

Energy SIG Summary to IETF EMAN

John Parello (Derived from Rich Morgan et al to SIG)

IETF EMAN IETF-80 Prague 3/2011 page 1 © 2011 ODVA, Inc. All rights reserved.

www.odva.org

Summary

- Organizations are working on parallel paths in different industries
- SIG and EMAN are tackling same the problem domain
- Similar information models

Key items that form consensus between groups

- **1.** Phases Monitor, Control, Interface
- 2. Power Reporting
- 3. Optional Quality and Accuracy
- 4. Accommodation for Fixed readings and Capabilities
- 5. Need for Aggregation and/or Proxy
- 6. Need for States for Context and Control

What is the ODVA

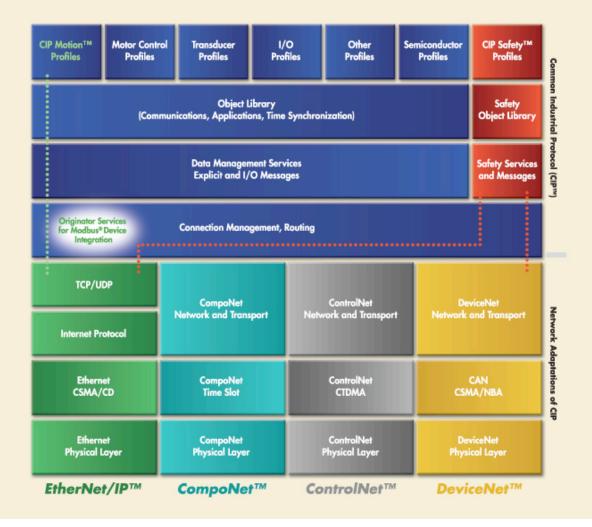
Organization of Businesses

- 274 Member Companies
- > 8 (by my count) Active in SIG for Energy Applications

Responsible for defining

- ► Common Industrial Protocol (CIPTM)
- ► Industrial network Adaptations of CIP including EtherNet/IP[™] and DeviceNet[™] among others

ODVA investigating an official IETF liaison request


Comparison to IETF & EMAN Current WG Items

IETF Organization of Professionals	ODVA Business League	
EMAN WG	SIG for Energy Applications (Energy SIG)	
Telecommunication	Industrial	
Charter (6) •Monitoring •TBD	Goals (3) •Monitor •Control •Procurement	
SNMP	CIP	
MIB	CIP Objects, Services, Profiles	

NOTE: All SIG Items are still WIP and unpublished as yet.

CIP and its Family of Industrial Networks

CIP

Industrial Networks

Energy SIG

Energy SIG objective

Develop CIP specification enhancement to integrate
 Optimization of Energy Usage enabling technologies
 Must be simple for the simple devices

Items

1: Awareness of energy usage

 Monitor: Standard energy reporting and methods

 2: Consuming energy more efficiently

 Control: Commanding equipment to conservation states and controlling peak demand

 3: Procuring energy at the lowest cost

 Interface: to the Smart Grid

Energy Basics

Energy (W) is a resource that enables work to be done

- Units of measure: Joules, kilowatt-hours, British thermal units, calories, etc.
- Prefix kilo (x1000), mega (x10⁶), giga (x10⁹), etc.

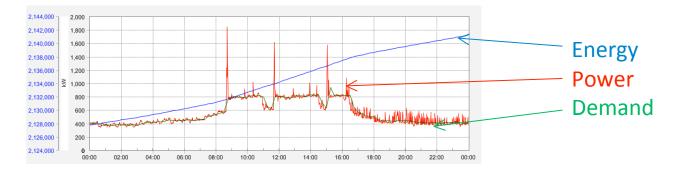
Power (P) is the rate of converting energy to work per unit of time

Units of measure: Joules per second, Btu per hour, kilowatts

Demand

Considered Not Applicable

Basic Metaphor


Time is part of the energy unit: kilowatt-hour

Most other units put time in the power unit: J/s
How to visualize energy and power

And then there's demand...

Demand is the average rate of energy consumed per interval of time, in kilowatts

Utilities charge for the highest interval demand in a month, \$10 - \$20 per kW

- Demand is figured at each main incoming meter
- Demand acknowledges equipment capability to absorb short-time overloads
- Demand charges add uncertainty to cost forecast

Energy object hierarchy

Energy object – highest level

Produces normalized consumption expressed in kWh

kWh selected as required normalized unit

- True global standard for electrical energy
 - Joules not widely used in US
- Majority of ODVA members are electrical device vendors
- Majority of global energy standards reference kWh, MWh, etc.

Alternate normalized reporting supported

Optional set of attributes

EMAN WG Items:

 ✓ Define power units in Watts with exponent.

Energy sub-objects

Electrical energy object

- Native engineering units: kWh, kW, etc.
- Accommodates unique character of electricity
 - Alternating nature leads to real and reactive values
 - Poly-phase nature produces perphase and total values

Non-electrical energy object

Covers resources other than electricity

EMAN WG Items:

X Assumes all are electrical objects

✓ Contains same optional power quality values

X No modeling of non-electrical devices

Power in the Energy Object

Power is expressed as a REAL (floating point) value

- Positive means energy consumed
- Negative means energy generated

Power Readings may need power state to provide trending. Will be addressed in control phase.

Demand data not considered to be required

EMAN WG Items: ✓ Same constructs for power reporting

✓ Same recognition that states provide context and control.

Energy in the Energy Object

Energy expressed as 5-integer odometer

Widely used, combines precision with wide range

Array[4]	Array[3]	Array[2]	Array[1]	Array[0]
Terawatt-	Gigawatt-	Megawatt-	Kilowatt-	Watt-hours
hours	hours	hours	hours	(kWH x 10 ⁻
(kWH x 10 ⁹)	(kWH x 10 ⁶)	(kWH x 10 ³)	(kWH)	³)

Three energy buckets

- Consumed and generated unsigned values
- Total = (consumed generated), signed value

Values will eventually roll over to zero

Data consumers must correctly handle rollovers EMAN WG Items:

 ✓ Demand object covers this as optional one value field. This approach is clever for small devices

Support of simple devices

Energy odometer is conditionally required

- Required if device reports time-varying rate of energy transfer
- Requires a clock and non-volatile memory
- Simple integer arithmetic
- If energy odometer not used, may not be compliant with some vendor's systems
- Simple devices with fixed estimated or rated power may report a power value in watts

EMAN WG Items: ✓ Same recognition for devices that are unable to report power or energy

Nominal / fixed energy usage

Data from measurements should be encouraged

- Fixed and estimated values dilute aggregation accuracy
- Nominal values based on device ratings may overstate actual usage

User setting attribute added

- Use to be defined by vendor
- May represent fixed power, offset value, etc.

EMAN WG Items: ✓ Recognition of same problem with same solution for fixed devices

Energy capabilities attribute

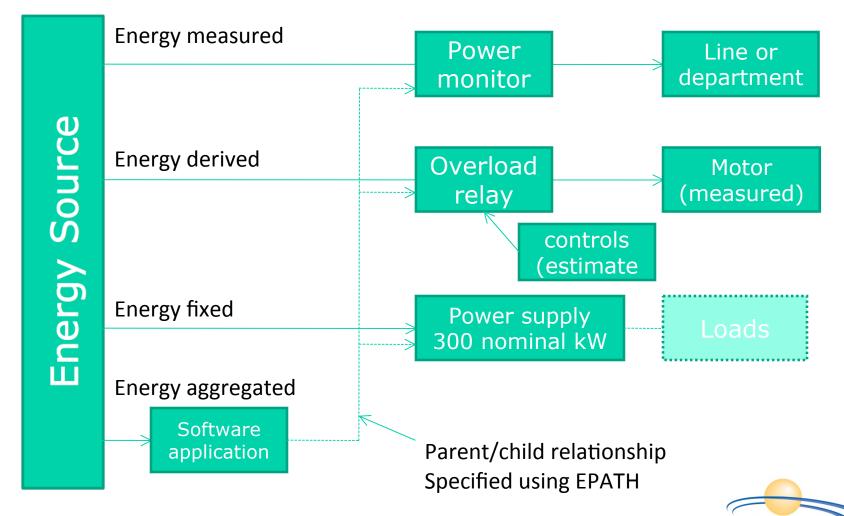
Energy Measured –device produces measured energy data to a specified accuracy

Energy Derived – value produced is a function of measured, estimated, process states, etc.

Energy Fixed – value produced is a fixed estimated or nominal value

Energy Aggregated – value produced by a "parent device", the combined usage of its "children"

EMAN WG Items:


✓ Congruent solution to the caliber field which rates the reading.

(This rates the devices capability of producing a reading versus the caliber of a reading)

✓ Same identification of Aggregator

Energy capabilities examples

Energy accuracy percentage

Required attribute; expresses data accuracy

Examples:

- Revenue electric meter: 0.2, 0.5, 1.0 %
- ► Overload relay: ~5%
- Frequency drive: ~10%
- Simple device reporting fixed power: 50% +

Aggregated data reports blended accuracy

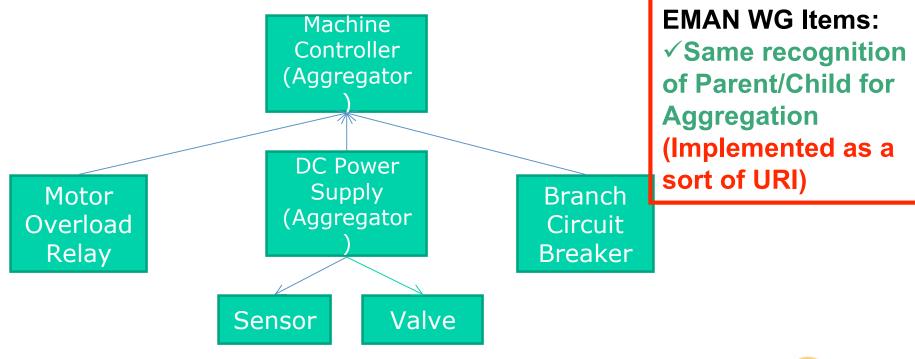
Function of accuracy and contribution of source (child) devices EMAN WG Items: ✓ Same identification of accuracy for non fixed readings.

Energy Aggregation

Aggregators need to accommodate

- Energy odometer data from devices with time-varying energy transfer
 - Engineering units normalization
 - Correct handling of data rollover
- Fixed power (energy transfer rate) devices
 - Energy = Power integrated over time

EMAN WG Items:


✓ Same
 identification of
 need for
 Aggregator and/or
 Proxy

✓ Expressed asParent/Child

Aggregation relationships

An aggregation "EPATH" type attribute is used in the Energy Object to define a "CIP Energy Aggregation Tree". Think of the Aggregation EPATH as a set of pointers to various CIP Energy Objects that can be located in various CIP devices on a network (for Aggregation).

Summary

- Organizations are working on parallel paths in different industries
- SIG and EMAN are tackling same the problem domain
- Similar information models

Key items that form consensus between groups

- **1.** Phases Monitor, Control, Interface
- 2. Power Reporting
- 3. Optional Quality and Accuracy
- 4. Accommodation for Fixed readings and Capabilities
- 5. Need for Aggregation and/or Proxy
- 6. Need for States for Context and Control

Thank You

Questions?

