R. Casellas, R. Martinez, R. Muioz
Optical Networking Area
Centre Tecnologic de Telecomunicacions de Catalunya (CTTC)

80 IETF Meeting / PCE Working Group / Prague, March 2011

CTTC Introduction and Context

Centre

Tecnologic

de Telecomunicacions
de Catalunya

e PCEP RFC restricts TCP source and destination ports to registered port 4189

e Rationale not clear (at least to us...)

e See pce@ietf Mon, 2 Jun 2008 16:03:02 -0400 (http://www.ietf.org/mail-
archive/web/pce/current/msg01634.html)

e “It might be claimed that two PCC processes might exist on a single host/router, but no usage
scenario has been found” = A PCE “host” connecting to peers will “behave” as different PCCs.

e |t does not improve security.
¢ |t does not ease configuration / administration.
e |tis not simpler to implement

e A “PCE” may end up having several TCP/PCEP adjacencies, either as server / client

e Seems contrary to “common practice”

e TCP servers “listen” to well known / registered ports (not necessarily < 1024)
e BGP (179)/ HTTP (80) / IRC (6667) / TELNET (23) / FTP

e TCPclientsrely ona O.S. selected random port

e BUT, seems “perfectly” valid

e assuming coupled restriction of only one TCP connection between peers.
e TCP “tuple” (src address, src port 4189, dst address, dst port 4189 [protocol]) is unique
80 IETF Meeting / PCE Working Group / Prague, March 2011 2

CTTC

Centre

Tecnoloégic

de Telecomunicacions
de Catalunya

Practical Deployments

e |tis common to use e.g. a “loopback address” / Node ID / Router ID /PCEID / ...

H H o" H V24

identify a “multi-homed” host

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue state UNKNOWN
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo
inet 10.0.50.1/32 brd 10.0.50.1 scope global lo:0

e Most common operating systems use BSD sockets APl — or similar
e |norder to use e.g. loopback address, processes “bind” sockets to it
e Forces “local source address”

e Alternatively, one can bind to INADDR_ANY
* means “connections to any address are ok” (server) or “use outgoing interface address”
(client).

to

e Ascenario where a system process binds the same IP address / port in both TCP server /

client mode is not common

80 IETF Meeting / PCE Working Group / Prague, March 2011

CTTC

Centre
Tecnoloégic
de Tel muni

de Catalunya

Practical Issue

e |tis not possible (in a portable way), to "bind" or associate several sockets to the
same (local address, local port) pair

Use case: after the first "listening" socket, the PCE would, for each persistent peer (i)
create a socket SOCK_STREAM, (ii) bind it to nodeid/4189 and (iii) connect to remote
peer/4189

e Linuxip(7) "Only one IP socket may be bound to any given local (address, port) pair".

PCEP requires duplicate bindings at the socket level.

e Some systems may implement SO_REUSEPORT / SO_REUSEADDR (1) socket option which could
allow that, although it main use is to bind multicast addresses, or enable some sort of load
sharing amongst TCP listeners in several threads (this feature may only be supported only for
UDP sockets) - interpretation varies.

In practice this seems to affect GNU/Linux in particular and windows / *BSD seem to
work ok, but e.g. java programs behave differently on different platforms.

80 IETF Meeting / PCE Working Group / Prague, March 2011 4

CTTC

Centre

Tecnologic

de Telecomunicacions
de Catalunya

Recommended Errata (draft)

5. Transport Protocol

5. Transport Protocol
. . . PCEP operates over TCP using a registered TCP port (4189). This
PCEP operates over TCP using a registered TCP port (4189). This

allows the requirements of reliable messaging and flow control to be
allows the requirements of reliable messaging and flow control to be q ging

met without further protocol work. All-PCERP messagesMUST be sent
. . Tcp 3 . on_TCF
—port.

met without further protocol work. A PCE MUST listen for incoming
connections at the registered port and a PCC SHOULD use the

registered port as source port, but MAY use any source port.

9.1. TCP Port

9.1. TCP Port
PCEP has been registered as TCP port 4189.

PCEP has been registered as TCP port 4189.

10.7.1
10.7.1

. . . . 0 PCEP uses a single registered port for all communications. The
o PCEP uses a single registered port for all communications. The
PCE SHOULD listen for TCP connections only en—perts—where

PCE SHOULD listen for TCP connections only on the PCEP-registered

port.

. o The PCE MAY implement an access list to immediately reject (or
o The PCE MAY implement an access list to immediately reject (or
. . . discard) TCP connection attempts from unauthorized PCCs.
discard) TCP connection attempts from unauthorized PCCs.

. o The PCE SHOULD NOT allow parallel TCP connections from the same
o The PCE SHOULD NOT allow parallel TCP connections from the same
. PCC on the PCEP-registered port.
PCC on the PCEP-registered port.

Relax TCP Port Restriction while allowing currently conforming PCEP implementations to
operate without exchange (except those that enforce remote client source port)

80 IETF Meeting / PCE Working Group / Prague, March 2011

CTTC Backup: sketch of issue

Centre
Tecnologic
de Tel muni i
de Catalunya
#include <stdio.h> int client (struct sockaddr_in* local_addr)
#include <stdlib.h> {
#include <string.h> int sockfd = socket(AF_INET, SOCK_STREAM, 0);
#tinclude <unistd.h> if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0)
#include <sys/types.h> error("SO_REUSEADDR client");
#include <sys/socket.h> if (bind(sockfd, (struct sockaddr *)local_addr, sizeof(struct sockaddr_in)) < 0)
#include <netinet/in.h> error("bind client");
#include <sys/ioctl.h> return sockfd;
#tinclude <net/if.h> }
intone=1; int main(int argc, char *argv[])
int portno = 4189; {
struct sockaddr_in local_addr;
void error(const char ¥*msg) memset(&local_addr, 0, sizeof(struct sockaddr_in));
{ get_iface_ipv4("eth0", (struct sockaddr*) &local_addr);
perror(msg); local_addr.sin_family = AF_INET;
exit(EXIT_FAILURE); local_addr.sin_port = htons(portno);
}
int sockfd = socket(AF_INET, SOCK_STREAM, 0);
void get_iface_ipv4(char *ifname, struct sockaddr *addr) if (setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0)
{ error("SO_REUSEADDR server");
struct ifreq ifr; if (bind(sockfd, (struct sockaddr *) &local_addr, sizeof(local_addr)) < 0)
int skfd = socket(AF_INET, SOCK_DGRAM, 0); error("ERROR on binding");
strepy(ifr.ifr_name, ifname); if (listen(sockfd, 10) <0)
ioctl(skfd, SIOCGIFADDR, &ifr); error("ERROR on listen");
*addr = ifr.ifr_addr;
close(skfd); int c1 = client (&local_addr);
} return 0;
}

80 IETF Meeting / PCE Working Group / Prague, March 2011

