Geopriv: Privacy Preferences for Location Information

draft-ietf-geopriv-policy-23

Jorge Cuellar

Location Obscuring:
 Want to present location with given Uncertainty

Goal: given a point, the "measured position" (say, precise)
find a circle, the "reported location", of radius d (uncertainty) that contains the point

Assume: we do not force the user to lie

Location Obscuring:

Want to present location with given Uncertainty

1. Question: shall each run of the protocol render always a different output (with same input)?

If yes: the intersections provide high precision

Location Obscuring:
 Want to present location with given Uncertainty

1. Question: shall each run of the protocol render always a different output (with same input)?

If not: what about small movements?
What about several devices providing location?
How, where to keep state?

Location Obscuring:

Want to present location with given Uncertainty

Assume you always produce different outputs. What happens if every evening you go to the same place?

Look at intersection of the last reported locations (\& other statistics).

The final destination is leaked with high precision.

Not good!

Distinguishability

2. Question: How can you objectively compare solutions ? Can you measure how good a protocol is?
Indeed!

- Is the target here? Is it there?
- We say that the two locations are distinguishable via the algorithm
- Any algorithm partitions the space into indistinguishability regions
- Two points are in the same region if they are indistinguishable

> If $A_{\text {prov }}=$ Area of location provided
> and $A_{\text {block }}=$ Area of a block
> then $1-\left(A_{\text {block }} / A_{\text {prov }}\right)=$ Leakage of algorithm

Solution

- Construct fixed blocks as big as possible
- make the reported location depend on the block,
- not on the point within the block
- Necessary to introduce transition intermediate blocks, in order to diffuse the area when moving from one block to another
- What ever method is chosen, it MUST be standardized in detail, because the intersection of the outputs of different algorithms will otherwise provide a high information leakage
- A simple version of the algorithm based on a rectangular grid is in draft-ietf-geopriv-policy-23. It offers:
- protection for static targets,
- (limited) protection for moving targets, and
- protection for targets that regularly visits a certain location

An Algorithm based on a grid

Construct a grid of points
Find octagons around the points
hexagons = intersection of octagons squares = areas in only one octagon such that all "blocks" (squares and hexagons) have the same area

An Algorithm based on a grid

Solution ok, but is it easy to calculate?

```
o : real (choose from a small table)
P := sqrt(3)/6
q := 1 - p
prob: real
```

Function choose(Ma, Mb: real * real): real * real;
\{rand:= Random[0,1];
If prev-M1 == Ma Then
If rand < prob Then choose := Ma;
Else choose := Mb; EndIf
Elseif prev-M1 == Mb Then
If rand < prob Then choose := Mb;
Else choose := Ma; EndIf
Else If rand < 0.5 Then choose := Ma;
Else choose := Mb; EndIf \}
\{ d := radius/1000;
$\mathrm{d} 1:=(\mathrm{d} * 180) /\left(\mathrm{pi} \mathrm{m}^{*} \cos (\mathrm{o})\right)$;
d2:= d / 110.6;
l := d1*floor (m/d1)
$r:=1+d 1$;
b := o+d2*floor(n-o/d2);
t := b+d2;
$x:=(m-l) /(r-l)$;
$y:=(n-b) /(t-b)$;
SW := $(1, b)$;
SE := (r,b);
NW := $(1, t)$;
NE := (r,t);
If $\quad x<p$ and $y<p \quad$ Then $M 1 \quad:=$ SW;
Elseif $x<p$ and $q<=y \quad$ Then M1 $:=N W$;
Elseif $q<=x$ and $y<p \quad$ Then M1 := SE;
Elseif $q<=x$ and $q<=y \quad$ Then M1 := NE;
Elseif $p<=x$ and $x<q$ and $y<x$ and $y<1-x$
Then M1 := choose(SW, SE);
Elseif $\mathrm{p}<=\mathrm{y}$ and $\mathrm{y}<\mathrm{q}$ and $\mathrm{x}<=\mathrm{y}$ and $\mathrm{y}<1-\mathrm{x}$
Then M1 := choose(SW, NW);
Elseif $\mathrm{p}<=\mathrm{y}$ and $\mathrm{y}<\mathrm{q}$ and $\mathrm{y}<\mathrm{x}$ and $1-\mathrm{x}<=\mathrm{y}$
Then M1 := choose(SE,NE);
Elseif $p<=x$ and $x<q$ and $x<=y$ and $1-x<=y$
Then M1 := choose(NW,NE);
Endif
\}

