
JavaScript Message Syntax (JSMS)

draft-rescorla-jsms-00

IETF 80

Eric Rescorla∗ Joe Hildebrand

ekr@rtfm.com jhildebr@cisco.com

∗ Presenting

IETF 80 APPAREA Meeting 1

Overview

• Lots of need for cryptographically protected (signed/encrypted)

messages

– XMPP, OAuth, RELOAD, ...

• Empirically implementors (and designers) don’t want to use CMS

– Fear of protocol complexity

– ASN.1 allergy

– Especially bad fit for JavaScript, which does badly with binary

encodings

• Result is people avoid secure messaging entirely (XMPP, OAuth)

or invent their own formats (RELOAD)

• We need a format people are actually willing to implement

IETF 80 APPAREA Meeting 2

Current Efforts

• WebToken (draft-jones-json-webtoken-03,

draft-jones-json-web-signature-01)

• JSMS (draft-rescorla-jsms-00, this talk)

• Web Object Encryption and Signing (WOES) bar BOF (tonight at

2000 in Karlin I)

IETF 80 APPAREA Meeting 3

JSMS: The Basic Idea

• Use JSON encoding

– Very convenient for working in JavaScript

– JSON libraries are readily available for other languages

• Pick the simplest and most common use cases

– Digital signature

– Encryption under recipient’s public key (+ MAC for integrity)

– Encryption with a shared symmetric key (+ MAC for integrity)

• Design for maximum implementation simplicity

– No canonicalization

– Base-64 anything difficult to represent as a string

– In-memory processing (no streaming operation)

* WARNING: Hard hat area

IETF 80 APPAREA Meeting 4

Sample Workflow

Sender Receiver

Text string
Format
��

Text string

Content Object
Sign
��

Content Object

Unformat
OO

Signed Object
Encrypt
��

Signed Object

Verify
OO

Encrypted Object
Transmit // Encrypted Object

Decrypt
OO

IETF 80 APPAREA Meeting 5

Content Objects

{

"ContentType":"text/plain; charset=UTF-8",

"Type":"content",

"Data":"SGVsbG8sIFdvcmxkCg==",

"ID":"746a4c9f-8e84-4313-b669-81590ee2949e",

"Created":"2011-03-07T16:17Z"

}

• Wrapper around whatever the original content was

• Content-type to identify the format

• Base64 to protect potentially dangerous characters

• Datestamp and ID for anti-replay

IETF 80 APPAREA Meeting 6

Signed Objects

{

"SignedData":"ewogICAgIkNvbnRlbnRUeXBlIjoidGV4dC9wbGFpbjsgY2hhcn

... IKfQ==",

"DigestAlgorithm":"SHA-256",

"SignatureAlgorithm":"RSA-PKCS1-1.5",

"Signer":"xmpp:romeo@example.net",

"Signature":"sNsxJltUaz4pSzAtJiPZagUMV4SwWugWexGbffK/WJRDi2uq7TxN

... SJfIdiAJNA+nEnk="

"CertChain:{

"Type":"PKIX",

"Chain":[...]

}

}

• Signature computed over binary representation of Contents

– Base64-encoded to prevent damage in transit

• Support for PKIX certificates∗

∗But wait, aren’t certificates in ASN.1? More on this shortly

IETF 80 APPAREA Meeting 7

Wait, aren’t PKIX certs in ASN.1/DER?

• Answer 1: Do without

– Can potentially use raw public keys (not supported yet)

• Answer 2: Certificates are easier to isolate

– Stand up a Web service to verify/decode (natural in a Web 2.0

app)

– ... remember that the JS probably came from the server

anyway

• Answer 3: Replace

– Natural to have the contents of a Signed object be a

key/identity binding

– Eventually expect to have a simple JSMS-based certificate

format

IETF 80 APPAREA Meeting 8

What’s next?

Come to the WOES bar bof: Tonight at 2000 in Karlin I

IETF 80 APPAREA Meeting 9

