OAuth Security

Torsten Lodderstedt
Mark McGloin
Phil Hunt

http://datatracker.ietf.org/doc/draft-lodderstedt-oauth-security/

OAuth WG session at IETF-80, April 1% 2011,


http://datatracker.ietf.org/doc/draft-lodderstedt-oauth-security/

Objectives of the document

 Comprehensive Threat Model and Security
Considerations

« Serve as foundation of OAuth core spec's
security considerations section

» Facilitate a broad discussion on OAuth security
in the WG (pre-requisite for consensus)

* Help others to assess OAuth Security (e.q.
OMA or WAC)

» Serve as foundation for protocol/
implementation-specific security analysis

* Guide implementors wrt security



Overview on the I-D

* Gives comprehensive threats model for OAuth
(threats & associated impact)

» Scope: core, bearer, mac (partially)

« Assumption: Static binding between client and service
provider

* Describes respective countermeasures

» Considers design options and different client
types

» Cross-references between associated threats
and countermeasures



Example Threat Description

4.41.1. Threat: Malicious client obtains authorization 10C

A malicious client could counterfeit a valid client and obtain an access authorization that way. The
malicious client could even utilize screen scraping techniques in order to simulate the user consent in
the authorization flow.

Countermeasures:

¢ The authorization server should authentication the client, if possible (see
Section 5.2.3.4). Note: the authentication takes place after the end-user has authorized
the access.

¢ The authorization server should validate the client's redirect_urn against the
pre-registered redirect_uri, if one exists (see Section 5.2.3.5). Note: The validation of
the redirect_uri is the only technical mean to recognize a malicious client id in advance of
the authorization process. Further note this does not work for native applications because
in contrast to web applications this uri is not bound to a single communication endpoint.
The valid client's redirect_urn (typically with custom scheme) can be used by a malicious
on any device.

e After authenticating the end-user, the authorization server should ask him/her for
consent. In this context, the user shall be explained the purpose, scope, and duration of
the authorization. Moreowver, the authorization server must view to the end-user the meta
data it associates with the particular client. It is up to the user to validate this data and
approve the authorization request. {see Section 5.2.4.3).

¢ The authorization server must not perform automatic re-authorizations for clients it is
unable to reliably authenticate or validate (see Section 5.2.4.1).

e [f the authorization server automatically authenticates the end-user, it may nevertheless
require some user input in order to prevent screen scraping. Examples are CAPTCHAS or
user-specific secret like PIN codes.

¢ The authorization server may also limit the scope of tokens it issues to clients it cannot
reliably authenticate (see Section 5.1.5.1).




Example Countermeasure Description

5.2.3.5. Validation of pre-registered redirect_uri Ll

An authorization server may require clients to register their redirect_un or a pattern (TBD: make
definition more precise) thereof. The way this registration is performed is out of scope of this
document. Every actual redirect_urn sent with the respective client_id to the end-user authorization
endpoint must comply with that pattern. Otherwise the authorization server must assume the inbound
GET request has been sent by an attacker and refuse it.

Mote: the authorization server MUST NOT redirect the user agent back to the redirect_ur of the
authorization request.

* Session fixation: allows to detect session fixation attempts already after first redirect to
end-user authorization endpoint

» For clients of LOA 2/5/7, this measure also helps to detect malicious apps early in the
end-user authorization process. This reduces the need for a interactive validation by the
user.

The underlying assumption of this measure is that an attacker must use another redirect_ur in order
to get access to the authorization code. Deployments might consider the possibility of an attacker
using spoofing attacks to a victims device to circumvent this security measure. This is a
countermeasure against the following threats:

» session fixation
» malicious apps (for deployment-specific clients with secret)

MNote: Pre-registering clients might not scale in some deployments (manual process) or require
dynamic client registration (not specified yet). With the lack of dynamic client registration, it only
works for clients bound to certain deployments at development/configuration time. As soon as
dynamic resource server discovery gets involved, that's no longer feasable.




Plan/ldeas

» Core spec's security considerations section

Draft (-01) exists: http://datatracker.ietf.org/doc/draft-lodderstedt-
oauth-securityconsiderations/

Focuses on the guidlines implementors of the protocol must
consider (WHAT and not WHY)

References security document

e Security Document

Bring it forward as WG item and RFC, complementary document
to the core spec's security considerations section

Incorporate WG feedback (into -02)

Could be an umbrella document which discusses security wrt the
OAuth protocol family (core, bearer, mac, discovery?, ...)



	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6

