Chain Extension Proposal

Phil Hunt
January 26, 2011
phil.hunt@yahoo.com

3/31/11 IETF 80 - Prague



Introduction

e Some web service customers has raised the
issue of passing both user credential(UC) and

client app context (AC) in HTTP request/
responses

— User --1--> Client --2-- REST ---3-> Service --4-->
IAM/AAA infrastructure

A



Issues

How to propagate user auth context though
multiple service pairs and security domains?

How to support HTTP level exchange of creds
(as opposed to SOAP based)

Performance — must keep lightweight

— Support very high rate of app transactions

Portability
— Service providers may be in separate admin zones
— May be multi-vendor



Chain Proposal

* Extend token endpoint to allow foreign access
tokens to be exchanged for new ‘local’ tokens

* Depends on:

— Ability of one domain token server to understand
another’s access token.

e Standard token format (e.g. some profile of JWT)
— Pair-wise trust between domains



Terminology

* Glossary

— Security Context — an abstract concept that refers to an
established authentication state

— Security Context Token — a representation of a security
context

— Signed Security Token — a signed security token (e.g. JWT)

— CT —Type of signed security token representing client
applications (may also be client credential)

— UT — Type of signed security token representing users

— AT — A type of extensible signed security token usually
including at least one client security context and one user
security context (aka access token)



Observations

* Originating user
— There is desire to track original user context
— Originating client node has delegation from user

— Subsequent nodes proceeding under own authority
plus original/pair-wise authorization

* Pair-wise Trust
— Each SP must trust previous SP node as Client
— Signing authority
* Client’s authenticator/token service (fed model)
 Client directly (via SP’s authenticator service)



Proposed Chain Flow

Note: this flow uses a client credential based on
SAML IDPs for clients and users. Normal client _id/
client_secret could also be used.



Client Obtains CT

* Client App Authenticates with IDP
— SAML Authentication Assertion returned

Token
Server Server
6 C"Z’}: Qpp REST Svc
Profile) —

3/31/11 IETF 80 - Prague

IDP




Client obtains its token

* SAML Assertion Exchanged for Token (C,T)
— One-time

IDP Token
Server Server

Client App
(User
Profile)

3/31/11

Note: client could
use client_id/

client_secret



End-User Authenticated and AuthZ obtained
— OAuth ‘grant code’ or SAML Bearer assertion (UA) returned

Token
Server
REST Svc
(OVD)

3/31/11 IETF 80 - Prague 10

IDP/AS
Server

\ Client App
(User
Profile)




 End-User Authenticated and AuthZ obtained
— OAuth ‘grant code’ or SAML Bearer assertion (UA) returned

IDP/AS Token

Server Server

Token Request Form

Authorization: Token «C,T»
assertion: «UA»

REST Svc
(OVD)

A

3/31/11 IETF 80 - Prague 11




Access token combines contexts

 End-User Authenticated and AuthZ obtained
— OAuth ‘grant code’ or SAML Bearer assertion (UA) returned

Token Request Response

Access Token(AT,)=«C,T
+UT»

(User
Profile)

3/31/11 IETF 80 - Prague 12



Normal OAuth Access Request

 End-User Authenticated and AuthZ obtained
— OAuth ‘grant code’ or SAML Bearer assertion (UA) returned

Profile)

REST Svc Request
Authorization: AT, «C,T+UT»

A

3/31/11 IETF 80 - Prague 13




Chained AT Request

 End-User Authenticated and AuthZ obtained
— OAuth ‘grant code’ or SAML Bearer assertion (UA) returned

IDP Token Token
Server Server Server
Client 2 obtains/calcs combihed
8 (User
Profile)

token AT,«C,T+C,T+UT>
3/31/11 IETF 80 - Prague 14




Chained Request

 End-User Authenticated and AuthZ obtained
— OAuth ‘grant code’ or SAML Bearer assertion (UA) returned

IDP Token
Server Server
Profile)

HTTP Request
3/31/11 IETF 80 - Prague 15

Authorization: AT, «C,T+C,T+UT»



Comments

Chaining may not be required if resources in
common domain

Does allow bridging between federated resources
Expensive for single-operations

Inexpensive when more then one request per
client

Does not replace functionality of WS-
SecureConversation (e.g. message protection)

Suitable for REST based, lightweight scenarios
where performance is an issue.



