
RTC-Web Security Considerations

IETF 80

Eric Rescorla

ekr@rtfm.com

IETF 80 RTC-Web Security Issues 1



The Browser Threat Model

Core Web Security Guarantee: “users can safely visit arbitrary web

sites and execute scripts provided by those sites.”[HCB+10]

• This includes sites which are hosting malicious scripts!

• Basic Web security technique is isolation/sandboxing

– Protect your computer from malicious scripts

– Protect content from site A from content hosted at site B

– Protect site A from content hosted at site B

• In this case we’re primarily concerned with JavaScript running in

the browser

The browser acts as a trusted computing base for the site

IETF 80 RTC-Web Security Issues 2



List of Issues to Consider

• Consent to communications

• Access to local devices

• Communications security

IETF 80 RTC-Web Security Issues 3



In an alternate universe: Cross-Site Requests

Victim Gmail Attacker
Login w/ Password

//

Cookie=XXXoo

...
GET /malicious.js //

<script>XMLHttpRequest("https://gmail.com/")...oo

GET w/ XXX
//

Mail dataoo

Mail data //

Obviously this is bad... and it’s a problem even w/o cookies

IETF 80 RTC-Web Security Issues 4



The Same Origin Policy (SOP)

• A page’s security properties are determined by its origin

– This includes: protocol (HTTP or HTTPS), host, and port

– All these must match for two pages to be from the same origin

• Each origin is associated with its own security contet

– Scripts in origin A have only very limited access to resources in

origin B

• Important: the origin is associated with the page, not where the

script came from

– Scripts loaded via <script src=""> tags are associated with

the origin of the page, not the URL for the script!

IETF 80 RTC-Web Security Issues 5



The Same Origin Policy for Page Data

• Scripts can only access page data from their own origin

– Contents of the DOM

– JavaScript variables

– Cookies

– Important exception: JavaScript pointer leakage [BWS09]

• Scripts can access any other page data from their origin

– Includes other windows and IFRAMEs

• Frame can navigate their own children

– This is used for cross-site communication (e.g., FaceBook

Connect)

IETF 80 RTC-Web Security Issues 6



The Same Origin Policy for HTTP Requests

• JavaScript can be used to make fairly controllable HTTP requests

with XMLHttpRequest() API

– But only to the same origin

• Origin A can make partly controllable requests to origin B via

HTML forms

– But cannot read the response

– Cross-Site Request Forgery (CSRF) defenses depend on this

• Origin A can read scripts from origin B

– But they run in A’s context

– This is done all the time (e.g., Google analytics)

IETF 80 RTC-Web Security Issues 7



What does all this mean for RTC?

IETF 80 RTC-Web Security Issues 8



Consent for real-time peer-to-peer communication

• Need to able to send data between two browsers

– Unless you want to relay everything

• But this is unsafe (and violates SOP)

– Not OK to let browsers send TCP and UDP to arbitrary

locations

• General principle: verify consent

– Before sending traffic from a script to recipient, verify recipient

wants to receive it from the sender

– Familiar paradigm from CORS [vK10] and WebSockets[Fet11]

IETF 80 RTC-Web Security Issues 9



How to verify consent for RTC-Web

• Can’t trust the server (see above)

– Needs to be enforced by the browser

• Browser does a handshake with target peer to verify connectivity

Alice Server Bob

Connect to Boboo Connect to Alice //

oo Handshake //

oo Media traffic //

‘

• This should look familiar from ICE [Ros10]

• Restricts communication with that endpoint until handshake

complete (new)

IETF 80 RTC-Web Security Issues 10



Access to Local Devices

• Making phone (and video) calls requires that your voice be

transmitted to other side

– But the other side is controlled by some site you visit

– What if you visit http://bugmyphone.example.com?

• Somehow we need to get the user’s consent

– But to what?

– And when?

– Users routinely click through warning dialogs when presenting

“in-flow”

• What is the scope of consent?

– By origin?

– What about mash-ups?

IETF 80 RTC-Web Security Issues 11



What about communications security?

• We’ve already addressed this in the context of SIP

– Things aren’t that different here–all the usual protocols work

• Open question: where is the keying material stored?

– On the server?

– In localstorage?

– In the browser but isolated from the JavaScript? (probably

best)

IETF 80 RTC-Web Security Issues 12



References

[BWS09] Adam Barth, Joel Weinberger, and Dawn Song. Cross-Origin JavaScript Capability

Leaks: Detection, Exploitation, and Defense. In Fabian Montrose, editor, In Proc.

of the 18th USENIX Security Symposium (USENIX Security 2009), August 2009.

[Fet11] Ian Fette. The WebSocket protocol.

draft-ietf-hybi-thewebsocketprotocol-06.txt, February 2011.

[HCB+10] Lin-Shung Huang, Eric Y. Chen, Adam Barth, Eric Rescorla, and Collin Jackson.

Transparent Proxies: Threat or Menace, 2010. In submission.

[Ros10] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/Answer Protocols. RFC 5245, 2010.

[vK10] Anne van Kesteren. Cross-Origin Resource Sharing.

http://www.w3.org/TR/access-control/, 2010.

IETF 80 RTC-Web Security Issues 13


