NACM restructuring proposal

IETF 80

Martin Bjorklund
mbj@tail-f.com

Andy Bierman
andy.bierman@brocade.com

mailto:mbj@tail-f.com

Problems with current NACM 1(2)

» Recall that there are four lists with rules:

module-rule, rpc-rule, data-rule, notification-rule

e Each such list is flat.

- No mechanism to group related rules

 Mixes who has access to some objects with what those objects are

- Makes task / feature based rules difficult to maintain (see example
on next slide)

Problems with current NACM 2(2)

module-rule acme-system sysl
allowed-group *

nacm-action permit
module-rule ietf-routing rl

allowed-group [router-adm]

nacm-action permit

module-rule ietf-system sys2
allowed-rights read
allowed-group [oper]
nacm-action permit

rpc-rule acme-interface reset rpl
allowed-group [admin oper]
nacm-action permit

rpc-rule acme-interface reset rp2
allowed-group *
nacm-action deny

rpc-rule ietf-system reboot rp3
allowed-group [sys-admin]
nacm-action permit

data-rule allowuser
allowed-rights *

allowed-group [sys-adm]
path /user/user
nacm-action permit

data-rule readif
allowed-rights read

allowed-group [sys-adm]
path /interfaces
nacm-action permit

data-rule allowpasswd
allowed-group *
path /users/user[name=$USER]/password
nacm-action permit
data-rule denyuser
allowed-group *
path /users/user
nacm-action deny

notification-rule ietf-system config-change chg
allowed-group *
nacm-action deny

Since the rules are spread out over four different tables, it is difficult to see
which rules logically belong together.

Proposed solution 1(2)

Introduce named collections of rules, rule lists. Each such rule-1list
contains all functionally related rules.

- Example: an administrator can define one rule-1ist per
common task in the system: system, routing, vpn, accouting, ...

Make a choice of the current four different rule types, so there is just one list
of rules in a rule list.

So, instead of four flat lists, we have one list nested in another:

OLD: NEW:

list module-rule { list rule-list {

key "module-name rule-name"; key name;
} leaf module-name { ... }
list rpc-rule { choice rule-type {

key "module-name rpc-name rule-name"; case rpc { ... }

coc case notification { ...
} case path { ... }
list data-rule { }

key "rule-name"; leaf action { ... }

}

}

list notification-rule {
key "module-name notification-name rule-name";

Proposed solution 2(2)

Move the allowed-groups leaf from the rule into the rule-1ist. This

makes it possible to define the rules for one task without worrying about
which groups have access to it.

- Example: A vendor can choose to pre-populate the data store with
rule-lists for common tasks applicable to his type of device. An
operator can then assign groups to these tasks. Another
operator might add his own tasks.

list rule-list {
key name;
ordered-by user;
leaf name { ... }
leaf-1list allowed-groups { ... }
leaf module-name { ... }
choice rule-type {
case rpc { ... }
case notification { ... }
case path { ... }
¥

leaf action { ... }

Example

rule-list common-system
allowed-group *
rule own-passwd

path /users/user [name=$USER]/password
allowed-rights *
action permit

rule ietf-sys
module ietf-system
allowed-rights read
action permit
rule acme-sys
module acme-system
allowed-rights *
action permit

rule-list system-adm
allowed-group [sys-adm]
rule users

path /users/user
allowed-rights *
action permit

rule ietf-sys
allowed-rights *
action permit

Open Issues

Is two levels of nesting enough?

A common (?) use case is to define one rule-1ist for a task, and let

some groups access it read-write, and some read-only. This is not directly
supported — you would need to define two different rule-lists, e.g. routing-
admin and routing-read.

By moving the allowed-groups check from the rule to the rule-1list,

we loose some flexibility. If we really need special handling of a rule for
some group, this rule needs to be defined in a separate rule-list.

Would it be useful with any objects to help debug a NACM configuration?

- rpc get-rules group-name ---> list of rules
- rpc check-path group-name path ---> rule execution trace

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

