Shared resources in RELOAD as a primitive for coordinating group communication

draft-knauf-p2psip-share-00

Alexander Knauf
Gabriel Hege
Thomas Schmidt
Matthias Wählisch

alexander.knauf@haw-hamburg.de, hege@fhtw-berlin.de, {t.schmidt,waehlisch}@ieee.org
Outline

1. Problem Statement and Objectives

2. Overview Shared Resources

3. Access Control

4. Application Scenarios

5. Conclusion & Outlook
Problem Statement

Why do we need Shared Resources in RELOAD?

- Standard access control mechanisms are not sufficient for controlled write access by multiple peers
- Simplest way: USER-MATCH policy and certificate with same user name for all peers
 - Need to contact enrollment server → infeasible
 - Need to distribute private key/secrets/certificate
 - No individual revocation
- Use cases:
 - conference registration, message board, SSM source announcement, ...
Objectives

- Single resource to be writable by a well defined group of peers
 - Without contacting enrollment server
 - Allow revocation
- Optionally: more relaxed resource naming scheme
- Define some primitives for other Usages to build upon
Shared Resources - Overview

- RELOAD Resource (Kind) for which multiple peers have write access
- Resource Owner: has access by some (standard) policy (e.g., USER-MATCH)
- Resource Owner grants access using an Access Control List (ACL)
- ACL is stored under the same Resource-ID
 → on the same peer
- Write permission may be further delegated
 → Chain of delegations in ACL
Access Control Policies

• For the Owner:
 • Standard policy (e.g., USER-MATCH)
 – or relaxation thereof: USER-PATTERN-MATCH
 • Allows the Owner to store the ACL

• For other peers:
 • USER-CHAIN-ACL

• Enforced by the storing peer, but independently verifiable
Access Control List

- Stored under the same Resource Name as the Shared Resource
- Contains delegations from_user → to_user
- Users in the ACL may write the Shared Resource
- Chain of signed delegations may be independently verified

```c
struct {
    opaque resource_name<0..2^16-1>;
    KindId kind;
    opaque from_user<0..2^16-1>;
    opaque to_user<0..2^16-1>;
    Boolean allow_delegation;
} AccessListData;
```
Revocation of Write Permission

Revocation is simple:

- Invalidate corresponding delegation in ACL
 - set exists=false
- Succeeding delegations also invalidated
- Owner can revoke the whole list by deleting the root entry
Access Control List – Example

<table>
<thead>
<tr>
<th>#</th>
<th>Array Entries</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Kind:1234 from:Owner -> to:Owner ad:1</td>
<td>signed by Owner</td>
</tr>
<tr>
<td>1</td>
<td>Kind:1234 from:Owner -> to:Alice ad:1</td>
<td>signed by Owner</td>
</tr>
<tr>
<td>2</td>
<td>Kind:1234 from:Alice -> to:Bob ad:0</td>
<td>signed by Alice</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>42</td>
<td>Kind:4321 from:Owner -> to:Owner ad:1</td>
<td>signed by Owner</td>
</tr>
<tr>
<td>43</td>
<td>Kind:4321 from:Owner -> to:Carol ad:0</td>
<td>signed by Owner</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Application Scenarios (1): Distributed Conferencing (DisCo)

- The impulse for developing ShaRe
- A distributed conferencing Usage for RELOAD
- Tightly coupled SIP conference
- Focus functionality is transparently distributed among multiple peers, which act as a single focus instance
- All focus peers of a conference register under a single URI
- The conference initiator grants the focuses write access to the conference registration

[draft-knauf-p2psip-disco]
Application Scenarios (2): AMT-Relay Registration

- Usually AMT-Relays are discovered via anycast
 - Without anycast other means are necessary
- A Shared Resource in a RELOAD overlay could be used:
 - AMT-Relays register themselves at a well known location
 - AMT-Gateways lookup Relays and choose the closest one
- Multi hop tunnels allow traffic aggregation:
 - Possibly optimization of tunnel trees using information from RELOAD
Application Scenarios (3): Discovery of Tunnel Endpoints

- When no AMT-functionality is available (mobile) clients may need to establish tunnels
- Tunnel endpoints register themselves in a RELOAD overlay in a Shared Resource
- Applications with a built-in RELOAD stack can use this to discover an (optimal) endpoint
Application Scenarios (4): SSM Source Announcement

• Problem in SSM: finding out which sources are available

• Common solutions: broadcast announcement (e.g., Bayeux) or out of band communication

• ShaRe can be used to announce available sources for a group
 • E.g., Stored under a Resource ID derived from the group's address

• The group creator initially registers the resource and delegates write permission to permitted sources

• The group can be extended as long as one source with delegation permission is active
Application Scenarios (5): Distributed Tracker

- Similar to Distributed Conferencing
- But instead of focus peers, instances of a distributed tracker register themselves in a Shared Resource
Conclusion & Outlook

- Defined primitives to allow coordinated shared writing of a RELOAD resource
- Can be used for service announcement in moderately sized groups

- Now we need some drafts using these primitives ;-) (see draft-knauf-p2psip-disco-02)
Thank you for your attention!

Any Questions?