
TLS Next Protocol Negotiation

Mike Belshe, Adam Langley
March, 2011

Problem:

We want to use a protocol other than HTTP when connecting
via TLS.

But...

We don't know if the server supports the other protocol, and we
cannot afford the latency hit of a round trip.

Non-solutions: Using a different port.

The classic approach is to use a different port.

Problems:
Port numbers other than 80 and 443 suffer from
discrimination within the network.
Port 80 is transparently proxied by intermediaries that only
understand HTTP. Use of any protocol other than HTTP
often breaks (timeouts, errors, or incorrect behavior)
Port 443 is safe from intermediary tampering. However it
can require up to 5 round trips (DNS, TCP, TLS(2), App)
before discovering that the application cannot support a
different protocol

Non-solutions: Racing connections

We could race two protocol connections and see which one
finishes.

Problems:
Inefficient on the network
Inefficient on the server
(at least one connection will be wasted)
Has an element of unpredictability.

Non-solutions: Upgrading

HTTP provides an "upgrade" mechanism at the application
layer.

Problems:
Burns an extra round trip.
Without TLS, it still breaks intermediaries outside the control
of the server.

Non-solutions: Memory

This covers schemes where clients learn of protocol support via
a HTTP header and, for future connections, use the new
protocol.

Servers cannot roll back support.
It breaks SSL MITM boxes which expect HTTP unless the
indication mechanism is a TLS extension (which these
boxes will remove.)
It requires that the server figure out the protocol based on
the initial bytes from the client. Complicates the stack and
can result in security issues.

Solution: Next Protocol Negotiation

Use TLS's extension mechanism to provide explicit negotiation.

1. Client advertises support as an extension
2. Server echos the extension, optionally including a list of

supported protocols.
3. Client sends a NextProtocol handshake message after the

ChangeCipherSpec. The protocol name is padded to 32-bytes
to avoid leaking the size.

(The protocol that the client selects doesn't have to be one of
the ones offered by the server.)

Why not in the clear?

We are forced into this solution, to a large extent, because of
network discrimination against TCP port numbers. It seems like
a bad idea to repeat the same mistakes.

If we wish this extension to be generally useful, it should serve
other uses and, where cryptography is involved, there are often
incentives to discriminate.

Example: the Iranian national firewall inspects the Diffie-
Hellman group of EDH-* TLS handshakes and blackholes those
which use certain groups in an attempt to discriminate against
certain applications.

Deployment Status

Patches exist for NSS and OpenSSL
Used by 100M+ Chrome users daily to talk to Google
HTTPS servers.
Draft written

http://tools.ietf.org/html/draft-agl-tls-nextprotoneg-00.html

http://tools.ietf.org/html/draft-agl-tls-nextprotoneg-00.html

