SPDY, TCP,
and the
Single Connection Throttle

Mike Belshe
mbelshe@google.com
04/01/11

A New Protocol? What for?

Speed.

State of the Web Page

e An average Web Page Consists of:
o ~44 resources
o ~/ hosts
o ~320KB
o ~66% compressed (top sites are ~90% compressed)
o Note: HTTPS is < 50% compressed.
e Incremental improvements to HTTP don't move the needle
o Transparent proxies change the content.
o Example: pipelining
o Example: stripped "Accept-Encoding” headers
m we can't even improve "negotiated" compression!

Quick SPDY Background

e Goals:
o Faster web page downloads
o Always secure
o Deployable
o Open
e Features (No rocket science here!)
o Single-connection, Multiplexed, prioritized streams
o Mandatory header compression
o Supports server-push
e SPDY is Basic Networking "blocking and tackling”
o Use fewer connections
o Send fewer bytes

HTTP Connection Use Today

WebPageTest.org Connections Per Page

6.0 W Es

B ES
45

3.0

1.5 M

0.0

percent

A9l 5 A N gl @ 1D N @ ol

of connections

Average: 29 connections per page.

25%-tile =10 50%-tile =20 75%-tile =39 95%-tile =78

Reducing Upload Bytes

SPDY vs HTTP Upload KB Sent (Top-45 pages)

HTTP

SPDY

‘ 51% reduction I

0 600 1,200 1,800 2,400

KB

Reducing Download Bytes

HTTP

SPDY

SPDY vs HTTP Download KB (Top-45 pages)

0 5,000

10,000

KB

4% reduction

15,000

20,000

Reducing Total Packets

SPDY vs HTTP Total Packets (Top-45 pages)

HTTP

SPDY

‘19% reductionl

0 8,000 16,000 24,000 32,000

packets

Increasing Parallelism

time-to-first-byte (ms)

600

450

300

150

SPDY vs HTTP Time to First Byte for a Request

30

40

50 60

percentile

70

80

90

99.5

B HTTP
B SPDY

The Single Connection Throttle

Throttle #1: CWND

Problem:
e Server-side slow start limits server to N packets. (in flux)

Workaround:
e Use more client connections.
e Update server to go beyond spec.
e SPDY can use a cookie based cwnd.

Note:
e HTTP's per-domain cwnd is currently ~24 (6*4).
e draft-ietf-tcpm-initcwnd-00.txt helps

Throttle #1 CWND vs # connections

4,000
3,500
3,000
% 2,500 1 conn (200ma &7
3 SYp——
5 2,000 N
e I
1,000 K
500 &+« vvocmne s

init cwnd

Throttle #2: Receive Windows

Problem:
e Some clients set initial rwnd to 5840 bytes (4 pkts)
e Trumps larger cwnd on servers.
e Patch just shipped this month in linux mainline
Workaround:
e Use more client connections.

Throttle #2: Init rwnd

PLT (ms)

4,000

2,400

800

Effect of init rwnd=32KB

B 2Mbps, rwnd=32KB
B 2Mbps, default

W 5Mbps, rwnd=32KB
B 5Mbps, default

B 10Mbps, rwnd=32KB
B 10Mbps, default

M 1Gbps, rwnd=32KB
B 1Gbps, default

0 40 80 100 120 160 200

RTT

Throttle #3: Intermediaries

Problem:
e "Just a bug”... but... Intermediaries can (and do) tamper.

e window scale enables large receive windows.

Workaround:
e Use more client connections.

Client Side Server Side
// Client wants window /I Server recvs window
// scaling 6. // scale 3. Someone
// tampered with this.
SYN > w=5840, ws=6 SYN > w=5840, ws=3
// Client receives server // Server sends 1ts own
// WS as sent. // ws of 6.
SYNACK <- w=5840, ws=6 SYNACK <- w=5840, ws=6

// going to be slow....

Throttle #4: Congestion Control

Problem:
e Congestion detection decreases the send rate.
e But congestion signals can be erroneous.
e Applied to the connection, not the path:
o 1 connection: single packet loss cuts send rate by N
(typically 0.5/0.7).
o 6 connections: single packet loss cuts send rate by
1/6*(1/N) == (~1/9th to 1/12th)

Workaround:
e Use more client connections.

Too Obsessed With 1 Connection?

e Could we use 2? 37
o Sure, but it neutralizes many of our benefits.
e Disadvantages of multiple connections:
o Sharing state across connections is hard.
o Server farms would be required to do sticky load
balancing
o Compression worsens (we use stateful compression)
o Prioritization becomes impossible
o Server push difficult
e But it shouldn't be this hard...

How Much Does A Handshake Cost?

The Cost of a Handshake: adding a 100ms delay
B Normal

2,400
Bl 100ms delay

1,800
B
E >
,: 1,200
a

600

SPDY

HTTP

What's Next?

e Before SPDY, we could blame the app layer (HTTP).
e With SPDY, we're on the verge of proving that the transport
IS the new bottleneck.
e TCP needs to address 2 performance obstacles:
o Data in initial handshake.
o Single connection taxes.
e TCP needs to address security
o Both Server Auth & Encryption
o (Sorry | didn't have time to discuss in this talk!)

e How can we iterate on the transport when it is buried in the
kernel? Can we auto-update the network stack?

