancing P2P and similar distribution systems
 – To be implementable with existing IETF protocols

• Main architecture elements
 – Naming of resources
 – Resource management and authorization
 – Actual data transmission / distribution to servers
Changes since previous version

- Document became a WG draft
- Added more details on:
 - Data sequencing and naming
 - DECADE protocols (DRP and SDT)
 - Server-to-server protocols
 - Evaluation of candidate existing protocols
 - Started by evaluating HTTP
Open Issues (1)

• Does the WG agree on the approach for “Data Sequencing and Naming” (section 4.4)?
 – DECADE derives object names from hashes of the data object content (and the data objects are immutable)
 – Application names will be independent of the DECADE name (and mapping between names will be maintained by the application)
Open Issues (2)

• Does the WG agree on the approach for “DECADE Protocols” (section 5)?
 – DRP provides configuration of access control and resource sharing policies on DECADE servers
 – SDT provides data access interface and is used to read/write objects from a server
Open Issues (3): DRP and SDT

• DRP and SDT conceptually separate
 – Could actually be realized by one protocol

• **How to delegate authorization to application clients?**
 – Client must indicate authorization and resource sharing policy to a DECADE server

• **Approach 1: SDT carries DRP tokens inline**
 – DRP defines format of a token which is carried in an extension field of SDT
 – Tokens generated (by a DECADE client or other trusted entity), which may be used to access its storage at a DECADE server
 – Tokens may be used itself, or given to other DECADE clients

• **Approach 2: Separate protocol**
 – DECADE client indicates policy to DECADE server via an independent protocol (e.g., separate messages)
 – Client periodically sends updates (e.g., update to resource policy) to the server

• Observations:
 – Approach 1 appears simpler in specification and implementation
 • Smaller delay for allowing a peer to first read/write from DECADE storage
 – Approach 2 may provide more room for extensibility (though it isn't clear if we need it)
Open Issues (4): Querying Server Status

- DECADE status may include more than available in SDT (e.g., resource usage by self and authorized peers)
 - This is an exercise in how DRP may be designed to evolve and be extended

- If token-based approach:
 - Option 1: Extend SDT
 - Approach responsible WG's with a proposal
 - Option 2: Allow SDT responses to include DRP metadata
 - Returned metadata includes additional DECADE status
 - May piggyback on data responses too (in addition to SDT status responses)

- If DRP is separate protocol:
 - Option 1: Extend SDT
 - Option 2: DRP defines its own status message
 - Contains status only for DRP-layer status

- Observations
 - There appear to be alternatives that still let DECADE evolve independently in either case
Next Steps for Design Team

- Address open issues as described
- Concretize naming
- Complete conceptual descriptions of DRP and SDT
- Complete HTTP example implementation
BACKUP
Draft Purpose

• DECADE intended to improve network efficiency of P2P apps
 – ... by introducing storage into the network

• Draft presents one possible architecture for DECADE
 – Satisfies requirements from draft-ietf-decade-reqs
 – Principles drawn from observations from draft-ietf-decade-survey

• Focus on major design issues
 – Explicitly define/describe major design principles
 – Define remaining issues to be resolved

• Feedback much appreciated
Architectural Entities: Applications

Typical Characteristics:
- Divide content into smaller objects for distribution
- Multiple sources for content
Architectural Entities: DECADE Servers

- Deployed across independent storage providers
- Servers (typically) are upstream of last-mile
- Number of servers, resources, placement decided by each storage provider
- Simple servers
- No distributed coordination (within DECADE)
Architectural Entities

Live Streaming Client
(DECADE Producer+Consumer)

File-sharing Leecher
(DECADE Producer+Consumer)

Live Streaming Source
(DECADE Producer)

File-sharing Seed
(DECADE Producer)