
Internationalized
Addresses in XMPP

(draft-saintandre-xmpp-i18n-03)

Peter Saint-André
PRECIS WG / XMPP WG

IETF 80, Praha, Česká Republika

1

1Monday, March 21, 2011

XMPP Input

• These slides describe possible input of the
XMPP WG to the PRECIS WG

• Not yet consensus about these proposals
in the XMPP WG

• Intent is to start discussion, not end it!

2

2Monday, March 21, 2011

Unicode Recap (1)

• Every character is a "code point"

• Characters have properties, e.g.:

• letter, number, symbol, etc.

• uppercase vs. lowercase (etc.)

• modifiers (e.g., accent marks)

• left-to-right vs. right-to-left

3

3Monday, March 21, 2011

Unicode Recap (2)

• We decide how to handle characters based
on their properties

• A character can be *equivalent* to another
character or a sequence of characters

• Things like Å and ç are "composite
characters" (we like them)

4

4Monday, March 21, 2011

Unicode Recap (3)

• Two kinds of equivalence

• Canonical: "this character is the standard
for that one" (e.g., Å ≡ Å or ç ≡ c + ̧)

• Compatible: "this character suffers with
that one" (e.g., Ⅳ ≈ I + V or ſ ≈ s)

5

5Monday, March 21, 2011

Unicode Recap (4)

• *Decomposition* analyzes a character into
its component units

• Two kinds of decomposition: canonical and
compatible

• Order matters (e.g., ᾧ ≡ ω + ̔+ ͂ + ͅ)

6

6Monday, March 21, 2011

Unicode Recap (5)

• *Normalization* removes alternate
representations of equivalent sequences so
we can convert the data into a form that
can be compared for equivalence

• Normalization can involve both
decomposition and recomposition, and
both canonical and compatibility rules

7

7Monday, March 21, 2011

Unicode Recap (6)

• NFD = canonical decomposition

• NFKD = canonical and compatibility
decomposition

• NFC = canonical decomposition and
recomposition

• NFKC = canonical and compatibility
decomposition and recomposition

8

8Monday, March 21, 2011

PRECIS Recap (1)

• As we know, IDNA2008 moved away from
stringprep for domain names

• Other technologies want to move as well
(for Unicode agility and other reasons)

• PRECIS WG is working on a replacement
for use by other stringprep customers

• XMPP WG to provide input to PRECIS

9

9Monday, March 21, 2011

PRECIS Recap (2)

• Stringprep provided:

• Mappings (e.g., spaces, prohibited
characters, case folding)

• Normalization (typically NFKC)

• Handling of right-to-left scripts

• PRECIS to provide similar "services"

10

10Monday, March 21, 2011

PRECIS Recap (3)

• Pursue inclusion approach

• Define common string classes

• Enable sub-classing of string classes

• Define processing rules for each class
based on Unicode properties

• Specify mapping rules (probably)

11

11Monday, March 21, 2011

String Classes

• Four string classes of interest in XMPP:

• "Nameything" for localparts

• "Stringything" for resourceparts

• "Wordything" for passwords (cf. SASL)

• "Domaineything" for domainparts (in
IDNA, but need common mapping)

12

12Monday, March 21, 2011

Nameythings (1)

• Purpose: usernames, chatroom names, etc.

• Can be subclassed by application protocols
(e.g., to prohibit additional codepoints)

• In XMPP, used as base class for localpart of
JID (thus replacing Nodeprep)

13

13Monday, March 21, 2011

Nameythings (2)

• Disallowed:

• Space characters (GeneralCategory = Zs)

• Control characters (GC = Cc)

• Any character that has a compatibility
equivalent disallowed

• OPEN ISSUE: Full-width / half-width
codepoints in Asian scripts

14

14Monday, March 21, 2011

Nameythings (3)

• Protocol Valid:

• All other 7-bit ASCII characters (even if
GeneralCategory otherwise disallowed)

• Letters, digits, punctuation, symbols

• OPEN ISSUE: Do symbols really need to
be protocol-valid?

15

15Monday, March 21, 2011

Nameythings (4)

• Fold uppercase and titlecase codepoints to
their lowercase equivalents

• OPEN ISSUE: Right-to-left codepoints

(note: the "Bidi Rule" from RFC 5893 is
more complex than needed here because
nameythings do not have internal structure)

16

16Monday, March 21, 2011

Stringythings

• As with nameythings except:

• Spaces are protocol-valid

• Characters with compability equivalents
are protocol-valid

• Symbols are certainly protocol-valid

• No case folding

17

17Monday, March 21, 2011

Wordythings

• As with nameythings except:

• Characters with compability equivalents
are protocol-valid

• Symbols are protocol-valid

• No case folding

18

18Monday, March 21, 2011

Domaineythings

• Use what's defined in IDNA2008

• But, might need common mapping for use
over the wire in XMPP and perhaps other
application protocols (e.g., apply case
folding and NFD)

19

19Monday, March 21, 2011

Why NFD?

• Simplest normalization form

• Characters requiring compatibility
decomposition are disallowed

• Don't need recomposed characters on the
wire or in storage

• Client-side font rendering can handle
recomposition if needed

20

20Monday, March 21, 2011

Subclassing

• Do we really need to subclass the base
classes?

• Are the string classes really subclasses of
some "Ur-class"?

• Flexibility might introduce interoperability
challenges across application protocols

21

21Monday, March 21, 2011

PRECIS Open Issues

• Which string classes?

• Benefits and hazards of subclassing

• Full-width / half-width code points

• Right-to-left outside IDNA

• Normalization form

• Mapping recommendations

22

22Monday, March 21, 2011

XMPP Open Issues

• Clarify error handling

• Specify client and server responsibilities

• Create list of all JID / JID-part slots

• Define "registrar" policies for servers?

• Create UI guidelines for clients?

• Formulate migration plan

23

23Monday, March 21, 2011

