Internationalized
Addresses in XMPP

(draft-saintandre-xmpp-i| 8n-03)

Peter Saint-Andre
PRECISWG / XMPPWG

IETF 80, Praha, Ceska Republika

XMPP Input

® These slides describe possible input of the
XMPP WG to the PRECISWG

® VWe do not yet have consensus about these
proposals in the XMPP WG

® [he intent is to start discussion, not end it!

Unicode Recap (1)

® Every character is a "code point”

® Characters have properties, e.g.:
® |etter, number, symbol, etc.
® uppercase vs. lowercase vs. titlecase
® modifiers (e.g., accent marks)

® |eft-to-right vs. right-to-left

Friday, March 25, 2011

Unicode Recap (2)

® VVe decide how to handle characters based
on their properties

® A character can be *equivalent™ to another
character or a sequence of characters

® Things like A and ¢ are "composite
characters” (humans like them)

Friday, March 25, 2011

Unicode Recap (3)

® [wo kinds of equivalence

® Canonical: "this character is the standard
for that one" (e.g, A=Aor¢g=c+),)

® Compatible: "this character suffers with
that one" (e.g,IV = 1 +Vor{ = s)

Unicode Recap (4)

® *Decomposition™ analyzes a character into
Its component units

® [wo kinds of decomposition: canonical and
compatible

® Order matters (e.g, W =W+ +~ +)

Friday, March 25, 2011

Unicode Recap (5)

*Normalization®™ removes alternate
representations of equivalent sequences so
we can convert the data into a form that
can be compared for equivalence

Normalization can involve both
decomposition and recomposition, and
both canonical and compatibility rules

Friday, March 25, 2011

Unicode Recap (6)

Canon | Compat| Canon | Compat
Decomp | Decomp | Recomp | Recomp
NFD v
NFKD v v
NFC 4 4 v
NFKC | ¥V v 4 4

Friday, March 25, 2011

PRECIS Recap (1)

® As we know, IDNA2008 moved away from
stringprep for domain names

® Other technologies want to move as well
(for Unicode agility and other reasons)

® PRECIS WG is working on a replacement
for use by other stringprep "customers”

o XMPP WG to provide input to PRECIS

PRECIS Recap (2)

® Stringprep provided:

® Mappings (e.g., spaces, prohibited
characters, case folding)

® Normalization (typically NFKC)
® Handling of right-to-left scripts

® PRECIS to provide similar "services”

PRECIS Recap (3)

Pursue inclusion approach
Define common string classes
Enable subclassing of string classes

Define processing rules for each class
based on Unicode properties

Specify mapping rules (probably)

String Classes

® Four string classes of interest in XMPP:

"Nameythings" for localparts
"Stringythings” for resourceparts

"Wordythings" for passwords (cf. SASL)

"Domaineythings" for domainparts (in
IDNA, but we heed common mapping)

Nameythings (I)

® Purpose: usernames, chatroom names, etc.

® Can be subclassed by application protocols
(e.g., to prohibit additional codepoints)

® |n XMPP will be used as base class for
localpart of JID (thus replacing Nodeprep)

Nameythings (2)

® Disallowed:
® Space characters (GeneralCategory = Zs)
® Control characters (GC = Cc)

® Any character that has a compatibility
equivalent (as in IDNA2008)

e OPEN ISSUE: Full-width / half-width
codepoints in Asian scripts

Nameythings (3)

® Protocol Valid:

® All other 7-bit ASCII characters (even if
GeneralCategory otherwise disallowed)

® | etters, digits, punctuation, symbols

® OPEN ISSUE: Do symbols really need to
be protocol-valid? (e.g., "thes2", "I¥®ny")

Nameythings (4)

® Fold uppercase and titlecase codepoints to
their lowercase equivalents

® OPEN ISSUE: Right-to-left codepoints

(note: the "Bidi Rule"” from RFC 5893 is
more complex than we need because
nameythings do not have internal structure)

Stringythings

® As with nameythings except:
® Spaces are protocol-valid

® Characters with compability equivalents
are protocol-valid

® Symbols are (certainly) protocol-valid

® No case folding

VWordythings

® As with nameythings except:

® Characters with compability equivalents
are protocol-valid

® Symbols are (certainly) protocol-valid

® No case folding

Domaineythings

® Use what's defined in IDNA2008

® But, might need common mapping for use
over the wire in XMPP and perhaps other
application protocols (e.g., apply case
folding and NFD)

Why NFD?

® Simplest normalization form

® We can simply disallow characters
requiring compatibility decomposition

® We don't need recomposed characters on
the wire or in storage

® Client-side font rendering can handle
recomposition if needed

20

Friday, March 25, 2011

20

Subclassing

® Do we really need to subclass the base
classes!?

® Are the string classes really subclasses of
some "Ur-class™?

® Flexibility might introduce interoperability
challenges across application protocols
(e.g., email account vs. IM account)

21

Friday, March 25, 2011

21

PRECIS Open Issues

Which string classes!?

Benefits and hazards of subclassing
Full-width / half-width code points
Right-to-left outside IDNA
Normalization form(s)

Mapping recommendations

22

XMPP Open Issues

Clarify error handling

Specify client and server responsibilities
Create list of all JID / JID-part slots
Define "registrar” policies for servers?
Create Ul guidelines for clients?

Formulate migration plan

23

